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Summary 

Aquaculture is a fast-growing industry that plays an increasing role in producing food for humans. 

Production of quality aquafeeds requires a significant amount of long-chain polyunsaturated fatty 

acids (LC-PUFAs), that are currently derived from fish oil. However, the dependence of aquafeed 

production on fish oil can reduce the amount of food available for direct human consumption and 

may have negative consequences to wild fish stocks by overfishing. The current supply of LC-

PUFAs is already insufficient to meet global market demands and the price has dramatically 

increased in the last few decades. Therefore, there is an urgent need to find alternative aquafeed 

ingredients which contain essential LC-PUFAs and offer high nutritional values. Microalgae are 

the primary source of LC-PUFAs in aquatic ecosystems and are considered promising alternative 

sources of aquafeed ingredients. They can be grown rapidly, often in saline or waster, and can 

make use of marginal land. Thus, cultivated microalgae could offer much higher areal 

productivities and offer products with a small ecological footprint. Although the use of 

microalgae-derived products as aquafeed is very promising, successful industrial algae production 

is still rare. In particular, commonly used temperate and warm-water microalgae display 

substantially lower yield, or cannot survive, in cooler climates. Bioprospecting and optimization 

of strains that are able to grow rapidly at lower temperatures could enable year-round utilization 

of culture facilities in temperate zones, and promote microalgae cultivation in cooler climates. In 

this work, the cold-adapted microalga Koliella antarctica (Trebouxiophyceae) was cultivated at 

15 ̊C to optimize growth and LC-PUFA production in bubble-tube and flat-plate 

photobioreactors. The impact of nitrogen starvation, phosphorus starvation, salinity and light 

intensity on the growth, fatty acid composition and protein content was investigated. After culture 

optimization, the maximum biomass productivity was 2.37 g L-1 d-1, which is comparable to that 

of temperate strains in similar cultivation systems. Amongst all conditions tested, the maximum 

total fatty acid (TFA) content measured 271.9 mg g-1 dry weight in the late stationary phase. 

Nitrogen and phosphorus starvation strongly induced neutral lipid (TAG) accumulation, up to 

90.3% of TFA, that mostly consisted of the monounsaturated fatty acid C18:1n-9 (oleic acid, OA). 

PUFAs were also abundant and together accounted for 30-45% of total TAG. The highest 
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eicosapentaenoic acid (EPA, C20:5n-3) content amounted to 6.7 mg g-1 dry weight (4.9% TFA) 

in control treatments, whilst the highest arachidonic acid (ARA, C20:4n-6) content was 9.6 mg g-

1 dry weight (3.5% TFA) in the late stationary phase. Phosphorus starvation was the best strategy 

to obtain high total fatty acid yields (mg L-1) whilst maintaining the protein, total PUFA and long-

chain omega-3 fatty acid contents. The strong growth rate of K. antarctica coupled with its 

favorable biochemical composition, including LC-PUFAs, may make this strain suitable for 

inclusion in aquafeed products. These findings indicate that K. antarctica and similar cold-

adapted microalgae could be productive cell factories for PUFA and protein production in cooler 

climates.
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General introduction  

1.1 Current status of aquaculture  

The world’s population is increasing by roughly 83 million people every year, and estimated to 

reach 9.8 billion by 2050 (UN 2017). To meet the nutritional demands for the increasing 

population, food production needs to increase by 68 % in 2050 compared with 2005/2007 

(Alexandratos and Bruinsma 2012). Aquaculture plays an increasing role in providing humans 

with high-quality protein and lipid sources. Aquaculture food production has drastically increased, 

whilst capture fishery production has stagnated since the late 1980s (FAO 2016, Fig. A). In 1990, 

total global aquaculture production was only 13 million tones, whereas in 2014 was 73.8 million 

tonnes with a value of 160.2 billion USD (FAO 2016). World aquaculture production in 2014 

accounted for 44.1% of the total production from fisheries and aquaculture, up from 31.1% in 

2004 (FAO 2016). The demand to produce more food in aquaculture is increasing not only due 

to population growth, but also due to increased consumer wealth in developing countries and 

preference towards healthy food (FAO 2016). Providing a sustainable source of aquafeed with 

high-quality ingredients is key for successful growth and the future sustainability of aquaculture 

(Glencross et al. 2007; Deutsch et al. 2007). 

 

Fig A. World capture fisheries and aquaculture production from 1950 to 2014.  
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1.2 Aquaculture - need for alternative feed ingredients  

Production of aquafeeds traditionally relies on fishmeal and fish oil, which originate from capture 

fisheries (Tacon and Metian 2008). Fishmeal is considered an ideal raw material due to its high 

protein content (51-72%), high nutrient digestibility, excellent amino acid profile, and high 

palatability (Gatlin Delbert et al. 2007). Fish oil is considered the optimal quality oil for farmed 

aquatic species. It provides long-chain polyunsaturated fatty acids (LC-PUFAs) such as 

eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA) that 

some fish cannot obtain at the required levels by endogenous synthesis (Glencross 2009). 

However, the dependence of aquafeed production on fishmeal and fish oil has been criticized for 

reducing the amount of food available for direct human consumption, as well as the consequences 

to wild fish stocks by overfishing (Deutsch et al. 2007; Naylor et al. 2000). The current supply of 

fishmeal and fish oil is already insufficient to meet global market demands and the prices of 

fishmeal and fish oil have shown significant increases in the last few decades (Fig. B, Fig. C). For 

example, fishmeal prices have risen by more than two-fold in the past ten years (FAO 2016). 

Therefore, terrestrial plant-based substitutes have been employed to replace conventional 

fishmeal and fish oil in farmed fish feeds (Hardy Ronald 2010; Turchini et al. 2011).  

 

 
Fig B. Fishmeal and soybean meal prices in Germany and the Netherlands from 1983 to 2015 (FAO 2016). 
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Fig C. Fish oil and soybean oil prices in the Netherlands from 1984 to 2016 (FAO 2016). 

 

Norwegian salmon feed, for example, successfully reduced the dependence on fishmeal and fish 

oil, and contained 66% plant ingredients in the 2012 diet (Ytrestøyl et al. 2015, Fig. D). These 

plant ingredients include soy protein concentrate, wheat gluten, fava beans, pea protein, maize 

gluten, and rapeseed oil (Turchini et al. 2011; Nasopoulou and Zabetakis 2012). However, the 

use of plant ingredients has drawbacks such as lower protein content, the absence of LC-PUFAs, 

and the presence of anti-nutritional factors that can cause intestinal inflammation in fish such as 

Atlantic salmon (Krogdahl et al. 2010; Francis et al. 2001; Carter and Hauler 2000). The intensive 

replacement of fishmeal and fish oil by plant ingredients has also resulted in high levels of omega-

6 fatty acids and low levels of long chain omega-3 fatty acids in fish feeds (Ytrestøyl et al. 2015). 

This has led to a decline in EPA and DHA levels in final fish products, which may decrease the 

health benefits for human consumption (Sprague et al. 2016). Therefore, there is an urgent need 

to find alternative aquafeed ingredients which can provide quality nutritional values.  
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Fig D. Nutrient sources in Norwegian salmon farming from 1990 to 2013. Each ingredient type is shown 
as its percentage of the total diet (Ytrestøyl et al. 2015). 

 

1.3 Microalgae as an alternative source of aquafeed 

Microalgae are the natural diet of many fish and the primary producers of LC-PUFAs in the 

marine food web (Adarme-Vega et al. 2012). They are considered promising alternative sources 

for aquafeed because their nutritional value closely resembles fishmeal and fish oil (Khozin-

Goldberg et al. 2011; Brown et al. 1997). Microalgae can also synthesize bioactive compounds 

and essential nutrients for aquatic species such as essential amino acids, essential fatty acids, 

vitamins, and pigments (Yaakob et al. 2014). Many feeding studies have demonstrated that some 

microalgae strains have promising features as aquafeed ingredients due to a high protein content, 

highly digestible protein (Skrede et al. 2011) and the presence of LC-PUFAs (Kousoulaki et al. 

2015; Miller et al. 2007; Martins et al. 2013). Microalgae have also been reported to possess 

additional functional properties that may benefit health and disease control of aquatic species 

(Defoirdt et al. 2011; Yaakob et al. 2014). This includes antioxidant activity (Sheikhzadeh et al. 

2012), immunostimulatory (Newaj‐Fyzul and Austin 2015), anti-inflammatory (Grammes et al. 

2013), and antimicrobial effects (Austin and Day 1990; Falaise et al. 2016). Besides their 

nutritional and functional values, microalgae can be grown rapidly, often in saline or wastewater, 

and can make use of marginal land. Thus, cultivated microalgae could offer much higher areal 

productivities and offer products with a smaller ecological footprint, compared with terrestrial 

plants (Draaisma et al. 2013). 



 

 7 

Microalgae have already been used as protein sources for human and animal consumption. 

The large-scale commercial production of microalgae began in the early 1960s (Garcia et al. 

2017). Spirulina and Chlorella that contain protein up to 70% of the dry weight are the major 

commercialized microalgae, and some of their products are sold as protein supplements with 

additional nutritional components such as vitamins and carotenoids for humans (Wells et al. 2017). 

