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Genome studies in fish provide evidence for the adaptability of the
vertebrate immune system, revealing alternative immune strategies. The
reported absence of the major compatibility complex (MHC) class II
pathway components in certain species of pipefish (genus Syngnathus) and
cod-like fishes (order Gadiformes) is of particular interest. The MHC II
pathway is responsible for immunization and defence against extracellular
threats through the presentation of exogenous peptides to T helper cells.
Here, we demonstrate the absence of all genes encoding MHC II components
(CD4, CD74 A/B, and both classical and non-classical MHC II α/β) in the
genome of an anglerfish, Lophius piscatorius, indicating loss of the MHC II
pathway. By contrast, it has previously been reported that another angler-
fish, Antennarius striatus, retains all MHC II genes, placing the loss of
MHC II in the Lophius clade to their most recent common ancestor. In the
three taxa where MHC II loss has occurred, the gene loss has been restricted
to four or five core MHC II components, suggesting that, in teleosts, only
these genes have functions that are restricted to the MHC II pathway.
1. Introduction
The vertebrate adaptive immune system that generates diversity through
genetic recombination appears to have evolved in the common ancestor of
the jawed vertebrates (gnathostomes) [1]. Although this system increased in
complexity with gnathostome evolution, it is thought that the acquisition of
all required cellular processes, tissues and genes happened relatively quickly
as most components are present across all jawed vertebrates [1]. T-cell receptors
(TCR), B-cell receptors (BCR) and the major histocompatibility complex (MHC)
classes I and II are all present throughout the gnathostome lineages, from the
Chondrichthyes to terrestrial vertebrates [1]. Although the specific sites of hae-
matopoiesis vary, homologous tissues and organs including the thymus and
spleen are also present across the gnathostomes [1–4].

An intact adaptive immune system has been found in almost all vertebrate
species that have had their genomes sequenced, but recent work has demon-
strated the loss of components of the adaptive immune system in the
elephant shark, pipefish, coelacanth and the entire Gadiformes order [5–10].
These observations demonstrate an unexpected plasticity of adaptive immunity.

The teleost order Lophiiformes (Anglerfishes) harbours at least 321 living
species, approximately half of which express some degree of sexual parasitism
[11]. In these species, males attach to the females either temporarily or perma-
nently. In extreme cases, this leads to fusion of male and female circulatory
systems [12]. Why this fusion does not result in tissue rejection is unknown,
but suggests a specialized adaptive immune system. Phylogenetic inference
based on sequencing data and morphology has concluded that male sexual
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parasitism within Lophiiformes must have multiple origins
[11,13,14], suggesting a common selective pressure or a
shared genetic predisposition.

Here, we present two independently obtained draft
genomes of an anglerfish, Lophius piscatorius, and show that
it has lost all components of the MHC II arm of the adaptive
immune system. The MHC II pathway is known to be involved
in allogenic rejection [15] and our observations suggest that loss
of MHC II may have contributed to the immune tolerance
observed in sexually parasitic anglerfish species.
2. Material and methods
(a) Sample collection, DNA isolation and sequencing
Samples from two L. piscatorius individuals (referred to as BF1
and BF2) were collected in the Bodø coastal waters, Nordland
County in collaboration with local fishermen. BF1 skeletal
muscle and BF2 kidney were used for subsequent total DNA
isolation, library preparation and sequencing. BF1 total DNA
sequencing was performed using Illumina MiSeq and SOLiD
5500 technologies (sequence depth: 24×). BF2 total DNA was
sequenced by Dovetail Genomics, USA on an Illumina HiSeq X
instrument (sequence depth: 150×) as a service. The Illumina
libraries were 300 bp paired-end reads with 600 bp insert size
for the MiSeq, and 150 bp paired-end reads with 350 bp insert
size for the HiSeq.
(b) Bioinformatic analysis
The raw reads were trimmed from adapters and low-quality
bases using Cutadapt [16]. Only Illumina data were used for
the assemblies. Prior to assembly, overlapping read pairs were
merged using FLASH (v. 1.2.11) [17]. Final assemblies were con-
structed with SPAdes (v. 3.10.0) [18]. Basic assembly statistics
were calculated with QUAST (v. 4.4.1) [19] and gene-space
completeness assessed using BUSCO (v. 2.0) [20] with the
actinopterygii dataset (odb9).

