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• We assess ecological footprint, carbon
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tus of nations.

• We utilize both econometric and ma-
chine learning-based estimation
methods.
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The long-run effect of the synergy between natural resource consumption and environmental sustainability
varies across countries depending on the economic structure. However, the transboundary effect of natural re-
source capital underscores the importance of environmental convergence. Here, wemap ecological performance,
biocapacity, and carbon footprint of nations. We assess the socio-economic drivers of environmental perfor-
mance and convergence using novel cross-country time series techniques. We find that the expansion of
biocapacity of nations has an ameliorating effect on ecological performance. The hotspot countries of environ-
mental performance include Australia, Brazil, China, Germany, India, Japan, Russia, and the US. We confirm the
existence of environmental convergence across nations — implying that the disparity in carbon and ecological
footprint between higher-income and lower-income countries will converge in the long-run. This accentuates
the need for global partnership towards achieving environmental sustainability.
© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The questionof environmental convergence betweendeveloped and
developing countries remains inconclusive in the empirical literature.
. This is an open access article under
Uncertainties in achieving environmental sustainability arise in a glob-
alized world where increasing demand for natural resource capital is
key to sustaining economic development. Thus, from a policy perspec-
tive, can sustainability be achieved across nations with increasing pop-
ulation density, livelihood pressures and international trade?

The unprecedented increase in anthropogenic emissions and natural
resource exploitation in developing countries underlines the necessity
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of environmental convergence, a situation that has implications on sus-
tainability. A rapid increase in economic productivity triggers large de-
mand for natural resources and contribute to waste generation, with
greater consequences on the environment, leading to climate change
(Panayotou, 1993). Such conventional and linear economic structure
underpin natural resource exploitation and environmental pollution.
The continual trajectory of this developmentmodel in developing coun-
tries will grow to eventually catch-up with developed countries and
converge in the long run — if economic and productivity conditions
are met (Abramovitz, 1986; Kuznets, 1955). Thus, environmental con-
vergence reflects the economic convergence where economic develop-
ment depends heavily on resource and pollution-intensive economic
structure. The environmental convergence is in part captured in the en-
vironmental Kuznets curve hypothesis — where income level in devel-
oping economies increases with pollution levels but pollution declines
after reaching a threshold of income level comparable to developed
economies (Berkhout et al., 2017; Grossman and Krueger, 1991).
Models of this nature are useful is assessing development pathways
where there is a rapid transition to efficient natural resource extraction
and low pollution levels.

Natural resource security and environmental sustainability are at
stake amid growing material flow through trade and domestic mate-
rial consumption to meet population demand (Wiedmann et al.,
2015). The business-as-usual trend in natural resource extraction
highlights a potential resource scarcity that has policy implications.
Initial arguments on environmental sustainability in extant literature
divulge that the triad relationship of social, economic and environ-
mental indicators are essential to understanding the global status of
sustainability (Sarkodie, 2020). Socio-economic and environmental
indicators such as, inter alia, economic growth, population, and car-
bon footprint are always at the centre of several emission scenarios
(Blanco et al., 2014). However, several theories such as ecological
modernization, circular economy and environmental Kuznets curve
suggest the importance of other factors such as trade, ecological foot-
print and biocapacity (Sauvé et al., 2016; York and Rosa, 2003). While
tons of studies have utilized carbon dioxide emissions as a proxy for
assessing environmental stress, very few studies have considered eco-
logical footprint as a comprehensive proxy indicator for environmen-
tal degradation (Baabou et al., 2017; Lenzen and Murray, 2001;
Wackernagel et al., 1999). This is true and representative as it stands,
given the limitation of anthropogenic carbon dioxide emissions that
account for atmospheric dynamics whereas ecological footprint
covers the biosphere. Using ecological footprint rather than carbon di-
oxide emissions provides a true and inclusive perspective of assessing
environmental deterioration. The ecological footprint accounts for
built-up land, carbon emission levels, cropland, fishing grounds, forest
land and grazing land (GFN, 2017), thus, capture all facets of environ-
mental dynamics. This missing link in carbon dioxide emissions might
have misled the assessment of environmental degradation across
countries in extant literature.