Microalgae-derived biomass has also been used to feed domestic animals (Becker 2007), and 

more than 40 species of microalgae are used in aquaculture (Pulz and Gross 2004). The most 

commonly used aquaculture species include strains from the genera Chlorella, Tetraselmis, 

Isochrysis, Pavlova, Phaeodactylum, Chaetoceros, Nannochloropsis, Skeletonema and 

Thalassiosira (Priyadarshani and Rath 2012). Traditionally, live microalgae are fed to the larvae 

of fish, crustaceans, and mollusks as well as zooplankton, which are produced as feed for fish 

larvae (Pulz and Gross 2004). Apart from feeding microalgae directly to fish larvae and 

zooplankton, incorporation of microalgae biomass into aquafeeds has been intensively studied in 

recent years (Shah et al. 2017). Microalgae can be either incorporated as whole cell ingredients 

or as extracted and processed components such as concentrated oil supplements (Maisashvili et 

al. 2015). Defatted microalgae biomass is a by-product of biofuel or high value compound 

production (e.g. carotenoids and omega-3 fatty acids), and can also be used as a protein source in 

aquafeed that additionally contains minerals, carotenoids, and other bioactive compounds (Ju et 

al. 2012; Kiron et al. 2016; Sørensen et al. 2017).  

The chemical and nutritional composition of microalgae varies depending on the species, 

strains, and culture conditions. The suitability of microalgae as ingredients in fish feeds may 

therefore differ accordingly (Skrede et al. 2011). For example, the protein digestibility was 35.3%, 

79.9% and 18.8% for Nannochloropsis oceania, Phaeodactylum tricornutum and Isochrysis 

galbana (Skrede et al. 2011). The apparent protein digestibility of feed containing Schizochytrium 

sp. was estimated be 87-88% in Atlantic salmon, when the dried alga was included at 0-15% of 

the diet (Kousoulaki et al. 2015). In another feeding study of Atlantic salmon parr, the DHA-rich 

oil from the thraustochytrid Schizochytrium sp. was able to replace 100% of fish oil in the diet, 

without any detrimental effect on growth (Miller et al. 2007). Numerous feeding trials confirmed 
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that microalgae have the potential to partially or completely replace fishmeal and fish oil. These 

results were reviewed by Shah et al. (2018), Roy and Pal (2015) and Hemaiswarya et al. (2011). 

Thus, microalgae are considered a promising future alternative to provide quality feed ingredients 

in aquaculture. Since the nutritional value of microalgae varies widely among different species, 

extensive research is needed to further develop knowledge about the physiology and nutritional 

properties of microalgae strains (Wells et al. 2017). 

 

1.4 Industrial microalgae cultivation 

Microalgae are excellent sources of feedstocks for both food and non-food products, but the key 

to successful industrialization of microalgae cultivation rests on the production of biomass at a 

large scale. Phototrophic microalgae can be cultivated in either open raceway ponds or closed 

photobioreactors (Fig. E). In both systems, light intensity and temperature are critical factors 

affecting the performance of microalgae cultures (Mata et al. 2010). Open raceway ponds are 

shallow, ring-shaped channel systems that are relatively easy to operate. These are the most 

common cultivation systems and have been already used for production of nutraceutical and food 

products (Kumar et al. 2015; Gellenbeck 2012). However, raceway pond systems are often not 

efficient due to their generally low surface area to volume ratio, and offer only low photosynthetic 

efficiency (1.5%) together with low biomass productivity and cell density (0.1-0.5g/L) (Kumar et 

al. 2015). Harvesting and dewatering microalgae from these systems could require high energy 

costs, mainly due to the dilute nature of microalgae cultures in open ponds (Uduman et al. 2010). 

Moreover, open systems are prone to contamination and can be affected by the weather conditions 

(Pérez-López et al. 2017). Therefore, strains cultivated in open systems must be able to cope with 

fluctuation in abiotic factors including temperature and salinity, and also possible invasion by 

competitors and predators. As a result, relatively few microalgae species have been cultivated in 

these systems. Since monoalgal and axenic cultures are often required for nutraceutical and 

pharmaceutical applications, closed photobioreactor systems have been developed (Posten 2009). 

In closed photobioreactors, environmental parameters such as temperature and pH can be 

controlled, hence these systems offer the best method to achieve high productivity and high cell 
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density (2-6 g/L), and to culture more sensitive microalgae with minimal contamination (Norsker 

et al. 2011; Draaisma et al. 2013). To maximize light energy utilization and production 

performance, various closed photobioreactors have been designed with large surface area to 

volume ratios and a short optical paths, including tubular or flat-plate systems (Posten 2009). Flat 

plate photobioreactors are amongst the most efficient photobioreactors that can reach ultrahigh 

cell density (>10g/L) (Richmond 2013) and consume less energy than tubular systems (Jorquera 

et al. 2010). The main disadvantage of closed photobioreactors is generally higher capital costs 

for installation and infrastructure compared with open ponds. However, photobioreactor systems 

are not necessarily more expensive in operation and this technology is still under development.  

 

 
 
Fig E. Open raceway pond and closed photobioreactors (PBR) at AlgaePARC pilot facilities,Wageningen 
UR, the Netherlands (de Vree et al. 2015).	
 
Although many studies have found that open ponds are more cost-efficient than closed systems 

(Davis et al. 2011; Richardson et al. 2012), some studies showed that the closed photobioreactors 

can be competitive with open raceway ponds systems for microalgae biomass production 

(Jorquera et al. 2010; Draaisma et al. 2013). Recent techno-economic analysis of microalgae for 

EPA and DHA production demonstrated that flat-plate photobioreactors have the lowest 
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production costs when compared with tubular and open ponds systems, with costs of 39.1 to 73.9 

USD per kg total EPA and DHA in Spain and the Netherlands, respectively (Chauton et al. 2015). 

In the same study, the production cost increased by around 40% from flat-plate to tubular systems, 

and by around 80% from flat plate to open ponds systems. It has been estimated that the 

production cost could be reduced to 11.9 USD per kg total EPA and DHA by further optimization 

of biological productivity and engineering parameters in the next 5-10 years (Chauton et al. 2015). 

 

2. Challenges of microalgae production in cooler climates 

Despite the potential applications, successful large-scale industrial algae production is still rare. 

In cooler climates, commonly used temperate and warm-water microalgae display substantially 

lower yields or cannot survive (Pankratz et al. 2017; Moody et al. 2014, Fig. F). In nature, 

however, it has been estimated that approximately 72,500 species of algae exist (Guiry 2012). 

Among them, some microalgae have successfully colonized extremely cold environments such 

as glaciers, sea ice, polar and alpine regions (Varshney et al. 2015), and hence may exhibit higher 

biomass productivities. Bioprospecting and optimization of strains that are able to grow at low 

temperatures and contain high value compounds such as omega-3 fatty acids and pigments is 

critically required to develop microalgae cultivation in cooler climates (Kvíderová et al. 2017), 

and such work is only beginning. 

 
Fig F. World map of lipid productivity potential from microalgae based on biological growth model 
representative of Nannochloropsis cultivated in photobioreactors. The optimal temperature for growth of 
the strain: 26℃ (Moody et al. 2014). 
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In previous work, five different cold-adapted snow and soil microalgae were tested, and the results 

showed that these strains could produce relatively high biomass and lipid yields at low 

temperatures of 6℃ (Hulatt et al. 2017). Amongst the strains, Raphidonema sempervirens 

exhibited one of the highest productivities and also contained the long-chain omega-3 

polyunsaturated acid, EPA. In this study, a closely related cold-adapted species Koliella 

antarctica (Trebouxiophyceae, Andreoli et al. 1998) was chosen to further investigate the 

potential biotechnological applications. Although the literature indicates that K. anarctica has 

promising features for biotechnological applications, including the production of LC-PUFAs 

(Lang et al. 2011), the best cultivation conditions for K. antarctica to obtain optimal growth and 

lipid production have not been reported. In particular, accurate information on its fatty acid profile, 

LC-PUFA content and TAG composition is not available. Therefore, we examined and optimized 

the growth and fatty acid production of K. antarctica in controlled experimental photobioreactors. 

 

3. Objectives 

The overall aim of this study was to investigate whether the cold-adapted microalga K. antarctica 

could be suitable for LC-PUFA production in cooler water temperatures. This thesis represents a 

contribution to the state of the art on the production of high value compounds, especially omega-

3 and long chain fatty acids, from cold-adapted microalgae in photobioreactors. To achieve this 

goal, the study was divided into the following objectives: 

 

1. Optimization of cultivation conditions for growth, including salinity and light intensity. 

2. Characterization of the effect of nitrogen starvation, phosphorus starvation, and high 

salinity on protein content and the dynamics of fatty acids in TAG and polar lipids. 

3. Evaluation of nutritional values for biotechnological applications. 

4. Comparison of the maximum biomass productivity and photosynthetic efficiency of K. 

antarctica at cooler temperatures, with temperate strains. 

 

These objectives were examined in the following manuscript. 
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Abstract 

Microalgae are excellent sources of polyunsaturated fatty acids (PUFAs), but only a few species 

have been thoroughly investigated in controlled photobioreactor conditions. In this work, the 

cold-adapted microalga Koliella antarctica (Trebouxiophyceae) was cultivated at 15 ̊C to 

optimize growth and PUFA production in bubble-tube and flat-plate photobioreactors. The impact 

of nitrogen starvation, phosphorus starvation, salinity and light intensity on the growth, fatty acid 

composition and protein content was investigated. After culture optimization, a maximum 

biomass productivity of 2.37 g L-1 d-1, and maximum cell density of 11.68 g L-1 were achieved. 

Amongst all conditions tested, the maximum total fatty acid (TFA) content measured 271.9 mg 

g-1 dry weight in the late stationary phase. Nitrogen and phosphorus starvation strongly induced 

neutral lipid (TAG) accumulation, up to 90.3% of TFA, that mostly consisted of the 

monounsaturated fatty acid C18:1n-9 (oleic acid, OA). PUFAs were also abundant and together 

accounted for 30-45% of total TAG. The highest eicosapentaenoic acid (EPA, C20:5n-3) content 

amounted to 6.7 mg g-1 dry weight (4.9% TFA) in control treatments, whilst the highest 

arachidonic acid (ARA, C20:4n-6) content was 9.6 mg g-1 dry weight (3.5% TFA) in the late 

stationary phase. Phosphorus starvation was the best strategy to obtain high total fatty acid yields 

(mg L-1) whilst maintaining the protein, total PUFA and long-chain omega-3 fatty acid contents. 

