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Marine cold-adapted microalgae are a promising bioresource to replace 

unsustainable fish oil or soybean-based proteins and their production 

does not compete with traditional agriculture for arable land. Even though 

low ambient temperatures at high latitudes (e.g., Northern Norway) are 

optimal for their cultivation, low solar irradiance limits photosynthesis and 

therefore expensive artificial light is needed. The present thesis identified 

cold-adapted microalgae that grow fast at temperatures 15°C or below and 

contain valuable polyunsaturated fatty acids, (PUFA), proteins or pigments 

that could be used either as food or as feed components. By optimising 

cultivation parameters such as temperature, light intensity and nutrient 

or salt supply, PUFA production could be greatly enhanced. Furthermore, 

a technological advance in microalgal cultivation was made through the 

application of light emitting diodes (LEDs) that periodically emit short but 

intense light pulses (i.e., flashing light). This alternative way of artificial light 

supply substantially improved PUFA or pigment production, compared to 

continuous light. Both the optimisation of cultivation conditions and the 

supply of flashing light will be key for high latitude production of cold-

adapted microalgae rich in valuable biomolecules.
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Abstract 

Microalgal production at extreme latitudes (e.g., Bodø, Norway) require culture 

heating and artificial light for a year-round operation due to low ambient temperatures 

and solar irradiance. Cold-adapted microalgae can be used to save heating costs because 

they grow well at low temperatures and accumulate high amounts of biotechnologically-

relevant compounds including fatty acids, proteins or pigments used in foods and feeds. 

To stimulate growth and biomolecule induction, previous studies suggested to adjust 

environmental triggers such as temperature and light intensities or using flashing light, 

which is the periodical supply of light pulses alternated by dark periods. 

A first study, screening twenty cold-adapted strains, identified Chlamydomonas sp. 

(RCC 2488), Tetraselmis chui (SAG 1.96) and Pseudopleurochloris antarctica (SAG 39.98) 

as promising strains to produce proteins and (polyunsaturated-) fatty acids. The Arctic 

isolate Chlamydomonas sp. (RCC 2488) grew better at 8°C compared to 15°C and 

showed high productivities of protein and polyunsaturated fatty acids (PUFA) (70 and 

54 mg L-1 d-1, respectively). PUFA productions up to 85 mg L-1 d-1 were reached when the 

alga was cultivated continuously under nutrient sufficient conditions. Under nitrogen 

starvation, carbohydrates were induced, while light intensities (50-500 µmol s-1 m-2) or 

salinities (0-70 ppt) only showed minor effects on biochemical composition. T. chui was 

a robust, fast growing strain reaching high biomass productivities among all treatments 

(up to 1 g L-1 d-1), containing up to 50 mg PUFA g-1 and 15% proteins. P. antarctica 

(SAG 39.98) grew well at 15°C (0.4 g L-1 d-1) and yielded highest eicosapentaenoic acid 

(EPA) productivity (7.6 mg L-1 d-1). Lastly, a well-growing Chlorella stigmatophora strain 

(0.4 g L-1 d-1 at 15°C) was identified that excreted extracellular polymeric substances.  

Exposing T. chui and C. stigmatophora to flashing light emitting diodes (LEDs) that 

emit light pulses more than 200-500 times per second (i.e., frequency; f≥ 500 Hz), did 

not improve their growth compared to that under continuous light. Lower repetition 

rates affected growth negatively depending on culture concentration, light intensity and 

light acclimatisation stage of the cultures. Strikingly, low-frequency flashing light (5, 
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50 Hz) efficiently induced proteins, polyunsaturated fatty acid or pigments; in 

Nannochloropsis grown under mesophilic temperature conditions (20°C) as well as in 

the Antarctic strains T. chui and Koliella antarctica grown at psychrotrophic conditions 

(15°C). Under these conditions, pigment production (e.g., β-carotene) was improved up 

to three times compared to continuous light. Higher frequencies (f= 500 Hz) did not 

affect biochemical profiles or growth. 

Notably, the biochemical profile of microalgae was mostly affected by the prevailing 

growth stage of the culture rather than the tested environmental parameter. In 

summary, artificial light-based microalgal production at extreme latitudes can employ 

cold-adapted microalgae and flashing lights to maximise PUFA and pigment production, 

taking advantage of the low ambient temperatures as cheap cooling sources for LEDs 

and cultures. In addition, minimising exposure time of triggers that inhibit growth but 

induce compounds (e.g., low frequency flashing light) is of utmost importance to 

maximise PUFA and pigment productivities.  
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1. Introduction  

Biotechnological innovations employing microalgae can ensure sustainable supply of 

feedstock rich in proteins, lipids, pigments and other biomolecules to the food and feed 

industry (Ruiz et al. 2016). Microalgal production does not necessarily compete with 

agriculture as no arable land or fresh water is needed for cultivation (Gouveia and 

Oliveira 2009; Schenk et al. 2008). Furthermore, microalgal industry is poised to 

substitute lipids or proteins from unsustainable resources such as those from fisheries 

or soybean (Ryckebosch et al. 2014; Taelman et al. 2015). However, today´s microalgal 

production is in its infancy and high production costs (~5-30 € Kg-1) allows to target 

mostly high-value products such as omega-3 fatty acids, pigments and functional 

compounds (Ruiz et al. 2016). To decrease production costs and broaden the market 

portfolio, industries require novel strains and better light management, the latter being 

a major bottleneck in any phototrophic microalgal production (Blanken et al. 2013; 

Ooms et al. 2016; Ruiz et al. 2016). 

Presently, only ~20 microalgal species are commercially exploited, i.e., a small subset 

of the globally existing species (Guiry 2012). Recent studies suggested that microalgal 

strains from cold regions are rich in lipids, fatty acids or pigments, and can grow at low 

temperatures (<15°C) with the same pace as meso- and thermophilic strains cultured 

under warm conditions (e.g., >20°C; Cvetkovska et al. 2014; Hulatt et al. 2017; Suzuki et 

al. 2018). These high growth rates under low temperatures make them ideal models for 

production during cold seasons or environments, because expensive heating required 

to culture meso- and thermophilic strains can be minimised (Pankratz et al. 2017). In 

addition to low temperature-adaption, microalgal cultivation at extreme latitudes (e.g., 

Bodø, Norway) must cope with low solar irradiances, indicating the need for artificial 

lighting for a year-round production. This approach increases production costs of the 

biomass to 25-30€ Kg-1 (Blanken et al. 2013). Nevertheless, microalgae that are 

produced indoors with artificial light score a high market value because cultures can be 

kept clean and a tight control of environmental parameters (temperature, light) 

stimulates growth and induction of target biomolecules (Blanken et al. 2013; Schüler et 
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al. 2017). The competitiveness of artificial light-based production strongly depends on 

the efficiency of the lamp to emit light that stimulates photosynthesis in algae cells and 

produce biomass rich in desired biocompounds. Flashing light, which is the periodical 

supply of high intense light flashes alternated by extended dark period, is considered 

promising to promote growth and induce biochemical compounds in microalgal cultures 

(Katsuda et al. 2008, 2006; Lunka and Bayless 2013; Schulze et al. 2017). The studies in 

this thesis identified the potential of cold-adapted marine microalgae from cold 

environments by investigating the efficacy of environmental factors (e.g., temperature, 

light intensities and growth stage) to trigger production of biomass and biocompounds. 

In addition, promising cold-strains were cultivated under various flashing light 

conditions, a plausible method to improve artificial light-based microalgal production at 

extreme latitudes.  

1.1. Cold adapted microalgae 

Through ~1.5 billion years of evolution, microalgae have adapted to different habitats 

such as hot fountains, permafrost regions, deep oceans or mountains by developing 

unique metabolic mechanisms (Falkowski et al. 2004). Cold environments are 

characterised by high water viscosity, ice formation, hypersaline (brine-) channels in 

pack ice or high irradiances due to light reflection by ice and snow (Varshney et al. 2015). 

For example, during polar winter, sun light and nutrients are scare and ice formation 

concentrates salts, forming ion-rich brine channels that inhabit microalgae (Horner 

2017; Jones et al. 2001). Additionally, ice and snow can lead to strong light variations 

due to reflection of solar light by snow and ice. Towards polar spring, increasing solar 

irradiance permits higher photosynthetic rates by phototrophs and nutrients become 

readily available when the increasing temperature melts the ice, draining nutrients and 

minerals from soils into the rivers and oceans. Consequently, often large algae blooms 

occur in polar regions, a process detailed by Leu et al. (2015).  
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Due to extreme seasonal changes and low ambient temperatures, microalgae 

inhabiting polar oceans must develop high metabolic flexibility and endure intracellular 

ice and nucleation formation, tighter packing of molecules, protein misfolding and low 

metabolic reaction kinetics (Seckbach et al. 2013). As response, cold-adapted microalgae 

have effective protective mechanisms including the synthesis of cold-adapted enzymes, 

long chain-polyunsaturated flatty acids (PUFA), pigments and cryo-protective and 

chaotropic molecules such as modified α–amylase, extracellular polymeric substances 

(EPS), teichoic acid or fumarate and glycerol (de Jesús Paniagua-Michel 2014; Hulatt et 

al. 2017; Huston 2008; Katsuda et al. 2004; Seckbach et al. 2013; Suzuki et al. 2018; 

Varshney et al. 2015; Table 1). Cold-adapted microalgae can use carotenoids (e.g. 

xanthophylls) and PUFA to counterbalance variations in osmotic pressures or 

temperatures that otherwise would hinder cells to control molecule exchange with the 

environment through the lipid bilayer (i.e., plasma membrane; Dieser et al. 2010). 

Therefore, low temperatures were found to trigger photoprotective pigment 

metabolism in cold-adapted Fragilariopsis cylindrus and Haematococcus pluvialis 

compared to high temperatures (Klochkova et al. 2013; Mock and Hoch 2005). 

In praxis, many cold-adapted strains were tested on lab scale (Table 1) for the 

production of proteins, pigments or fatty acids, including Haematococcus pluvialis 

(Chekanov et al. 2014; Klochkova et al. 2013), Chlamydomonas sp. (Mou et al. 2012), 

Koliella antarctica (Fogliano et al. 2010) or Monoraphidium sp. (Řezanka et al. 2017). 

Additionally, outdoor production scenarios at cold climates were investigated (Table 2; 

Franco et al. 2012; Varshney et al. 2015). Notably, most of the tested strains were from 

freshwater habitats and included only few strains from marine or saline environments. 

However, it should be noted that the marine strains are rich in PUFA or pigments as they 

are at the base of polar marine food chains and are the source of omega-3 and pigments 

found in higher animals living in these environments. Therefore, the exploitation of 

these key compounds from cold-adapted microalgae holds promises, but suitable 

environmental triggers for production at cold environments remains to be investigated.  
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1.2. Cultivation at cold and light-limited environments 

Today´s most commercially employed strains are warm water-adapted (i.e., meso- or 

thermophilic) microalgae with an optimal growth temperature in the range of 20-35 °C 

(Borowitzka 2013; Leya et al. 2009). These mesophilic strains do not grow well when 

temperature were too high during summer (e.g., T> 40°C), a scenario that has been 

addressed by employing thermo-tolerant mutants (Ong et al. 2010; Pires et al. 2012). 

On the other hand, when temperatures drop below 15°C and solar irradiance decreases 

during winter or in cold climates, growth of microalgae is limited (Table 2) as reported 

for productions in Spain (Jiménez et al. 2003), New Zealand (Sutherland et al. 2014) or 

Portugal (Pereira et al. 2018). Even though the commonly used meso- or thermophilic 

strains require expensive and energy demanding heating systems to keep productivities 

high during winter (Ruiz et al. 2016; Williams and Laurens 2010), only few researchers 

focused on developing cold-tolerant mutants (Shukla et al. 2013)  

An alternate approach to mutants is the use of microalgae isolated from cold 

environments that grow well under psychrophilic or psychrotrophic conditions (e.g., 

T≤ 15°C) while producing biomass rich in fatty acids and other valuable biocompounds 

(Leya et al. 2009). However, outdoor productions at extreme latitudes (e.g. >50°) are 

usually restricted to summer months (Table 2) due to insufficient solar irradiance for 

photosynthesis during the winter and ice formation that destructs the production 

systems (Grönlund et al. 2004; Hindersin et al. 2014; Hulatt and Thomas 2011; Pankratz 

et al. 2017; Williams and Laurens 2010). Therefore, a year-round microalgal biomass 

production at extreme latitudes requires an artificial light-based indoor cultivation 

(Baliga and Powers 2010). Such systems consume vast amounts of energy for the 

maintenance of optimum cultivation temperatures and to power lamps. Cold-adapted 

strains are apt for such indoor systems because energy use for culture heating can be 

minimised and low ambient temperatures serve as cheap cooling source. Notably, 

optimising cultivation parameters including temperature, light intensity, nutrient 

availability and photon emission tailoring of the light sources can effectively improve 

growth and biochemical composition (Ooms et al. 2016; Schüler et al. 2017). 
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1.3. Triggers to produce biochemical compounds 

Temperature, salinities, light intensity and nutrient supply are the environmental 

factors that are commonly altered to manipulate the biochemical composition and 

growth of microalgae (Schüler et al. 2017). For example, lowering the culture 

temperatures can effectively induce PUFA, which are needed by cells to maintain 

membrane fluidity, flexibility, and functionality (Hulatt et al. 2017; Lyon and Mock 2014; 

Morgan-Kiss et al. 2006). On the other hand, salinity changes cause osmotic and 

oxidative stress to algae. As a result, microalgae upregulate metabolic pathways 

connected to the expression of antioxidants or energy reserves such as pigments, lipids 

or starch (Leya et al. 2009; Wei et al. 2017; Zhu et al. 2016). Currently, microalgal 

industries use high salinities to enhance the production of lipids and high-value 

antioxidants including beta-carotene (e.g., Dunaliella spp.; Ben-Amotz et al. 1982; 

BenMoussa-Dahmen et al. 2016) but also to limit contaminations in the culture (Zhu et 

al. 2016). Another trigger is light intensity. For example, low-light intensities can induce 

PUFA in many microalgae, whereas high-light intensities trigger pigment and TAG 

induction by (Schüler et al. 2017). These changes in lipids and pigments are related to 

alterations in not only chloroplast volume and thylakoid membrane structure (Fisher et 

al. 1998) but also energy storage mechanisms. Lastly, nutrient limitation is a major 

stressor, which can induce reactive oxygen species or free radicals. The response of 

microalgae to nutrient limitation is similar to osmotic stresses: A strain-specific 

biosynthesis of antioxidants including pigments or the energy reserve molecules lipids 

and carbohydrates, being often accompanied by decreasing intracellular protein 

contents (Schüler et al. 2017). Microalgal producers often adopt nutrient deprivation as 

a strategy to induce pigments (e.g., Haematococcus), lipids (e.g., Nannochloropsis) or 

other strain-specific metabolites (Schüler et al. 2017). Notably, cultures in late growth 

stages (e.g., stationary phase) are often subject to nutrient limitation, which causes 

strain-specific biochemical changes such as degradations of PUFA, pigments or proteins 

and accumulations of carbohydrates, lipids or saturated fatty acids during late growth 

stages (Brown et al. 1996; Lv et al. 2010; Zhu et al. 1997). 
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1.4. Artificial light for indoor production 

Phototrophic cultivation of microalgae requires CO2, nutrients (e.g., nitrogen, 

phosphorus, trace minerals) and sun- or artificial light (Blanken et al. 2013). Sunlight is 

the most cost-effective and environmentally friendly photon source for microalgae 

production and should be used whenever possible (Blanken et al. 2013). However, the 

use of artificial lighting becomes a necessity when production takes place at locations or 

seasons where natural light is limited or at instances when a reliable and predictable 

production is required. Artificial light-based production increases the production costs 

by four to five times compared to sunlight-based production (Blanken et al. 2013). These 

costs cover those for lamp acquisition, energy consumption and engineering efforts. To 

cut costs and improve the environmental fingerprint of artificial light-based microalgal 

production, light emission by lamps should be optimised.  

A viable artificial light-based microalgal production depends on efficient conversion 

of electrical energy into light (technical factor), which in turn must be efficiently 

converted into biomass by an alga (biological factor). In addition, the efficient delivery 

of photons to cells within a culture to overcome self-shading by cells (or light 

attenuation) is of utmost importance (physical factor; Schulze et al. 2017a).  

LEDs are the today´s preferred light source for microalgal production because of their 

long life time (<25-50,000h) and high efficiency to transform more than 40-50% of 

electrical energy into light that can be utilised by phototrophs for photosynthesis (e.g., 

photosynthetic active radiation; PAR; Ooms et al. 2016). Innovative artificial light-based 

microalgal producers can use LEDs that emit light of appropriate wavelengths or flashing 

light to control growth and biochemical composition of the culture (Ooms et al. 2016; 

Schulze et al. 2017, 2014). Nevertheless, adjusting the LED´s photon emission to mitigate 

self-shading is the most challenging task in today´s artificial light-based microalgal 

production (Ooms et al. 2016). 

1.4.1. Flashing light to counter light attenuation in microalgae cultures? 

In any photobioreactor, cells located at the periphery absorb most of the incoming 

light and can become photoinhibited, whereas cells at the inner layers remain in the 
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dark and become photolimited (Lee 1999). Exposure of cells at the surface to high 

irradiance causes dissipation of the absorbed light energy as heat, instead of using the 

harvested photons to fix CO2 into biomass (de Mooij et al. 2016). On the other hand, 

cells located in the dark use up intracellular energy reserves (e.g., starch) for maintaining 

cell functions (i.e., respiration) because no light is available to fix CO2 via photosynthesis. 

As a result, the rates of respiration exceed photosynthesis, causing a loss of biomass. 

The light penetration depth into a culture depends primarily on the biomass 

concentration, the absorptive capacity of the cultured cells, light intensity and 

wavelengths, cell morphology (e.g. cell size) and biochemistry (e.g. pigment content; Lee 

1999). Previous studies recommended to use LEDs that are tailored to emit appropriate 

spectra (de Mooij et al. 2016; Schulze et al. 2014) or flashing light (Abu-Ghosh et al. 

2015; Park et al. 2000; Schulze et al. 2017) to mitigate self-shading and stimulate growth. 

While wavelength-tailoring has been shown promising to improve the growth of 

microalgal cultures (de Mooij et al. 2016; Ooms et al. 2016; Schulze et al. 2016), potential 

benefits of flashing light are yet to be confirmed.  

Flashing light (Fig. 1) emitted with the same time-averaged light intensity (Ia) as 

continuous light was suggested to mitigate light attenuation in photobioreactors and 

perhaps improve photosynthetic performance of cells (Abu-Ghosh et al. 2016; Iluz et al. 

2012; Martín-Girela et al. 2017; Park et al. 2000; Park and Lee 2001). Flashing LEDs can 

provide light of high intensity within a short period (e.g., few nano- to microseconds, 

hereafter called light flash period or tl), alternating with extended dark periods (td). One 

flash period followed by a dark period is defined as a flashing cycle (tc, in which tc = tl + 

td). The use of high flash light intensities (Il) enables a deeper photon penetration into 

the culture, serving photosynthesis of cells in deeper layers of the culture (Lee 1999; 

Park and Lee 2001, 2000). To prevent photo-damage and inhibition of the phototroph 

by too intense light flashes, the repetition rate of the light-dark transition (i.e., flashing 

light frequency, f) and the relative proportion of the light and dark period (i.e., the duty 

cycle, DC= tl tc
-1) should be adjusted to the biological reaction kinetics of the 

photosynthetic apparatus or energy dissipation mechanisms (also referred to as non-

photochemical quenching; NPQ; Schulze et al. 2017a).  
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Figure 1. Theory of flashing light applied to microalgal cultivation.  

Depicted is a microalgal production unit that uses flashing (upper panel) and 

continuous light (bottom panel) employing light emitting diodes (LEDs). Flashing light 

devices emit light (tl) and dark periods (td) in an approximately rectangular waveform. 

The number of light-dark intervals that occur per second (s-1) is the frequency (f). The 

duty cycle (DC) is the ratio between the flash period and the whole flashing cycle. The 

light intensity (in µmol photons s-1 m-2) during tl is defined as flash intensity (Il), while 

during td no light is emitted (e.g., Id = 0 µmol photons s-1 m-2). Under this condition, the 

time-averaged light intensity (Ia) during one flashing cycle can be expressed as �� = �� × �� 

and is used to compare flashing with continuous light treatments. The flash intensity and 

the duty cycle are inversely proportional at a given averaged light intensity. 

Furthermore, flashing light of low frequencies and high flash intensities were 

suggested to induce biochemical compounds that are connected to photo-protection 

and energy dissipation (Schulze et al. 2017). Flashing light with low frequencies activates 

NPQ mechanisms that help the phototrophs to cope with the excess light received 

during the flash period. As a result, cells often show a high-light-response (Combe et al. 

2015; Sastre 2010) and alter pigment composition, intracellular ultrastructure, 
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expression of protective proteins (e.g. proton gradient protein PGR5, the ratio between 

photosystem I and II (PSI, PSII), light harvesting antenna size, ribulose-1,5-bisphosphate-

carboxylase/oxygenase (RuBisCO) activity or starch content (Abu-Ghosh et al. 2015; 

Allahverdiyeva et al. 2014; Combe et al. 2015; Gris et al. 2014; MacKenzie and Campbell 

2005; Mouget et al. 1995; Park and Lee 2000; Porcar-Castell and Palmroth 2012; Sastre 

2010; Sforza et al. 2012). However, flashing light conditions that trigger NPQ 

mechanisms also impair biomass productivity because the light energy is dissipated as 

heat or used in alternative electron transfer pathways rather than directing the 

harvested photon energy towards carbon-fixing metabolism (e.g., Calvin-Benson cycle, 

Schulze et al. 2017a). Therefore, improvement in a target biomolecule productivity using 

low-frequency flashing light may require a two-stage cultivation approach: In the first 

stage, microalgae can be exposed to growth-stimulating light such as continuous- or 

flashing light (e.g. f > 500 Hz, DC < 0.1), while the subsequent induction phase could 

provide flashing light of low frequencies (e.g. f < 10Hz) and short duty cycles (e.g. 