Contrary to previous attempts, we for the first-time investigate the
ecological footprint, carbon footprint, biocapacity and ecological status
of nations using cross-sectional time series data over five decades in
188 countries and territories. To assess the ecological performance of
nations, we used empirical methods to calculate ecological status from
ecological footprint and biocapacity. We estimated the relative change
of socio-economic and environmental indicators across nations and
identified the hotspot countries. To understand the drivers of environ-
mental performance, ecological footprint and carbon footprint of
nations, we used two novel estimation techniques with characteristics
of machine learning and econometrics. The panel kernel regularized
least-squares algorithm and the dynamic panel bootstrap-corrected
fixed-effects are consistent and robust, with the advantage in control-
ling for convergence, cross-section dependence, omitted variable
bias, misspecification error, country-specific heterogeneity and non-
additive effects.
2. Methods

2.1. Dataset

We gathered our cross-sectional time series data on ecological
indicators from the global footprint network (GFN, 2017). The eco-
logical indicators include ecological footprint, biocapacity, carbon
footprint, and ecological status. Ecological footprint comprises
built-up land, carbon levels, cropland, fishing grounds, forest land
and grazing land, thus, captures all the environmental dynamics of
the biosphere compared to the traditional carbon dioxide used as a
proxy for environmental pollution. This infers that the ecological
footprint is more inclusive and representative for assessing environ-
mental stress. Biocapacity comprehensively captures the regenera-
tive capacity of built-up land, cropland, fishing grounds, forest land
and grazing land to meet livelihood demand. Carbon footprint mea-
sures fossil fuel-driven carbon dioxide emissions. The ecological sta-
tus is calculated by deducting ecological footprint from biocapacity.
In line with the definition of sustainability to meet present natural
resource demand and still preserve the natural capital as a bequest
for future generations, ecological status is for the first time used as
an indicator to assess the ecological health or performance of na-
tions. The socio-economic indicators namely economic growth, in-
come level, trade and population are retrieved from the World
Bank development database (World Bank, 2020). The data selection
process stems from the concept of Sustainable Development and the
assessment guidelines of the United Nations (DiSano, 2002). The
data utilized for the choropleth maps have 245 countries and terri-
tories, however, for the empirical assessment — the unequal distri-
bution and missing inputs led to a data-pruning. This resulted in a
balanced panel data consisting of 188 countries and territories
with a total of 10,528 observations spanning 1961–2016. Another
set of ecological data captures the global and continental distribu-
tion— explicitly Africa, Asia, Australasia (Australia and New
Zealand), Europe, North America and South America.

2.2. Model structure

Cross-country time series models are affected by global common
shocks like a pandemic, financial crisis, oil prices, among others, and
transboundary spillover effects. In that scenario, the failure to ac-
count for cross-section dependence oftentimes render panel estima-
tions spurious. The model estimation was initiated by examining the
presence of cross-section dependence using a variable-based panel
cross-section dependence test (Pesaran, 2004). Second, we investi-
gated the stationarity properties of the sampled data series, another
panel challenge that required attention. The necessity of the test
stems from the random walk characteristic of certain series that
could hinder the robustness and consistency of the estimated
models, hence, affecting statistical inferences and policy implica-
tions. To avoid this possibility, we employed panel unit root
tests from the second generational techniques. Third, to avoid
misspecification errors, we proceeded to assess the heterogeneous
effects of socio-economic and ecological indicators across nations.
We used the novel panel bootstrap jackknife-bias-corrected estima-
tion method to account for heterogeneous dynamics across coun-
tries. The preconditions of applying the heterogeneous technique
require a stationary data series with Gaussian autoregressive-
moving-average generated error term (Okui and Yanagi, 2019).

2.3. Model estimation

The pre-model estimation assessment provided leads to the selec-
tion of optimal cross-country time series techniques that are robust
and produce consistent estimates. The linear representation of
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environmental performance and socio-economic nexus can be
expressed as:

lnCARBON � f lnEFCONS; lnPOPDEN; lnENVSUS; lnΔNECOPERM; lnGDPð Þ ð1Þ

lnCARBON � f lnEFCONS; lnPOPDEN; lnENVSUS; lnΔNECOPERM; lnGDPC; lnTRADEð Þ ð2Þ

lnEFCONS � f lnPOPDEN; lnENVSUS; lnGDPð Þ ð3Þ

lnEFCONS � f lnPOPDEN; lnENVSUS; lnGDPC; lnTRADEð Þ ð4Þ

lnΔNECOPERM � f lnEFCONS; lnPOPDEN; lnENVSUS; lnGDPð Þ ð5Þ

lnΔNECOPERM � f lnEFCONS; lnPOPDEN; lnENVSUS; lnGDPC; lnTRADEð Þ ð6Þ

lnΔNECOPERM � f lnEFCONS; lnPOPDEN; lnENVSUS; lnGDPC; lnGDPC2; lnTRADE
� �

ð7Þ

where, ln represents the logarithmic transformation of data series to
achieve a constant variance; Δ is the first-dependence operator; N rep-
resents the normalization of the series to control for negative values be-
fore the application of logarithmic transformation; CARBON means
Carbon Footprint measured in gha; ENVSUS is Biocapacity, measured
in gha; EFCONS denotes Ecological Footprint, measured in gha,
ECOPERM is the Ecological Status, measured in gha; GDPC indicates In-
come Level, a proxy for estimating wealth, measured in constant 2010
US$; GDP means Economic growth, measured in constant 2010 US$;
POPDEN represents Population density, measured in people per sq.
km of land area; and TRADE is Trade, measured as a % of GDP.