 

 

Keywords: omega-3 fatty acid; LC-PUFA; eicosapentaenoic acid EPA; flat-plate 

photobioreactor; triacylglycerol; cold-adapted microalgae 
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1. Introduction 

Microalgae are excellent sources of bioactive compounds that are known to benefit animal and 

human health (Borowitzka 2013). Among them are polyunsaturated fatty acids (PUFAs), 

particularly long-chain PUFAs (LC-PUFAs) with carbon chain lengths of C20 and above. 

Especially, eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and 

arachidonic acid (ARA, C20:4n-6) are important dietary components for animals and humans 

(Khozin-Goldberg et al. 2011; Martins et al. 2013b). At present, LC-PUFAs are mostly derived 

from fish oils, but cultivated microalgae could provide “natural” and “healthy” vegetarian 

alternatives that have lower environmental impacts (Wijffels and Barbosa 2010; Chisti 2013; 

Khozin-Goldberg et al. 2011). Although research on microalgae-derived PUFAs is very 

promising, only a few species have been thoroughly investigated, and many of these are from 

temperate or warm-water habitats. Bioprospecting and optimization of strains that are able to 

grow rapidly at lower temperatures could also enable year-round utilization of culture facilities 

in temperate zones, and promote microalgae cultivation in cooler climates (Kvíderová et al. 2017). 

Cold-adapted microalgae from polar habitats recently gained much attention not only 

for PUFA production (Spijkerman et al. 2012; Teoh et al. 2004), but also for their potential to 

achieve high productivity at lower water temperatures (Hulatt et al. 2017). Their evolutionary 

adaptations have enabled them to successfully colonize many low-temperature areas, including 

glaciers, sea ice, polar and alpine regions, which are often characterized by large seasonal 

fluctuations in environmental factors such as light and osmotic stress (Procházková et al. 2018; 

Morgan-Kiss et al. 2006). Such adaptations could benefit industrial cultivation systems, where 

microalgae often encounter fluctuations in light intensity, low temperature and variable salinity, 

each of which can impact culture productivity. Besides, the elevation of PUFA levels in 

membrane lipids is one of the key adaptive strategies that microalgae use to maintain cell 

metabolism at lower water temperatures (Morgan-Kiss et al. 2006; Boelen et al. 2013). Cold-

adapted microalgae may therefore be more productive sources of PUFAs and other algae-

derivatives that could be used as food or feed products.  
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In microalgae cell cultures, abiotic factors such as temperature, salinity, light and 

nutrient availability can be altered to induce high-value fatty acid production. Although 

physiological responses to these stressors are often species or strain-specific, the accumulation of 

fatty acids is often coincident with reduced growth rate, leading to an overall decrease in fatty 

acid productivity (Chen et al. 2017). Moreover, the main storage lipids in microalgae are 

triacylglycerols (TAG) that accumulate under stress conditions, and are often comprised by 

saturated and mono-unsaturated fatty acids (Sharma et al. 2012). This in turn alters microalgae 

oil quality and its nutritional profile, e.g. a decrease in the proportion of PUFAs. Hence, the best 

culture conditions should be carefully selected to maximize the production of PUFAs (Markou 

and Nerantzis 2013). 

The cold-adapted microalga Koliella antarctica (Trebouxiophyceae, Andreoli et al., 

1998) is a potential candidate green alga for PUFA production due to the presence of LC-PUFAs 

(Lang et al. 2011). Koliella antarctica can grow at low temperatures down to 2 ̊C, and achieves 

maximum growth at 15 ̊C (Vona et al. 2004). However, the best cultivation conditions for K. 

antarctica to obtain optimal growth and lipid production are not reported. In particular, accurate 

information on its fatty acid profile, LC-PUFA content and TAG composition are not available.  

In this work, we optimized the growth and fatty acid production of K. antarctica in 

controlled photobioreactors. The impact of nitrogen starvation, phosphorus starvation, salinity 

and light intensity on the growth, fatty acid composition and protein content of K. antarctica was 

investigated. Polar lipids and TAG were separated and changes in the fatty acid profiles of these 

fractions were characterized. The effect of light intensity on the growth and photosynthetic 

efficiency of K. antarctica was subsequently measured using flat-plate photobioreactors. Finally, 

the productivity of K. antarctica at 15 ̊C, adopting the optimal conditions, was compared with 

that of other temperate microalgae strains. 
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2. Materials and Methods 

2.1 Cultivation	

Koliella antarctica SAG 2030 (Chlorophyta, Trebouxiophyceae) was obtained from the Culture 

Collection of Algae at Göttingen University (SAG, Germany). Prior to experiments, the cultures 

were maintained in 250 mL Erlenmeyer flasks with Bolds Basal Medium (BBM, Bischoff and 

Bold, 1963). The cultures were illuminated with a light intensity of 90 ± 20 μmol m-2 s-l, supplied 

by cool-white fluorescent lamps. A temperature of 15 ̊C was maintained throughout experiments, 

which is representative of summer conditions in cool climates, and winter temperatures in warmer 

parts of the world. 

 

2.2 Experimental design 

2.2.1 Salinity experiment in 100 mL bubble tubes 

Koliella antarctica was cultivated in 27 mm diameter glass bubble tubes containing 80 mL of 

BBM (Table 1, Fig. 1) to which different amounts of artificial sea salt were added. Salinities 0, 2, 

4, 8, 16, and 32 ‰ were tested, and cultures were illuminated at 80 μmol photons m-2 s−1 using 

white fluorescent lamps. Each treatment was maintained in a climate-controlled incubator 

(Termaks AS, Bergen, Norway) and the tubes with different treatments were randomized. 

Cultures were sparged with air enriched with 1.0% CO2 at a flow rate of 100 mL min-1, supplied 

by a precision gas mixer (Photon Systems Instruments, Drasov, Czech Republic) and delivered 

to each tube by individual air rotameters (FL-2000, Omega, Manchester, UK). Samples for 

biomass measurement were taken daily over a two-week cultivation period, and each treatment 

was performed in duplicate. 
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Fig 1. Experimental design and two types of photobioreactor used in the present study including bubble 
tubes (left) and flat-plate photobioreactors (right) with 14 mm light path length. 
 

Table 1. Summary of experimental treatments in this study. 

 

aBBM is Bold’s Basal Medium in its original formulation, whilst 3N-BBM is the common adjustment 
where the nitrate concentration is increased 3-fold (3N). Additional adjustments were made for individual 
experiments, where 2N-BBM corresponds to double the concentration of nitrate, and 3× 3N-BBM is 3N-
BBM formulation at three-fold its original concentration. 
bThe soil extract component of Bold’s Basal Medium remained the same in all of the media in this study. 
 
 
 
 

Experiment Reactor type Volume 
(mL) 

Light intensity 
 (μmol m-2 s-1) Treatment Salinity (‰) Nutrient medium CO2 

(%) 

Salinity Bubble tubes 100 80 - 0,2,4,8,16,32 BBM 1 
Stress Bubble tubes 350 120 Control 4 3N-BBM  1 
Stress Bubble tubes 350 120 N starvation 4 3N-BBM without nitrate 1 
Stress Bubble tubes 350 120 P starvation 4 3N-BBM without phosphate 1 
Stress Bubble tubes 350 120 HS 32 3N-BBM 1 
Li-Ex I Flat plate  380 70, 250, 500 - 4 2N-BBM 1 
Li-Ex II Flat plate  380 500 - 4 3× 3N-BBM 5 
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2.2.2 Stress experiment in 350 mL bubble tubes 

In this experiment, larger 350 mL glass bubble tubes (Fig. 1) were used to test the effect of 

nitrogen (N-), phosphorus (P-) and high salinity (HS) stress conditions on growth, fatty acid and 

protein production. Cultures used in all experimental treatments were initially grown in the same 

320 mL of 3N-BBM medium (BBM with 3-fold nitrate, see Table 1) supplied with 1.0% CO2 at 

120 μmol photons m-2 s-1. When the cultures reached the exponential phase, the cells in each tube 

were centrifuged (3500 rcf, 5 min), washed and resuspended in one of four experimental media. 

The four treatments were (i) control (3N-BBM), (ii) nitrate free, N- (3N-BBM without NaNO3), 

(ii) phosphate free, P- (3N-BBM without KH2PO4 or K2HPO4) and (iv) high salt, HS (3N-BBM 

with artificial sea salt added to 32 g L-1) (Table 1). The time of washing and the application of 

experimental treatments was designated as the start of the experiment (t = 0). Each treatment was 

performed in triplicate and randomly assigned to one of the bioreactors.  