DC < 0.1). In this second stage, the light phase should be characterised by a high flash 

intensity that lasts long enough to trigger the desired biomolecule pathway, whereas 

the dark phase should be short enough to prevent its downregulation (Schulze et al. 

2017).  

Until today, studies about the application of flashing light on microalgae focused 

mostly on flashing light conditions present in cultures, where cells shift through mixing 

between the light- to dark zones within a PBR and thus experience a gradual transition 

between light and dark phases (Abu-Ghosh et al. 2016). To mimic these conditions, 

researchers usually employed frequencies f < 100 Hz or relatively high duty cycles 

(DC > 0.1; Grobbelaar 2009; Iluz et al. 2012; Liao et al. 2014; Raven and Ralph 2014; 

Vejrazka et al. 2012). It is unclear if (1) flashing light of high frequencies and short duty 

cycles could indeed improve growth performance of microalgal cultures (e.g., f > 100 Hz, 

DC <0.1; Schulze et al. 2017a) and (2) if low-frequency flashing light and short duty cycles 

could induce biochemical compounds. The present thesis studies these effect of flashing 

light for microalgal cultivation, which may allow more efficient indoor productions 

required at places with low solar irradiances.   
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2. Objectives 

The objective of this thesis is the identification of promising cold-adapted microalgae 

for biotechnological applications and the examination of environmental factors that 

stimulate growth and biomolecule induction (e.g., PUFA, pigments) in artificial light-

based indoor cultivation. These objectives were addressed by five papers (Fig. 2): 

1. Identification of potential fast-growing cold-adapted microalgae from marine 

origins through literature survey, and selection of environmental triggers (e.g., 

temperature, salinity, nutrient supply, prevailing growth stage and light 

intensity) for biosynthesis of fatty acids, carbohydrates, lipids or proteins in 

the algae (Paper I, II). 

2. Evaluation of the ability of flashing light to improve growth of microalgae 

(Paper III, IV). 

3. Induction of biomolecules including fatty acids and pigments in microalgae, 

using flashing light (Paper III, V). 
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Figure 2. Schema of the thesis including five studies (Paper I-V). 

Paper I: Screening of strains from cold environments; Paper II: detailed analysis of one 

potential cold adapted strain identified in Paper I; Paper III: Flashing light review to 

gather knowledge in order to perform experiments in Paper IV and V; Paper IV: 

Screening flashing light conditions to improve growth; Paper V: Using specific flashing 

light conditions to induce biochemical compounds. Biomass produced in Paper I, II and 

V was biochemically analysed (light green arrows). Promising strains from Paper I were 

used in Paper II, IV and V (dark green arrows). Knowledge acquired in Paper III was used 

in Paper IV and V (grey arrows).  
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3. Methods 

To identify promising cold strains for microalgal cultivation (Paper I), a literature 

survey was conducted to select 20 promising strains (Fig. 2). They were then obtained 

from culture collections (Roscoff Culture Collections (RCC) at the Station Biologique de 

Roscoff, France, and the Culture Collection of Algae (SAG) at the Department of 

Experimental Phycology at Göttingen University, Germany. These strains were pre-

cultivated and the eight best-growing strains were used for further studies; to 

understand their growth and biochemical composition under different temperatures (8 

and 15°C) and light intensities (50 and 100 µmol s-1 m-2). Biomass samples were taken 

after 10 and 14 days of cultivation and analysed for fatty acid contents and proteins. 

Analysis of covariance (ANCOVA) was employed to identify differences among strains, 

and effects of treatments and the prevailing growth stage (a function of biomass 

concentration in the medium) as one of the important covariates influencing the 

biochemical composition of the microalgae. 

Phylogenetic relationship of the only true psychrophilic microalga Chlamydomonas 

sp. (RCC2488) with other members of the order Chlamydomonadales was conducted 

(Paper II). Different strategies modification of light intensities (I= 70-500 µmol s-1 m-2), 

salinities (0-80 ppt) and nitrogen levels were adopted to understand the optimum 

environmental factors that yield maximum biomass and biomolecules. Knowledge about 

the effects of light, salinity and nitrogen starvation on total protein, lipid (TAG and 

neutral lipids and their fatty acid composition) and carbohydrate contents was also 

gathered. A connection between cold-adaption and phylogenetic relationship with 

other members of the Chlamydomonadales order was assessed. 

For the flashing light experiment, first a comprehensive literature survey was 

conducted (Paper III); to gather knowledge about photosynthetic processes and 

dynamics in microalgal cultures. In addition, technical knowledge that was essential to 

conduct experiments, was acquired and a review was published (Schulze et al. 2017). 
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The first flashing light experiment (Paper IV) was carried out in collaboration with Jose 

M. Fernandez (University of Almeria, Spain). Employing the technical knowledge (paper 

III), a state-of-the-art flashing light system was built to understand the effect of flashing 

light on the growth of two strains. Growth responses of Tetraselmis chui and 

Chlorella stigmatophora were tested for frequencies from 0.01 Hz-1 MHz, duty cycles of 

0.001-0.7 and average light intensities of Ia= 50, 500 and 1000 µmol s-1 m-2. Using an 

oxygen probe, oxygen evolution rates (indicator of photosynthetic performance) of the 

diluted and concentrated T. chui cultures were measured. Because oxygen evolution 

performance of cells may change from day to day or hour to hour, a normalisation of 

the oxygen evolution rates (Pn) was performed (Pn= Pf Pc
-1) every 3-4 hours; oxygen 

evolution rate from flashing light experiments (Pf) and from continuous light treatments 

(Pc). In the general discussion (Section 4.2) these normalised oxygen evolution rates 

were used to compare the evolution rates from different cultures (concentrated or 

dilute) or light intensities. In addition, batch culture experiments were conducted for 14 

days at f= 40 and 400 Hz (DC= 0.05) and Ia= 50 and 200 µmol s-1 m-2. 

Lastly, the effects of flashing light on biochemical composition (Paper V) of three 

microalgal species (N. gaditana, T. chui and Koliella antarctica) were evaluated at Nord 

University in collaboration with Serena Lima (University of Palermo, Italy) and CCMar 

(Algarve University, Faro, Portugal). The effects of flashing light (f= 5, 50 and 500 Hz, 

DC= 0.05) on biomass productivity and biochemical composition were tested by growing 

microalgae in batch cultures, in a one- and a two-stage production approaches. In the 

two stage cultivation, algae were fist grown for six days under continuous light, and then 

exposed to flashing light. Continuous light was used as a control treatment across all 

experiments employing the same average supplied light intensity as used under flashing 

light (Ia=300 µmol s-1 m-2). Biomass harvested at the end of the experiment was analysed 

for proteins, carbohydrates, total lipids, fatty acids, pigments, and elemental (C, H, N) 

composition.   
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4. General Discussion 

The general aim of this thesis was to understand the ideal conditions that stimulate 

algae growth; to suggest improvements in the current methods for the production of 

biomass and (valuable-) biomolecules in microalgae produced employing artificial light 

at extreme latitudes. Until now, only few strains have been commercially exploited for 

the production of high-value products such as PUFA, pigments or whole microalgal cells 

(Blanken et al. 2013; Ruiz et al. 2016). To broaden the portfolio of potential strains and 

provide more sustainable solutions for production during cold seasons or facilities in 

cold climates, this thesis addresses in five papers the identification of novel strains, 

induction of biochemical compounds and application of flashing light. 

In Paper I the growth potential of microalgae isolated from cold marine habitats 

under different temperatures (8 and 15°C) and light intensities (50 and 100 µmol s-1 m-

2) is examined. Effects on fatty acid and protein contents were also tested. Paper II 

reports detailed optimisation of environmental parameters for the production of fatty 

acids, proteins, carbohydrates and total lipids by the psychrophilic alga 

Chamydomonas sp. (RCC 2488). A review about the potential of applying flashing light 

to microalgal production is given in Paper III, which includes the description of the 

technology and possible enhancements of culture growth or induction of biomolecules. 

In Paper IV, effect of flashing lightof various frequencies, duty cycles and light 

intensitieson the production of T. chui and C. stigmatophora was evaluated based on 

oxygen evolution rates or growth responses under batch cultivation. The effects of 

specific flashing light conditions on the production of fatty acids, proteins, 

carbohydrates, lipids and pigments by N. gaditana, K. antarctica and T. chui are 

investigated in Paper V. 

4.1. Characteristics of cold-adapted microalgae 

Out of the twenty microalgal strains from cold marine habitats, obtained from 

different culture collections, eight that demonstrated good growth were tested for their 

response to different temperatures and light regimes. The combined effects of 
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temperature and light intensities on growth, total protein and fatty acids were tested by 

ANCOVA. The environmental parameters, temperature and light, affected the growth of 

the tested strains. However, most of the assessed biomolecules changed as a result of 

prevailing culture growth stage but not due to the applied treatments.  

Among the eight promising strains, only the Arctic isolate 

Chlamydomonas sp. (RCC 2488) grew better at 8°C compared to 15°C (up to 0.5 g L-1 d-

1), indicating a clear psychrophilic trait, which is the ability to grow actively at low 

temperatures (e.g., T< 15°C; Remias et al. 2015). Chlamydomonas sp. RCC 2488 

surpassed all strains in their productivity of protein (69.6±13.7 mg L-1 d-1), total fatty 

acids (TFA; 91.0±5.1 mg L-1 d-1) and PUFA (54.1±3.1 mg L-1 d-1) when cultivated at T= 8°C, 

I= 100 µmol s-1 m-2 (Paper I). In Paper II, the phylogenetic relation of 

Chlamydomonas sp. RCC 2488 with an Antarctic Chlamydomonas isolate (UWO 241) 

was revealed. Chlamydomonas sp. RCC 2488 exposed to a combination of low salinity 

(20 ppt) and nutrient limitation induced large amounts of carbohydrates (~49% in 

biomass) but not lipids (~32% in biomass). The alga exhibited a maximum PUFA 

productivity of 85 mg L-1 d-1 under a light intensity of 250 µmol s-1 m-2 and nutrient 

sufficient conditions in a flat panel photobioreactor. Interestingly, this alga could grow 

in salinities ranging from 0-80 ppt, though an inhibition in growth at 80 ppt was 

observed. This high salt tolerance of the strain could be connected to the isolation 

habitat (Beaufort Sea), where extreme seasonal temperature variations drive freeze-

thawing cycles of ice that causes salinity shifts.  

Another promising strain identified in Paper I was Pseudopleurochloris antarctica 

(SAG 39.98). This alga grew well at 15°C (0.4 g L-1 d-1) and produced biomass with 23% 

protein and up to 34% fatty acids containing up to 30% eicosapentaenoic acid (EPA). 

P. antarctica achieved high production rates of protein (58.8±3.4 mg L-1 d-1), EPA 

(7.7±1.1 mg L-1 d-1) and monounsaturated fatty acids (MUFA; 64.9±3.9 mg L-1 d-1). The 

EPA productivity was comparable to that of known EPA producers such as 

Nannochloropsis and Isochrysis cultivated under higher temperatures (e.g., ≥20°C), but 

similar light conditions (Chen et al. 2015; Grima et al. 1992; Meng et al. 2015; Mitra et 

al. 2015; Sukenik 1991). Worth mentioning is the floc forming feature of P. antarctica; 
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the flocs settled rapidly as soon as culture aeration stopped, which could help saving 

dewatering costs in future production scale up scenarios. 

The tolerance of Chlamydomonas sp. RCC 2488 and P. antarctica to psychrophilic and 

psychrotrophic growth conditions (T= 8-15°C) make them ideal candidates for 

production of proteins and PUFA in cold climates. These results (Paper I, II) support 

previous findings that cold-adapted microalgae indeed contain higher amounts of lipids 

and fatty acids as compared to mesophilic strains making them a valuable 

biotechnological resource (Cvetkovska et al. 2014; Remias et al. 2015). Higher yields of 

PUFA may be obtained in a continuous cultivation approach (Del Campo et al. 2007; 

Schüler et al. 2017). For example, Řezanka and colleagues (2017) reported a production 

of up to 97 mg PUFA L-1 d-1 by the cold-adapted Monoraphidium sp. CCALA (strain 

no 1094) at ~10°C in a continuous thin-layer photobioreactor.  

Another promising strain identified in Paper I was T. chui (SAG 1.96). This strain 

achieved the highest biomass productivities (~0.7-1 g L-1 d-1) among all strains and test 

conditions, and therefore can be considered as the most robust strain in this study 

(Paper I). Due to this reason, T. chui was used for the experiments with flashing light 

(Paper IV, V). However, the productivity of food and feed relevant biomolecules such as 

protein, TFA and PUFA was rather low (e.g., up to 44.5±10.2, 32.6±5.3 and 

13.7±1.7 mg L-1 d-1, respectively; Paper I, V), traits that are typical for Tetraselmis 

strains. Indeed, strains of the Tetraselmis genus are usually tolerant to various 

environmental parameters such as salinity, light, temperature, contaminants, which 

makes them suitable for removing pollutants from wastewaters (Pereira et al. 2016; 

Pereira et al. 2018; Schulze et al. 2017). Interestingly, previous studies demonstrated 

the successful application of cold-adapted microalgae and cyanobacteria to treat 

wastewater in cold climates, which might be also a promising application for the 

presently tested T. chui strain (Abdelaziz et al. 2014; Chevalier et al. 2000; Craggs et al. 

1997; Grönlund et al. 2010; Tang et al. 1997)  

Lastly, C. stigmatophora (RCC 661) achieved biomass productivities of 0.4 g L-1 d-1 at 

15°C and produced extracellular polymeric substances (EPS; Paper I). Previously, 
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Chlorella, including stigmatophora strains were reported to secrete EPS, a promising bio-

resource for valuable bioactive compounds (Kaplan et al. 1987; Mishra et al. 2011; Xiao 

and Zheng 2016; Zhao et al. 2015). Naturally, EPS serve to protect the excreting cells 

from competitive species, contaminants or environmental conditions (e.g., high or low 

temperatures). However, EPS released to the growth medium increase medium 

viscosity, which hinders separation of media and algae, a bottleneck researchers try to 

tackle by, e.g., using ultrafiltration (Xiao and Zheng 2016). Hence, the major application 

of C. stigmatophora may not be for the production of the tested intracellular fatty acids 

or proteins, but for EPS, a source of bioactive compounds.  

4.2. Effects of flashing light on growth 

The phototrophic production of microalgae at extreme latitudes requires artificial 

light. However, these lighting systems should be energy efficient to decrease 

operational expenditures and for sustainability. Researchers have suggested that for 

microalgal production, in addition to wavelength tailoring, the light should be supplied 

in a discontinuous way (i.e., flashing- or pulsed light) rather than continuously. This 

approach was suggested to improve light delivery and photosynthetic performance of 

microalgal cultures (reviewed in Paper III) because short intense light flashes can 

penetrate deep into the culture to stimulate photosynthesis of cells in dark layers (Park 

and Lee 2001, 2000). Naturally, microalgae in any photobioreactor are subject to light 

attenuation and are exposed to intermittent light as a result of culture mixing, which 

move cells from light to dark layers (Abu-Ghosh et al. 2016). The mitigation of light 

attenuation by employing flashing light enhances the growth of microalgae (Abu-Ghosh 

et al. 2016; Brindley et al. 2011; Grobbelaar et al. 1996; Lunka and Bayless 2013; Park 

and Lee 2001, 2000; Sastre 2010). However, there are inconsistencies in published 

results and lack of clear evidences about the benefits of using flashing light. Light 

delivery and growth were suggested to be particular enhanced if single flashes are 

extreme intense (e.g., at short duty cycles) while repeating fast enough to prevent 

inhibition of photosynthesis (e.g., f≥ 500 Hz; Paper III). These high frequencies and short 

duty cycles were investigated in Paper IV by using a flashing light system with state-of-
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the-art LEDs and solid-state components. This system allowed the emission of light flash 

periods as short as tl≥ 100 nanoseconds and flash intensities of Il≤ 100,000 µmol s-1 m-2. 

Using this system, the growth response of the promising cold-adapted microalgae T. chui 

(SAG 19.52) and C. stigmatophora (RCC 661; identified in Paper I) to different 

frequencies (e.g., 0.01 Hz-1 MHz), duty cycles (e.g., 0.001-0.7), light intensities (Ia= 50-

1000 µmol s-1 m-2) and culture concentrations (~0.1-4.7 g L-1) was tested (Paper IV).  

Contrary to what was previously suggested (Paper III; Carvalho et al. 2011), the results 

from Paper IV indicated that flashing light has no beneficial effect on microalgal growth. 

The results demonstrated that frequencies <200 Hz were most discriminative for 

impairing photosynthetic oxygen evolution. Frequencies higher ~200-500 Hz were 

necessary to obtain the biological flashing light effect, the threshold where 

photosynthesis under flashing light is similar to continuous light. These findings, 

however, support the theory from Paper III that the photosynthetic apparatus needs an 

approximate threshold frequency of at least ~ 200-300 Hz, regardless of the adjusted 

duty cycle to match the turnover rates (3-5 ms) of the linear electron transfer chain (e.g., 

Q0 acceptor in the Cytochrome b6f complex; Paper III).  

Paper IV tested the oxygen evolution response of low, medium and high-light adapted 

diluted T. chui cultures exposed to flashing light with the same average light intensity 

(Ia=50, 500 and 1000 µmol s-1 m-2). The low culture concentration (0.1 g L-1) was 

characterised by a minimal light attenuation, which allowed all single cells in the culture 

to receive flashing light close to the full adjusted average light intensity. Notably, such 

low density cultures are required to test biological responses including photosynthetic 

performance of single cells because self-shading as an interacting factor can be 

minimised (Brindley et al. 2010; Vejrazka 2012; 2011). Thus, the flashing light effect on 

the photosynthetic apparatus could be described for low, medium and high-light 

adapted cells (Ia=50, 500 and 1000 µmol s-1 m-2) in low culture concentrations. The 

results showed that the oxygen evolution rates in 50 µmol s-1 m-2-adapted cells were 

higher compared to 500 or 1000 µmol s-1 m-2-adapted cells at low frequencies (f= 10-

200 Hz). In 50 µmol s-1 m-2-adapted cells, the average flashing light intensity was below 

the saturation intensity (α=250 µmol s-1 m-2) and cells may have processed flashing light 
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better as if the average light intensity was saturating (e.g., Ia= 500 µmol s-1 m-2
, 

α= 456 µmol s-1 m-2) or oversaturating (e.g., Ia=1000 µmol s-1 m-2
, α= 559 µmol s-1 m-2). 

On the other hand, high-light adapted cultures (Ia=1000 µmol s-1 m-2) tolerated better 

low-frequency flashing light than cultures adapted to moderate light intensities 

(Ia= 500 µmol s-1 m-2). Here, high-light adapted cells may have accumulated more photo-

protective metabolites (e.g., pigments such as carotenoids) that protected cells from 

long-lasting high-light flashes (e.g., low frequency and short duty cycle; Katsuda et al. 

2006, Mouget et al. 1995, Sastre 2010, Schüler et al. 2017) as compared to cells adapted 

to moderate light intensities (Ia= 500 µmol s-1 m-2). 

Cultures at frequencies from 10-100 Hz always showed a higher normalised oxygen 

evolution rate as compared to diluted cultures. However, as frequencies decreased 

f< 8Hz, oxygen in the medium decreased, indicating a higher rate of respiration than 

photosynthesis in concentrated cultures. At same frequencies, diluted cultures showed 

neither evolution nor consumption of oxygen, indicating an equilibrium between 

photosynthesis and respiration. To explain these findings, a deeper look into the 

physiological state of the used concentrated cultures is required. It was suggested that 

cells in concentrated cultures experience a more complex light regime, as they move 

across (1) high-light zones at the periphery of the photosynthetic chamber gradually to, 

(2) low-light layers and (3) dark zones (Abu-Ghosh et al. 2016). The concentrated 

cultures used in Paper IV were characterised by a high biomass concentration of ~5 g L-

1 and a light path of 2 cm which causes a high proportion of dark-to-light zones, leaving 

cells most of the time in the dark and only for limited periods in the (low-) light zones 

(Loomba et al. 2018). An average cell in such culture becomes low-light adapted, 

characterised by downregulation of photoprotective pigments (Jahns et al. 2009; 

Schüler et al. 2017). A lack of photoprotective metabolites in low-light adapted cells 

(e.g., pigments) hinder microalgae at the periphery (1) to dissipate energy from intense 

light flashes, leading eventually to photodamage and increasing respiration rates 

(Schulze et al. 2017). This assumption was validated by experiments where low-light 

(I= 50µmol s-1 m-2)-adapted diluted cultures were exposed to flashing light of a higher 

average light intensity (Ia=500 µmol s-1 m-2; Paper IV). 
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On the other hand, cells in the low-light layers (2) of concentrated cultures are subject 

to attenuated flashing light due to mutual shading (Abu-Ghosh et al. 2016; Brindley et 

al. 2011). Experiments with dilute cultures or plants have shown that a decreasing 

average light intensity increases light utilisation efficiency by phototrophs under low 

frequency flashing light (Paper IV, Jishi et al. 2015; Xue et al. 2011). Therefore, it is 

suggested that concentrated cultures exposed to low-frequency flashing light benefit 

from light attenuation, achieving higher normalised photosynthetic oxygen evolution 

rates compared to dilute cultures exposed to the same initial light intensity (500 and 

1000 µmol s-1 m-2; f= 10-100 Hz; Paper IV). 

Cells in the dark zones (3) receive insufficient light to drive photosynthesis. Oxygen 

evolution in this particular zone of the culture is often negative due to a high respiration 

rates (Abu-Ghosh et al. 2016; Brindley et al. 2016). However, measurements inside 

concentrated cultures (Paper IV) have shown that high intense light flashes indeed 

penetrated deep into dense cultures although the average light intensity was as low as 

under continuous light (Ia≈0 µmol s-1 m-2). Cells in the dilute cultures achieved similar 

photosynthetic efficiency only under flashing light compared to continuous light at a 

given light intensity. Therefore, even though, light flashes penetrate deep into 

concentrated cultures, no enhancement of growth could be found because the average 

light intensity was damped by the culture as under continuous light. 