The baseline empirical specification of Eqs. (1)–(7) follows the novel
panel kernel regularized least-squares algorithm. The application of the
machine learning technique is expressed in pointwise partial deriva-
tives of the target variables (CARBON, EFCONS and ECOPERM) and cor-
responding predictors expounded in Eqs. (1)–(7). For brevity, the
generic panel kernel regularized least-squares pointwise partial deriva-

tives lnδby
lnδx dð Þ

j

can be expressed as (Okui and Yanagi, 2019):

lnδŷ

lnδx dð Þ
j

¼ −2
σ2

X
i

cie
− xi−x jk k2

σ2 x dð Þ
i −x dð Þ

j

� �
ð8Þ

where y denotes the partial derivative of the target variables related to
variable d, x(.) represents the predictors with observation j, σ2 is the ker-
nel bandwidth, ci is the weight of the predictor (choice coefficient), xi is
the input pattern, i=1,…,N, and e(.) is the exponential function. Though
the panel kernel regularized least-squares algorithm is a simplified
model that allows consistent and robust estimation of heterogeneous,
non-additive and non-linear effects while reducing misspecification er-
ror, however, cannot be used to control country-specific fixed-effects
and convergence. We further employed the dynamic panel bootstrap-
corrected fixed-effects to account for the challenges in the baseline
method expressed in a generic form as (De Vos et al., 2015):

lnyi;t ¼ δ � lnyi;t−1 þ β � lnxi;t þ αi þ εi;t ; i ¼ 1;…;N and t ¼ 1;…; T ð9Þ

where lnyi, t represents the logarithmic transformation of the target var-
iables (lnCARBON, lnEFCONS, and lnΔNECOPERM) for the model specifi-
cation of Eqs. (1)–(7), i is the individual sampled countries, t is the
period of the data spanning 1961–2016, δ is the AR parameter such that
|δ| < 1 to confirm a dynamic stable association between lnyi, t and lnxi, t,
β represents the estimated coefficient of the regressors, lnxi, t denotes
the regressors (1 × K vector), αi is the country-specific unobserved het-
erogeneity or fixed-effects with zeromean and variance (σα

2 ≥ 0) and εi, t
is the unobserved idiosyncratic white noise with a zero mean and vari-
ance (σε

2 > 0). The dynamic panel estimator assumes an equally uncor-
related whiter noise over the period and across countries. Second, it
assumes that the country-specific unobserved heterogeneity or fixed-
effects are exogeneous and uncorrelated. Third, it assumes that the
regressors are strictly exogenous and preliminary conditions are either
stationary or nonstationary and uncorrelated with the corresponding
unobserved idiosyncratic white noise (Everaert and Pozzi, 2007).