 

2.2.3 Light experiments in flat-plate photobioreactors 

Koliella antarctica was cultivated in 380 mL flat-plate photobioreactors (Algaemist-S, 

Ontwikkelwerkplaats, Wageningen UR, The Netherlands) shown in Figure 1. Prior to the 

experiments, the bioreactor and each medium (Table 1) were autoclaved (121 ̊C, 20 min). The 

reactor cultivation vessel with a 14 mm light path was illuminated continuously with warm-white 

LEDs from one side. Cultures were sparged with 0.2 μm filtered air (Acrodisc PTFE filters, Pall 

Corporation, New York, USA) enriched with either 1.0 or 5.0 % CO2 (Table 1). The cultivation 

temperature was accurately controlled with an external cooling system (Julabo F25, JULABO 

GmbH, Seelbach, Germany) and an internal heating system, maintaining 15 ̊C ± 0.4. The 

photosynthetic photon flux density (PPFD, μmol m-2 s-1 PAR) incident on the front of the 

cultivation vessel was measured with a Li-Cor189 2π quantum sensor. The output PPFD (the light 

transmitted through the reactor) was determined by calibrating the photobioreactor light sensor 

with the average PPFD, which was measured at 28 positions with the LiCor sensor. In the first 

experiment (Li-Ex I) the PPFD on the front surface was 23 μmol m-2 s-1 for the first six days, to 
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avoid immediate light stress, then increased to either 70, 250 or 500 μmol m-2 s-1. In the second 

experiment (Li-Ex II) with higher nutrient concentrations, only 500 μmol m-2 s-1 was supplied. 

 

2.3 Growth measurements 

The optical density was determined by measuring the absorbance at 540 and 680 nm in a 1 cm 

cuvette, using a spectrophotometer (Hach-Lange DR3900, Hach Lange GmbH, Düsseldorf, 

Germany). The samples were diluted with medium (1 to 50-fold) to maintain the absorbance 

reading below 1.0 for linear response. The dry weight was determined by filtering 10 mL of 

culture broth through pre-weighed ~1.0 μm pore size 47 mm glass fiber filters (VWR, Oslo, 

Norway). Filters were then rinsed with isotonic ammonium formate (0.5 M for salinity and stress 

experiment, 0.06 M for flat-plate photobioreactor) to remove extracellular salt and dried at 95 ̊C 

for 48 h. Filters were subsequently re-weighted and the dry weight (g L-1) was calculated. The dry 

weight was calibrated with the absorbance at 540 nm as in Eq (1) (R² = 0.99, n = 26). 

𝐷𝑊 = (0.295 ⋅ 𝐴,-.) + 0.088				(1)	 

Where DW is the calculated dry weight (g L-1) based on the spectrophotometer absorbance at 540 

nm (A540). The absorbance ratio (A680/A540) was also determined to indicate the ratio of pigments 

(mainly chlorophyll) to the biomass. Samples for further biochemical analysis were obtained by 

pelleting cells in 2.0 mL microcentrifuge tubes, washing with isotonic ammonium formate to 

remove salt, then stored at -40 ̊C. 

 

2.4 Nutrients	

Samples for nitrate and phosphate analysis were centrifuged (3500 rcf, 5 min) and the supernatant 

was stored at -40 ̊C. The extracellular nitrate and phosphate concentration were measured with 

standard colorimetric methods as described by Ringuet et al. (2011). Nitrate was reduced to nitrite 

by NADH:nitrate reductase (NECi Superior Enzymes, Lake Linden, USA) and measured at 540 

nm (FLUOstar Optima, BMG Lab-tech, Ortenberg, Germany) using a 96-well microplate. 

Extracellular phosphate was determined using the ascorbic acid/molybdate method, and the 
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absorbance of the colored complex was measured at 880 nm with a spectrophotometer (Hach-

Lange DR3900). Nitrate and phosphate uptake rates (mM L-1 d-1) were calculated by dividing the 

change in nutrient concentrations by the difference in time.  

 

2.5 Fatty acid analysis of polar lipids and TAG 

Total lipids were extracted from approximately 7 mg of freeze-dried biomass using 4.0 mL of 

chloroform:methanol solvent (2:2.5 v/v) containing internal standard (Tripentadecanoin, C15:0 

Triacylglycerol, Sigma-Aldrich, Oslo, Norway). A bead mill (Precellys 24, Bertin Technologies, 

Montigny le Bretonneux, France) and 0.1 mm glass beads was used for the extraction. TAG and 

polar lipids were separated by solid-phase extraction with Waters Sep-Pak columns (1 g silica 

cartridges, 6 mL, Waters, Dublin, Ireland). Neutral lipids (TAG) were first eluted with 10 mL of 

7:1 (v/v) hexane:diethylether, then polar lipids were eluted with 10 mL of 

methanol:acetone:hexane (2:2:1 v/v/v). Solvents were then evaporated under N2 gas and the fatty 

acids were derivatized to fatty acid methyl esters (FAMEs) by adding acidic methanol (3.0 mL 

5% H2SO4 in methanol, 70 ̊C for 3 hours). FAMEs were collected into hexane and quantified 

using a Gas Chromatograph equipped with a Flame Ionisation Detector (SCION 436, Bruker, 

Livingston, UK) and an Agilent CP-Wax 52CB column (Agilent technologies, Santa Clara, USA). 

Supelco 37 component standards (Sigma-Aldrich, Bellefonte, USA) were used for identification 

and quantification of the FAMEs. Additional standards were obtained to identify more unusual 

C16 and C18 series fatty acids. 

 

2.6 Elemental composition and protein content 

The elemental composition of biomass including carbon, hydrogen and nitrogen (CHN) was 

determined by elemental analysis (Elemental Microanalysis, Okehampton, UK). The protein 

content (%) was calculated using a nitrogen-to-protein conversion factor of N × 4.78 (Lourenço 

et al. 2004), where N is the elemental nitrogen content (%).  
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2.7 Calculations 

The volumetric productivity (mg L-1 d-1) was calculated between two time points, as in Eq (2). 

𝑃5 =
𝐶7.5 − 𝐶7.59:
𝑡5 − 𝑡59:

			(2) 

Where P is the productivity, Cx.i and CX.i-1 are the concentrations of the biomass (g L-1) at two time 

points and ti – ti-1 is the time between measurements. For the salinity experiment, the maximum 

productivity was calculated between days 5 and 7 (ti – ti-1 = 2 days). In the stress experiment, the 

average productivity was calculated between days 0 and 5 (ti – ti-1 = 5 days). In Li-Ex I and Li-Ex 

II, the maximum volumetric productivity during the cultivation was calculated as the highest 

productivity observed between two time points in each treatment. The maximum areal 

productivity PA (g m-2 d-1) was calculated according to Eq (3).  

𝑃< 	=
𝑃=>7 ⋅ 𝑉@

𝐼<
				(3) 

where Pmax is the maximum productivity (g L-1 d-1), VR is the reactor volume (0.38 L) and IA is 

illuminated surface area (0.029 m2). The maximum biomass yield per mol photons PAR (Yx/mol, g 

mol-1) was calculated using Eq (4). 

𝑌D/=FG =
𝑃<

	𝑃𝑃𝐹𝐷					(4) 

Where PPFD is the average PAR photon flux density on surface of the reactor (mol m-2 d-1). 
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3.Results 

3.1 Effect of salinity on growth in 100 mL bubble-tubes 

The growth of K. antarctica in different salinities ranging from freshwater (0‰) to seawater 

(32‰) conditions is shown in Table 2 and Figure 1S. Higher growth was attained under low 

salinity conditions (<8‰). At salinity levels from 0 to 16‰, the maximum dry weight was in the 

range 2.69 to 2.90 g L-1. However, at salinity 32‰ the maximum biomass concentration was 

lower, reaching only 2.14 g L-1. The maximum productivity of 0.53 g L-1 d-1 was achieved by K. 

antarctica during exponential growth at salinity 4‰. Hence, 4‰ was selected as the optimal 

salinity for further cultivations.  

 
Table 2. Maximum dry weight and biomass productivity of K. antarctica cultured under different 
salinities.  

Salinity (‰) Maximum dry weight  

(g L-1) 

Maximum productivity 

 (g L-1 day-1) 

0 2.69 ± 0.03 0.51 ± 0.006 

2 2.87 ± 0.10 0.50 ± 0.001 

4 2.90 ± 0.02   0.53 ± 0.042 

8 2.77 ± 0.03  0.46 ± 0.026 

16 2.69 ± 0.06 0.48 ± 0.002 

32 2.14 ± 0.14 0.45 ± 0.052 
Values are mean ± standard error of duplicates. 

 

3.2.1 Effect of different stressors on growth in 350 mL bubble-tubes 

To select the best strategy that enables K. antarctica to produce high amounts of fatty acids and 

PUFAs, we investigated the impact of nitrogen (N-) starvation, phosphorus (P-) starvation and 

high salinity (HS) conditions on fatty acid and protein assimilation in two-stage cultures. After 

the cultures entered the exponential phase, the cells were washed and resuspended in different 

media for either N starvation, P starvation or HS conditions in the second stage (Table 1). Control 

cultures were resuspended in complete 3N-BBM nutrient medium. The growth curves of K. 

antarctica cultivated under the four conditions are shown in Fig 2a. In all conditions the biomass 



 

 28 

concentration increased, but the growth pattern differed among the treatments. Control cultures 

displayed strong growth and achieved the highest dry weight of 3.7 g L-1, at day 5. The lag phase 

in the HS treatment extended to 2 days, but the growth rate was eventually similar to that in the 

P-starved condition; both achieved similar maximum dry weights of 2.2 g L-1 and 2.3 g L-1, 

respectively. The growth of K. antarctica under N starvation was much lower compared with the 

other treatments, where the maximum biomass reached only a quarter of that achieved in the 

control medium. 

 
Fig 2. Effect of N starvation, P starvation and high salinity (32‰) on the growth and nutrient uptake of K. 
antarctica in batch cultures. (a) Cell density (g L-1). (b) Extracellular nitrate concentration (mM). (c) 
Absorbance ratio (A680/A540). (d) Extracellular phosphate concentration (mM). The error bars indicate 
standard error of the mean (n = 3). 
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Figures 2b and 2d illustrate the nitrate and phosphate assimilation capacity of K. antarctica under 

different stress conditions, whilst the corresponding nutrient uptake rates are presented in Table 

3. Phosphate uptake in the N-starved cultures was 0.10 mM d-1, which was lower compared to 

those in the control (0.71 mM d-1) and HS groups (0.55 mM d-1). The nitrate uptake rate in P-

starved cultures was 1.77 mM d-1, which was about half of that in control group (3.38 mM d-1). 