MHC genes were identified using methods similar to those
used in [10] (figure 1). Briefly, a set of adaptive immune system-
related protein sequences (bait-sequences) were used to identify
contigs containing potential orthologues. Genes and open reading
frames (ORFs) were predicted from these contigs and aligned
both to the bait-set and sequences within the UniProt database
to separate orthologues from non-orthologous genes containing
homologous sequences. The resulting alignment scores were
visualized and identities of candidate orthologues manually con-
firmed by inspection of alignments and annotations.

We performed this analysis on our L. piscatorius assemblies as
well as on assemblies of Antennarius striatus, Gadus morhua and
Perca fluviatilis [10]. If a gene was not identified in L. piscatorius,
the unassembled reads (SOLiD and Illumina) were searched
using tBLASTn. Matching reads were reassembled (CLC GW
v. 11, QIAGEN, Aarhus, Denmark) and verified by reciprocal
BLASTn against NCBI nr.

More detailed descriptions are provided in the electronic
supplementary material.
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3. Results
(a) Genome assembly
The resulting L. piscatorius assemblies contained 664 (BF1)
and 724 (BF2) megabases with N50 values of 6.9 kb and
108 kb, respectively. We used the BUSCO [20] actinopterygii
set of 4584 conserved genes to estimate the gene-space com-
pleteness of these assemblies. We could detect at least 75%
of these genes in both our assemblies (complete and fragmen-
ted), with 91.5% of complete genes identified in the BF2
assembly (electronic supplementary material, figure S1).

The gene space completeness of our assemblies is thus
similar to that obtained for the A. striatus assembly (66.5%
complete and 15.8% fragmented, electronic supplementary
material, figure S1). Hence, our assemblies are comparable
to or better than assemblies in [10] in terms of continuity, cover-
age and gene-space completeness (electronic supplementary
material, figure S1).

(b) Adaptive immune system genes in L. piscatorius
We used tBLASTn with a set of adaptive immune system
genes to identify orthologous genes in L. piscatorius as well
as in species previously reported to either have (A. striatus,
P. fluviatilis) or lack (G. morhua) genes coding for MHC II
components. Candidate orthologues were readily observed
for all MHC I genes in all species. By contrast, we were
unable to identify genes coding for CD4, CD74 A/B, MHC
II α/β in either L. piscatorius or G. morhua assemblies (figure 2
and table 1). We repeated this analysis using an extended bait
set including the non-classical MHC II α/β lineages [21]; this
too failed to find any candidate orthologues in L. piscatorius.
Similarly to the MHC I components we were also able
to clearly identify orthologues of 22 out of 23 additional
genes that have functions in the adaptive immune system
(electronic supplementary material, figure S6, ST2).

To confirm the absence of MHC II orthologues in
L. piscatorius we also searched for short sequences in the
unassembled reads that could be aligned with the missing
genes. Using tBLASTn, we identified 18 and 62 reads from
BF1 and BF2, respectively, which aligned with an MHC II β
subunit. To locate the position of these potential MHC II
sequences, the matching reads were assembled into contigs
and mapped back to the original assemblies. This identified
a region of approximately 300–480 bp in length present in
both assemblies. When translated, the predicted reading
frame was interrupted by multiple stop codons (electronic
supplementary material, figure S2), indicating that the frag-
ment represents a remnant of an MHC II β chain gene.
Hence, we conclude that the MHC II pathway is absent in
L. piscatorius.

To confirm the presence of genes syntenic to CD4 and
CD74 in L. piscatorius, we identified contigs containing these
genes [5] and aligned them to the stickleback (Gasterosteus
aculeatus) loci (electronic supplementary material, figure S7).
All highly conserved genes were identified in either a single
(CD74) or three (CD4) contigs and the gene predictions
lying within these contigs aligned both in terms of direction
and order. CD74 in L. piscatorius seems to have been lost
through a deletion of a region lying between ndst1a and
SCL35A4 that has removed both CD74 and almost all
intergenic space. For CD4, we were unable to identify a
contig spanning the expected CD4 position; nevertheless,
our analysis confirms the presence of the expected syntenic
genes within our assembly.