3. Results

The choropleth maps (Figs. 1–2) identify the geographical distribu-
tion of ecological footprint, carbon footprint, biocapacity, and ecological
status. The constructed geographicalmaps are based on themeandistri-
bution spanning 1961–2016 across 245 countries and territories. The
ecological footprint measures a country's land and water resources
that are biologically productive for economic consumption and absorp-
tion of waste generation using resource management technologies and
practices (Global Footprint Network, 2017). On this note, higher ecolog-
ical footprint due to consumption of available natural resources is not
beneficial for environmental sustainability. Top global ecological foot-
print hotspots include the US (~2.41 billion gha), China (~2.24 billion
gha), Russia (~1.12 billion gha), India (~0.73 billion gha), and Japan
(~0.58 billion gha) [see Fig. 1]. Carbon footprint measures carbon diox-
ide emissions attributed to fossil fuel consumption. Here, carbon foot-
print denotes the corresponding biologically productive resources
required to absorb carbon dioxide. Thus, higher levels of carbon dioxide
emissions in the atmosphere signify an expansion of the ecological debt.
The carbon footprint hotspots across countries include theUS (~1.75 bil-
lion gha), China (~1.23 billion gha), Japan (~0.38 billion gha), Germany
(~0.32 billion gha), and India (~0.27 billion gha) [see Fig. 1]. These coun-
tries tally with the ranking on carbon dioxide emissions from fossil fuel
combustion reported in Global Energy Statistical Yearbook 2019
(Enerdata, 2019). Which appears that ecological and carbon footprint
correlate with domestic material consumption (fossil fuel, biomass,
metal and nonmetal ores). Biocapacity measures the regenerative and
waste absorptive capacity of the ecosystem following natural resources
exploitation to meet population demand. Thus, a higher level of
biocapacity compared to ecological footprint is key to achieving envi-
ronmental sustainability. Top tier countrieswith the highest biocapacity
include Brazil (~1.77 billion gha), Russia (~1.09 billion gha), the US
(~1.04 billion gha), China (~1.00 billion gha), and Canada (~0.52 billion
gha) [see Fig. 2]. These countries coincidentally correspond to the global
ranking of countries by landmass (Worldometers, 2020). Ecological sta-
tus of nations was calculated using the difference between the regener-
ative capacity of the ecosystem and consumption of natural resources.
Thus, ecological status occurs in two forms namely ecological deficit
and ecological reserve. Ecological deficit occurs when a country's natu-
ral resource exploitation exceeds its regenerative capacity, whereas
ecological reserve occurs when the regenerative capacity of a country's
natural resources exceeds consumption. This implies that countries
with ecological deficit import resources from other countries endowed
with reserves. Top ecological deficit hotspots include the US (−1.37 bil-
lion gha), China (−1.25 billion gha), Japan (−0.49 billion gha), India
(−0.35 billion gha), and Germany (−0.34 billion gha) [see Fig. 2]. How-
ever, top five countries with ecological reserve comprise Brazil (~1.36
billion gha), Canada (~0.28 billion gha), Australia (~0.18 billion gha),
Congo (Kinshasa) (~0.18 billion gha), and Bolivia (~0.17 billion gha)
[see Fig. 2]. Based on the ecological status of nations, we mapped the
continental and global status of ecological performance presented in
Fig. 3. While Asia, Europe and North America have an ecological deficit,
Australia & New Zealand, South America and Africa (except Morocco,
Nigeria, Niger, Algeria, Libya, Egypt, Ethiopia, South Sudan, Uganda,
South Africa, Malawi, Kenya, and Togo) have an ecological reserve.
The global total shows ecological deficit with potential future conse-
quences on environmental sustainability (Fig. 3).

To determine the 56-year comparative growth trajectory of environ-
mental performance reported in the choroplethmaps,we estimated the
mean relative change of 8 hotspot countries plus the global average
(Fig. 4). The 56-year mean trend for biocapacity reveals that India,
Germany, and the US are above the global average of 0.429% whereas



Fig. 1. Geographical mapping of ecological and carbon footprint (gha).
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Canada, Brazil, Russia, China and Japan are below the global mean
biocapacity. India ranks on top of the 8 hotspot countries to expand its
biocapacity by 1.77% within 56 years whereas Japan is the worst per-
former in improving biocapacity with a decline of 0.427%. India, Brazil
and China have increased their ecological footprint within 56 years by
3.14%, 2.22% and 2.19% respectively above the global average of 1.98%.
Canada, Japan, Russia and Germany have intensified its ecological foot-
print but below the global average, however, the US has declined its
ecological footprint within the same period by 0.825%. Similarly, India
ranks high in terms of the relative change in carbon footprint within
56 years by 5.46% compared to the global average (2.56%) — followed
by China (4.30%), Brazil (4.24%), Russia (3.14%) and Japan (2.72%).
Canada and Germany are below the global average of carbon footprint
by 2.17% and 0.772% respectively, however, the US has declined its car-
bon footprint by 0.691%within 56 years.Weobserve from the ecological
status of hotspot countries that only China has expanded its ecological
deficit (20.2%) above the global average of 10.8%. However, countries
such as India, Japan and Germany have increased their ecological deficit
but below the global average. In contrast, Russia, the US, Brazil and
Canada have improved their ecological reserve by 26%, 1.39%, 0.388%
and 0.382%, respectively. Concurrently, population density relatively in-
creased by 0.21%, 0.32%, 1.03%, 1.35%, 1.53%, 1.87% and 1.94% from 1961
to 2016 in Germany, Russia, the US, China, Australia, Brazil and India, re-
spectively. Trade experienced a mean change of 0.84%, 2.42%, 2.93%,
3.73%, 4.13%, 15.72%, and 17.62% in Australia, Brazil, India, China, the
US, Germany and Russia within the 56 years. Income level has
witnessed a tremendous change from 1961 to 2016 in Germany and
Russia by 170.33% and 352.78%, respectively. Besides, income level
saw a gradual growth in Australia, the US, Brazil, India and China by
1.94%, 2.02%, 2.09%, 3.22%, and 7.44%. Similarly, Germany and Russia ex-
perienced a mean change in economic growth from 1961 to 2016 by
1190.04% and 3513.11%, respectively. Economic growth grew by
3.08%, 3.51%, 4.00%, 5.22% and 8.89% in the US, Australia, Brazil, India
and China (Supplementary 1).