From day 0 to 5, the A680/A540 ratio in both N and P starved media decreased, but N-starved cells 

were characterized by lower ratios compared with P-starved cells, indicating loss of 

photosynthetic pigments (Fig. 2c). At the end of cultivation, the values for N-starved cells and P-

starved cells were 0.95 and 1.04, respectively (Fig. 2c). Due to rapid growth in the control 

treatments, nitrate and phosphate were each exhausted by day 3 (Fig. 2b, d). Similarly, the cells 

under HS conditions also consumed nitrate by day 5. Hence, K. antarctica in the control medium 

and 32‰ salinity condition still experienced N+P and N starvation respectively, during the later 

stages of cultivation. 

 

3.2.2 Effect of different stressors on fatty acid and protein production in 350 mL bubble-tubes 

Table 3 shows that N-starved and P-starved treatments produced the highest concentrations of 

total fatty acids (TFA) at day 5 (each 18 % of DW), but the reduced biomass productivity under 

N starvation ultimately led to the lowest fatty acid yield of 165.4 mg L-1. In contrast, control 

cultures achieved high biomass productivity of 0.69 g L-1 d-1 and total fatty acids were 13.6% DW, 

leading to the highest TFA yield of 507.6 mg L-1. Under P starvation, the protein content of K. 

antarctica was 31.4 ± 0.2 % DW, which was much higher than that under N starvation (12.2 ± 

0.4 % DW) and control treatments (21.9 ± 0.7 % DW). Cells in N-starved conditions had a mean 

C:N ratio of 19.8 ± 0.4, approximately twice that of the other treatments, which ranged from 7.9 

to 10.7. 
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Table 3. Effect of N starvation, P starvation and high salinity (32‰) on growth, biochemical composition, 
and nutrient assimilation. The average biomass productivities Pv (g L-1 d-1) from day 0 to 5 and fatty acid 
content per volume of culture YFA (mg L-1), nitrate uptake (mM d-1) and phosphate uptake (mM d-1) were 
calculated as described in the materials and methods. Fatty acid content CFA (% DW), protein content Cpro 
(%DW) and the C:N ratio were measured at day 5.  

Mean values and standard errors of triplicate measurements are given. 

 

In all treatments the total fatty acid content increased from day 2 to 5, mainly due to TAG 

accumulation (Table 4). The highest proportion of TAG was detected under N starvation at day 5 

and accounted for 79.5% of the TFA (179.1 mg g-1 DW). In nutrient-replete conditions (control 

day 2), the dominant fatty acids were C16:0, C16:4n-3, C18:3n-3 (α-linolenic acid, ALA) and 

C20:5n-3 (EPA). Under N and P starved conditions, C16:0, C18:1n-9 (oleic acid, OA), C18:2n-

6 (linoleic acid, LA) and ALA became dominant. TAG accumulation was attributed 

predominantly to a large increase in OA, comprising up to 52.7% of TAG. However, the PUFAs, 

LA, ALA and C20:4n-6 (arachidonic acid, ARA) were also enriched in TAG, and together total 

PUFAs accounted for 33.8-45.9% of TAG at day 5. The highest PUFA content of 90.6 mg g-1 

DW, as well as the highest ω-3 fatty acid content of 43.6 mg g-1 DW, was observed after 5 days 

of P starvation. The LA and ALA contents were also higher in P-starved cells compared with 

other treatments. The highest amount of EPA was 6.7 mg g-1 DW (4.9% TFA) in high-density 

control cultures (day 5), but lower during P and N starvation at 5.4 and 3.8 mg g-1 DW, 

respectively. The lowest EPA content of 2.1 mg g-1 DW was recorded for the HS group at day 2. 

In contrast to EPA, the ARA content was enhanced more by N starvation than by P starvation. 

ARA increased from 1.4 mg g-1 DW in nutrient replete conditions (4.0% TFA) to 7.4 and 4.6 mg 

g-1 DW (4.1 and 2.6% TFA) in N and P treatments, respectively, due to its accumulation in TAG. 

The HS treatment induced the accumulation of TAG with a large proportion of OA at day 2. The 

proportion of TAG was higher in the HS treatment (35.0% TFA) than that of control cultures 

(20.2% TFA).  

Treatment PV (g L-1 d-1 ) 
(day 0 to 5) 

YFA  
(mg L-1) 
(day 5) 

CFA 
 (% DW) 
(day 5) 

Cpro 
(% DW) 
(day 5) 

C:N ratio 
(day 5) 

Nitrate 
uptake  
(mM d-1) 

Phosphate 
uptake 
(mM d-1) 

Control 0.69 ± 0.01 507.6 ± 38.4 13.6 ± 0.8 21.9 ± 0.7 10.72 ± 0.34 3.38 ± 0.08 0.71 ± 0.08 
N- 0.12 ± 0.00 165.4 ± 2.5 17.9 ± 0.2 12.2 ± 0.2 19.80 ± 0.37 - 0.10 ± 0.01 
P- 0.40 ± 0.01 418.4 ± 32.4 17.8 ± 0.7 31.4 ± 0.1 7.94 ± 0.04 1.77 ± 0.06 - 
HS 0.39 ± 0.02 241.5 ± 12.6 10.8 ± 0.5 27.0 ± 0.7 7.95 ± 0.26 4.35 ± 0.07 0.55 ± 0.03 
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Table 4. Total fatty acids (TFA) and fatty acids in TAG under N starvation, P starvation and HS (32‰) conditions (mg g-1 DW). 

  

Control N- P- HS 

day 2 day5 day 2 day5 day 2 day5 day 2 day5 

TFA TAG TFA TAG TFA TAG TFA TAG TFA TAG TFA TAG TFA TAG TFA TAG 
C14:0 0.54 0.04 1.17 0.38 0.46 0.28 1.13 0.55 0.41 0.11 1.26 0.58 0.31 0.02 1.14 0.26 

 (0.05) (0.01) (0.03) (0.04) (0.17) (0.03) (0.06) (0.01) (0.09) (0.03) (0.06) (0.03) (0.08) (0.02) (0.06) (0.01) 

C16:0 3.62 0.36 19.16 10.71 7.42 5.31 17.23 11.47 6.66 2.20 19.24 7.21 3.19 1.39 16.51 7.45 

 (0.28) (0.03) (1.30) (1.17) (1.04) (0.74) (0.50) (0.27) (0.96) (0.19) (1.90) (0.22) (0.81) (0.21) (1.02) (0.19) 

C16:2(n-6) 0.64 0.05 6.56 2.04 2.57 0.79 4.43 1.99 1.57 0.37 6.42 2.71 0.61 0.12 5.48 1.22 

 (0.06) (0.02) (0.04) (0.12) (0.26) (0.11) (0.22) (0.06) (0.17) (0.05) (0.33) (0.08) (0.08) (0.01) (0.34) (0.06) 

C16:3(n-3) 1.69 0.16 5.48 2.11 5.04 1.72 6.97 3.87 3.82 0.94 7.79 4.11 1.63 0.23 5.31 1.44 

 (0.09) (0.02) (0.07) (0.13) (0.46) (0.22) (0.30) (0.13) (0.50) (0.13) (0.40) (0.09) (0.24) (0.03) (0.29) (0.02) 

C16:4(n-3) 6.16 1.35 5.14 2.42 3.36 1.22 3.87 2.14 4.59 1.41 4.89 2.76 3.79 0.72 5.03 1.73 

 (0.32) (0.08) (0.11) (0.12) (0.33) (0.17) (0.17) (0.09) (0.59) (0.19) (0.19) (0.09) (0.66) (0.09) (0.35) (0.11) 

C18:0 0.32 0.29 1.61 0.48 0.00 0.23 1.61 0.60 -0.04 0.31 2.47 0.62 0.00 0.02 2.11 0.34 

 (0.14) (0.15) (0.54) (0.22) (0.14) (0.06) (0.44) (0.08) (0.06) (0.02) (0.64) (0.11) (0.17) (0.04) (0.34) (0.04) 

C18:1(n-9) 0.53 0.13 37.03 32.85 25.20 23.74 78.78 75.05 7.71 6.34 57.56 52.69 2.43 1.86 22.55 19.30 

 (0.03) (0.01) (3.82) (3.96) (3.37) (3.24) (2.07) (2.45) (0.71) (0.56) (2.03) (1.96) (0.34) (0.26) (0.49) (0.34) 

C18:1(n-7) 0.24 0.00 1.09 0.65 0.51 0.35 1.31 1.01 0.50 0.26 2.18 1.44 0.13 0.02 0.58 0.29 

 (0.01) (0.00) (0.05) (0.05) (0.06) (0.05) (0.03) (0.03) (0.05) (0.03) (0.13) (0.07) (0.04) (0.02) (0.05) (0.02) 

C18:2(n-6) (LA) 1.55 0.17 20.45 11.34 8.92 5.71 20.63 15.44 6.57 2.97 27.05 16.75 2.02 0.94 15.74 7.28 

 (0.06) (0.01) (0.74) (1.04) (1.08) (0.79) (0.32) (0.55) (0.71) (0.32) (1.05) (0.51) (0.29) (0.13) (0.77) (0.17) 

C18:3(n-6) 0.47 0.13 2.93 1.78 2.13 1.50 4.29 3.76 2.56 0.98 8.90 4.45 0.52 0.26 2.27 1.22 