T. chui and C. stigmatophora cultures were cultivated under flashing light to 

investigate possible long-term effects such as cell acclimatisation. Previously, 

Grobbelaar et al. (1996) reported that Scenedesmus obliquus cultures did not 

acclimatise to flashing light (tested range: 0.05-50 Hz, exposure time: 72 h). This trend 

was confirmed in the present batch experiments (Paper IV) for both algae and average 

light intensities of Ia=50 and 200 µmol s-1 m-2. However, unlike short exposure in the 

photosynthetic chambers (10-20min) or experiments carried out by Grobbelaar and 

colleagues (1996), batch cultures change their biomass concentration significantly, 

increasing the light attenuation over time. The lag phase in batch cultures is 

characterised by low-light attenuation and biomass concentration (~0.15 g L-1). During 

this period, cells were inhibited by low frequency flashing light as confirmed by 
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experiments with diluted cultures in the photosynthetic chamber. Over time, biomass 

concentration and self-shading increased and effects of low frequency flashing light 

(40 Hz) were less distinct to continuously supplied light as the total photon dose per cell 

decreased with increasing cells in the culture. At a lower average light intensity 

(50 µmol s-1 m-2), growth was not significantly affected, neither during lag nor 

exponential growth phases. These results confirmed findings from the photosynthetic 

measurements (Paper IV) in diluted T. chui cultures where inhibiting effects of low-

frequency flashing light decreased with decreasing average light intensities.  

In summary, results from Paper IV suggest that the observations in concentrated 

cultures is a result of (1) inhibition of cells in high-light zones; (2) better light utilisation 

efficiency of cells in low- or moderate-lit zones and (3) respiration rates of cells in the 

dark zones. It was further concluded that the specific thresholdwhere a given duty 

cycle, frequency or average light intensity of flashing light becomes inhibitingdepended 

on acclimatisation stage of the algae and light attenuation potential of the culture that 

affects the total photon dose received by an average cell inside the culture. 

4.3. Effects of flashing light on biochemical composition 

As reviewed in Paper III, the induction of biomolecules with low-frequency flashing 

light in microalgae holds promise (Katsuda et al. 2008; Kim et al. 2014; Schulze et al. 

2017).Therefore, Paper V examines growth and changes in total proteins, 

carbohydrates, lipids, fatty acids and pigments in three EPA-producing microalgae: (1) 

Nannochloropsis gaditana as a representative model strain as well as (2) 

Tetraselmis chui (SAG 1.96) and (3) Koliella antarctica (SAG 20.30) as promising fast-

growing, Antarctic strains identified in previous studies (Paper I; Suzuki et al. 2018). The 

algae were exposed to flashing light (f= 5, 50 and 500 Hz, DC= 0.05) and cultivated in a 

one- and a two-stage batch approaches.  

The experiments showed that a flashing light frequency of 500 Hz reached similar 

growth as compared to continuous light while lower frequencies (f= 5, 50 Hz) usually 

caused a strain-dependent growth inhibition. These results match findings from Paper 
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IV and previous studies on microalgae and plants (Combe et al. 2015; Jishi et al. 2015; 

Simionato et al. 2013), but contradicts those of studies that reported flashing light-

induced growth enhancement (Abu-Ghosh et al. 2015; Lunka and Bayless 2013; Park and 

Lee 2001). However, T. chui cultures coped better with low frequency flashing light with, 

e.g., only ~30% less biomass productivity compared to continuous light under f= 50 Hz. 

On the other hand, N. gaditana and K. antarctica displayed ~70% less biomass 

productivity at f= 50 Hz. Indeed, a strain-specific growth response to flashing light was 

found previously for other phototrophs (Jishi et al. 2015; Nedbal et al. 1996), which may 

be linked to morphology or species-specific photoprotective strategies and the cell´s 

ability to store photosynthetic intermediates (Paper V; Jishi et al. 2015). In Paper V, all 

cultures grown in a two-stage system showed considerably higher biomass 

productivities even under the most growth inhibiting frequency (e.g., f= 5Hz, 0.34-

0.43 g L-1 d-1) as compared to the one-stage cultivation approach (e.g., f= 5 Hz, <0.05 g L-

1 d-1). In the two-stage cultivations, during the first stage a biomass concentration of 

~2 g L-1 was achieved prior to applying the flashing light during the second stage. As 

discussed for Paper IV, a higher biomass concentration decreased the total photon dose 

per cell as compared to the lag phase of the one-stage cultivation where all cells received 

the full applied light intensity (e.g., Ia= 300µmol s-1 m-2; Paper III, IV). Therefore, the two-

stage cultivation approach yielded a higher biomass productivity under growth-

inhibiting, low-frequency flashing light (f= 5, 50 Hz) as compared to the one-stage 

approach. 

Although low frequencies of flashing light (e.g., f= 5 and 50 Hz, Paper V) inhibited cell 

growth, their intracellular contents or productivities of PUFA, chlorophyll and 

carotenoids (lutein, beta carotene, violaxanthin and neoxanthin) increased compared to 

continuous light (Paper V). For example, protein levels were usually higher in cultures 

exposed to flashing light frequencies of 5 and 50 Hz as compared to continuous light. On 

the other hand, total lipids in N. gaditana and carbohydrates in K. antarctica and T. chui 

tend to decrease under low-frequency flashing light (f= 5, 50 . productivities of proteins 

increased slightly by 20-30% in low frequency flashing light (f= 5 Hz, 50 Hz)-treated 

cultures, while carbohydrates and lipids productivity decreased by 20-50% compared to 
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continuous light. The finding in Paper V match previous studies that reported minor 

effect of flashing light (f= 1 to 30 Hz, DC= 0.05-0.5) on the protein, carbohydrate or lipid 

contents in N. salina, Scenedesmus obliquus and Chlorella pyrenoidosa (Gris et al. 2014; 

Matthijs et al. 1996; Mouget et al. 1995; Sforza et al. 2012; Yoshioka et al. 2012). 

Analogous to the trend of increasing proteins, and decreasing carbohydrates or lipids 

under low frequency flashing light, a species-specific accumulation of PUFA and 

degradation of MUFA was observed in the study. On the other hand, continuous light or 

flashing light with f= 500 Hz showed a contrary pattern. For example, N. gaditana 

accumulated more C20:5n-3 under f= 5 Hz and 50 Hz-treatments (up to 17-20% EPA) 

while the MUFA C16:1n-4 and 18:1n-9 tend to decrease, contrary to what was observed 

in continuous- and 500 Hz flashing light exposed cultures. Similarly, major PUFA in 

K. antarctica (C18:3n-3 and C20:5n-3) increased under the expense of C18:1n-9 when 

exposed to flashing light (f= 5 and 50 Hz). Lastly, T. chui showed higher amounts of 

C16:4n-3, C18:3n-3 and C18:4n-3, accompanied by lower C18:1n-9. However, no effect 

on C20:5n-3 was observed in this alga. Likewise, previous studies have found no 

responses when microalgal cultures were exposed to flashing light of high frequencies 

(e.g., f> 100Hz; Choi et al. 2015; Yoshioka et al. 2012), while low frequencies (e.g., 

f< 50Hz) indeed caused rising PUFA levels (Choi et al. 2015). 

As for the pigments, the contents of β-carotene, violaxanthin and neoxanthin (in 

T. chui and K. antarctica) were on average three to four times higher in cells exposed to 

low frequency flashing light (5, 50 Hz) as compared to continuous or 500 Hz-flashing 

light. Total chlorophyll, total carotenoids and lutein contents increased by up to two 

times under low-frequency flashing light. By employing a two-stage cultivation system, 

the productivity of β-carotene, violaxanthin and neoxanthin was enhanced on average 

three fold under low frequency flashing light treatments (f= 5, 50 Hz) as compared to 

continuous or flashing light of high frequencies (f= 500 Hz). T. The lowest tested 

frequency (5 Hz) tended to be more efficient in producing pigments. Under this 

treatment, N. gaditana produced maximum chlorophyll, total carotenoids, and 

violaxanthin (2.97, 1.34 and 0.45 mg L-1 d-1, respectively), T. chui produced chlorophyll, 

neoxanthin, lutein and β-carotene (2.97, 0.04, 0.47 and 0.35 mg L-1 d-1, respectively), 
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while K. antarctica did not exceed any of these productivities. Similarly, low frequency 

flashing light enhanced the astaxanthin production in Haematococcus pluvialis and 

increased light energy usage by up to four times (e.g., f= 3.5 Hz, DC= 0.05) as compared 

to continuous light (Katsuda et al. 2008, 2006; Kim et al. 2006).  

Summarizing the observations in Paper V, the combined accumulations of proteins, 

PUFA or pigments under low-frequency flashing light (f= 5, 50 Hz) are often connected 

to an adaption to low-light conditions (He et al. 2015; Schüler et al. 2017). Under such 

conditions, the thylakoids increase and they contain more light harvesting pigments that 

facilitate the absorption of photons (Berner et al. 1989). The bigger thylakoid 

membranes and higher pigment contents require more membrane lipids including PUFA 

but also proteins that are bound to accessory light harvesting pigments such as 

carotenoids (Jahns et al. 2009; LaRoche et al. 1991; Schüler et al. 2017). Noteworthy, 

both, high-light typical pigments such as lutein or β-carotene (Mulders et al. 2014) as 

well as low-light typical pigments such as violaxanthin and chlorophyll (Couso et al. 2012; 

Jahns and Holzwarth 2012) were simultaneously induced under low frequency flashing 

light treatments. As reported in Paper III, under low frequency flashing light (f= 5, 50 Hz; 

Paper V), phototrophs respond to the instantaneous light intensities (Il and Id) within a 

flashing cycle. The treatments 5, 50 Hz characterized by long flash durations (e.g., tl= 1-

10 ms) with a high instantaneous flash intensity (Il= 6000 µmols-1 m-2) perhaps induced 

moderately high-light responses in cells, while a lack of light during the prolonged dark 

phase (td= 19-190 ms) caused photo-limitation. Most of these trends were distinct under 

5Hz treatments compared to the 50 Hz-treated cultures, indicating that the magnitude 

of low- or high-light stresses increased with decreasing frequencies (Paper III).  

Besides the effects by flashing light, growth-stage effects were often more relevant 

to explain biocomponent changes in the tested microalgae (Paper V). Indeed, the 

prevailing growth stage of the culture is well-known to induce intracellular changes in 

microalgae (Fuentes et al. 2000; Mansour et al. 2003). In Paper V, we observed species-

specific drop of total proteins and accumulation of carbohydrates and lipids as the 

culture biomass concentration increased, a common trend in aging microalgal cultures 

(Brown et al. 1996; Lv et al. 2010; Zhu and Lee 1997). Similarly, with increasing culture 
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concentration, strain-specific PUFA decreased, MUFA increased and pigments 

decreased (Paper V). These findings are often connected to depletion of nutrients or 

limitation of light during late growth stages, as a result of which cells downregulate their 

photosynthetic activity and intracellular pigments (e.g., chlorophyll, violaxanthin; Paper 

V; Oukarroum 2016).  

It is suggested (Paper V) that the application of low frequency flashing light in a two-

stage cultivation system is a promising method to maximise the production of proteins, 

PUFA, pigments or compounds that are induced by low- or high-light stresses. However, 

consideration of the growth stage and the right exposure time to growth inhibiting but 

biomolecule-inducing flashing light will be of utmost importance in next generation 

artificial light-based microalgal production.  
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5. Conclusions  

Indoor microalgal production at extreme latitudes necessitates the application of 

artificial lighting and culture heating. However, cold-adapted rather than mesophilic 

strains should be used in these regions where the low ambient temperature demands 

culture heating to maintain productivities (e.g., during winter or at extreme latitudes). 

At higher latitudes, cold-adapted strains and appropriate LEDs can be biotechnologically 

optimised for the production of biomass and biomolecules; low ambient temperatures 

provide optimal conditions for the cultures and cool LEDs will have more efficiency and 

longer life expectancy. The present study identified promising cold-adapted microalgae 

from marine habitats as efficient producers of fatty acids, proteins and pigments. By 

adjusting environmental triggers (temperatures, salinities, lighting conditions or 

nutrient levels) or using low-frequency flashing LED light, evidences were gathered for 

the enhanced production of proteins, PUFA or pigment. The applied low-frequency 

flashing light inhibited growth, and the biochemical responses indicated both —low- and 

high-light responses— of microalgal cells. On the other hand, contrary to previous 

expectations, high frequency flashing lights with short but intense light pulses did not 

improve biomass productivity of microalgal cultures compared to continuous light. The 

major effects on biochemical compounds were often caused by the prevailing growth 

stage of the culture rather by the treatment itself (e.g., temperature, flashing light, light 

intensity).  
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6. Limitation of the thesis 

This work shed light into the potential of cold-adapted microalgae and the efficacy of 

flashing light in improving the biomass and biocomponent productivity. A more 

conclusive pattern could have been observed if the following aspects were also 

considered: 

1. Cold strains were only grown under laboratory conditions. This approach does 

not reflect the real production performance on an industrial scale. Therefore, 

large scale production trials are necessary to identify their real performance 

i.e. to produce biomass, PUFA or pigments. 

2. Paper I was conducted only on duplicates in order to screen as much species 

as possible. To draw a more conclusive answer about optimal cultivation 

conditions of the most promising strains (e.g., P. antarctica, Chlamydomonas 

sp. RCC 2488) future studies may focus on specific strains subjected to more 

selected environmental parameters, but with more replicates for statistical 

validity. 

3. Only frequencies >10 Hz were systematically screened in paper IV, but results 

showed that lower frequencies were highly discriminative (when comparing 

different cell acclimatisation stages, culture concentrations and light 

intensities). Hence lower frequencies of flashing light should be also examined 

in future studies. 

4. Induction experiments (Paper V) were only tested for frequencies ≥5Hz and 

minimum exposure time was five days. Lower frequencies and shorter 

exposure times might be more effective to produce pigments or fatty acids. 

7. Future Perspectives 

Cold-adapted microalgae may find their application in (i) outdoor cultivation in cold 

climates during summer, (ii) outdoor cultivation during winter in warm climates (e.g. 

Mediterranean zone or subtropics) or (iii) indoor, artificial light-based cultivation at cold 

climates. To commercialise these promising bioresources, additional studies are needed 
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to test toxicity, digestibility and content of bioactive compounds. Only after 

demonstrating the safety of microalgae, the European Food Safety Authority will 

approve it as novel foods. Market introduction will ultimately broaden the portfolio of 

commercially cultivated species approved as food and feed. These are key milestones 

for the development of microalgal biotechnology sector. 

The production of microalgae at extreme latitudes will be sustainable only through 

the use of i) renewable energies and ii) applied to local processes that cannot be 

outsourced to countries with higher solar irradiance (e.g., wastewater treatment) or iii) 

by producing valuable metabolites that score a high market value (e.g., EPA, pigments). 

The producers at extreme latitudes seek ways to minimise energy usage for artificial 

light sources (e.g., personal communication with Keynatura efh., Hafnarfjörður, Iceland 

and FjordAlg AS, Svelgen, Norway). Although electrical efficiencies of LEDs are constantly 

being improved, the effective use of emitted light by microalgal cultures remains a 

bottleneck. The present study showed that flashing light does not improve biomass 

productivities of microalgal cultures. However, a promising approach is the adaption of 

wavelengths to a culture´s optical properties to stimulate photosynthetic performance. 

One approach is the usage of wavelengths that are not directly absorbed by algal cells 

at the periphery but serve photosynthesis of cells in deeper layers of the culture (e.g., 

green-yellow light for green algae; de Mooij et al. 2016). Additionally, single colour LEDs 

or laser diodes that emit only narrow wavebands can be considered as promising light 

sources for microalgal production. If the photons from these light sources are 

concentrated on a short waveband they may not be absorbed quickly compared to the 

same amount of photons distributed across the whole absorption spectra of an alga 

(e.g., typical for broad band spectrum light sources). Lastly, decreasing the light path 

between alga and light source by using free-swimming, submersed wireless light 

emitters seems promising to enhance the performance of photobioreactors (Heining 

and Buchholz 2015; Heining et al. 2015; Sutor et al. 2014). Taken together, it is suggested 

that biotechnological innovations with cold-adapted strains, flashing light, waveband 

tailoring and narrow light paths hold promise for an efficient artificial light-based 

microalgal production at extreme latitudes.   
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A B S T R A C T

Cold-adapted microalgae display unexpectedly high biomass production, pointing to their potential to produce
high-value bioproducts under cold and light-limited conditions. From culture collections, we screened eight cold-
adapted strains of different genera (Chlamydomonas, Chlorella, Tetraselmis, Pseudopleurochloris, Nannochloropsis
and Phaeodactylum) for the production of fatty acids and proteins under low temperature and light regimes
(T= 8, 15 °C; I=50, 100 μmol s−1m−2). Among the strains, the Arctic isolate Chlamydomonas sp. (RCC 2488)
had better growth at 8 °C compared to 15 °C (up to 0.5 gDW L−1 d−1) and highest productivities of protein and
polyunsaturated fatty acids (PUFA) (70 and 65mg L−1 d−1, respectively). Two tested Tetraselmis strains (SAG
1.96, RCC 2604) achieved highest biomass productivities (0.7–1 gDW L−1 d−1), containing up to 50mg PUFA
gDW−1 and 15% proteins. Pseudopleurochloris antarctica (SAG 39.98) grew well at 15 °C (0.4 g L−1 d−1), with
23% proteins in biomass and the highest eicosapentaenoic acid (EPA) productivity (7.6mg L−1 d−1). Chlorella
stigmatophora (RCC 661) achieved productivities of 0.4 gDW L−1 d−1 at 15 °C and produced extracellular
polymeric substances (EPS). The major cause for the observed shifts in biochemical profiles was biomass con-
centration, which is an indicator for the prevailing growth stage. Based on the current experimental design,
Chlamydomonas sp. (RCC 2488), T. chuii and P. antarctica can be suggested as the most promising strains for the
production of protein and (polyunsaturated-) fatty acids at low temperatures. However, additional strain-specific
studies are necessary to statistically validate these findings.

1. Introduction

Microalgae are sustainable sources of proteins or fatty acids, and
their areal biomass production potential is several times higher com-
pared to traditional crops [1]. Microalgae-based products used in food
or feed supplements are considered as health-benefitting substances
that contribute to the well-being of humans and animals [2]. Demand
for sustainable and healthy consumables can drive the future develop-
ment of microalgal biotechnology [2]. Today's fledgling microalgal
industry focuses on high-value products such as polyunsaturated fatty
acids (PUFA), pigments or whole microalgal cells, but current high
production costs of> 5–25€ kg−1 of dry algal biomass erode the profit
margin [3,4]. To improve the financial viability and push microalgal
biotechnology-based products towards larger markets, researchers and
industries are searching for new strains that rapidly produce high
amounts of valuable biocomponents [5]. Bioprospecting novel strains
from cold environments such as polar oceans, upwelling areas,

mountains or snowfields is promising as these microorganisms bio-
synthesise PUFA, pigments or antioxidants [5–8]. These cold strains
have adapted to specific light conditions, rapid freeze-thawing cycles or
salinity shifts and can achieve biomass productivities at low tempera-
tures (≤15 °C) similar to those of meso- or thermophilic strains culti-
vated at ≥20 °C [9]. This ability could be exploited by microalgal
outdoor production during cold seasons or cultivation facilities located
in cooler regions (e.g. Northern Europe [5,6]), thereby minimising ex-
pensive heating and artificial lighting [11]. For the production of pro-
tein, lipid, PUFA and pigments under cold- and light-limited conditions,
researchers have proposed cold-adapted strains such as Haematococcus
pluvialis [12,13], Chlamydomonas sp. [14], Koliella antarctica [15,16] or
Monoraphidium sp. [17]. Few marine strains have been examined, even
though they are known to contain high amounts of PUFA, and form the
base of the marine food chain in cold oceans.

In this work we aimed to understand the production potential of
marine cold-adapted microalgal strains in cold and light-limited
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conditions. From a pre-selected 20 potentially interesting cold-water
strains obtained from culture collections, we cultivated eight strains
under different low temperatures (T= 8, 15 °C) and light intensities
(I = 50, 100 μmol s−1m−2), and assessed the growth, accumulation of
proteins and fatty acids.

2. Materials and methods

Microalgae of different evolutionary lineages were obtained from
Roscoff Culture Collections (RCC) at the Station Biologique de Roscoff,
France, and the Culture Collection of Algae (SAG) at the Department of
Experimental Phycology at Göttingen University, Germany (Table 1;
Table A.1 in Supplementary material). Based on a literature review, a
total number of 20 strains were selected and pre-cultivated as described
in Table A.1. From these 20 strains, the eight best-performing species
were chosen for further testing. Of the eight strains, five belong to the
Plantae kingdom; Chlamydomonas sp. MALINA (RCC 2488), Chlamy-
domonas sp. CEFAS (RCC 2607), Chlorella stigmatophora (RCC 661),
Tetrasemis chuii Butcher (SAG 1.96), Tetraselmis sp. (RCC 2604). The
remaining three strains belong to the Chromista kingdom; Nanno-
chloropsis granulata (RCC 2478), Phaeodactylum tricornutum (RCC 641)
and Pseudopleurochloris antarctica (SAG 39.98). The Chlamydomonas
strains RCC 2488 and RCC 2607 are referred to as Chlamydomonas sp.
MALINA and Chlamydomonas sp. CEFAS, respectively; the suffixes in-
dicate the name of the cruise during which the strains were isolated. All
microalgae were saline species isolated from cold marine environments.