We find from the assessment of environmental indicators that natu-
ral resources extraction and carbon footprint are critical to environmen-
tal consequences. To understand the dynamics of the immediate and
underlying causes of the ecological performance of nations, we devel-
oped conceptual tools using socio-economic variables namely economic
development (GDP/GDPC), population density (POPDEN) and trade
(TRADE). The selection of thedata series is based on the IPCC5thAssess-
ment report and Sustainable Development Goals (SDGs). The IPCC re-
port classifies GDP/GDPC and POPDEN as immediate drivers of GHG
emissions whereas TRADE is considered as an underlying driver
(Blanco et al., 2014).We used socio-economic inputs which incorporate
the concept of SDGs as explanatory variables defined as:

• Economic development: Economic growth and GDP per capita denote
aggregate productivity and individual income levels, a proxy for esti-
mating wealth across countries. This input is essential to investigate



Fig. 2. Geographical mapping of biocapacity and ecological status (gha).

Fig. 3. Continental and global status of ecological performance (gha).
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Fig. 4.Mean relative change (%) in biocapacity, ecological footprint, ecological status and carbon footprint of the US, Russia, Japan, India, Germany, China, Canada and the World.
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the nexus between wealth and economic performance, thus, a useful
indicator to examine SDG-8 of sustained economic growth.

• Population density: Population expansion intensifies natural resource
consumption either through extraction or importation to meet the
growing demand (Sarkodie et al., 2020). Thus, importation can only
materialize in countries where population demand for biologically
productive resources exceeds the regenerative capacity due to the
levels of carbon footprint attributable to economic productivity. Pop-
ulation density plays enormous roles in achieving many of the SDGs
(United Nations, 2015) namely reduced inequality (SDG-10), sustain-
able cities (SDG-11), sustainable production and consumption (SDG-
12), climate change mitigation (SDG-13), and sustainable life below
water and land (SDG-14 &15).

• Trade: International trade is a conduit of globalization that is critical to
achieving economic productivity (SDG-8), industrialization, innova-
tion and technology (SDG-9), climate change mitigation (SDG-13),
and global partnership (SDG-17). Thus, trade navigates domestic ma-
terial consumption and environmental sustainability.

The elasticities of the socio-economic inputs were computed using
multiple cross-country time series estimation techniques and amachine
learning algorithm for panel data modelling. Stationarity, omitted-
variable bias, heterogeneity, misspecification, and cross-section depen-
dence are challenges associated with cross-country time series models.
Here, we used a battery of novel estimation techniques that control for
the outlined issues. First, cross-sectional units of panel datamodels may
suffer from global common shocks, which ignoring it will lead to an-
other challenge related to the error term known as endogeneity,
hence, produces inconsistent model estimates. We examined the
variable- cross-section dependence with corresponding results pre-
sented in Table 1.We find that the null hypothesis of cross-section inde-
pendence is rejected at 1% significance level, confirming the presence of
cross-section dependence in the data series. This supports the estima-
tion of stationarity using CIPS and CADF second generational unit root
tests. We find that all series are stationary at level except ecological sta-
tus which is difference stationary. To examine heterogeneity across
countries, we used the novel kernel-smoothing technique with half-
panel jackknife (type of split-panel jackknife) bias correction for esti-
mating densities (Okui and Yanagi, 2020). This in effect controls for
nonlinearity and incidental parameter bias. The non-parametric panel
kernel density estimation for testing the degree of heterogeneous dy-
namics across countries assumes heterogeneous stationary time series
for initial input variables, panel autoregressive moving average and
Gaussian white noise (Okui and Yanagi, 2019). The estimated kernel
densities show a persistent long-run heterogeneity (p-value < 0.05) of
income level, economic growth, population density, trade, biocapacity,
carbon footprint, ecological footprint, and ecological status (Fig. 5).
We observe that while population density, trade, biocapacity, carbon
footprint, and ecological footprint exhibit a unimodal distribution— in-
come level, economic growth, and ecological status appear to show a bi-
modal distribution. The structural estimation confirms a significant and
strong degree of heterogeneous dynamics across countries.

To correct the panel heterogeneous effects exhibited across coun-
tries, we employed panel kernel regularized least squares and dynamic
bootstrap-corrected fixed-effects panel approach. The panel kernel reg-
ularized least-squares technique is applied by fitting the functions with
Gaussian kernels and regularizing the less complex functions that re-
duce squared loss to control over-fitting (Hainmueller and Hazlett,
2014). The machine learning-based cross-country time series technique
provides unbiased and consistent estimated coefficients due to the auto-
matic selection of optimal kernel bandwidth and regularization param-
eter for the proposed model. The panel dynamic bootstrap-corrected
fixed-effects is applied to the proposed model to correct the small
time-bias (Everaert and Pozzi, 2007). We accounted for cross-section
dependence and heterogeneous effects by utilizing the Monte Carlo



Table 1
Model estimation results.