 (0.04) (0.01) (0.09) (0.13) (0.27) (0.20) (0.07) (0.12) (0.32) (0.13) (0.49) (0.11) (0.08) (0.03) (0.08) (0.03) 

C18:3(n-3) (ALA) 11.46 1.50 16.80 7.49 12.94 5.61 19.85 11.63 12.98 4.45 22.66 13.46 8.43 1.87 16.94 5.88 

 (0.64) (0.11) (0.36) (0.54) (1.28) (0.66) (0.72) (0.48) (1.66) (0.57) (0.93) (0.40) (1.33) (0.24) (1.03) (0.22) 
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C18:4(n-3) 2.52 0.76 1.79 0.93 0.75 0.40 0.98 0.63 2.14 0.85 2.85 1.92 1.35 0.37 1.87 0.73 

 (0.15) (0.05) (0.04) (0.05) (0.08) (0.06) (0.04) (0.02) (0.31) (0.13) (0.11) (0.04) (0.24) (0.05) (0.12) (0.03) 

C20:1(n-9) 0.46 0.00 5.09 3.09 2.65 1.81 6.84 5.52 1.18 0.82 4.90 3.91 0.77 0.28 3.80 1.94 

 (0.02) (0.00) (0.38) (0.38) (0.34) (0.24) (0.10) (0.20) (0.10) (0.05) (0.17) (0.13) (0.13) (0.03) (0.12) (0.02) 

C20:4(n-6) (ARA) 1.42 0.55 4.79 2.54 3.19 2.20 7.37 5.74 1.72 1.12 4.63 3.29 1.06 0.58 3.61 1.97 

 (0.09) (0.03) (0.17) (0.18) (0.41) (0.33) (0.05) (0.18) (0.22) (0.16) (0.17) (0.10) (0.17) (0.05) (0.15) (0.07) 

C20:5(n-3) (EPA) 3.74 1.70 6.71 4.37 2.83 2.07 3.78 3.03 3.01 2.07 5.44 4.08 2.06 1.18 5.42 3.48 

 (0.25) (0.12) (0.17) (0.21) (0.35) (0.28) (0.01) (0.08) (0.37) (0.27) (0.15) (0.08) (0.35) (0.17) (0.20) (0.07) 

Σ SFA 4.48 0.68 21.94 11.57 7.73 5.82 19.98 12.62 7.03 2.62 22.98 8.41 3.34 1.43 19.75 8.06 

 (0.22) (0.19) (1.87) (1.39) (1.29) (0.82) (0.86) (0.26) (1.09) (0.20) (2.51) (0.13) (1.05) (0.26) (1.42) (0.24) 

Σ MUFA 1.23 0.13 51.68 36.59 28.36 25.90 86.92 81.58 9.39 7.42 64.64 58.03 3.33 2.16 26.93 21.53 

 (0.03) (0.01) (4.23) (4.39) (3.77) (3.54) (2.14) (2.68) (0.86) (0.63) (2.27) (2.15) (0.50) (0.30) (0.61) (0.33) 

Σ PUFA 29.65 6.38 73.75 35.02 41.73 21.21 72.17 48.24 38.96 15.18 90.64 53.52 21.47 6.26 61.68 24.95 

 (1.68) (0.45) (1.56) (2.48) (4.50) (2.79) (1.63) (1.62) (4.82) (1.94) (3.80) (1.48) (3.43) (0.78) (3.11) (0.57) 

Σ LC-PUFA 5.16 2.24 12.03 6.92 6.01 4.28 11.15 8.77 4.73 3.20 10.07 7.36 3.13 1.76 9.03 5.45 

 (0.34) (0.15) (0.28) (0.38) (0.76) (0.59) (0.06) (0.25) (0.59) (0.44) (0.32) (0.18) (0.52) (0.23) (0.25) (0.03) 

 ω3 fatty acids 25.57 4.40 35.92 9.25 24.92 6.89 35.46 10.45 26.55 5.49 43.64 11.58 17.26 3.93 34.58 7.51 

 (1.45) (0.17) (0.66) (5.01) (2.49) (2.64) (1.21) (6.20) (3.42) (1.25) (1.78) (7.34) (2.82) (0.32) (1.95) (3.27) 

 ω 6 fatty acids 4.08 0.90 34.72 17.69 16.81 10.20 36.71 26.94 12.42 5.45 47.00 27.19 4.21 1.89 27.09 11.69 

 (0.23) (0.07) (0.97) (1.47) (2.01) (1.41) (0.46) (0.86) (1.40) (0.65) (2.02) (0.79) (0.62) (0.22) (1.16) (0.14) 

ω3/ω6 Ratio* 6.27 6.10 1.04 0.98 1.49 1.09 0.97 0.79 2.13 1.78 0.93 0.97 4.08 2.30 1.27 1.13 

 (0.01) (0.07) (0.02) (0.03) (0.03) (0.02) (0.02) (0.01) (0.04) (0.02) (0.00) (0.00) (0.11) (0.05) (0.02) (0.02) 

Total fatty acids  35.36 7.20 135.80 83.18 77.82 52.94 179.08 142.44 55.38 25.22 178.25 119.96 28.14 9.86 108.36 54.54 

  (1.84) (0.27) (7.65) (8.22) (9.53) (7.15) (2.10) (4.51) (6.76) (2.76) (7.29) (3.73) (4.96) (1.32) (4.97) (0.83) 

Mean values (±standard error) of triplicates per treatment are given in the table. 
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3.3.1 Effect of light intensity on growth in 380 mL flat-plate photobioreactors 

The effect of light intensity on the growth of K. antarctica was studied in flat-plate 

photobioreactors. In the first experiment (Li-Ex I), the maximum biomass productivity increased 

from 0.48 to 1.04 g L-1 d-1 with rising irradiance from 70 to 250 μmol m-2 s-1 (Table 5, Fig. 3), but 

there was no further increase in growth rate when light was increased to 500 μmol m-2 s-1. 

Extracellular nitrate in all the cultures was exhausted by day 8 (Fig. 3c). In cultures supplied with 

250 and 500 μmol m-2 s-1, the A680/A540 ratio decreased rapidly after day six, reaching 0.95 to 0.93 

after nine days. In cultures supplied with 70 μmol m-2 s-1 though, the effect was dampened, and 

the A680/A540 ratio reached a lowest value of 0.98 at day 16 (Fig. 3b). The pH under 250 and 500 

μmol m-2 s-1 increased from pH 6.5 ± 0.1 to pH 7.8 ± 0.1 in the first seven days, then decreased 

slightly to pH 7.6 toward the end of cultivation (Fig. 3d). In the 70 μmol m-2 s-1 treatments, the pH 

peaked at 7.8 ± 0.2 at day 8, and steadied at 7.7 ± 0.1 during the rest of the cultivation period. In 

Li-Ex I the attenuated growth under 500 μmol m-2 s-1 (Table 5), together with the nitrate and pH 

data, indicated that nutrient and CO2 availability might have limited maximum growth in higher 

light conditions. To test whether we could obtain higher yields, the nutrient and CO2 

concentrations were subsequently increased, and the experiment was repeated at 500 μmol m-2 s-

1. In this second experiment (Li-Ex II), the maximum biomass productivity was substantially 

higher, reaching maximum 2.37 g L-1 d-1 (Fig. 4, Table 5). After the first day of cultivation, the 

absorbance ratio A680/A540 in Li-Ex II remained between 0.95 and 1.09. 
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Fig 3. The effect of light intensity (70, 250 and 500 μmol m-2 s-1) on the growth of K. antarctica in flat-
plate photobioreactors over 18 days. (a) Cell density (g L-1). (b) Extracellular nitrate concentration (mM). 
(c) The absorbance ratio A680/A540. (d) The culture pH. The error bars indicate the standard error of duplicate 
cultivations. 
 

 
Table 5. Biomass production of K. antarctica grown in flat-plate photobioreactors illuminated with 70, 250 
or 500 μmol m-2 s-1. Values are the maximum biomass productivity (g L-1 d-1), maximum areal productivity 
(g m-2 d-1), and maximum photosynthetic yield (g mol-1) obtained from the experiments Li-Ex I and Li-ExII. 

Mean values (±standard error) of duplicates per treatment are given in the table. 

 

 

Medium Light intensity  
(μmol photons m-2 s-1) 

CO2 

(%) 
Maximum 

productivity 
(g L-1 day-1) 

Maximum areal 
productivity 
(g m-2 day-1) 

Maximum biomss 
yield on light 

 (g mol-1 photons) 
2N-BBM 70 1 0.48 ± 0.01 6.36 ± 0.08 1.052 ± 0.014 
2N-BBM 250 1 1.04 ± 0.01 13.85 ± 0.07 0.641 ± 0.003 
2N-BBM 500 1 0.87 ± 0.10 11.62 ± 1.39 0.269 ± 0.032 

3× 3N-BBM 500 5 2.37 ± 0.09 31.58 ± 1.21 0.731 ± 0.028 
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Fig 4. Growth of K. antarctica in optimized conditions in flat-plate photobioreactors (Li-Ex II, 500 μmol 
m-2 s-1), using increased amounts of nutrients (3×3N-BBM) and CO2 concentration (5% CO2 v/v). (a) Cell 
density (g L-1). (b) Absorbance ratio, A680/A540. (c) light transmitted through the reactor vessel (μmol m-2 s-

1) and biomass productivity (g L-1 d-1). Error bars indicate the standard error of the mean values (n=2). 