2.1. Experimental setup

Inocula for all experiments were grown in Erlenmeyer flasks placed
on orbital shakers for 14 days, at 8 or 15 °C. The flasks were illuminated
from above at an intensity of 30 μmol s−1m−2 photosynthetically ac-
tive radiation (PAR) supplied by cool-white fluorescent lamps (Philips
TLD 840, Amsterdam, Netherlands). Seawater from the North Atlantic
shoreline of Bodø,-Norway-(Salinity 35 ppt) was enriched with a mod-
ified F-medium [18] consisting of 5.3mM NaNO3, 0.22mM
NaH2PO4H2O, 35 μM FeCl3 6H2O, 35 μM Na2EDTA 2H2O, 0.12 μM
CuSO4 5H2O, 0.078 μM Na2MoO4 2H2O, 0.23 μM ZnSO4 7H2O,
0.126 μM CoCl2 6H2O, 2.73 μM MnCl2 4H2O, 8.88 μM thiamine HCl,
0.06 μM biotin and 0.012 μM cyanocobalamin was used for all experi-
ments. The medium for P. tricornutum was additionally supplemented
with 318 μM Na2SiO3 9H2O.

All algae were cultivated for 14 days in duplicate using glass bubble-
tube photobioreactors filled with 310mL culture and placed in a cli-
mate chamber [9]. Four growth conditions that are relevant for mi-
croalgal production under cold and light-limited conditions were
tested: (A) low temperature and low light (T= 8 °C,
I = 50 μmol s−1m−2); (B) low temperature and high light (T= 8 °C,
I=100 μmol s−1m−2); (C) high temperature and low light (T= 15 °C,
I=50 μmol s−1m−2); and (D) high temperature and high light
(T= 15 °C, I=100 μmol s−1m−2). The cultures were mixed by aer-
ating the tubes with humidified and 0.2 μm filtered air enriched with

CO2 (1%v/v; GMS-150, Photon Systems Instruments, Drasov, Czech
Republic) at a flow rate of 110mL/min. Biomass samples for bio-
chemical analysis were collected at 10 and 14 days after inoculation.

2.2. Growth monitoring

Optical density at 540 nm (OD540) was measured in quadruplicate
for all algal cultures on a daily basis using 96-well plates (Tecan Sunrise
A-5082, Männedorf, Switzerland). The biomass concentration in the
cultures was determined at day 10 and 14 for each treatment. A known
volume of algal suspension was filtered using 47mm glass fibre filters
(pore size ø=0.7 μm; VWR), washed twice with 10mL ammonium
bicarbonate (0.5M) and dried at 105 °C for 24 h. Dry weight (DW) was
determined gravimetrically. Upon plotting OD540 against DW from
different experiments, significant linear correlations were obtained for
each alga (r2≥0.9, p < 0.05), allowing the estimation of DW via
OD540 measurements on a daily basis.

Cultures harvested at day 10 and 14 were centrifuged (5000 g,
5 min), washed (ammonium bicarbonate, 0.5 M), freeze-dried and
stored at −80 °C until further analysis. Ash weight was determined by
incinerating 50mg freeze-dried biomass at 560 °C for 12 h.

2.3. Fatty acid and protein analysis

Approximately 6mg of freeze-dried microalgal biomass was sus-
pended in 4mL chloroform:methanol solution (2:2.5 v/v) containing an
internal standard (Tripentadecanoin, C15:0 Triacylglycerol, Sigma-
Aldrich, Oslo, Norway). Cells were disrupted using bead milling
(0.1mm glass beads; Precellys Evolution, Bertin Technologies,
Montigny-le-Bretonneux, France). Next, 2.5mL Tris-buffer (6 g L−1

Tris, 58 g L−1 NaCl) was added, mixed with a vortex mixer and cen-
trifuged (2000 g) to separate the phases. The lower chloroform-phase
containing the lipids was transferred into a new glass tube and eva-
porated under a gentle nitrogen flow to prevent fatty acid oxidation.
Subsequently, 3 mL methanol with 5% H2SO4 was added and kept for
3 h at 70 °C to convert the fatty acids into their methyl esters.
Thereafter, 3 mL hexane was added, mixed for 15min in an orbital
shaker and the fatty acid methyl esters (FAMEs) in the hexane phase
were quantified using gas chromatography equipped with a Flame
Ionisation detector (SCION 436m Bruker, Massachusetts, US) and a CP-
Wax 52 CB column (Agilent, Santa Clara, US) using split-less mode. To
identify and quantify the most common FAMEs, an external 37-com-
ponent standard (Supelco, Bellefonte, US) was used.

The protein content of the algal biomass was determined with a Bio-
Rad DC™ Protein Assay (Bio-Rad Ltd., Hemel Hempstead, UK). Water-
soluble proteins from freeze-dried biomass were extracted by re-sus-
pending 6mg freeze-dried biomass in a lysis buffer containing 60mM
tris (hydroxymethyl) aminomethane (Tris-) and 6.9 mM NaC12H25SO4
(SDS) and subsequent bead milling (three cycles of 60 s, 6500 rpm,
120 s break between bead milling; Precellys Evolution). The samples
along with glass beads and lysis buffer were first incubated at 100 °C for
30min and then they were centrifuged (2000 g, 10min). The water-

Table 1
List of tested strains obtained from Roscoff Culture Collection (RCC) and Culture Collection of Algae in Göttingen (SAG).

Strain name Class Strain ID Isolation T (°C)1 Lat. Long.

Chlamydomonas sp. MALINA Chlorophyceae RCC 2488 Beaufort Sea 4 69°48 N 138°26 E
Chlamydomonas sp. CEFAS Chlorophyceae RCC 2607 North Sea 15 54°77 N 2°99W
Chlorella stigmatophora Trebouxiophyceae RCC 661 North Sea 4 70°33 N 140°48W
Tetraselmis chuii Chlorodendrophyceae SAG 1.96 Ekho Lake2 15 68°52 S 78°26W
Tetraselmis sp. Chlorodendrophyceae RCC 2604 North Sea 15 55°17 N 0°0W
Pseudopleurochloris antarctica Xanthophyceae SAG 39.98 Wood Bay, Pack-ice 10 74°36 S 165°40W
Nannochloropsis granulata Eustigmatophyceae RCC 2478 English Channel 15 48°45 N 3°57 O
Phaeodactylum tricornutum Bacillariophyceae RCC 641 North Sea 13 54°11 N 7°54W

1Approximate cultivation temperature at culture collection. 2Hypersaline (72 ppt), heliothermal (15 °C), pH: 8.4.
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soluble proteins contained in the supernatant was measured according
to Bio-Rad DC Protein Assay manual, at an optical density of 750 nm
(Dr3900, Hach Lange, Salford Quays, UK).

2.4. Data treatment

Growth parameters were estimated according to Ruiz, et al. [19,20]
and are detailed in Table A.2 (Supplementary material). Protein and
fatty acid productivities were calculated by multiplying the total
amount of a given biocomponent in the biomass (% of DW) by the
biomass concentration in the culture (gDW L−1) and dividing by the
total cultivation time (time in days; d). Explanatory variables in the
present study were strain, temperature, light intensity and biomass
concentration. We defined the growth stage as a function of the biomass
concentration in the culture at the time point of harvesting (Xt in gDW
L−1). A high biomass concentration indicates an advanced growth stage
and a low biomass concentration an early growth stage. This con-
sideration was necessary to separate the effects of the treatments (light
and temperature) from culture maturation (or aging) effects, which is a
well-known factor that impacts the biochemical composition of algae
[21]. Biomass data were log10 transformed to meet the assumption of
linearity. ANCOVA tests were conducted to check differences among
strains while controlling the effects of temperature, light or biomass
concentration (XLStat, Vers. 2016.02.27444, Addinsoft, New York, US).
Pearson's correlations (r) were used within the ANCOVA models to
quantify the effects of temperature and light intensity on biomass
productivity. For the protein content and fatty acids, the co-variates
temperature, light and biomass concentration were considered in the
ANCOVA. The closer the r-value to 1 or− 1, the stronger the positive or
negative effect of an explanatory variable, respectively. Type III sum of
squares analysis was used to describe the impact on the response
variables (biomass productivity, protein and major fatty acid classes).
Normality of the response variables was checked using Shapiro-Wilk
test. A significance level (α) of 0.05 was used for all tests. All bio-
chemical data are detailed in Table A.3 (Supplementary material).

3. Results and discussion

3.1. Growth performance

There was a significant difference in biomass productivities of all
strains, after controlling for light and temperature. Temperature
(p=0.013) and microalgae strain (p < 0.001) significantly affected
the ANCOVA model, while light (p=0.057) did not (Table A.4,
Supplementary material).

The low temperature treatments (T= 8 °C; I=50,
100 μmol m−2 s−1) reduced the growth rate and prolonged the lag
phase of Chlamydomonas sp. CEFAS, C. stigmatophora, T. chuii,
Tetraselmis sp., P. antarctica, N. granulata and P. tricornutum as com-
pared to 15 °C (Fig. 1). At 8 °C, these strains did not reach their sta-
tionary phase during the 14-day cultivation period. Only Chlamydo-
monas sp. MALINA reached the stationary phase under 8 °C (I=50,
100 μmol m−2 s−1). N. granulata and P. tricornutum did not grow well
under any tested conditions.

Among all treatments, T. chuii displayed the highest biomass pro-
ductivity (0.83 ± 0.19 g L−1d−1 Fig. 2A). P. antarctica achieved a
biomass productivity of 0.35 ± 0.07 g L−1d−1 among all treatments,
similar to Tetraselmis sp. (0.55 ± 21 g L−1d−1), C. stigmatophora
(0.29 ± 0.18 g L−1d−1), Chlamydomonas sp. MALINA
(0.26 ± 0.21 g L−1d−1) and Chlamydomonas sp. CEFAS
(0.20 ± 0.12 g L−1d−1). N. granulata and P. tricornutum did not grow
well and achieved the lowest biomass productivities among all strains
(0.07 ± 0.09 and 0.11 ± 0.15 g L−1 d−1, respectively).

The biomass productivity of Chlamydomonas sp. CEFAS, C. stigma-
tophora, P. antarctica and N. granulata correlated positively with tem-
perature (Fig. 2B); these algae had highest biomass production at high

temperature (T= 15 °C). On the contrary, the biomass productivity of
Chlamydomonas sp. MALINA correlated negatively with temperature,
i.e. productivity was higher at low temperatures (0.53 ± 0.03 g L−1

d−1 at T= 8 °C and I=100 μmol m−2 s−1). Light correlated positively
only with the biomass production of T. chuii, showing maximal biomass
productivities at high light treatments (I=100 μmol m−2 s−1).

Visual observation of the cultures revealed a strong floc formation
of P. antarctica cells that settled quickly when aeration was stopped
(50–100 cells per floc; Fig. A.1 in Supplementary materials). Tetraselmis
cells also settled after stopping the aeration but at a slower pace, as
previously reported for this genus [22]. On the contrary, C. stigmato-
phora remained suspended in the medium due to high amounts of ex-
tracellular polymeric substances (EPS) exuded by the alga. These EPS
increased the viscosity of the medium and hindered the separation of
cells by centrifugation.

Tetraselmis strains performed best in terms of biomass productivity
and maximum biomass concentration, a trait that is common for algae
of this genus [23]. Notably, many Chlorophytes from cold environ-
ments are psychrotrophic (Topt > 15 °C; [10,15,24-28]) with few psy-
chrophilic (Topt < 15 °C; [29]) or mesophilic (Topt > 20 °C) exceptions
[30]. Also in the present study, most tested chlorophytes grew best at
15 °C, with the exception of Chlamydomonas sp. MALINA that had
highest biomass productivities at 8 °C. Thus, we identify Chlamydo-
monas sp. MALINA as one of the few psychrophilic Chlorophytes. De-
spite being a psychrophilic strain, the maximum biomass productivity
(0.53 g L−1 d−1) was lower compared to T. chuii cultivated under a
suboptimal temperature (T= 8 °C and I=100 μmol m−2 s−1;
Pmax=0.73 g L−1 d−1). N. granulata and P. tricornutum displayed aty-
pical growth rates; lower than normally reported for this genus [31-33],
suggesting that the tested conditions were not optimal. The highest
tested temperature (15 °C) was similar to the temperature of the loca-
tion from where these species were isolated or maintained at the culture
collection. Such temperatures may be too low because the optimum
growth temperatures usually lie 6–7 °C higher than that of the natural
habitat [34,35]. Likewise, the Chlorophytes Tetraselmis sp., T. chuii and
Chlamydomonas sp. CEFAS were previously maintained at ~15 °C by the
culture collections, and so better growth performances may be achieved
at higher temperatures (e.g. 20 °C). The present study aimed to identify
strains that grow well under low temperatures and additional studies
are needed to ascertain the true optimum temperatures for these
strains.

In contrast to any other tested strain, the biomass productivity of the
polar microalga P. antarctica was similar among all treatments with
only up to 21% variation (Fig. 2A). Previously, Andreoli, et al. [36]
described P. antarctica as a species abundant in pack ice drill cores, that
prefers a salinity of 35‰ for growth (among the tested range 0 to 35‰)
at a temperature of T= 4 °C [37]. Despite the occurrence of the alga at
lower temperature, as in pack ice (t≈ 0 °C), our results indicate that P.
antarctica is a psychrotrophic species (growth was higher at 15 °C than
at 8 °C and 50–100 μmol m−2 s−1; Fig. 1, 2B). In addition, a psychro-
trophic rather than a mesophilic trait was confirmed by SAG; their re-
sults indicated that P. antarctica cannot grow actively in mesophilic
growth conditions (t = 20 °C, I=40 μmol m−2 s−1; data not shown;
personal communication with Dr. Maike Lorenz, SAG).

3.2. Biochemical composition

Each strain and genus had different biochemical profiles and re-
sponse patterns at different growth stages or treatments. The following
sections present the contents of proteins, and fatty acids of the algal
strains and results of the statistical analyses. The complete set of data is
provided in the supplementary materials (Table A.3).

3.2.1. Proteins
Protein contents differed among the strains (p < 0.001) after con-

trolling for temperature, light intensity and biomass concentration
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(Table A.4). The ANCOVA model is significantly affected by biomass
concentration and algal strain (p < 0.001) and to a lesser extent by
temperature (p=0.031). Light intensity did not affect proteins
(p=0.968).

Among all treatments, Chlamydomonas sp. MALINA, N. granulata
and P. tricornutum contained 37.7 ± 15.0, 41.6 ± 10.4 and
37.7 ± 16.6% protein of DW, respectively (Fig. 3A). The remaining
strains contained on average 24.3 ± 12.8% proteins of DW. The ob-
served protein contents of all tested strains were generally in the range
of other meso- and thermophilic strains belonging to the respective
genus (e.g., Chlamydomonas: 12–48%; Chlorella: 10–58%; Tetraselmis:
9–50%; Nannochloropsis: 10–43%; Phaeodactylum: 40–65%; [21,38-
47]).

The relationship between the protein content and biomass con-
centration in the cultures was modelled across all the tested algae, re-
vealing an exponential decrease in protein content with increasing
biomass concentration (Fig. 3B; r2=0.59, p < 0.01). Notably, when
algae enter the exponential growth stage, protein levels in their cells

and nitrogen levels in the growth media drop rapidly, an effect de-
scribed as growth-stage-dependent protein drop [41]. This growth-
stage dependent protein drop was more discriminative (F=96.5,
p < 0.001) for the prediction of protein contents in biomass compared
to the environmental test conditions temperature and light (F < 5.0).

3.2.2. Fatty acids
The ANCOVA models for TFA and MUFA were affected by the

biomass concentration (p < 0.001), but not by temperature and light
(p > 0.05; Table A.4, Supplementary material). Interestingly, the total
PUFA content was affected by all co-variates and differed among strains
(p < 0.01). More specifically, the effects of temperature (F=14.0),
light (F= 10.8), biomass concentration (F=37.9) and strain
(F=67.8) (Table A.4), indicate that PUFA differed mostly among the
strains (highest F-value). The ANCOVA model for SFAs was not affected
by any of the tested co-variates, except for alga strains (p < 0.001).
Strain-specific effects of the temperature, light intensity and biomass
concentration on fatty acids are discussed below and given in Table A.5

Fig. 1. Growth curves during 14 days of cultivation. The tested strains were exposed to temperatures of T= 8 °C and 15 °C and photon flux densities of 50 and
100 μmol m−2 s−1 (A-D). Solid lines are fitted using a sigmoid growth model, based on the growth data (symbols at each time point). No model fit was obtained for
Nannochloropsis granulata cultivated under 100 μmol m−2 s−1 (no line plotted). All model parameters are given in the Supplementary material (Table A.2). Data
points at each day are shown as mean ± SD, n=2.
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(Supplementary material).
The TFA contents in Chlamydomonas sp. MALINA, P. antarctica and

N. granulata was among all treatments and harvesting time points
243.5 ± 87.8, 240.3 ± 68.6mg TFA gDW−1 and 239.0 ± 66.3mg
TFA gDW−1, respectively (Fig. 4). Both Tetraselmis strains displayed the
lower TFA contents (average: 74.3 ± 11.6mg TFA gDW−1). Such low
TFA content together with the low protein contents (~10% of DW;
Fig. 3A), suggests a strong accumulation of carbohydrates during the
late growth stage, a trend similar to mesophilic Tetraselmis strains [41].

Similar, high PUFA contents were found across all treatments in
Chlamydomonas sp. MALINA (149.1 ± 52.5mg PUFA gDW−1) and
Chlamydomonas sp. CEFAS (91.8 ± 28.9mg PUFA gDW−1), while
Tetraselmis strains contained less (average: 35.1 ± 7.5mg PUFA
gDW−1). P. antarctica and N. granulata accumulated high amounts of
monounsaturated fatty acids (MUFAs) in their biomass (169.1 ± 58.8
and 116.6 ± 40.3mg MUFA gDW−1, respectively). In addition, N.
granulata contained high SFA levels (79.8 ± 28.9mg SFA gDW−1).

Major fatty acids (given in % of TFAs) in the tested green algae were
the PUFA C16:4n-3 (hexadecatetraenoic acid, 8–20%) and C18:3n-3 (α-
linolenic acid; ALA, 8–32%; Fig. 5 A-E), as previously reported for this
algal group [17,48,49]. Chlamydomonas sp. MALINA accumulated high
levels of the omega-3 fatty acid C18:3n-3 (27–31%), C18:1n-9, oleic
acid (20–32%), and C16:0, palmitic acid (6–12%), [50]). The fatty acid
profile of C. stigmatophora matched those of other strains belonging to
the same genus, with C18:2n-6 (linoleic acid; LA) and C18:3n-3 as
major fatty acids [50]. However, the tested C. stigmatophora strain had
higher C18:1n-9 (up to 61%) than previously reported for this species
(~6.5%). Only C. augustoellopsoidea [50] had similar C18:1n-9 levels as
C. stigmatophora in the present study. On the other hand, contents of
C16:0, C18:1, C18:3n-3 and eicosapentaenoic acid (EPA, C20:5n-3) of
the Antarctic isolate T. chuii and the North Sea isolate Tetraselmis sp.
were similar to those reported in earlier studies [21,41,50] for other
mesophilic Tetraselmis strains. Akin to previous findings, P. antarctica
had only three major fatty acids (C16:1n-7, C18:1n-9 and C20:5n-3
[50]) contributing ~80% to the TFAs. Although Lang, et al. [50] re-
ported ~30% EPA for this strain, in the present study such values could
only be achieved when biomass concentrations were low, indicating an
early growth stage (~1 gDW L−1 at T=8 °C, I=50 μmol m−2 s−1, day
10; Table A.3, Supplementary material). At this sampling point, cells
were growing exponentially at high nutrient conditions (excess N, P)

Fig. 2. Biomass productivities of microalgae and their correlation with tem-
perature and light. The maximum biomass productivity ranges (g dry weight
(DW) L−1 d−1) of each strain shown in box plots (A) are from cultures grown in
duplicates (n=2) under different temperatures (8 and 15 °C) and light in-
tensities (50 and 100 μmol m−2 s−1). Black and white lines (in A) indicate the
medians and means of all data points, respectively. The effect of light and
temperature on the biomass productivity of each strain are given by Pearson's r
correlation coefficients (B). Significant positive or negative correlations of
temperature (dashed bars) and light intensity (empty bars) with biomass pro-
ductivity are indicated by asterisks.

Fig. 3. Protein content of the tested microalgae and the relationship with the biomass concentration. The protein content ranges (in % of dry weight; DW) of each
strain shown in box plots (A) were obtained from cultures grown in duplicates (n=2) under different temperatures (T= 8, 15 °C) and light intensities (I=50,
100 μmol s−1m−2) and harvested at two time points (day 10, 14). Black and white lines indicate the medians and means of all data, respectively. By performing
regression analysis on protein data and biomass concentration across all time points, treatments and algal strains, an exponential relationship (B) was obtained
(p < 0.05), explaining 59% of the variability in protein content by the biomass concentration.
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that are commonly associated with maximum EPA levels [51]. As bio-
mass concentrations in the medium increased, EPA levels dropped to
~10%. Due to the simple fatty acid profile and the prominence of EPA,
P. antarctica can be a promising candidate for long-chain PUFA pro-
duction, e.g., by means of selection, genetic modification or cultivation
engineering.

3.2.3. Treatment effects on fatty acids
Temperature and biomass concentration correlated with the fatty

acid composition (PUFA, MUFA and SFA) and single fatty acids in most
of the tested strains (Table A.5, Supplementary material). TFAs usually
correlated with conditions that resulted in best growth (e.g. low tem-
peratures in Chlamydomonas sp. MALINA or high temperatures in
Chlamydomonas sp. CEFAS) or biomass concentrations. Long chain
PUFA such as EPA and DHA were generally higher in algae exposed to
low temperatures or early growth stage (low biomass concentrations).
For example, P. antarctica and T. chuii showed on average ~25% and
33% more EPA, respectively, at 8 °C compared to 15 °C. Low light
treatments tend to induce PUFA (negative correlation of EPA and
C18:2n-6 with light intensity; r≤−0.62) and decreased the MUFA
fraction (C18:1n-9, r=0.69) in P. antarctica. In Chlamydomonas sp.
MALINA cultures, the fraction of PUFA in TFAs was not affected by any
treatment. Low temperatures and light intensities can induce PUFA in

many microalgae, whereas nutrient limitation can cause a decrease in
PUFA levels [51]. Our results of all tested algae, generally confirm these
trends except of the psychrophilic microalgae Chlamydomonas sp.
MALINA. At low temperatures, this alga achieved high biomass con-
centrations but also high PUFA levels, indicating that cold-adapted
microalgae are potential fatty acid producers since PUFA contents in
biomass remain high even at late growth stages.