Variable Drivers of carbon footprint Drivers of the ecological footprint Drivers of ecological performance

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b Model 5a Model 6a Model 7a

CARBON† – 0.108***
[0.032]

– 0.110***
[0.033]

– – – – – – –

EFCONS† 0.533***
[0.034]

0.582***
[0.107]

0.648***
[0.029]

0.572***
[0.108]

– 0.619***
[0.064]

– 0.615***
[0.065]

−0.003***
[0.000]

−0.003***
[0.000]

−0.003***
[0.000]

ENVSUS† −0.044
[0.028]

−0.108
[0.176]

0.032
[0.029]

−0.093
[0.173]

0.656***
[0.006]

0.430***
[0.118]

0.778***
[0.006]

0.429***
[0.117]

0.002***
[0.000]

0.003***
[0.000]

0.003***
[0.000]

ΔNECOPERM† 18.725
[11.756]

−3.018
[3.492]

11.511
[10.013]

−2.987
[3.519]

– – – – – – –

GDPC† – – 0.362***
[0.018]

0.030
[0.024]

– – 0.134***
[0.008]

0.006
[0.010]

– 0.001***
[0.000]

0.001**
[0.000]

GDPC2† – – – – – – – – – – 0.000***
[0.000]

GDP† 0.280***
[0.015]

0.077***
[0.025]

– – 0.171***
[0.005]

−0.004
[0.006]

– – 0.001***
[0.002]

– –

POPDEN† 0.169***
[0 0.024]

0.307**
[0.127]

0.256***
[0.024]

0.327**
[0.135]

0.463***
[0.008]

0.235***
[0.068]

0.525***
[0.008]

0.231***
[0.068]

0.001**
[0.003]

0.001***
[0.000]

0.001***
[0.000]

TRADE† – – 0.231***
[0.038]

0.088*
[0.048]

– – −0.067***
[0.016]

0.016
[0.013]

– −0.001*
[0.000]

−0.001*
[0.000]

Eff. df 105.5 – 161.5 – 73.43 – 133.7 – 97.25 158.7 154.6
R2 0.594 – 0.612 – 0.907 – 0.905 – 0.243 0.261 0.253
Looloss 7679 – 7467 – 1476 – 1534 – 144.9 144 145.7
Convergence – YES – YES – YES – YES – – –

Notes: † represents the rejection of the null hypothesis of homogeneity using Pesaran CD test; I(0) means a stationary series at level whereas I(1) represents first-difference stationary
series; *,**,*** denotes statistical significance at p-value < 0.10, p-value < 0.05 and p-value < 0.01; [.] is the standard error; N signifies normalization [0,100], Δmeans the first-difference;
a ,b represent panel estimation using kernel regularized least squares and panel bootstrap-corrected fixed-effects. Model 1 - lnCARBON ~ f(lnEFCONS, lnPOPDEN, lnENVSUS,
lnΔNECOPERM, lnGDP); Model 2 - lnCARBON ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnΔNECOPERM, lnGDPC, lnTRADE); Model 3 - lnEFCONS ~ f(lnPOPDEN, lnENVSUS, lnGDP); Model 4
- lnEFCONS ~ f(lnPOPDEN, lnENVSUS, lnGDPC, lnTRADE); Model 5 - lnΔNECOPERM ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDP); Model 6 - lnΔNECOPERM ~ f(lnEFCONS, lnPOPDEN,
lnENVSUS, lnGDPC, lnTRADE);Model 7 - lnΔNECOPERM~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDPC, lnGDPC2, lnTRADE). Legend: GDPC - Income Level, GDP - Economic growth, POPDEN
- Population density, TRADE - Trade, ENVSUS - Biocapacity, CARBON - Carbon Footprint, EFCONS - Ecological Footprint, NECOPERM - Ecological Status.
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heteroskedastic bootstrap error resampling scheme to generate samples
and analytical heterogeneous initialization to generate preliminary con-
ditions of the resampling process (De Vos et al., 2015). We also used
multivariate normal distribution to sample the preliminary conditions.
To control for omitted variable bias, we incorporated the lagged-
dependent variable of ecological status, carbon and ecological footprint.
We plugged-in country-specific fixed-effects to mitigate unobserved
effects across sampled countries. We validated the estimated parame-
ters using a baseline and actual model for which the actual model
captures the inertia effects of target variables. In comparison, both
models produce similar signs and statistical significance of desirable pa-
rameters. The panel kernel regularized least-squares technique reveals
the goodness of fit (R-squared) between 24 and 91% and partial deriva-
tives that are robust and consistent. The panel dynamic bootstrap-
corrected fixed-effects model finds a positive coefficient for the
lagged-dependent variables that is less than 1, fulfilling the assumption
of consistent model estimates. The inferences procedure further shows
a bootstrapped histogram distribution with a characteristic of a
bell-shape (Fig. 6). This is validated by the superimposed kernel fit and
normal distribution line, confirming the residual independence of the
estimated models.