 

3.3.2 Photosynthetic yield in 380 mL flat-plate photobioreactors 

To characterize the photosynthetic efficiency of K. antarctica under different light intensities, the 

maximum biomass yield per mol photons PAR (Yx/mol, g mol-1) was calculated for each treatment 

(Table 5). The cultures under low irradiance used light more efficiently than those at higher light 

intensities, averaging 1.05 g mol -1 at 70 μmol m-2 s-1, and reducing to 0.27 g mol-1 under highest 

light intensity of 500 μmol m-2 s-1. In Li-Ex II, K. antarctica was found to tolerate the strong 

illumination and high nutrient concentrations (Fig. 4a). The highest cell density of 11.68 g L-1 

was obtained at the end of cultivation. In this second experiment, the photosynthetic efficiency at 

500 μmol m-2 s-1 was improved to 0.73 g mol-1 and the maximum areal productivity of 31.58 g m-

2 d-1 was the highest recorded (Table 5). 
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3.3.3 Fatty acid production in 380 mL flat-plate photobioreactors 

In the flat-plate photobioreactors, K. antarctica illuminated with 70, 250 and 500 μmol m-2 s-1 was 

able to accumulate considerable amounts of fatty acids, with a large increase in TAG and a slight 

decrease in polar lipid fatty acids towards the stationary phase (Fig. 5, Fig 2S). The highest TFA 

of 271.9 mg g-1 DW was recorded under 250 μmol m-2 s-1 at day 18, where 90.1% TFA was found 

in TAG (Fig. 2S). The abundance of PUFAs in polar lipids decreased as cultures aged, but those 

in TAG largely increased (Fig. 5c). Total PUFAs at day 10 (late exponential phase) ranged from 

52.9 to 53.9 mg g-1 DW and consistently increased up to 88.5 mg g-1 DW until day 18 in the late 

stationary phase. The highest total PUFA content was recorded when cultures were illuminated 

with 250 μmol m-2 s-1, where 86.2% of total PUFAs were found in TAG. In all light treatments, 

we observed a time-dependent increase in ARA and LA content of K. antarctica, mostly attributed 

to TAG accumulation (Fig. 5a, 5b). The proportion of LA partitioning into TAG increased from 

50.2 to 87.2% of total LA, whilst the proportion of ARA partitioning into TAG increased from 

58.5 to 81.2% of total ARA. The highest ARA content was obtained under 250 μmol m-2 s-1 at 9.6 

mg g-1 DW (3.5% TFA) in the late stationary phase. The total EPA content was mostly conserved 

throughout growth, ranging between 2.9 and 4.1 mg g-1 DW (Fig. 5a). However, the percent share 

of EPA consistently decreased from 3.6% of TFA during the late exponential phase, to its lowest 

value of 1.5% of TFA in the late stationary phase. The ratio of ω-3 to ω-6 fatty acids was the 

highest at 1.0 ± 0.1 at day 10, but decreased thereafter to 0.5 ± 0.03, irrespective of the light 

intensity (Fig. 2S), due to a large increase in the abundance of LA (Fig. 5b). 
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Fig 5. The fatty acid composition (mg g-1 DW) in TAG and polar lipids of K. antarctica grown in flat-plate 
photobioreactors under different light intensities (70, 250 and 500 μmol m-2 s-1), determined at day 10, 14 
and 18. (a) Arachidonic acid, C20:4n-6 (ARA, left) and Eicosapentaenoic acid, C20:5n-3 (EPA, right). (b) 
Linoleic acid (LA, left) and α-linolenic acid (ALA, right). (c) Saturated fatty acids (SFA, left), 
monounsaturated fatty acids (MUFA, center) and polyunsaturated fatty acids (PUFA, right). Error bars 
indicate the standard error of duplicate cultivations.
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3.4 Comparison of growth of K. antarctica with other temperate strains 

To determine whether the obtained maximum productivity of K. antarctica at 15 ̊C under optimal 

conditions was similar to that of other temperate strains, the results were compared with other 

studies that employed only flat-plate photobioreactors with short light paths (< 30 mm) and 

illuminated between 500 and 1000 μmol m-2 s-1 (Fig. 6). The productivity of K. antarctica at 15 ̊C 

was found to be comparable to that of the temperate strains cultivated at 20-35 ̊C, and the 

optimized maximum productivity (Li-Ex II) is amongst the higher values. 

 

 
Fig 6. Comparison of maximum productivity of K. antarctica under 500 μmol m-2 s-1 at 15℃ (◼) with 
other studies (see Table 1S) under 500 μmol m-2 s-1 (●), or 500-1000 μmol m-2 s-1 (▲) in similar flat-plate 
bioreactors with comparable light path lengths (< 30mm). The grey and yellow lines represent the 
respective linear regression slopes.
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4.Discussion 

Although some data is available for K. antarctica (La Rocca et al. 2015; Vona et al. 2004; Ferroni 

et al. 2007; Lang et al. 2011), the present study provides a comprehensive analysis of its growth 

and fatty acid profile in photobioreactors. Especially, we were able to obtain relatively high 

biomass productivity and identify the effects of nutrient supply, high salt and light intensity on 

the dynamics of PUFA and TAG production. K. antarctica synthesized long-chain 

polyunsaturated fatty acids, in addition to the more common C16 and C18 series PUFAs, making 

this cold-water strain a potential candidate for producing food and feed ingredients. 

 

4.1 Koliella antarctica is euryhaline, but prefers lower salinity conditions 

Salinity can affect the growth of microalgae by altering the biochemical composition and 

photosynthetic function (von Alvensleben et al. 2016). To improve biomass productivity, the 

salinity should be optimized for each strain (Martínez-Roldán et al. 2014). Batch growth in bubble 

tubes indicated that K. antarctica preferred lower salinity conditions, with maximum growth rates 

at 4‰. However, the microalga maintained wide salinity tolerance up to natural seawater 

concentrations (0-32‰). Although K. antarctica was isolated from sea water in Terra Nova Bay, 

Ross Sea, Antarctica (Andreoli et al. 1998), based on morphological and physiological traits it 

was suggested that the microalga could have originated from Antarctic freshwater habitats 

(Andreoli et al. 2000; Ferroni et al. 2007). This microalga is not found in open seas, and our 

salinity tolerance data suggests the association of K. antarctica with terrestrial, freshwater or 

brackish habitats. This broad salinity tolerance offers flexibility in mass cultivation using saline 

or brackish water, and could help reduce the freshwater footprint linked to microalgae cultivation 

(Guieysse et al. 2013). Furthermore, the tolerance to salinity variations may also help to avoid 

significant decreases in outdoor productivity or culture collapse caused by evaporation or rainfall 

(Ishika et al. 2017). 
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4.2 Effect of nitrogen, phosphorus and high salinity stress on fatty acid production 

Nitrogen starvation is often the most effective strategy to trigger fatty acid accumulation in 

microalgae, whilst phosphorus starvation typically has more limited effects (Chen et al. 2017). 

Salinity can also be manipulated to induce fatty acid accumulation (Pal et al. 2011; Salama el et 

al. 2013). However, these conditions often decrease or arrest growth, which results in lower 

overall fatty acid productivity (Procházková et al. 2014). We firstly compared the effect of N-, P- 

and HS on TFA yield (mg L-1). Phosphorus-starved cultures showed the highest TFA yield of 

418.4 mg L-1, although the highest fatty acid concentrations were obtained in both N- and P-

starved cells (each approximately 18% DW). However, the reduced growth in N-starved cultures 

led to the lowest TFA yield of only 165.4 mg L-1. Although this result indicates that P starvation 

could be the most efficient strategy to obtain high fatty acid productivity in this strain, the profile 

of nutritionally valuable LC-PUFAs should also be a criterion for bioprocess optimization. 

 To further investigate the impact of different stressors on the fatty acid profile, total fatty 

acids were fractionated into neutral lipids (TAG) and polar (membrane) lipids. Although TAG 

accumulation is mostly studied for biofuel purposes (Hu et al. 2008), its importance as a valuable 

source of fatty acids in nutrition applications has also been investigated (Klok et al. 2014). 

Koliella antarctica accumulated TAG up to 90.0% of TFA. Although TAG was mostly comprised 

of the mono-unsaturated fatty acid OA, PUFAs were also abundant and accounted for around 30-

45% of the TAG. This trend is similar to our previous study, where Arctic snow algae deposited 

comparable amounts of PUFAs in TAG (Hulatt et al. 2017). Incorporation of PUFAs into TAG, 

including LC-PUFAs, has also been reported in Thalassiosira pseudonana and Pavlova lutheri  

(Guiheneuf and Stengel 2013; Tonon et al. 2002).  Lobosphera incisa, a green microalga isolated 

from an alpine environment, is also known to accumulate large amounts of ARA in its TAG. For 

some microalgae that inhabit harsh environments, TAG might serve as a depot of PUFAs 

(Bigogno et al. 2002), and these strains could be cultivated under adverse conditions to maximize 

PUFA production. 

For animal and human health, foods with high ω-3 fatty acid content are desirable 

(Abedi and Sahari 2014). In addition, a balanced ω-3/ω-6 ratio is also important, because ω-3 
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and ω-6 fatty acids and their derivatives are often functionally and metabolically antagonistic 

(Glencross 2009; Simopoulos 2016). The recommended ω-3/ω-6 ratio for human health is 0.5 to 

1.0 (Simopoulos 2016), and in our study the ω-3/ω-6 ratio of K. antarctica was between 0.5 and 

6.3, under all conditions.  