3.3. Production performance and applications

Biocomponent productivities of each strain under different culti-
vation conditions are given in the Supplementary materials (Table A.3).
Chlamydomonas. sp. MALINA surpassed all strains in their protein
(69.6 ± 13.7mg protein L−1 d−1), TFA (91.0 ± 5.1mg L−1 d−1) and
PUFA (54.1 ± 3.1mg L−1 d−1) productivity when cultivated at
T= 8 °C, I=100 μmol m−2 s−1.

P. antarctica achieved second highest protein production rates
(58.8 ± 3.4mg protein L−1 d−1 at T= 15 °C, I=100 μmol m−2 s−1)
and EPA and MUFA productivities of up to 7.7 ± 1.1 and
64.9 ± 3.9mg L−1 d−1, respectively (T= 8 °C, I=100 μmol
m−2 s−1). Such EPA productivity is comparable to that of known EPA
producers such as Nannochloropsis and Isochrysis cultivated under si-
milar conditions [52-56]. The tolerance of Chlamydomonas sp. MALINA

Fig. 4. Content of the total fatty acids, TFAs (A), polyunsaturated fatty acids, PUFA (B), mono-saturated fatty acids, MUFAs (C) and saturated fatty acids, SFAs (D) of
the tested algae. Data (ranges in dry weight, mg gDW−1) shown in these box plots were obtained from cultures grown in duplicates (n=2) under different
temperatures (T= 8, 15 °C) and light intensities (I=50, 100 μmol s−1m−2) and harvested at two time points (day 10, 14). Black and white lines indicate the
medians and means of all data, respectively. The effects of temperature, light and growth stages on fatty acids are provided in Table A.5 (Supplementary material).
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and P. antarctica to psychrophilic and psychrotrophic growth conditions
(T= 8–15 °C) and low light levels make them ideal candidates for
production of proteins and PUFA under cold and light-limited climates.
However, continuous cultivation can greatly influence PUFA yields
[51,57] and should be considered in future studies. For example, Ře-
zanka, et al. [17] reported that the cold-adapted Monoraphidium sp.
CCALA (strain no 1094) produced up to 97mg PUFA L−1 d−1 when
cultivated at ~10 °C in a continuous thin-layer photobioreactor. On the
other hand, T. chuii is a temperature tolerant, fast growing (up to
1 gDW L−1 d−1) strain that only had low protein, TFA and PUFA

productivities (e.g., max 44.5 ± 10.2, 32.6 ± 5.3 and
13.7 ± 1.7mg L−1 d−1, respectively). Since such biomass quality may
only pose a low market value, this strain could be used for the removal
of nutrients from cold marine wastewater streams (~15 °C) to produce
biomass suitable for biofuel production [41]. A similar scenario was
previously suggested for a mesophilic Tetraselmis strain to clean ef-
fluents (T= 20 °C) from wastewater treatment plants in warm climates
[41]. Notably, also in cold climates, psychrophilic and psychrotrophic
microalgae were tested for nutrient removal from wastewaters
[35,58–64], which may be a promising application for the presently

Fig. 5. Major fatty acids (in % of total fatty acids, TFAs) of Chlamydomonas sp. MALINA (A), Chlamydomonas sp. CEFAS (B), Chlorella stigmatophora (C), Tetraselmis
chuii Butcher (D), Tetraselmis sp. (E), Pseudopleurochloris antarctica (F), Nannochloropsis granulata (G) and Phaeodactylum tricornutum (H). Data shown in box plots were
obtained from cultures grown in duplicates (n=2) under different temperatures (T= 8, 15 °C) and light intensities (I=50, 100 μmol s−1m−2) and harvested at two
time points (day 10, 14). Black and white lines indicate the medians and means of all data, respectively. Effects of treatments and growth stages on each fatty acid
were analysed by ANCOVA (Table A.5 in Supplementary material).
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tested Tetraselmis strains. The auto-settling abilities of Tetraselmis and P.
antarctica can also save dewatering costs in future production scale up
scenarios.

The major application of C. stigmatophora may not be for the pro-
duction of intracellular fatty acids or proteins, but for EPS as sources of
bioactive components. Indeed, Chlorella and C. stigmatophora strains
were often reported for their EPS secretion, a promising bioresource for
high-value bioactive components [65-67]. However, the separation of
EPS containing media and algae remains a bottleneck that researchers
try to tackle using e.g., ultrafiltration [68].

4. Conclusions

The present study tested eight strains isolated from cold marine
habitats for the combined effects of temperature and light regimes on
growth, proteins and fatty acids. Based on the collected data,
Chlamydomonas sp. MALINA, T. chuii and P. antarctica are the most
promising biomass, protein or fatty acids producers at low temperature
and light regimes (≤ 15 °C, I≤100 μmol m−2 s−1). The protein and
total fatty acid contents among all tested strains were mainly affected
by the growth stage rather than temperature and light treatments. Our
results demonstrated that including biomass concentration of the cul-
ture as a quantitative indicator for the prevailing growth stage should
be considered when evaluating effects of any treatment applied to mi-
croalgal cultures. Notably, only PUFA were affected by temperature and
light intensity. Hence, these two factors could be adjusted together with
the harvesting time point to maximise PUFA yields. Using cold water-
adapted strains can benefit microalgal outdoor production during cold
and light-limited seasons because expensive cooling or additional arti-
ficial light could be minimised. In addition, indoor productions located
at extreme latitudes can use the usual low ambient temperatures to
provide favourable conditions for growing cold-adapted strains and
operating the commonly used LED lamps as artificial light sources.
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Highlights: 

 RCC 2488 is closely related to other psychrophilic algae: UWO 241 and SAG 75.94. 

 RCC 2488 grows at low temperature (8 °C), in both freshwater and seawater. 

 Maximum biomass productivity was achieved at a light intensity of 250 mol m-2 s-1. 

 Nitrogen deprivation promotes carbohydrate synthesis and maintains lipid content. 

 The lipid fraction is mainly composed of polyunsaturated fatty acids. 

  



2 

 

Abstract 

The polar Chlamydomonas sp. RCC2488 grows at low temperatures and produces high 

amounts of lipids mainly composed of polyunsaturated fatty acids (PUFA). However, the 

phylogenetic relationship with other Chlamydomonadales members is not clear and the 

optimum growth conditions for maximum biomass productivity have not yet been 

identified. Here, a phylogenetic analysis was performed to determine the closest 

relatives of Chlamydomonas sp. RCC2488 within the Chlamydomonadales order. To 

select the best growth conditions for maximum biomass productivities in cultivations 

performed at 8°C, different salinities (0-80 ppt) and light intensities (70-500 mol m-2 s-

1) were tested, using bubble column and flat-panel photobioreactors. The effect of 

nitrogen limitation was tested to determine if RCC2488 can accumulate carbohydrates 

and lipids. Phylogenetic analysis confirmed that RCC2488 is closely related to the 

psychrophilics Chlamydomonas sp. UWO 241 and Chlamydomonas sp. SAG 75.94, and 

to the mesophilic C. parkeae MBIC 10599. The highest biomass (527 mg L-1 day-1), lipid 

(161.3 mg L-1 day-1) and PUFA (85.4 mg L-1 day-1) productivities were obtained at a salinity 

of 17.5 ppt, light intensity of 250 mol m-2 s-1 and nitrogen replete conditions. Strikingly, 

the marine RCC2488 can also grow in fresh water. While the intracellular lipid content 

remained unchanged under nitrogen deprivation, the carbohydrate content increased 

(up to 49.5 % w/w), and the protein content decreased. The algal lipids were mainly 

comprised of neutral lipids, which were primarily composed of PUFA. Chlamydomonas 

sp. RCC2488 is a polar microalga suitable for high biomass, carbohydrate, lipid and PUFA 

productivities at low temperatures. 

Keywords: Chlamydomonas, salinity, nitrogen deprivation, light intensity, PUFA, 

proteins  
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1. Introduction 

Polyunsaturated fatty acids (PUFA) have gained interest in the pharmaceutical 

industry due to its beneficial properties for human and animal health (Ruxton et al. 2004; 

Khozin-Goldberg et al. 2011; Martins et al. 2013). PUFA used for human nutrition are 

mainly obtained from fish oil (Martins et al. 2013; Guihéneuf and Stengel 2013). 

However, obtaining PUFA from fish have several limitations, such as possible depletion 

of the resource, contamination with heavy metals, variability in the oil composition and 

quality, unpleasant odor, and environmental negative impacts like degradation of 

marine habitats (De Swaaf et al. 2003; Martins et al. 2013; Greene et al. 2013; Guihéneuf 

and Stengel 2013). On the other hand, through the food chain, fish obtain PUFA from 

microalgae via bioaccumulation (Guihéneuf and Stengel 2013; Morales-Sánchez et al. 

2017). PUFA from microalgae can be a sustainable, environmentally friendly, and 

“vegetarian” alternative (Wijffels and Barbosa 2010; Khozin-Goldberg et al. 2011; Suzuki 

et al. 2018). Moreover, its production can be enhanced by using polar or cold adapted 

microalgae, which are the ideal candidate due to its naturally occurring high PUFA 

content (Morgan-Kiss et al. 2006). The synthesis of PUFA in polar microalgae is induced 

at low temperatures because these compounds help to maintain the fluidity, flexibility, 

and functionality of the cellular membranes, which is a crucial adaptive strategy to 

support the cellular metabolism at such temperatures (Morgan-Kiss et al. 2006; Suzuki 

et al. 2018). Also, polar microalgae have developed mechanisms to successfully adapt to 

low temperatures, oscillating light conditions, osmotic pressure, and oxidative or 

nutrient stresses (Řezanka et al. 2008; Leya et al. 2009; Lomsadze et al. 2012; Lyon and 

Mock 2014).  Such adaptation to a wide range of environmental conditions has 

bestowed these microorganisms with a high degree of phenotypic plasticity (Pocock et 

al. 2011; Lyon and Mock 2014), which makes them interesting organisms for the 

production of PUFA, and other high-value metabolites. Polar or cold-adapted microalgal 

species that have shown evidence of high biomass and/or PUFA productivities at low 

temperature include Chlamydomonas pulsatilla, C. klinobasis, Chloromonas 

platystigma, Raphidonema sempervirens, Koliella Antarctica, and Chlamydomonas sp. 

RCC2488 (Hulatt et al. 2017a; Suzuki et al. 2018; Schulze et al. 2019). Chlamydomonas 

sp. RCC2488 (called RCC2488 hereafter) is a polar microalga isolated from the Beaufort 

Sea of the Arctic Ocean (Balzano et al. 2012). In our previous study, Chlamydomonas sp. 

RCC2488 had high levels of PUFA when cultivated at 8°C compared to 15°C (Schulze et 

al. 2019). However, the phylogenetic relationship of RCC2488 within the 

Chlamydomonadales order and its best growth conditions for obtaining desired biomass 
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and metabolites are yet to be investigated. In this study, we performed a phylogenetic 

analysis of the 18S rRNA gene sequence of RCC2488 and available Chlamydomonas 

strains. We report the performance of RCC2488 under different experimental 

conditions, such as salt concentrations, light intensities, and nitrogen stress, to identify 

the optimal growth conditions at which this microalga produces commercially important 

metabolites, such as lipids, carbohydrates, and PUFA.  

2. Materials and methods 

2.1. Strain 

The marine microalgae Chlamydomonas sp. RCC2488 was obtained from the Roscoff 

Culture Collection, France (RCC). This strain was isolated from the Beaufort Sea, within 

the Arctic Ocean, at latitude 6948N and longitude 13826E (Balzano et al. 2012). 

2.2. Phylogenetic analysis 

The sequence of the 18S ribosomal RNA gene of RCC2488 strain was obtained from 

the Roscoff Culture Collection with accession number JN934686. 18S rRNA related genes 

were identified by BLASTN searches against GenBank and NCBI, using RCC2488 18S rRNA 

gene sequence as a query (JN934686). Sequences were aligned by Muscle (Edgar 2004); 

all gaps and missing data were eliminated. The evolutionary history was inferred by 

constructing a phylogenetic tree using the Maximum Likelihood method based on the 

Tamura-Nei Model (Tamura and Nei 1993). Evolutionary analyses were conducted in 

MEGA7 (Kumar et al. 2016). 

2.3. Culture conditions 

Stock cultures were maintained on agar plates containing modified F2 media. Inocula 

for all experiments were cultured in 250 mL Erlenmeyer shake-flasks (100 rpm) 

containing 100 mL of modified F2 at 8 C with an irradiance of 120 mol m-2 s-1 (Phillips 

TLD 840 fluorescence lamps) and ambient levels of CO2. For the media preparation, we 

used seawater from the North Atlantic shoreline of Bodø (Norway) containing a salinity 

approximately of 35 ppt. The modified F2 media comprised the following 

macronutrients (in mM): NaNO3 31.8, NaH2PO4H2O 1.32, FeCl36H2O 0.105, 

Na2EDTA2H2O 0.105, trace elements (in M): CuSO45H2O 0.36, Na2MoO42H2O 0.234, 

ZnSO47H2O 0.69, CoCl26H2O 0.378, MnCl22H2O 8.19, and vitamins (in M): thiamine 
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HCl 26.6, biotin 0.18 and cyanocobalamin 0.036. The initial biomass concentration of all 

experiments was around 0.2 g of dry cell weight (DCW) L-1. For salinity experiments, 

RCC2488 was cultured in modified F2 media for 10 days at 0, 17.5, 35, and 80 ppt, using 

combinations of fresh water (0 ppt) and seawater (35 ppt) or supplementing with NaCl 

for higher salinity (80 ppt). For testing of different light intensities and nitrogen stress, a 

salinity 17.5 ppt was used. For light intensity experiments, RCC2488 was grown in 

modified F2 media for 10 days at 70, 120, 250 and 500 mol m-2 s-1. For nitrogen 

availability experiments, RCC2488 was pre-cultured in modified F2 media and 120 mol 

m-2 s-1 until the middle logarithmic phase was reached (day 5). At this growth stage, cells 

were collected by centrifugation, washed twice with water (salinity:17.5 ppt), and re-

suspended in modified F2 media with nitrogen (F2+N) or without nitrogen(F2-N) at a 

biomass concentration of 1.5 gDCW L-1. Cultures were grown for five days at a light 

intensity of 250 mol m-2 s-1. After five days, cells were harvested by centrifugation 

(2000 g, t= 5 min), washed with 0.5M ammonium formate, centrifuged again (2000 g, t= 

5 min), and the pellets were stored at -70 C for further analyses. 

2.4. Cultivation in photobioreactors 

Salinity and nitrogen stress experiments were conducted in bubble column 

photobioreactors (Table 1) designed by Hulatt et al. (Hulatt et al. 2017a). Briefly, the 

arrangement consisted of glass tubes (Friedel, Oslo, Norway) measuring 35 mm internal 

diameter with 300 ml of working volume, fitted with sealed silicon stoppers and 

autoclaved as complete units at 121 C for 20 min. The media was autoclaved separately 

in 1L flasks. Filtered air (0.2 m, Acrodisc ® PTFE filters, Pall Corporation, USA) containing 

1% CO2 was supplied to each photobioreactor at a flow of 1 vvm (300 mL min-1) using a 

rotameter (Omega, Manchester, UK). A mass flow control system (GMS-150, Photon 

Systems Instruments, Czech Republic) was used to control the CO2 concentration by 

mixing it with compressed air. These photobioreactor systems were placed in a 

temperature-controlled environment chamber at 8 C (Termaks AS, Bergen, Norway) 

fitted with nine fluorescent lamps (cool daylight, 36 W, Phillips) illuminated from one 

side at a light intensity of 120 mol m-2 s-1.  

Light intensity experiments were carried out in autoclaved flat-panel 

photobioreactors (Algaemist-S, Ontwikkelwerkplaats, Wageningen UR, The 

Netherlands) (Table 1), fully described previously (Hulatt et al. 2017b). The working 

volume was 380 mL with a light path of 14 mm. The cultures were aerated at 1 vvm with 

0.2 m filtered air mixed with 1 % CO2. Continuous light intensity of 70, 120, 250 and 
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500 mol m-2 s-1 was provided by warm-white LEDs. The cultivation temperature of 8 C 

 0.5 C was controlled by the Algaemist software. Initial pH was 7 without control along 

the cultivation period. All experiments were carried out in triplicate for 10 days. 

 

Table 1. Different conditions used in the treatments tested in the present work. 
Treatment Salinity  

(ppt) 
Light intensity (mol m-2 s-1) Nitrogen availability Photobioreactor 

Salinity 0 
17.5 
35 
80 

120 
120 
120 
120 

+ 
+ 
+ 
+ 

Bubble column 

Light intensity 17.5 
17.5 
17.5 
17.5 

70 
120 
250 
500 

+ 
+ 
+ 
+ 

Flat-panel 

Nitrogen stress 17.5 
17.5 

250 
250 

+ 
- 

Bubble column 

+: Nitrogen replete conditions 
-: Nitrogen deplete conditions 

2.5. Growth measurement 

Samples of the culture (0.5 – 1 mL) were collected daily to measure the absorbance 

at 750 nm in a 1 cm micro-cuvette using a spectrophotometer (Hach-Lange DR3900, 

Hach, International). The DCW was evaluated gravimetrically by filtrating 5-10 mL of 

culture through a pre-dried and pre-weighed 0.45 m pore size fiber glass membrane 

filter (Milipore). For daily calculation of the biomass concentration (W), a calibration 

curve between the absorbance measured at 750 nm (A750) and DCW was established 

(W = 0.884  A750 + 0.0117, R2=0.99). 

2.6. Lipid, protein, and carbohydrate analyses 

Total lipids from RCC2488 were extracted using organic solvents, and fatty acid methyl 

esters (FAMEs) from triacylglycerols (TAGs) and polar lipids were identified and 

quantified by gas chromatography (GC) as previously described by Breuer et al. (Breuer 

et al. 2013), with some modifications. Briefly, 10 mg of freeze-dried microalgal biomass 

was weighed using a precision balance (MX5, Mettler-Toledo, USA), then the lipids were 

extracted and gravimetrically quantified. For the extraction, a mix of 

chloroform:methanol (2:2.5 v/v) containing an internal standard (Tripentadecanoin, 

C15:0 Triacylglycerol, Sigma-Aldrich, USA) was added to the samples to extract the lipids, 

and then the cells were disrupted using a bead mill (Bertin technologies, Precellys 
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Evolution, France, 0.1 mm glass beads). Methanol from the solution containing the 

extracted lipids was separated by adding an aqueous solution of Tris buffer (6 g L-1 Tris, 

58 g L-1 NaCl, pH 7.5). The chloroform phase containing the lipids was removed and dried 

under a stream of nitrogen. To determine the fatty acid composition, lipid samples were 

chemically derivatized to fatty-acid methyl-esters (FAMEs) using 5% H2SO4 in methanol 

and heated at 70 C for 3 h. Methanolic H2SO4 from the solution containing the FAMEs 

was separated by adding a mix of hexane:H2O (1:1). Finally, samples containing the 

FAMEs and hexane were placed into chromatographic vials. The obtained organic phase 

was analyzed in a GC fitted with a Flame Ionization Detector (Scion 436, Bruker, USA) 

and an Agilent CP-Wax 52 CB column (Agilent Technologies, USA) using splitless injector. 

To identify and quantify the most common FAMEs, external Supelco® 37-component 

standards (Sigma-Aldrich, USA) were used. Blanks were included in the extraction 

process to eliminate background trace peaks. 

For carbohydrate determination, samples were hydrolyzed with HCl to yield simple 

sugars, and the resultant monosaccharides were quantified using the phenol-sulphuric 

acid method (Thompson 1950).  

For protein determination, lysis buffer (60mM Tris pH 9, 2% sodium dodecyl sulfate) 

was added to 10 mg of freeze-dried biomass samples prior to cells disruption in bead 

milling system as described before, and then protein content was determined using the 

Lowry method (Lowry et al. 1951).  

2.7. Calculations 

The cellular growth kinetic and productivity were calculated accordingly with a 4-

parameter logistic function (Hulatt et al. 2017b) (Eq 1: 

��=∅1+
∅2 − ∅1

1 + exp �∅3 − �
∅4 �

                (1) 

Where Cx is the dry weight (g L-1) at time t (days), 1 is the lowest asymptote 

(minimum Cx), 2 is the upper asymptote (maximum Cx), 3 is t at 0.52 (the inflection 

point), and 4 is the scale parameter (Hulatt et al. 2017b). From the previous equation, 

the volumetric productivity was calculated between two time points, accordingly with 

equation 2:  

�� = ��,� − ��,���
�� − ����

               (2) 
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Where P is the productivity (g L-1 day-1), Cx.i and Cx.i-1 are the concentrations of the 

biomass (g L-1) at two time points, and ti and ti-1 are the time of cultivation (days).  

2.8. Statistical analysis 

For all treatments, the normal distribution of data was confirmed using Saphiro-Wilk 

test, and the homogeneity of the variance between treatments was validated using 

Brown-Forsythe test. For salinity and light intensity treatments, one-way analysis of 

variance (ANOVA) and post-hoc Tukey’s multiple comparison test were used. For 

nitrogen stress treatments, a t-test was applied. P values smaller than 0.05 were 

considered statistically significant.  

3. Results and discussion 

3.1. Phylogenetic analysis  

Previous results indicated that RCC2488 belongs to the order Chlamydomonales 

(Balzano et al. 2012), we confirm this result (data not shown). We constructed a 

phylogenetic tree by the comparison of the sequences of 18S rRNA gene of isolate 

RCC2488 and only the Chlamydomonales order (Fig. 1). In this tree, the RCC2488 strain 

is placed in a lineage closely related to C. parkeae, within the Moewusinia clade. 