3.1. What are the drivers of carbon footprint?

The lagged‑carbon footprint estimate is positive and significant
(p-value < 0.01), hence, confirming the inertial effects of carbon foot-
print. This entails that the current and historical levels of carbon foot-
print are triggered by unobserved common factors across nations. The
estimated model achieves convergence, hence, validating the carbon
footprint convergence hypothesis (Table 1). We accounted for
national-level income in model 1 whereas individual income, an indica-
tor for wealth was used inmodel 2. The empirical results find that a sys-
temic change in both aggregates and per capita income exacerbate
carbon footprint. We note that the escalation effect of economic devel-
opment drives carbon footprint by 28–36%. Consequently, a dynamic
change in international trade spur carbon footprint, confirming a
potential transboundary carbon-embedded trade. Population density is
reported to increase the population demand for natural resource-
attributed goods and services and waste generation which hamper the
environmental quality. Our estimated model confirms that an increase
in population density intensifies carbon footprint.

3.2. What factors account for changes in ecological footprint?

The significant (p-value < 0.01) positive coefficient of lagged-
ecological footprint confirms unobserved factor-attributed high current
and past trends of ecological footprint of nations. Evidence from Table 1
reveals that the ecological footprint of nations achieves convergence at a
faster pace compared to carbon footprint. Though environmental
sustainability requires the expansion of biocapacity to serve as a
bequest for future generations. However, our empirical results show
that an expansion of ecological reserves triggers resource extraction,
hence, affecting ecological footprint. This is confirmed by the strong ef-
fect of population density on ecological footprint. Similarly to carbon
footprint, population density facilitates resources extraction and con-
sumption of the available natural capital to meet livelihood pressures.
The pointwise estimate highlights that an average impact of economic
growth and income level across countries have escalation effect on eco-
logical footprint. Here, we find global economic development and inter-
national trade driven by excessive extraction and consumption of
natural resources.

3.3. What drives the environmental performance of nations?

While the expansion of biocapacity improves economic perfor-
mance, growth in ecological footprint and international trade hamper
the ecological performance of nations. This results further strengthen
our position on carbon and natural resource-embedded trade effects
across countries. In contrast, population density deviates from the initial
position on carbon and ecological footprint.We find that growth in pop-
ulation density increases ecological performance. We further capture
the environmental Kuznets curve (EKC) hypothesis to examine the
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Fig. 6. Model Validation of the panel bootstrap-corrected fixed-effects estimation models
using histogram distribution — overlaid by kernel fit and normal distribution.
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nexus between environmental performance and wealth. We find that
the EKC hypothesis is not valid but rather the scale effect hypothesis.
This is because both the first- and second- degree polynomial of income
level is positive and statistically significant (p-value < 0.05).

4. Discussion

The long-run relationship between socio-economic drivers and
environmental indicators reveals that carbon footprint, ecological foot-
print and ecological performance may deviate from its equilibrium at
any time period. But the deviation is a temporary transition with the
tendency of returning to equilibrium through sustainable policies and
measures. This implies that the factors of production across 188
countries can be altered through structural change in economic devel-
opment. For example, energy and carbon-intensive economic structure
can be altered at the production level by shifting from fossil fuels to
cleaner and sustainable alternative energy technologies (Owusu and
Asumadu, 2016). Energy transformation in the form of replacing
fossil fuels with clean energy technologies is reported to have multiple
mplications on investment, import, export and trade of natural re-
sources, and other co-benefits (Jakob and Steckel, 2016; Mayrhofer
and Gupta, 2016).

Expansion in environmental performance is beneficial to environ-
mental sustainability whereas a decline in environmental performance
Fig. 5. Panel heterogeneous distribution of socio-economic and environmental performance
hypothesis that the distribution is identical (homogeneous) across the 188 countries.
signifies environmental damage, which spurs climate change and its
impact. Our study confirms that increasing levels of ecological footprint
and trade across nations obstruct environmental quality. Expansion of
ecological constraints due to the exploitation of available natural re-
sources is reported to increase climatic debt (Bertrand et al., 2016).
Rather than the excessive exploitation of natural resources, advancing
on artificial alternatives that can replace the natural capital as inputs
at the production level will improve environmental sustainability
through the expansion of biocapacity.