(c) MHC II in A. striatus
Antennarius striatus has been reported to contain both MHC I
and MHC II pathway genes [10]. Since both A. striatus
and L. piscatorius are members of the Lophiiformes order,
we considered the possibility that the identification of
A. striatus MHC II orthologues could have resulted from
cross-contamination of the sample. Although we did observe
the presence of cross-contaminating mitochondrial sequences
from distantly related teleost taxa, the relative sequencing depth
of contaminant and A. striatus sequences, combined with the
unimodal depth distribution preclude the possibility that the
MHC II sequences were derived from contaminant DNA frag-
ments (electronic supplementary material, figure S4). Our
observations thus confirm the presence of MHC II, while at
the same time highlighting the potential of cross-contamination
leading to confounding results.
4. Evolutionary considerations
Of the 81 teleosts examined so far, only members of the
Gadiformes order (27 species sequenced), pipefishes
(Syngnathus typhle and S. scovelli) and now L. piscatorius lack
a functional MHC II pathway [5,6,9,10]. Notably, all these
species lack CD4 and both MHC II α and β chains (classical
and non-classical molecules). In addition, CD74 A/B has
been completely lost in L. piscatorius and the Gadiformes
order. Nevertheless, all contain a complete set of MHC I path-
way components [6,9,10] (figure 2; electronic supplementary
material, figure S6). In contrast to terrestrial vertebrates, tele-
ost MHC II α and β often occupy multiple loci on different
chromosomes [22]. This means that loss of the complete
MHC II pathway requires multiple independent gene del-
etions; e.g. the loss of MHC II in A. striatus would require
around 10 deletions (table 1). This suggests that loss of any
critical MHC II pathway component leads to the loss of
remaining core parts and argues that genes lost in these
species are unlikely to have functions outside of MHC II
in teleosts.

By contrast, genes such as CIITA, which is conventionally
thought to be a specific activator of MHC II gene expression
[23], is likely to have roles outside the MHC II system because
in the absence of neo-functionalization, it would have no
function after MHC II loss. Hence, our results are consistent
with reports indicating an additional role of CIITA in the
regulation of MHC I expression [24–26].

Sexual parasitism in anglerfish suggests some form of
specialized immune system allowing for allogenic tolerance
between fused individuals. Although CD8+ cytotoxic
lymphocytes are thought to be the primary effectors of allo-
genic rejection, it is clear that MHC II components have
both enabling and effector functions [15], and a long line of
publications show that repression of MHC II components
can contribute to immune tolerance or alleviate immune
rejection [27–30]. Hence, it is tempting to speculate that the
loss of MHC II in the Lophiodei suborder is not restricted
to Lophius species and has played an enabling role in the
development of sexual parasitism.

Most Lophiiformes phylogenies place the Lophioidei sub-
order at the most basal position in the anglerfish taxonomy,
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Figure 2. Identification of MHC I and MHC II pathway orthologues. Illustration of identification criteria (a). The alignment scores of putative orthologues against the
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orthologues for Lophius piscatorius (black) and Gadus morhua (red), whereas candidate orthologues are evident in all species for the MHC I genes (d,e). Results for
the α/β chains of CD8 and MHC II, and the CD74 A/B genes are shown combined.

Table 1. Number of candidate orthologues identified after forward/reverse screening (see §2) and manual inspection of the plots (figure 2). Numbers in
brackets indicate individual hits after the forward score threshold was applied, but before manual examination of UniProt IDs identified unrelated genes.

gene Gadus morhua Perca fluviatilis Lophius piscatorius Antennarius striatus

CD4 0 1 0 2

CD74 A/B 0 4 0 2

MHC II α/β 0 21 (22) 0 6 (7)

CD8 α/β 2 2 1* 2

MHC I 49 34 (35) 18 (19) 12 (13)

*Predicted sequence appears as a fusion protein of α and β chains.
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followed by Antennarioidei [11,14,31,32]. If Lophioidei is
basal, then MHC II loss is likely to be specific to the Lophioi-
dei suborder since A. striatus clearly possesses all MHC II
components. That would also mean that our observations
are unlikely to be relevant to sexual parasitism in other
anglerfish clades. However, inferences of higher-order taxo-
nomies are still fraught with difficulty, exemplified by the
fact that the phylogenetic topology of the taxa involved
based on mitochondrial DNA is subject to change depending
on the choice of outgroup [11,13] (electronic supplementary
material, figure S5). Exploring the presence and absence of
MHC II genes in other anglerfish species can thus provide
a test of the conventional phylogeny, as well as the likelihood
of MHC II loss being one of the enabling adaptations
preventing intra-species tissue rejection.
 Lett.15:20190594
5. Conclusion
The classical MHC II components are responsible for the pres-
entation of exogenous peptides to T helper cells and constitute
an important part of the gnathostome adaptive immune
system. Here, we report two draft genome assemblies of
L. piscatorius and demonstrate a complete loss of the classical
MHC II pathway in this species. The finding of a third taxon
that lacks MHC II function corroborates the dispensability of
MHC II in teleosts, and suggests that the genes lost in all
three clades have no function outside of the MHC II.
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