RCC2488 is closely related to Chlamydomonas sp. UWO 241 (UWO 241 hereafter, score 

= 2983 bit, identity = 99%), Chlamydomonas sp. SAG 75.94 (score = 2942 bit, identity = 

99%) with a strong bootstrap (BS = 100). All the sequences form clusters with bootstrap 

support of no less than 50%.  

Previous phylogenetic studies indicated that this microalga cluster together with C. 

raudensis CCAP 11/131 and C. parkeae within the Moewusii clade (Balzano et al. 2012). 

It is clear that RCC2488 belongs to the Chlamydomonadales order, mainly composed by 

freshwater flagellates within the Chlorophyceae (Balzano et al. 2012). However, 

RCC2488 in the present phylogenetic analysis appeared more closely related to UWO 

241 and C. parkeae MBIC10599 than to C. raudensis that is being grouped in a sister 

clade (Fig. 1). The reason for this discrepancy is that UWO 241 was earlier misidentified 

as C. raudensis CCAP 11/131 (Pocock et al. 2004). But recent studies on phylogenetic 

analysis of nuclear and plastid DNA sequences revealed that UWO 241 is in fact closely 

affiliated to the marine strain C. parkeae SAG 24.89 and strongly differs from C. 

raudensis SAG 49.72 (Possmayer et al. 2016). 
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Fig. 1 Phylogenetic tree. Maximum-likelihood phylogenetic tree based on the 
alignment of the 18S rRNA gene sequences from Chlamydomonas sp. RCC 2488 (yellow 
highlighted) and several Chlamydomonas strains. Number of branches indicates the 
percentage of 1000 bootstrap replication supporting a particular node. Black arrows 
identify the position of Chlamydomonas sp. RCC 2488, UWO 241 and C. parkeae 

MBIC10599 as closest relatives in the same cluster.  A red arrow denotes the position of 
C. raudensis SAG 49.72 in a sister clade.  
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3.2. Effect of salinity concentration 

Highest biomass concentration (5.02 gDCW L-1) and productivity (480 mgDCW L-1 d-1) 

were attained at salinities of 17.5 and 35 ppt (p>0.05, Figs. 2a and b). The growth and 

maximal biomass concentration decreased 5-fold at the highest salinity tested (80 ppt) 

(Figs. 2a and b). Chlamydomonas sp. RCC2488 is a marine microalga, originated from the 

Beaufort Sea located in the Arctic Ocean (Balzano et al. 2012). There, during late summer 

when most phytoplankton blooms are occurring, salinities shift between 28 and 32 ppt 

due to freshwater inflow from rivers and melting ice (Sherr et al. 2003; Wang et al. 2005; 

Balzano et al. 2012). RCC2488 may have adapted to these salinity shifts, explaining the 

high growth performance at salinities ≤35 ppt. As demonstrated in RCC2488 closest 

relative, UWO 241, one possible explanation of the salinity tolerance of RCC2488 is the 

modulation of the redox signal (redox state of plastoquinone pool), affecting later the 

expression of genes responsible of high salinity acclimation (Pocock et al. 2011; Dolhi et 

al. 2013). 

Protein content in treatments from 0 to 35 ppt had similar values (26.1 – 27.6 % of 

DCW, p>0.05, Fig. 2c). A lower protein content was found in cells cultivated at 80 ppt as 

compared to 17.5 ppt (p<0.05), probably as a result of a lower metabolic activity. The 

carbohydrate content in cells cultivated at ≤35 ppt was not statistically different (24.5 – 

26.1 % of DCW; p>0.05). Carbohydrate accumulation up to 33.2 % of DCW was 

stimulated by high salinities, resulting in a linear trend from salinities 17.5 to 80 ppt (data 

not shown). In the case of total lipid content, the statistical analysis (one-way ANOVA 

and post-hoc Tukey HSD) demonstrated that there were no significant differences 

between the salinity treatments.  
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Fig. 2 Effect of salinity. Growth kinetics (a) and biomass productivity (b) of RCC2488 
after 10 days of batch cultivation in tubular photobioreactors in response to salinity 
concentrations. The macromolecular composition (c) was analyzed in the middle of 
exponential growth phase (day 5). Values on the Y-axis indicate the mean and standard 
deviation of three independent experiments. Different lowercase letters indicate a 
significant difference among means of different groups (one-way ANOVA with post-hoc 

Tukey HSD test, p<0.05). 

The fatty acid content and class were similar in the treatments at salinities ≤35 ppt 

(p>0.05, Fig. 3). Cells cultivated at salinities ≤35 ppt synthesized the double of polar lipids 

(60-68.5 mgPOLAR LIP gDCW
-1) than cells grown at 80 ppt (30.2 mgPOLAR LIP gDCW

-1, p<0.01, Fig. 

3a). In general, the TAG pool comprised the major lipid fraction in all treatments, ranging 

from 230.1 to 267.4 mgTAG gDCW
-1. Specifically, into this TAG pool, cells cultivated at ≤35 

ppt mainly synthesized PUFA (hexadecatetraenoic acid, C16:4n-3 and -linolenic acid, 

C18:3n-3) (Figs. 3b and 8a).   
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Maximal PUFA productivity of 65.1 mgPUFA L-1 day-1 was obtained in cells cultivated at 

17.5 and 35 ppt (p<0.05, Fig. 3b). Interestingly, the high biomass productivity at ≤35 ppt 

did not compromise the cellular total lipid content as being usually found for microalgae 

(Oh et al. 2013; Vaidyanathan et al. 2016). For the ongoing experiments, a salinity of 

17.5 ppt was chosen.  

 

 

Fig. 3 Effect of salinity on the fatty acid content. Fatty acid content in the polar lipid 
pool (a) and the TAG pool (b) of RCC2488 at day 5 of batch in response to salinity 
concentrations. SFA: saturated fatty acids, MUFA: monounsaturated fatty acids, PUFA: 
polyunsaturated fatty acids, TAG: triacylglycerols. Values on the Y-axis indicate the mean 
and standard deviation of three independent experiments. Statistical comparison was 
performed individually for each macromolecular component and each class of fatty acid 
(polar, TAGs, SFA, MUFA, PUFA and sum) among the treatments. Different lowercase 
letters indicate a significant difference among means of different groups (one-way 
ANOVA with post-hoc Tukey HSD test, p<0.05). 

3.3. Effect of light intensity 

The highest biomass concentration of 5.3 g L-1 and overall productivity of 527.4 mgDCW 

L-1 day-1 was found at 250 mol m-2 s-1 (p<0.05, Figs. 4a and b). Strikingly, RCC2488 could 

grow at low but also at high light intensities, suggesting that this microalga may be high 

light tolerant. The ability of RCC2488 to grow at high light intensities was not found in 

UWO 241, which did not grow above light intensities of 250 mol m-2 s-1 (Pocock et al. 

2007, 2011). Probably, one reason could be that UWO 241 lacks PsbS, which is a protein 

that plays a key role in photoprotection (Dolhi et al. 2013), however the presence of this 

protein in RCC2488 is unknown. Therefore, for further studies, it would be an interesting 

phenomenon to investigate the effect of even higher light intensities on the physiology, 

metabolism, and genome of RCC2488. Nevertheless, the high performance of RCC2488 
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in a broad range of light intensities may be a consequence of living in the Arctic, where 

RCC2488 had to adapt to low light levels occurring during winter and to high light 

irradiances during summer (Morgan-Kiss et al. 2006). Adaptations to light variabilities 

include evolution to a structurally and functionally distinct photosynthetic apparatus, 

and augmented light-harvesting apparatus (Pocock et al. 2004; Morgan-Kiss et al. 2006). 

 

Fig. 4 Effect of light intensity. Growth kinetics (a) and biomass productivity (b) of 
RCC2488 after 10 days of batch cultivation in flat-panel photobioreactors in response to 
light intensities. The macromolecular composition (c) was analyzed in the middle of 
exponential growth phase (day 5). Values on the Y-axis indicate the mean and standard 
deviation of three independent experiments. Different lowercase letters indicate a 
significant difference among means (one-way ANOVA with post-hoc Tukey HSD test, 
p<0.05). 
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The highest protein content was found in the treatments at 70 and 120 mol m-2 s-1 

(27.6 % of DCW, p=0.2325, Fig. 4c). The content of carbohydrate and lipid had no 

significant differences (p>0.05) among all light intensities, suggesting that light 

intensities, ranging from 70 to 500 mol m-2 s-1, did not have an effect on the synthesis 

of energy reserve metabolites in RCC2488. This response is contradictory to what has 

been observed with other microalgal strains. For example, diminution of the protein and 

carbohydrate content but an increase in the lipid content are typical responses to high 

light intensity in several strains (Liu et al. 2012; Draaisma et al. 2013; Gwak et al. 2014; 

Ho et al. 2014; He et al. 2015).  

 

Fig. 5 Effect of light intensity on the fatty acid content. Fatty acid content in the polar 
lipid pool (a) and the TAG pool (b) of RCC2488 at day 5 of batch cultivation in flat-panel 
photobioreactors in response to light intensities. SFA: saturated fatty acids, MUFA: 
monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, TAG: triacylglycerols. 
Values on the Y-axis indicate the mean and standard deviation of three independent 
experiments. Statistical comparison was performed individually for each 
macromolecular component and each class of fatty acid (polar, TAGs, SFA, MUFA, PUFA 
and sum) among the treatments. Different lowercase letters indicate a significant 
difference among means of different groups (one-way ANOVA with post-hoc Tukey HSD 
test, p<0.05). 

Nevertheless, in all treatments the lipid and carbohydrate content were relatively high 

for cells taken in the mid exponential phase of growth. As discussed below, probably 

another stressor, such as temperature, induced high lipid and carbohydrate synthesis.  

The highest light intensity (500 mol m-2 s-1) induced higher content of polar lipids 

(p<0.01; Fig. 5a), specifically SFA (C14:0, C16:0 and C18:0; Fig. 8b) and MUFA (C16:1n-7, 

C18:1n-9, C18:1n-7; Fig. 8b). This increase in the polar lipids pool was probably due to 

remodeling or relocation of membrane lipids in response to the high light intensity 

(Gwak et al. 2014; Hu et al. 2017; Seiwert et al. 2017). For example, the glycolipid 
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digalactosyl diacylglycerol (DGDG) is known to stabilize, structurally and functionally, the 

chloroplast which led to cell survival (Gwak et al. 2014; Hu et al. 2017; Seiwert et al. 

2017). Photoprotection is another function of polar lipids like monogalactosyl 

diacylglycerol (MGDG) at high light intensities (Gwak et al. 2014; Hu et al. 2017; Seiwert 

et al. 2017). Indeed, high levels of membrane lipids were also found in UWO 241 

(RCC2488 closest relative), where polar lipids were mainly composed of MGDG, DGDG, 

and sulfoquinovosyldiacylglycerol (Dolhi et al. 2013).    

In all treatments, lipids were mainly TAG with similar composition (Fig. 5b; p>0.05). 

This TAG fraction comprises primarily of PUFA such as C16:4n-3 and C18:3n-3 (Fig. 8b). 

The maximal total PUFA productivity of 83.8 mgPUFA L-1 day-1 was found in the treatments 

at light intensities of 120 and 250 mol m-2 s-1 (p>0.05).  

3.4. Nitrogen stress  

Nitrogen stress condition was applied to RCC2488 cells to test if energy reserve 

metabolites can be accumulated. Due to a halt in cell division, the final biomass 

concentration and productivity of cells maintained under nitrogen deprivation (F2-N) 

were ~2 times lower than cultures at replete nitrogen conditions (F2+N, Figs. 6a and b, 

p<0.0001, t-test). 
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Fig. 6 Effect of the nitrogen availability. Growth kinetics (a) and biomass productivity 
(b) of RCC 2488 after 10 days of batch cultivation in tubular photobioreactors in 
response to nitrogen availability. The macromolecular composition (c) analysis was 
performed after 5 days of nitrogen availability treatments. Values on the Y-axis indicate 
the mean and standard deviation of three independent experiments. Different 
lowercase letters indicate a significant difference among means (Student´s t- test, 
p<0.05). 
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Nitrogen deprivation stimulated the accumulation of carbohydrates (up to 49.5 % 

DCW, p<0.01, t-test, Fig. 6c), at protein synthesis expenses (12 % DCW decrease, p<0.01, 

Fig. 6c). One of the most preferred strategies to increase reserve metabolites production 

in several microalgal species is a nutrient stress, like nitrogen deprivation (Chen et al. 

2017). When nitrogen availability is limited, cells synthesize energy storage compounds 

such as carbohydrates, while reducing nitrogen-containing compounds such as proteins 

(Procházková et al. 2014). Hence, this strategy was effective for carbohydrate but not 

for lipid accumulation. The lipid content had no significant differences among the 

treatments (p>0.05; Fig. 6c). Nevertheless, the lipid content of RCC2488 is relatively high 

in both treatments (average 32.5 % of DCW), compared with other Chlamydomonas 

strains, such as the mesophilic C. reinhardtii, that can accumulate up to 19% at nutrient 

replete conditions (Li-Beisson et al. 2015).  

 

Fig. 7 Effect of nitrogen availability on the fatty acid content. Fatty acid content in the 
polar lipid pool (a) and the TAG pool (b) of RCC2488 after 10 days of batch cultivation in 
tubular photobioreactors in response to nitrogen availability. SFA: saturated fatty acids, 
MUFA: monounsaturated fatty acids, PUFA: polyunsaturated fatty acids, TAG: 
triacylglycerols. Values on the Y-axis indicate the mean and standard deviation of three 
independent experiments. Statistical comparison was performed individually for each 
macromolecular component and each class of fatty acid (polar, TAGs, SFA, MUFA, PUFA 
and sum) among the treatments. Different lowercase letters indicate a significant 
difference among means (Student´s t- test, p<0.05). 
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This high lipid content has been reported in other polar and mesophilic algal species 

as an essential player for temperature acclimation and adaptation (Renaud et al. 1995, 

2002; Cao et al. 2016). Consequently, a possible explanation is that this polar algal strain 

was already under a temperature stress at 8 C, which induced lipid accumulation in all 

treatments tested in this study. Nevertheless, we advise additional studies at lower 

temperatures to support this observation.  

 

Fig. 8 Fatty acid profiles in the different treatments. Effect of salinity (a), light intensity 
(b) and nitrogen stress (c) treatments on the fatty acid profile of total fatty acids (TFA) 
and fatty acids in triacylglycerols (TAG) contained in RCC 2488 cells. Values on the Y-axis 
indicate the mean and standard deviation of three independent experiments. 

The total PUFA productivity of cells cultivated in F2+N was 76.9 mgPUFA L-1 day-1, while 

the PUFA productivity of cells maintained in F2-N was substantially lower (40.9 mgPUFA 

L-1 day-1). In both cases, PUFA was mainly comprised of C16:4n-3 and C18:3n-3 (Fig. 8c). 

The proportion of total polar lipids and total TAG was similar in both treatments (p>0.05, 

Figs. 7 and 8c). The PUFA content in the TAG pool (Fig. 7b) was similar in F2+N and F2-N 

(p>0.05). However, the PUFA content in the polar lipid pool was significantly higher in 

F2-N (p<0.05) (Figs. 7a and 8c). The effect of low temperature on the membrane lipid 

composition is well-known (D’Amico et al. 2006; Morgan-Kiss et al. 2008), like the 

contribution of C16:4n-3 in the transition from liquid-crystalline to gel phase (Dolhi et 

al. 2013). This phenomenon has been also observed in the psychrophilic UWO 241, 

which contains high levels of C16:4n-3 (Morgan-Kiss et al. 2002). Nevertheless, the 

combined effect of low temperature and nitrogen deprivation on the membrane lipid 

composition is not yet understood and requires further studies.  
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4. Conclusions 

The arctic green alga Chlamydomonas sp. RCC2488 is a novel polar microalga that 

belongs to the Chlamydomonadales order, closely related to the well-studied Antarctic 

strain Chlamydomonas sp. UWO 241. Both strains share similar physiological features 

such as tolerance to a wide range of salinities, high lipid content composed mainly by 

C16:4n-3 and C18:3n-3. However, RCC2488 tolerated high light intensities, a trait that 

was not found for UWO 241. RCC2488 achieved maximum productivities of biomass 

(527 mg L-1 day-1), lipids (161.3 mg L-1 day-1) and PUFA (85.4 mg L-1 day-1) under nitrogen 

replete conditions using brackish water (salinity: 17.5 ppt) and a light intensity of 250 

mol m-2 s-1. Nitrogen deprivation triggered the accumulation of carbohydrates in cells 

(up to 49.5 % w/w) at the expense of proteins but without compromising lipid 

biosynthesis. RCC2488 is a polar microalga suitable for biomass, lipid, PUFAs and 

carbohydrate production at low temperatures (8°C). 
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Review

Flashing LEDs for Microalgal
Production
Peter S.C. Schulze,1,2 Rui Guerra,3 Hugo Pereira,2

Lisa M. Schüler,2 and João C.S. Varela2,*

Flashing lights are next-generation tools to mitigate light attenuation and

increase the photosynthetic efficiency of microalgal cultivation systems illumi-

nated by light-emitting diodes (LEDs). Optimal flashing light conditions depend

on the reaction kinetics and properties of the linear electron transfer chain,

energy dissipation, and storage mechanisms of a phototroph. In particular,

extremely short and intense light flashes potentially mitigate light attenuation in

photobioreactors without impairing photosynthesis. Intelligently controlling

flashing light units and selecting electronic components can maximize light

emission and energy efficiency. We discuss the biological, physical, and tech-

nical properties of flashing lights for algal production. We combine recent

findings about photosynthetic pathways, self-shading in photobioreactors,

and developments in solid-state technology towards the biotechnological

application of LEDs to microalgal production.

Artificial Light in Microalgal Production

Microalgae are a promising biological resource for the mass production of lipids, sugars,

polymers, or proteins for the food, feed, and chemical industries [1]. The coproduction of high-

value biomolecules such as polyunsaturated fatty acids, carotenoids, b-glucans, and phyco-

biliproteins for nutraceutical, pharmaceutical, and biomedical applications increases the value

of microalgal biomass and the economic feasibility of microalgae-based biorefineries [2].

Presently, high production costs of s5–25 kg�1 hinder the economic feasibility of micro-

algal-based commodities [3,4]. The European Commission is supporting research and devel-

opment of microalgal biotechnology by allocating �s40 million annually between 2007 and

2017 to microalgae-based ventures. For photo- and mixotrophic (see Glossary) microalgal

cultivation, light is one of the most important growth parameters; it can come from natural (sun)

or artificial (lamps) sources [4,5]. Although artificial light costs more than sunlight, it allows tight

control of microalgal biochemistry and growth, increasing the reliability of industrial processes

for the production of high-value biomolecules [4,5].

However, the competitiveness of any artificial light-driven microalgal production hinges on

energy consumption. Decreased energy costs require improvements in photon harvesting by

microalgae and the photon conversion efficiency of light sources. Better light energy usage by

phototrophs can be achieved by tailoring species-specific emission spectra of artificial light

sources [5,6]. Another strategy concerns not the light quality but light delivery. Instead of using

continuous illumination, recent studies propose using flashing lights (Figure 1, Key Figure).

Flashing light is intermittent light that can provide highly intense light flashes with a short

duration (called the light ‘flash period’ or tl) alternating with extended dark periods (td). One flash

period followed by a dark period can be defined as a flashing cycle (tc, in which tc = tl + td). The

use of high light flash intensities (Il) enables light to penetrate deeper into the culture and mitigate

light attenuation [7–9] in photobioreactors, maintaining high photosynthetic efficiency in

Trends

Light sources require technical fine-

tuning for efficient emission of intense

light flashes that match the kinetics of

the photosynthetic apparatus and are

able to penetrate deeper into microal-

gal cultures.

Flashing light may decrease the energy

required to achieve a given productivity

compared to continuously supplied

light.

Flashing light systems require higher

light output during the light period than

standard light sources, and this can be

achieved by increasing the current

supplied to the LED.

Efficient flashing light emitters are sin-

gle-color LEDs and laser diodes rather

than organic LEDs (OLEDs) or phos-

phor-converted white (pc-)LEDs.

Laser diodes will be promising for

future flashing-light sources and may

induce beneficial quantum effects on

microalgae.
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concentrated cultures [10,11]. To prevent photo-damage and inhibition of the phototroph

under cultivation by over-intense light flashes, the repetition rate of the light–dark transition (i.e.,

flashing light frequency, f) and the relative proportion of the light flash period (i.e., the ‘duty

cycle’, f) within the flashing cycle should be adjusted to the biological reaction kinetics of

photosynthetic processes and energy dissipation mechanisms (also often referred to as non-

Key Figure

Simplified Diagram of a Microalgal Production Unit Using Flashing (Upper Panel) and Continuous

Light (Bottom Panel) Emitted by Light-Emitting Diodes (LEDs)
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Figure 1. Flashing or pulsed light can increase light penetration depth and decrease excitation dissipation mechanisms, improving biomass productivity. A flashing light

emitting system can transmit tailored wavebands that increase further photon penetration depth (e.g., green light for chlorophytes and Stramenopiles–Alveolata–

Rhizaria species) or stimulate metabolic pathways and biochemical composition (e.g., blue and red light). The wall-plug efficiency (hWPE) is the product of the efficiency

factors of all devices between power source and light output, including the efficiencies of the ballast (hBallast), pulse-width modulator (hPWM), and the LED (hLED). Flashing

light devices emit light flashes (tl) and dark periods (td) in an approximately rectangular waveform. This waveform is commonly described by the flashing light frequency ( f)

and the duty cycle (f). The frequency (in Hertz, Hz) is the number of light–dark intervals (flashing cycles, tc) that occur per second (s�1). The duty cycle is the ratio

between the flash period and the whole flashing cycle. The light intensity (in mmol photons m�2 s�1) during tl is defined as flash intensity (Il), while during td no light is

emitted (e.g., Id = 0 mmol photons m�2 s�1). Under these conditions the time-averaged light intensity (Ia) during one flashing cycle can be expressed as Ia = f � Il and is

used to compare flashing with continuous light treatments. Moreover, the flash intensity and the duty cycle are inversely proportional at a given mean light intensity.
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photochemical quenching, NPQ). Nonetheless, well-engineered light sources are essential to

emit efficiently flashing light regimes that are advantageous for phototrophic cultivation [4,12].