Livelihood pressures underpin excessive natural resources extrac-
tion and waste generation, especially in developing countries (Biggs
et al., 2015). It is reported that 2.5 million of the world's population de-
pends on traditional biomass such as charcoal, and fuelwood for cooking
and heating purposes (IEA, 2017). The notion of the scale and EKC hy-
potheses provide support for our empirical interpretations. While the
scale effect posits environmental degradation based economic develop-
ment at pre-industrial level (agrarian economy), the EKC hypothesis has
similar connotation but with the hope that pollution declines at a
threshold of income level when environmental awareness becomes a
priority. The failure to validate the existence of the EKC hypothesis
solely relies on the choice of expansive and detailed environmental in-
dicator compared to the usual emission indicators in extant literature
(Dinda, 2004; Sarkodie and Strezov, 2019).

Validation of the scale effect hypothesis between ecological status
and income level underscores the deteriorating state of ecological per-
formance across nations due to the tendency of potential competitive
advantage. The issue of competitive advantage may arise when Nation
“A” institutes environmental stringency policy that hampers production
size and efficiency, but Nation “B” employs lax policies that expand the
size and efficiency of production. The production level of Nation “B”will
translate into lower cost and higher profit than Nation “A”, hence, offer
Nation “B” a competitive advantage. This may be one of the several fac-
tors hampering the achievement of the multiple global targets on cli-
mate change mitigation.

Though growth in both national and individual income is reported to
facilitate environmental sustainability, however, our study emphasizes
on escalation effect. Expectations are that higher-income trigger envi-
ronmental awareness, however, there appears to be a missing link be-
tween the production level where there is heavy-dependence on
natural resource utilization and green economic growth. This means
that a mere advancement in economic development cannot mitigate
the escalation effect but a structural change through diversification of
productionwill facilitate the agenda towards achieving sustainable pro-
duction and consumption.

International trade facilitates the transboundary effect of localized
natural capital and carbon-embedded goods and services. Major eco-
nomic sectors such as manufacturing, agriculture and transportation
depend majorly on conventional energy sources to power productivity,
hence, countries with limited or lack fossil fuel resources import fossil
fuels from producing countries. This means that environmental degra-
dation can directly or indirectly be transferred between income groups
of nations. Hence, validating the presence of convergence — where en-
vironmental deterioration will reach the same level across nations
under similar conditions regardless of income group.

The validity of environmental convergence hypothesis through
carbon and ecological footprint has policy implications for achieving
the global emission targets. The presence of environmental conver-
gence might have been possible due to global common shocks and
transboundary effects of carbon and natural resource-depletion em-
bedded in trade and globalization. Affluence and population growth
are reported to drive the displacement of emissions from high levels
of income to lower-income, hence, affecting environmental stress
(Dietz et al., 2015). This means that country-specific resource-
indicators. Legend: The 95% confidence interval (C·I) denotes the rejection of the null
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attributable emissions are no longer localized but transferrable
through international trade. Thus, the existence of environmental
convergence implies that though the level of economic development
across nations is not equal in terms of production function and
growth characteristics, however, the disparities in carbon and eco-
logical footprint are bound to exhibit similar features in the long run.

5. Conclusion

Weestimated the overarching effect of economic development, pop-
ulation density and international trade on ecological performance from
a global perspective. Using a battery of novel estimation methods, we
accounted for omitted variable bias, heterogeneous effects across coun-
tries and misspecification errors. The empirical results validated the
scale effects hypothesis rather than the popular environmental Kuznets
curve hypothesis of nations. The scale effect confirms that economic de-
velopment is characterized by natural resource exploitation leading to
environmental degradation, a situation that has global policy implica-
tions. We identified the US, China, India, Russia, Germany, Brazil, Japan
and Australia as the hotspot countries for environmental performance.
Our study highlights that the diversification of the economic structure
by replacing fossil fuels will decline the international trade capacities
of carbon-embedded resources transferred from countries with higher
carbon concentrations to countries with lower carbon concentrations.
This then explains the possibility of environmental convergence in the
long run. Meaning that developing and harvesting the flow of renew-
able energy sources across nations decline the multiple emission-
driven processes of fossil fuel extraction and consumption from
cradle-to-grave. While fossil fuels are transportable and internationally
tradable across nations, renewable energy sources are localized, hence,
eliminates the transboundary flow of emissions. Thus, has policy impli-
cations in understanding the drivers of environmental degradation
through natural resource depletion. This calls for global adoption of re-
newable energy technologies, increased efficiency of renewables to
compete with fossil fuels, reduction in the price of renewables and
strong political will for clean and modern energy.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.141912.
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