The best quality fatty acid profile was produced by P starvation amongst all the 

conditions tested. Phosphorus-starved cells contained the highest amount of PUFAs (90.6 mg g-1 

DW, 50.9% TFA) and ω-3 fatty acids (43.6 mg g-1 DW, 24.5% TFA), with an ω-3/ω-6 ratio of 

0.9. The essential fatty acids LA and ALA were also abundant, compared with the other stress 

treatments. Although OA constituted a third (32.3%) of the TFAs in P-starved cells, valuable 

PUFAs can be separated from other fatty acids by fractional distillation or winterization (Mendes 

et al. 2007; Cuellar-Bermudez et al. 2015). Both natural and refined microalgae oils could be used 

as sources of food and feed and in nutraceutical and pharmacological applications (Adarme-Vega 

et al. 2012). 

 

4.3 Koliella antarctica produces the LC-PUFAs EPA and ARA 

Only a subset of microalgae species have the necessary metabolic pathways to produce LC-

PUFAs with chain lengths of C20 and beyond (Muhlroth et al. 2013). Therefore, strains such as 

K. antarctica that can produce EPA and ARA, are potentially valuable cell factories. Our fatty 

acid identifications are concordant with Lang et al. (2011), who also identified the production of 

ARA and EPA in Koliella. In this study the highest EPA content amounted to 6.7 mg g-1 DW 

(4.9% TFA) in control treatments. However, this was almost matched by cells under P starvation 

and HS conditions, each of which contained comparable amounts of EPA at 5.4 mg g-1 DW (3.1 

and 5.0% of TFA, respectively). The proportion of EPA produced by K. antarctica was similar 

to Tetraselmis chuii, a microalga commonly used in aquafeeds, in which EPA accounted for 5.0% 

of TFA (Lang et al. 2011). ARA accumulation by K. Antarctica was induced by both N and P 

starvation, increasing up to 7.4 and 4.6 mg g-1 DW (4.1 and 2.6% TFA), respectively. The highest 

ARA content of 9.6 mg g-1 DW (3.5% of TFA) was found under 250 μmol m-2 s-1 after prolonged 
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nutrient starvation in the flat-plate photobioreactor, which is comparable to other candidate strains 

for ARA production, including Porphyridium cruentum (Řezanka et al. 2014). 

EPA can be synthesized via the ω-3 and ω-6 pathways in microalgae (Guschina and 

Harwood 2006). Here, the presence of the intermediate fatty acid ARA implicates at least a role 

for the ω-6 route in K. antarctica. This pathway is also the dominant metabolic pathway in the 

EPA-rich eustigmatophyte Nannochloropsis (Schneider and Roessler 1994; Shene et al. 2016). 

However, the exact nature of LC-PUFA biosynthesis in K. antarctica, including the regulation of 

metabolic pathways, merits further investigation. 

 

4.4 Protein content under nutrient stress 

Nutritional and toxicological tests have reported that microalgae biomass is often suitable as a 

feed supplement or could replace conventional protein sources (Yaakob et al. 2014). Under stress 

conditions, carbon fixed by microalgae is partitioned toward carbohydrate or lipid synthesis, 

rather than protein synthesis (Hu et al. 2008). Our results indicate that phosphorus-starved cells 

had the highest protein content of 31.4% DW, whilst the nitrogen-starved cells recorded the 

lowest protein content of 12.2%. K. antarctica can accumulate fatty acids under P starvation 

whilst simultaneously maintaining the protein content. This feature could make the alga a suitable 

whole-cell ingredient for animal and fish feeds, in which both high protein and lipid contents are 

desired (Wells et al. 2017). However, the nutritional value of protein in K. antarctica needs to be 

evaluated by assessing its amino acid profile and conducting digestibility studies on animals.  

 

4.5 Koliella antarctica is productive under high irradiance in flat-plate photobioreactors 

Light intensity influences cell growth, and changes the biochemical composition of microalgae 

(He et al. 2015). Here, the maximum biomass yield on light was highest (1.05 g mol-1) at 70 μmol 

m-2 s-1, but decreased to 0.27 g mol-1 at 500 μmol m-2 s-1. At low irradiances, higher photosynthetic 

efficiency can be obtained because heat dissipation by non-photochemical quenching (NPQ) or 

chlorophyll fluorescence are minimized (Müller et al. 2001). The maximum biomass yield on 
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light at 70 μmol m-2 s-1 was comparable to those obtained in other studies at warmer temperatures, 

25 ̊C. For example, values of 1.25 g mol-1 and 1.11 g mol-1 were obtained at low light intensities 

in the case of Chlamydomonas reinhardtii (Takache et al. 2010; Kliphuis et al. 2012). The 

attenuated growth at 500 μmol m-2 s-1 relative to 250 μmol m-2 s-1 could be attributed to the 

combined effects of nutrient/CO2 supply coupled with high irradiance. The high rate of nitrogen 

consumption in Li-Ex I likely suppressed protein biosynthesis and impaired photosynthetic 

performance (Ho et al. 2012). The negative effects of high irradiance can be mitigated by 

supplying excess nutrients and CO2, and increasing the cell density to improve mutual shading 

(Chen et al. 2011). In Li-Ex II the maximum productivity of K. antarctica was substantially 

improved to 2.37 g L-1 d-1 and the maximum biomass yield on light was enhanced proportionally 

to 0.73 g mol-1. The tolerance of the microalga to high light in Li-Ex II indicates that K. antarctica 

could be suitable for outdoor cultivation where cells may experience moderate to strong irradiance. 

 Productivity and yield data are often specific to the test conditions, or to the optical 

configuration of the apparatus used for cultivation. To account for these variables, the 

productivity of K. antarctica at 15 ̊C was compared with other studies using flat-plate 

photobioreactors that were illuminated between 500 and 1000 μmol m-2 s-1, mostly at warmer 

temperatures. The results showed that the maximum productivity of 2.37 g L-1 d-1 at 15 ̊C was 

comparable to that of other strains at 20-35 ̊C. To our knowledge, this is amongst the higher 

biomass productivities obtained at temperatures ≤15 ̊C, and one of few studies that has used 

optimized photobioreactor platforms to cultivate polar microalgae. 

 

4.6 Conclusions 

The cold-adapted microalga K. antarctica exhibited high maximum biomass productivity of 2.37 

g L-1 d-1 at 15 ̊C after culture optimization, and tolerated a relatively broad range of salinities. The 

highest total fatty acid content obtained in this work was 271.9 mg g-1 dry weight. Nitrogen and 

phosphorus starvation strongly induced TAG accumulation up to 90.3% TFA, that mostly 

consisted of the monounsaturated fatty acid OA. However, PUFAs were also abundant and 

together accounted for around 30-45% of total TAG. The highest amount of EPA was 6.7 mg g-1 
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DW (4.9% TFA) in the control treatments. ARA accumulation mostly occurred in TAG and was 

largely induced by nitrogen starvation, reaching 9.6 mg g-1 DW (3.5% TFA) in the late stationary 

phase. Phosphorus starvation was the best strategy tested here to obtain high total fatty acid yields 

(mg L-1) whilst maintaining the protein content. Phosphorus-starved cells also contained the 

highest total PUFAs and long-chain omega-3 fatty acids. The high productivity of K. antarctica 

at cooler temperatures concurrent with production of high value LC-PUFAs could make this strain 

a potential candidate for producing food and feed ingredients, possibly offering the opportunity 

for cultivation in cooler climates or during winter in temperate regions.  
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Supplementary data 

 

Fig 1S. The growth curves of K. antarctica, cultured for 14 days, under various salinity concentrations 

(0-32‰). Standard errors of the mean values of duplicates are shown.
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Fig 2S. Total fatty acid content (mg g-1 DW) in TAG and polar lipids and theω3/ω6 fatty acids ratio of K. 

antarctica grown in flat-plate photobioreactors under different light intensities (70, 250 and 500 μmol m-2 

s-1), determined at day 10, 14 and 18. Error bars indicate the standard error of duplicate cultivations. 
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Table 1S. Comparison of maximum biomass productivity of K. antarctica with literature values. The data 

are presented in manuscript Figure 6. 

 

 

Species Maximum 
biomass 
productivity 
(g L-1 d-1) 

Temperature 
(̊C) 

Light intensity 
(μmol m-2 s-1) 

Reference 

Koliella antarctica 0.87 15.0 500 This study 
Koliella antarctica 2.37 15.0 500 This study 
Scenedesmus obliquus 0.8 20.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 0.8 20.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 0.8 20.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 2.1 20.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 1.3 20.0 500 Breuer et al. (2013) 
Phaeodactylum tricornutum  1.1 20.0 500 Meiser and Walter Trösch. (2004)   
Phaeodactylum tricornutum  1.4 20.0 750 Meiser and Walter Trösch. (2004) 
Phaeodactylum tricornutum  1.4 20.0 1000 Meiser and Walter Trösch. (2004) 
Chlorella vulgaris  1.4 25.0 560 Liao et al. (2017)   
Scenedesmus obliquus 1.8 27.5 500 Breuer et al. (2013) 
Scenedesmus obliquus 2.6 27.5 500 Breuer et al. (2013) 
Scenedesmus obliquus 2.1 27.5 500 Breuer et al. (2013) 
Scenedesmus obliquus 1.5 27.5 500 Breuer et al. (2013) 
Scenedesmus obliquus 2.8 27.5 800 Breuer et al. (2013) 
Chlorella vulgaris 1.1 29.0 980 Degen et al. (2001)   
Chlorella vulgaris 2.6 29.0 980 Degen et al. (2001) 
Scenedesmus ovalternus  3.2 30.0 750 Koller et al. (2018) 
Scenedesmus ovalternus 2.1 30.0 750 Koller et al. (2018)  
Scenedesmus obliquus 1.3 35.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 2.3 35.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 1.3 35.0 500 Breuer et al. (2013) 
Scenedesmus obliquus 1.5 35.0 500 Breuer et al. (2013) 
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