Balancing these factors, flashing light can result into higher growth performance per input

energy than the same light energy supplied in a continuous way [4,12]. We discuss the techno-

biological threshold for an efficient flashing light system in terms of (i) biological, (ii) physical, and

(iii) technical factors that are crucial for applying this promising tool to microalgal cultivation.

Biological Boundaries

Microalgal cultures can display similar or higher photosynthetic rates under flashing light than

under continuous light at the same mean light intensity. This is referred to as the ‘flashing light

effect’ [13,14] or the ‘light integration effect’ [15] and occurs if the photosynthetic apparatus is

working close to its full capacity (a biological factor). However, in cultures with light attenuation,

the flashing light effect can additionally be achieved by enhanced light delivery into the culture (a

physical factor), even though the photosynthetic apparatus is operating at rates that are far

lower than its full capacity. In this section we define the flashing light conditions (e.g., frequency

or duty cycle) at which the photosynthetic apparatus perceives a flashing light effect as a

biological boundary. Generally, the flashing light effect refers to the response of a phototroph to

mean light intensity (Ia) during the flashing cycle, and not to the instantaneous light intensity of

the light (Il) or dark (Id) periods (Figure 1). When exposed to frequencies that are too low (e.g.,

f = 1–10 Hz) with duty cycles that are also too low (e.g., f > 0.5), no flashing light effect takes

place and phototrophs quench excess energy during the light period, and might experience

enhanced respiration during the dark period (e.g., post-illumination respiration) [13,15,16]. This

results in less growth and biomass losses. Moreover, molecular responses to stress in the

phototroph under cultivation can also be activated.

The biological boundary depends on the reaction kinetics of the energy dissipation mecha-

nisms, energy storage, and the linear electron transfer chain (Box 1). Flashing light studies on

single leaves of land plants or microalgal cultures with low light attenuation potential can identify

the biological boundary, and may be described as a function of frequency ( f) and duty cycle (f),

in other words f(f,f) [17,18]. For example, Jishi and colleagues [17] identified this flashing light

effect for lettuce (Lactuca sativa). Interestingly, their model also fits the photosynthetic perfor-

mance of microalgal cultures with low biomass concentrations (<0.1 g L�1) or short light path

lengths (<1–2 cm), and of land plants (e.g., tomato) under various flashing light conditions [19–

27].

Excitation Dissipation and Energy Storage Efficiencies

Absorbed light energy is able to bring chlorophyll from its ground state (Chl) to a singlet excited

state (1Chl*). 1Chl* can pass its excitation energy via resonance or excitation energy transfer to

adjacent chlorophyll molecules in the light-harvesting complexes or the reaction centers of

photosystem I or II (PSI or PSII). In the reaction centers, charge separation takes place and

excitons can be photochemically quenched by provoking the transfer of electrons to the

photosynthetic linear or cyclic electron transfer chains [28]. These photosynthetic pathways

are essential for the production of ATP and reducing equivalents such as plastoquinol and

NADPH [28]. If the reaction centers are ‘closed’, in other words if they are not able to process

photon excess under high light conditions, 1Chl* can dissipate absorbed energy as heat

through excitation dissipation mechanisms or re-emit a photon (fluorescence) when falling

back to its ground state (Chl). Both processes prevent the formation of triplet Chl (3Chl*) which

causes the production of reactive oxygen species (ROS) [28]. If, for example, the storage

capacity for reducing equivalents cannot cope with the excess electrons under high light

intensity, the likelihood of ROS accumulation increases. Such high ROS levels suppress protein

synthesis, which is essential for repairing PSII upon photodamage [29]. To avoid excess ROS

evolution during high light (flash) periods and maintain their metabolism during prolonged dark

Glossary

Intermittent light: includes flashing

or pulsed light and fluctuating,

flickering, or oscillating light. Light

and dark periods of flashing or

pulsed light conditions shift in an all-

or-nothing rectangular waveform.

Fluctuating or oscillating light is a

fluent transition between high and

low light periods, whereas

instantaneous light intensities alter

continuously over time, usually

following a sinusoidal waveform.

Sunflecks or cells moving from light

to dark zones within a

photobioreactor through mixing

usually follow fluctuating light

patterns.

Light attenuation: self-shading by

microalgal cells is the most

challenging bottleneck limiting the

productivity and maximal achievable

cell concentration in

photobioreactors. Cells located at

the periphery of a culture absorb

most of the incoming light and may

become photoinhibited, whereas

cells at the inner layers remain in the

dark and become photolimited. This

results in high respiration and energy

dissipation rates, causing inefficient

photobioreactor use. The depth of

the light penetration depends

primarily on absorption by cells under

cultivation, the incoming light

intensity and wavelength, and cell

morphology (e.g., cell size) and

biochemistry (e.g., pigment

contents).

Mehler and Mehler-like reactions:

these control light-dependent O2

consumption. Unlike the Mehler

reaction, the Mehler-like reaction

involves flavodiiron proteins to

reduce O2 without evolution of

reactive oxygen species (ROS).

Mehler-like reactions enable

cyanobacteria, microalgae, and

plants to cope efficiently with

intermittent light regimes.

Minimal response times (tr_min):

the minimal response time of LEDs

and transistors can be calculated by

tr_min = f � fc
�1, where f is the duty

cycle and fc is the flashing frequency

at ‘cut-off’ obtained from a frequency

response graph (i.e., Bode plot).

Photosynthetic efficiency: this

refers to how much light (e.g.,

amount in photons or energy) is

required by a phototroph to fixate

CO2 or produce O2 through

photosynthesis (e.g., mmol CO2 or

O2 per mmol of photons). The effects
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of flashing light on the photosynthetic

efficiency of single cells or

chloroplasts and whole cultures

should be distinct. Dilute cultures

with narrow light paths and negligible

light attenuation are usually used to

identify the effects of flashing light on

single cells or chloroplasts (biological

boundary). However, flashing light

was mostly found to improve

photosynthetic efficiency of whole

microalgal cultures with high light

attenuation (e.g., highly concentrated

cultures).

Photo- and mixotrophy:

phototrophic organisms use light as

an energy source to fix inorganic

carbon dioxide in organic

compounds. Heterotrophic

organisms obtain energy and carbon

from organic sources (glucose or

acetate). A few mixotrophic

microalgae are able to obtain energy

and carbon skeletons by means of

photosynthesis, active predation,

endocytosis, and membrane-bound

transport systems. Some others are

even able to steal chloroplasts from

other microalgae using a mechanism

known as myzocytosis.

Pulse-width modulation: a tool

used to control the power supply

(e.g., dimming) of electrical devices

such as LEDs. It generates a pulse

wave signal (i.e., rectangular pulse

wave) with an asymmetrical shape

(i.e., the duration of the on–off cycle)

described by the duty cycle.

periods, phototrophs employ different energy quenching and storage strategies under flashing

light with a low duty cycle (e.g., f <0.1; Figure 2) [14,16,30,31]. Usually, alternation between

light and dark periods longer than seconds, minutes, or hours (implying frequencies <1 Hz) are

referred to light that is supplied intermittently, discontinuously, or through light/dark cycles or

photoperiods. For the sake of convenience, however, the term ‘flashing light’ and associated

parameters will be used in all timescales.

In this context, mechanisms of short-term energy storage (fs–ps timescale) follow the laws of

quantum dynamics, and energy transport takes place via quantum coherence. The excitation

energy delivered by light flashes with a duration of fs–ps can be stored in pigment cofactors

(e.g., chlorophylls, carotenoids, or phylloquinones) as excitons or through inter-protein hopping

within the light-harvesting complexes [32]. If reaction time permits, energy may be stored in

reaction center II. In this timescale, excess energy may be dissipated through ultrafast reacting

quenchers (e.g., chlorophyll a) [32,33], resulting in pigment internal thermal decay or

fluorescence.

Medium-term energy storage (ns–ms timescale) may take place via components and prod-

ucts of the non-cyclic photosynthetic electron transfer chain. Examples are the plastoqui-

none bound to PSII (Qa
�), plastoquinol (PQH2) in the plastoquinone (PQ) pool [34], protons in

the stroma coming from the water-splitting reaction catalyzed by the water oxidizing

complex, and ATP produced by the ATP synthase in the thylakoid [35]. However, if the

previous storage mechanisms are unable to handle excess energy, other non-photochemi-

cal quenching reactions and biomolecules seem to play a protective role: for example

Mehler-like reactions, the proton gradient regulator PGR5, the ferredoxin-plastoquinone

reductase PGRL1, the serine/threonine-protein kinase STN7, and several flavodiiron pro-

teins [8,36–38].

For long-term energy storage (ms–s timescale), phototrophs produce reduced equivalents (e.

g., NADPH) or ‘high-energy’ chemical bonds via ATP-dependent nitrogen and sulfur assimila-

tion as well as carbon fixation. The last process yields Calvin–Benson cycle intermediates

containing ATP-dependent high-energy bonds, such as bisphosphoglycerate or triose phos-

phate [30]. At this timescale, excess energy can be quenched via reoxidation of the PQ pool

through the quinol terminal oxidase, phosphorescence, or through the initiation of

diadinoxanthin–diatoxanthin, violaxanthin–astaxanthin–zeaxanthin, or lutein epoxide cycles

[39–41].

Energy storage for an even longer term is possible. Biochemical processes at timescales of

minutes and hours, such as the accumulation of non-structural low molecular weight sugars,

starch, or amino acids (e.g., glutamine as the first amino acid resulting from nitrogen assimila-

tion) can be used to store energy [42]. Under these conditions, excess energy can be quenched

through the same photoprotective pigment cycles as under ms–s conditions, but also through

high-energy state (qE) quenching and photoinactivation of PSII (here referred to as qI)

[33,41,43]. To decrease excess energy that phototrophs receive under longlasting light

periods, reversible phosphorylation of the light-harvesting complex II and a decrease in the

light-harvesting antenna size might occur [37,39].

Generally, the ratio between non-photochemically and photochemically quenched energy, and

the probability of damaging the photosystems by ROS evolution, as a result of a failure of the

excitation dissipation mechanisms in place, increases with light flash period duration, causing a

drop in photosynthetic efficiency. Under frequencies and duty cycles that are too low and too

short, respectively, for obtaining a biological flashing light effect, phototrophs use more-

complex and energy-demanding excitation dissipation mechanisms during the light period

Trends in Biotechnology, November 2017, Vol. 35, No. 11 1091



Box 1. Kinetics of the Linear Electron Transfer Chain (LET)

Photons emitted from a light source are absorbed through light-harvesting pigment complexes within femtoseconds. About 300–500 ps are necessary to transfer

shared excited energy states (excitons) through inter-protein hopping and magnetic resonance to the reaction centers of PSII (reaction center II or P680), causing the

excitation of an electron. The reaction center requires two electrons for reduction and ‘closure’ (i.e., P680*; Figure I) [32]. Once the reaction center is in the ‘closed’

state, further excess photon energy cannot be transferred to the reaction center II and is released through energy dissipation mechanisms. The low redox state of the

P680* reduces the primary electron acceptor pheophytin within 3–8 ps, becoming oxidized (P680+). The electrons from pheophytin are transferred to the primary (Qa)

and secondary (Qb) acceptor sites within �200–500 ps and 700–1200 ms, respectively. Upon Qb reduction, this site acquires protons from the stroma, forming

plastoquinol. In turn, plastoquinol diffuses towards the PQ pool in the thylakoid membrane upon exchange with one PQ molecule, which binds to the Qb site. The PQ

pool serves as an energy store. The energy is retrieved upon the oxidation of plastoquinol by the cytochrome b6f complex via the q-cycle [77].

The high redox potential of P680+ initiates an electron transfer from the water-oxidizing complex through the intermediate electron carrier tyrosine, which reduces

P680+ in a succession of steps (S0–S3). Full oxidation of two water molecules and the release of four electrons takes place in about 1–2 ms [35]. As P680 is formed,

the reaction center II reopens and the subsequent exciton capture takes place.

The slowest (�3–5 ms) and thus limiting step in the linear electron transfer chain is the oxidation of plastoquinol by cytochrome b6f. Two protons are released into the

thylakoid lumen and electrons are transferred towards plastocyanin. Plastocyanin transfers electrons towards PSI within 150–550 ms. In PSI, electrons are passed to

the electron donor P700 (reaction center I), forming P700* through photon energy delivered by the light-harvesting complex I within femtoseconds. Electrons are

passed to the electron acceptors A0, A1, and the 4Fe–4S iron–sulfur centers Fx, Fa, and Fb within picoseconds, reducing the final electron acceptor, ferredoxin.

Because of these short turnover times, the reactions in P700 are considered to be a spontaneous reaction [32,34]. Ferredoxin can donate electrons to ferredoxin-

NADP+ reductase to form NADPH, completing the LET. The cyclic electron transfer chain is activated to produce additional ATP and NAPDH required for carbon

assimilation via the Calvin–Benson cycle.
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Figure I. Simplified Diagram of the Major Kinetics of Electron Transfers in Phototrophs, Showing the Linear Electron Transfer Chain (LET) and

Other Alternative Pathways. Reaction times and pathways are summarized from [35,39]. Note that the stoichiometric values for H+, ATP, and NADPH are

variable. To balance electron flow under fluctuating light regimes, phototrophs use, in a species-dependent manner, different Flv proteins to reduce oxygen to water

at the expense of NADPH or electrons from the photosystems [74]. Abbreviations: A1, phylloquinone-based electron acceptor; Ao, chlorophyll based electron

acceptor; Cytb6f, cytochrome b6f complex; Cyt bL/H, f, b-type hemes cytochrome bL/H, f; FA/FB and Fx, electron acceptor 4Fe–4S iron–sulfur centers; FeS, Rieske

iron–sulfur protein; FD, ferredoxin; Flv, flavodiiron protein; FNR, ferredoxin-NADP+ reductase; LHC, light-harvesting complex; P680, photosystem II; P700,

photosystem I; PC, plastocyanin; Phe, pheophytin; Pi, inorganic phosphorus; PQ, plastoquinone; PQH2, plastoquinol; QA, primary acceptor site; QB, secondary

acceptor site; Qi, quinone reductase; Qo, quinol oxidase; RuBP, ribulose-1,5-bisphosphate; Tyr, tyrosine; WOC, water-oxidizing complex.
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(e.g., photoprotective pigment synthesis or high-energy state quenching [33]), and respiration

rates exceed photosynthetic rates during the extended dark period [15,44,45]. Both situations

will ultimately decrease or restrict net photosynthetic efficiency [27] and alter the biochemical

profile and appearance of microalgal and cyanobacterial cells. Changes include cell size,

pigment composition, intracellular ultrastructure, the expression of protective proteins (e.g.,

PGR5 or STN7), the ratio between PSI and PSII [8], light-harvesting antenna size, ribulose-1,5-

bisphosphate-carboxylase/oxygenase (RuBisCO) activity, and sugar and starch contents

[8,11,30,46–51]. These changes are typical for responses of microalgae to intense light

[49,50], and thus can be used as indicators if the frequency and duty cycle are inadequate

for a phototroph to experience the biological flashing light effect. Conversely, if phototrophs are

exposed to increasing frequencies (e.g., f > 10 Hz; f = �0.1–0.5), these changes become less

obvious [46–48,52,53] because a phototroph buffers and quenches photoenergy delivered

Energy storage
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Figure 2. Response Timescales of Phototrophs Exposed to Different Flash Period Durations (tl) with High Flash Intensity (Il) That Arise if the Flashing

Light Is Composed of a Short Constant Duty Cycle (e.g., f < 0.1) and a Saturating Mean Light Intensity (Ia). A given flash period duration is inversely

proportional to the flashing light frequency (f). Timescales of events were obtained from results summarized in Tables 1,S1 and elsewhere [33,34,37]. Bar length

represents the approximate timescale of the initiation of a given event. Abbreviations: CET, cyclic electron transfer; Chl, chlorophyll; Dd-Dt, diadinoxanthin–diatoxanthin;

FDPs, flavodiiron proteins; LETC, linear electron transfer chain; LHC, light-harvesting complex; LHP, light-harvesting pigment; Lx-L, lutein epoxide; NPQ, non-

photochemical quenching; PGR5, proton gradient regulator 5; PGRL1, a ferredoxin-plastoquinone reductase that is apparently involved in CET in chlorophytes; PQ,

plastoquinone; PQH2, plastoquinol; PS, photosystem; Q1/2, quenching sites 1 and 2; qE, energy state quenching; qI, photoinactivation of photosystem II; RC, reaction

center; RuBisCO, ribulose-1,5-bisphosphate-carboxylase/oxygenase; STN7, a serine/threonine-protein kinase involved in the adaptation to changing light conditions;

VAZ, violaxanthin–astaxanthin–zeaxanthin.
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during the light period with a similar efficiency to that under continuous light. Nevertheless,

lower intracellular chlorophyll a and carotenoid contents are probably not good indicators for

the flashing light effect because lower amounts of these pigments occur in several species

under a wide range of flashing light conditions (e.g., f = 0.1–100 Hz; Table 1) [44,46–49].

Table 1. Impact of Flashing Light with Different Duty Cycles and Frequencies on Microalgal Compositiona,b

Microalga Frequencies

( f)

Duty cycles

(f)

Outcome Refs

Chlamydomonas reinhardtii 1–100 Hz 0.5 Absorption spectra unaffected by flashing light, no obvious shift in

carotenoid:chlorophyll ratio in absorption spectra.

[20,21]

Chlamydomonas reinhardtii 0.5–5 Hz 0.5 Fatty acid profile and total lipids were mostly unaffected by flashing light. [75]

Chlamydomonas reinhardtii 0.00138–1 Hz 0.5 Decreasing chlorophyll a content with increasing frequency (Ia = 220 mmol

photons m�2 s�1). The lowest amount of chlorophyll a,b and carotenoids

was under f = 1 Hz.

[44]

Chlorella kessleri 5Hz–37 kHz 0.5 Higher intracellular chlorophyll concentrations under flashing light as

compared to continuous light.

[11]

Chlorella pyrenoidosa 2.5–

25 kHz

0.0125–0.125 Immediate sugar accumulation when exposed to saturating light flashes for

18 h. Dark periods lasting only 6 h led in turn to an accumulation of nucleic

acids and complete consumption of accumulated sugars. Protein and

chlorophyll levels unaffected.

[24]

Dunaliella salina 0.017–5 Hz 0.4–0.66 Chlorophyll a content was usually lower under flashing light (Ia = 400 mmol

photons m�2 s�1) conditions as compared to continuous light. A f = 5 Hz

gave similar results to continuous light. D. salina exposed to flashing light

conditions always displayed a lower total lipid content.

[50]

Haematococcus pluvialis 25–200 Hz 0.17, 0.33, 0.67 Final astaxanthin and biomass concentrations in the medium were higher

under flashing light as compared to continuous light. With increasing duty

cycle but the same frequency, the final volumetric astaxanthin

concentration rose. The use of flashing light lowered energy consumption

for astaxanthin production by up to 70%.

[76]

Isochrysis galbana 10 kHz 0.5 No effects on total lipid content in I. galbana or cell weight. Fatty acid profile

was similar under flashing and continuous light.

[52]

Nannochloropsis oceanica CY2 7,8,9 Hz 0.5 No significant differences in EPA content between cells under flashing and

continuous light.

[53]

Nannochloropsis salina 1–30 Hz 0.1, 0.33 Flashing light had no effect on total lipid content and usually caused

reduced accumulation of chlorophyll a and carotenoid:chlorophyll ratios

(except f = 10 Hz, f = 0.33).

[48]

Porphyridium purpureum 0.17–100 Hz 0.17, 0.5 A frequency of 0.17 Hz increased the intracellular phycoerythrin and

chlorophyll a content as compared to either continuous light or 25 Hz and

f = 0.33. Bound and free polysaccharides were affected marginally.

Production rates of phycoerythrin and free polysaccharides were highest

under f = 100 Hz, f = 0.5 (Il = 540 mmol photons m�2 s�1).

[49]

Scenedesmus bicellularis �100 Hz 0.5 Long-term exposure to flashing light did not affect total lipids, proteins,

carbohydrates, fatty acids, or amino acids. However, flashing light slightly

lowered chlorophyll a and b levels, increased chlorophyll a/b ratios,

decreased carotenoid content, and increased the carotenoid/chlorophyll a

ratio. RuBisCO initial activity (not activated) and RuBisCO total activity

(activated) were significant higher only under flashing light at a moderate

irradiance of Ia = 175 mmol photons m�2 s�1, whereas low (Ia = 87.5 mmol

photons m�2 s�1) and high (Ia = 350 mmol photons m�2 s�1) mean light

intensities had no effect.

[47]

Scenedesmus obliquus 5, 10, 15 Hz 0.5 Carotenoid:chlorophyll ratio and chlorophyll a content in cells were lower

under flashing light. Carbohydrate, lipid, and protein contents were

unaffected.

[46]

aRefer to Table S1 for a detailed overview of relevant flashing light studies on microalgae, cyanobacteria, and plants.
bAbbreviations: EPA, eicosapentaenoic acid; Ia, mean light intensity during a flashing cycle; Il, light flash intensity; RuBisCO, ribulose-1,5-bisphosphate carboxylase/

oxygenase.
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Limits of Flashing Light on the Electron Transfer Chain

Emerson and Arnold [54] demonstrated that a short light period with an adequate flash intensity

can excite all ‘open’ reaction centers, whereas a sufficiently long dark period allows all reaction

centers to ‘reopen’ and harvest most of the incoming photons of the next light flash. A later

study by Radmer and Kok [55] quantified that a light-harvesting complex containing 400

chlorophyll molecules harvests �2000 electrons per second under full sunlight, whereas

the subsequent carbon fixation reactions are able to process only 100–200 electrons per

second. They showed that the photosynthetic apparatus could only use a small portion of

incident light under continuous light, while, most of the time, reaction centers are closed and

light is non-photochemically quenched.

Recent findings about excitation dissipation mechanisms and the quenching role of the PQ pool

may allow other approaches to determine the optimal flashing light settings required for

photosynthesis. It has been suggested that the species-dependent storage capacity of the

PQ pool for plastoquinol may define the threshold frequency, duty cycle, and the required mean

light intensity beyond which the flashing light effect occurs [26,56]. Vejrazka and colleagues [21]

and Hüner and colleagues [34] pointed out that, if excess plastoquinol is generated, the

plastoquinol:plastoquinone (PQH2:PQ) ratio becomes too high, leading to over-reduction of

the PQ pool, which will prevent the reaction center II from reopening [34]. Such over-reduction

occurs if transfer rates of photonic energy exceed the kinetics of its use by metabolic pathways

that promote growth, including those involved in nitrogen, sulfur, and carbon utilization.

Detrimentally, excess energy can lead to photoinhibition and photo-oxidative damage due

to ROS evolution. Phototrophs can dissipate this energy by, for example, (i) activating the cyclic

electron flow, (ii) phosphorylating and migrating the light-harvesting complex II towards PSI to

reinforce the cyclic electron transfer used to oxidize the PQ pool, or (iii) activating the xantho-

phyll cycle [39]. However, to avoid photoprotective mechanisms and thus inefficient photonic

energy usage, light supply should take place in balance with the reaction kinetics of the linear

electron transfer chain. Interestingly, a light flash lasting picoseconds is already sufficiently long

to excite and close the PSII reaction centers [26]. To restore the ground state of PSII, and thus

to reopen the reaction center II, requires the transfer of this charge from the PSII to the PQ pool

in the form of plastoquinol [57] and the reduction of PSII through the water-oxidizing complex.

To avoid excess of plastoquinol reducing equivalents in the PQ pool, the reduction rate of PQ to

plastoquinol at the Qb site of PSII should be similar to the plastoquinol oxidation rate at the Qo

site of the cytochrome b6f complex. However, an imbalance easily arises because the oxidation

of one plastoquinol takes longer (�3–5 ms) than does reducing PSII by the water-oxidizing

complex (�1–3 ms). To mitigate such imbalances in the linear electron transfer chain, flashing

light may be tailored to a flash period duration of a few hundred picoseconds to reduce

efficiently reaction center II without triggering excitation dissipation mechanisms, and a dark

period of 3–5 ms to allow the timely oxidation of plastoquinol, avoiding over-reduction of the PQ

pool.

However, these kinetics would correspond to a duty cycle of only f = �10�8 and a frequency of

f = 300–500 Hz. Such settings require low switching times, which are problematic to implement

with currently available technologies (Box 2). Indeed, frequencies higher than 300 Hz usually

resulted in a flashing light effect in most phototrophs if the mean light intensity was near

saturation (e.g., Ia � 100 mmol photos s�1 m�2; Table S1 in the supplemental information

online). However, decreasing the mean light intensity towards sub-saturating levels appears to

require higher frequencies to obtain the flashing light effect [26,58]. More specifically, Martín-

Girela and coworkers [58] found a CO2 fixation efficiency of 6.2 photons per fixed CO2

molecule, which was beyond theoretical limits (�8 photons CO2
�1) at a frequency of

10 000 Hz (f = 0.05) with a mean light intensity that was only 5% of the photosaturating

intensity.
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On the other hand, it remains to be seen how phototrophs respond if they are exposed to

extremely low duty cycles (e.g., f < 10�8), with a flash intensity �108-fold higher than the mean

light intensity, which corresponds also to a photon penetration depth eightfold higher than that

of continuous lighting [7]. Under such a timescale, dissipation of excess energy may only take

place via fluorescence or thermal decay, and other more complex and energy-demanding

quenching mechanisms (e.g., mediated by PGR5, PGRL1, flavodiiron proteins, or STN7)

cannot be activated in time [37,59]. This may lead to a more efficient light utilization and

higher photosynthetic efficiencies. On the other hand, these conditions could also increase

flash intensities above a threshold that would instantly cause photodamage. If so, an under-

saturating mean light intensity could be sufficient to achieve the same or even enhanced

Box 2. Technical Limits of Flashing Light Sources

The efficiency of a flashing light system depends on working and switching losses at transistors, built-in pulse-width modulators, controlling units, and LEDs that

interact differently with applied current, frequency, and duty cycle. For example, work losses in transistor switches increase if duty cycle and currents are high, but

they are frequency-independent. Switching losses increase with frequency, although they are current-independent [73]. Photon extraction potential from LEDs is

higher if forward current is increased (i.e., LED overloading), and if light and dark periods are sufficiently short or long, respectively, to allow sufficient heat dissipation

from the LED-chip (Figure I). In this case, frequency and duty cycle are interdependent.

Overloading is a valuable option for flashing light applications, permitting the operation of an LED under higher currents that exceed nominal levels (e.g., by increasing

the supplied voltage), resulting in maximal photon flux during the duty cycle and heat dissipation during the dark period [11,24]. Through overloading, the LED

operates at current densities beyond which the ‘droop effect’ occurs. As result, the photon conversion efficiency drops with increasing forward currents, and maximal

photon extraction cannot exceed a given threshold [78]. During overloading and a shortened duty cycle, the maximal extractable mean light intensity (Ia) per LED

decreases, but the maximal applicable instantaneous forward current and extractable flash intensity increases.

Another parameter is the LED minimal response time (tr_min), which is the major cause for electrical losses when emitting flashing light. The depletion region as the

central internal element of any LED chip creates capacitances that limit the response of single-color LEDs to a few nanoseconds (tr_min = �1–50 ns). Note that

organic LEDs display high capacitances while phosphor-converted LEDs have long (electro)luminescence decay times, and this restricts tr_min to approximately �

1 ms [79–81]. Standard laser diodes display very low capacitance, allowing tr_min < 500 ps [82]. Overloading and chip size increases these capacitances and thus

response times, limiting maximal adjustable frequencies or duty cycles. Lowering the response times of (organic) LEDs is an active field of research aimed at

facilitating efficient visible light communication or screens [80,82,83].

Broadband flashing light research at nanosecond scales can use widely available signal generators connected to high power single-color LEDs or laser diodes as a

cheap solution (e.g., <s2000). For larger-scale systems with high light output, a more robust and cheaper system may be used, based on a slower-responding open

source system (�1 ms) consisting of an Arduino microcontroller coupled with standard LED luminaries (for examples see [50,84]).
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Figure I. The Efficiency of LEDs or Laser Diodes under Pulsed Power Supply Can Be Calculated from Frequency Response Graphs (Bode Plots)

(A). The cut-off frequency ( fc) refers to the maximal adjustable frequency with maximal 50% power losses (commonly referred to as the 3 dB point). From fc, response

times and possible adjustable flashing light regimes can be calculated for different light sources (B). If switching regimes are below 1 ns, a shift from the laws of

classical to quantum mechanics occurs. Overloading (C) is achieved if the input power (Pin_electrical) increases due to higher forward currents that exceed nominal

levels. Nominal conditions are obtained when LEDs operate under continuous power supply and rated (or nominal) currents at a given temperature. Under a nominal

power input (Pin_electical), an LED achieves its nominal light output (Pout_optical) and nominal efficiency (e.g., photon conversion efficiency; PCE = Pout_optical/Pin_electrical)

as defined by the manufacturer. LED light output comes at the cost of efficiency after passing a critical current density beyond which the droop effect occurs (dashed

line), and usually reaches a peak (maximum) with subsequent decline. All values are examples and may differ among diodes. Abbreviations: pc-LED, phosphor-

converted LED; AlGaAs LED, gallium–aluminium–arsenide LED.
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photosynthetic rates compared to continuous lighting with a saturating light intensity, leading to

lower power consumption of artificial lighting. Notably, flash intensities that are inhibitory if

emitted continuously do not inhibit the phototroph if the frequency is high and the duty cycle is

sufficiently short (e.g., f >1 kHz, f < 0.1) for a given mean light intensity [24–26,60–62]. For

example, Tennessen et al. [26] exposed tomato leaves to photoinhibitory flash intensities

(If = 5000 mmol s�1 m�2) at a short duty cycle (f = 0.01) and a high frequency ( f = 5000 Hz)

without impairing photosynthesis. Nevertheless, Ley and Mauzerall [63] found that flash

intensities higher than 22 000–37 000 mmol photons m�2 s�1 (e.g., 1016 photons cm�2

supplied during light periods of 450–750 ns) can indeed cause a decline of oxygen evolution

rates in Chlorella vulgaris cultures (td = 2 s). These findings indicate that mean light intensity,

flash intensity, frequency, and duty cycle are interdependent and must be well balanced to reap

the benefits of artificial flashing light-based phototrophic cultivation.

Physical Boundaries

The most important physical factor of flashing light is the potential to mitigate light attenuation

and increase light delivery in concentrated microalgal cultures [13,49,61,64,65]. Current efforts

to enhance light delivery include intensive mixing, light path minimization, antenna size reduc-

tion, waveband tailoring, or the inclusion of fibers and nanoparticles as waveguides into the

photobioreactor [9,66–69]. In addition to these approaches, high light intensities can increase

photon penetration depth in suspensions as defined by the Beer–Lambert law [7]. This law

describes a linear increase of light penetration depth into microalgal cultures with exponentially

rising light intensity, although the effects of fluorescence or light scattering by different algae are

not considered.

Light intensities that are too high cause photoinhibition of microalgae at the periphery of the

photobioreactor, an effect that is mitigated by increasing mixing rates. Higher mixing rates

minimize the retention time of cells in the high light zone near the walls and in the dark zones in

the middle of the reactor. These high mixing rates improve illumination and can provide light–

dark cycles that are sufficiently fast to obtain the flashing light effect [13,14]. Particularly high

productive cultivation systems benefit from high culture concentrations and light intensities [70].

However, these conditions require extremely high mixing velocities, resulting in high energy

consumption [44,62,71], shearing, cavitation, and pressure changes that impair the physiology

and viability of microalgal cells [70]. Alternatively, a light source can directly emit flashing light,

and this allows the generation of intense light flashes at frequencies and low duty cycles that do

not occur in nature or in any culture vessel merely by adjusting the mixing velocity of the growth

medium.

Because mitigating light attenuation is one of the main arguments for flashing light-induced

growth enhancement [13,49,61,64,65], production systems that operate at high cell concen-

trations or culturing vessels with long light path lengths are promising targets for flashing light-

related power savings. Although this trend has only been observed in a few studies [11,61,70],

the true potential of mitigating light attenuation in dense microalgal cultures remains uncertain,

particularly at extremely high light flash intensities (e.g., If > 10 000 mmol photons m�2 s�1),

delivered at low duty cycles (e.g., f < 0.01) and high frequencies (e.g., f > 1 kHz).

Technical Boundaries

In artificial light-based microalgal production, light with low and high light periods (e.g., flickering

or fluctuating light) is naturally emitted by common gas discharge lamps, whereas flashing light

is generated when the light intensity of LEDs is controlled via pulse-width modulation (e.g.,

Figure 1). The intensity of light emitted by fluorescent lamps and mercury or sodium vapor

lamps changes between maximum and minimum values (often referred as ‘flickering light’) at a

ballast- and grid-dependent frequency [47]. For example, fluorescent lamps driven by a
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conventional magnetic or electronic ballast emit flickering light at frequencies of 100–120 Hz

and 40–120 kHz, respectively. On the other hand, induction lamps operate at frequencies

ranging from hundreds of kHz to tens of MHz [72]. Therefore, it becomes clear that neither

induction nor gas discharge lamps should be used as ‘non-flashing’ controls in any flashing

light study. In addition, gas discharge lamps are inefficient in terms of photon conversion

efficiency if operated at low duty cycles, and may be unsuitable for customized flashing light

modulation. Alternatively, amplitude- or pulse width-modulated LEDs can efficiently emit

continuous and flashing light, respectively. However, commonly available pulse width-modu-

lated dimmers generate flashing light only between frequencies of 150 and 300 Hz, which may

be not sufficient to obtain a flashing light effect if dimmed, although higher frequencies and

lower switching times are possible (Box 2).

For microalgal production, a promising flashing LED device may operate at a (sub)saturating

mean light intensity, which requires a light flash intensity that increases in inverse proportion to

the duty cycle. The emission of high light flash intensities is possible if the stock densities of

LEDs in a luminary array are increased, which has additional costs. Alternatively, the number of

photons emitted per light emitter can be enhanced under flashing light if the forward current to

an LED is increased far beyond the nominal currents used under continuous operating

conditions. This so-called ‘overloading’ demands precise switching regimes to extract the

highest number of photons with the highest efficiency possible. Considering all losses between

power source and light emission of a flashing light system (referred to as wall plug efficiency),

most discriminative parameters include (i) response time and photon conversion efficiency of

the LED, (ii) operating frequency and duty cycle, and (iii) the efficiency factor of the electronic

ballast and pulse-width modulation unit. Generally, the wall plug efficiency of a flashing lighting

system decreases with increasing frequency, decreasing duty cycle, and increasing forward

current because of working and switching losses at transistors and LEDs [73]. The efficiency

drop can be damped if transistors and LEDs display low response times as well as low working

and switching losses under the flashing light condition and currents employed. A joint effort

between physicists and biologists will thus be necessary to develop efficient flashing light

systems that enhance energy use in artificial light-based microalgal production.

Concluding Remarks and Future Perspectives

Using flashing lights is a promising strategy to supply photonic energy to phototrophic

organisms, thereby increasing biomass productivities and reducing power consumption in

artificial light-based production systems. Flashing light can also be applied to established

methods employed to improve the photosynthetic performance of microalgal cultures, such as

mixing, light guides, or waveband tailoring. The optimal settings of a flashing light regime should

correspond to a frequency that is sufficiently high to obtain the same or higher photosynthetic

efficiencies than those under continuous light (e.g., f > 300–500 Hz; biological factor) at the

shortest possible duty cycle to obtain the highest possible photon penetration depth (physical

factor), but both within the range of adequate power consumption (technical factor). So far,

most studies have tested flashing light conditions with low frequencies ( f < 100 Hz) and

relatively high duty cycles (f > 0.1) to mimic conditions that are present in mixed microalgal

cultures. However, data beyond these conditions will be of particular interest for artificial light-

based microalgal production. Mainstream flashing light research and industrial application will

benefit specifically from inexpensive and technically mature LED modules as light sources.

Nevertheless, current LED technology cannot modulate flashing light in response timescales

close to the boundaries imposed by the biological responses, such as light-harvesting events

within the range of femto- to picoseconds. A possible solution to this limitation is the use of

faster-responding laser diodes (see Outstanding Questions) which could replace common

LEDs in cutting-edge research, as well as in future industrial production facilities. Cultures

Outstanding Questions

How do concentrated microalgae cul-

tures respond to frequencies >100 Hz

and duty cycles <0.1?

Flashing light can induce pigments,

fatty acids, and possibly other biomo-

lecules in microalgae. What are the

best flashing light settings to induce

a given target biomolecule in

microalgae?

Do phototrophs downregulate energy

dissipation mechanisms with decreas-

ing duty cycles if the frequency is

�300 Hz?

How does mixing quantitatively affect

the actual supplied flashing light con-

ditions to which an algal cell is

exposed?

Does flashing light with light flashes

lasting only femto- to picoseconds

and extended dark periods of 3–

5 ms improve photosynthetic efficien-

cies in light harvesting?

Flashing light supplies light in an

approximately square waveform to a

microalgal culture. Light and dark peri-

ods with the kinetics of photosynthesis

(e.g., quantum coherence states, elec-

tron states at the LETC) or travel veloc-

ities of cells in a mixed culture should

be coordinated. What is the effect and

potential of coordinating flashing light

with photosynthetic energy transfer

rates and the physiology of microalgal

cultures?
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exposed to sub-nanosecond light flashes might obey the laws of quantum mechanics, which

can result in unforeseeable effects on photosynthesis and growth of phototrophs. Research on

charge transfer on quantum level, as for example implemented by the EU project H2020-

MSCA-QuantumPhotosynth, may shed new light on the limits of photosynthesis and more

efficient photon utilization by microalgae.
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Highlights: 

 Flashing light did not improve microalgal growth compared to continuous light. 

 Flashing light effect obtained at maximal 500 Hz (tested duty cycles: 0.001-0.7). 

 Frequencies <200-500 Hz inhibited microalgal growth. 

 Respiration exceeded photosynthetic rates in dense cultures exposed to <8 Hz. 

 Flashing light at low light intensities inhibited less than at high intensities. 

  



2 

Abstract 

Self-shading of cells inside a photobioreactor is the major bottleneck in microalgal 

production. Flashing light was previously proposed as a promising strategy to mitigate 

this light attenuation, as high intensity light flashes penetrate deep into a culture, 

promoting photosynthesis. Here, Tetraselmis chui and Chlorella stigmatophora were 

exposed to flashing light using different frequencies (0.01 Hz-1 MHz), duty cycles (0.001-

0.7) and light intensities (50-1000 µmol s-1 m-2). Compared to continuous light, T. chui 

cultures revealed no improvement of growth or photosynthetic oxygen evolution under 

flashing light at frequencies >500 Hz regardless to the adjusted duty cycle, light intensity 

or culture concentrations. Also, the combination of flashing- and continuous light did 

not benefit photosynthetic performance of concentrated T. chui cultures. Lastly, batch 

cultures of C. stigmatophora and T. chui showed no productivity improvement under 

flashing light (f= 40, 400 Contrary to previous studies, we conclude no benefit of flashing 

light for microalgal growth. 

Key words: Pulsed light, Tetraselmis, Chlorella, Respiration, Photosynthesis 



3 

1. Introduction 

Research and development on microalgal biotechnology dates back to the 19th 

century, and the first commercial cultivation was reported in the 1960s (Milledge 2011). 

Since then, technologies have evolved and innovative production systems such as 

tubular or flat panel photobioreactors (PBRs) have been employed to improve the 

biomass throughput per area. Nevertheless, the limitation of any PBR is the inefficiency 

in delivering photons at optimum wavelengths and quantities to drive photosynthesis in 

all microalgae cells within a culture (de Mooij et al. 2016). The cells at the periphery of 

the PBR prevent profound penetration of light into the culture, limiting the 

photosynthetic efficiency of the whole culture and, eventually, its productivity (Abu-

Ghosh et al. 2016).  

To improve the delivery of photons to cells in a culture, light intensities as well as 

culture mixing velocities should be increased. While high-intense light penetrates 

deeper into a PBR, appropriate culture mixing rates allow the algal cells to move faster 

from the light-limited (or dark) to light-saturated zones (Abu-Ghosh et al. 2016; Brindley 

et al. 2016). In the latter case, the fast transition from light- to dark zones helps to avoid 

photoinhibition of cells at the periphery but ensures the sufficient absorption of light 

energy by all cells to carry out photosynthesis and convert this energy into energy-bound 

compounds (e.g., sugars in the Calvin cycle, NADPH, ATP).  

In most production systems, as soon as a high cell concentration is reached, the 

proportion of light zones to dark zones becomes too low and the retention time of cells 

in the dark area becomes too long, which increases respiration, leading to substantial 

biomass losses. To maximise growth at these high cell concentrations and to avoid 

photoinhibition, the supplied light as well as the mixing velocity should be increased. 

However, this approach has its drawbacks; the high energy consumption of mixing 

pumps and light-emitting lamps increase the production costs, and high mixing velocities 

can impair growth (Brindley et al. 2004). Alternatively, maintaining growth at high cell 

concentrations can be achieved by narrowing the light path between the light source 

and the culture (e.g., by light guides or decreasing thickness of the PBR) or tailoring 

wavelengths (de Mooij et al. 2016; Schulze et al. 2014). Yet, another approach is the use 

of flashing (or pulsed-) light emitting diodes (LEDs) to generate high-light flashes 

artificially, which penetrate deep into the culture (Abu-Ghosh et al. 2015; Schulze et al. 

2017). Flashing LEDs emit periodically flashing cycles, which are composed of short light 

flash periods (or pulses; tl) and extended dark periods (td). Choosing an ideal repetition 

rate (i.e., frequency) for the flashing cycle is important to accomplish the so-called 
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“flashing light effect”, where maximal photosynthetic rates are reached. Previous 

studies obtained contradictory results about the benefits of flashing light; they focused 

on flashing conditions such as low frequencies (f < 100 Hz) and relatively high duty cycles 

(DC > 0.1) that are present in mixed cultures (Grobbelaar 2009, 2006; Iluz et al. 2012; 

Raven and Ralph 2014; Sager and Giger 1980). Moreover, it is not certain if flashing light 

of high frequencies and short duty cycles (e.g., f > 100 Hz, DC < 0.1) can significantly 

improve growth performance of microalgae. In Schulze et al. (2017), we reviewed the 

potential of flashing light to improve microalgal growth, i.e. proportional to the duty 

cycle, and suggested a minimum theoretical frequency threshold of f ~ 300-500 Hz 

necessary to obtain the biological flashing light effect in microalgae. In addition, 

previous studies have indicated a threshold frequency at which microalgae experience 

a short enhancement of growth (Nedbal et al. 1996; Vejrazka et al. 2012). We used the 

latest LED and solid-state technologies to examine the growth response of the two green 

microalgae Tetraselmis chui Butcher and Chlorella stigmatophora by exposing them to 

different frequencies (e.g., 0.01 Hz - 1 MHz), duty cycles (e.g., 0.001 - 0.7), light 

intensities (50-1000 µmol s-1 m-2) and culture concentrations. In addition, we have 

compared previously reported results with ours to understand if flashing light has a 

significant benefit on microalgal production.  

2. Methods 

2.1. Trials in photosynthetic chamber 

In a first trial, we tested the oxygen evolution response of T. chui (SAG 19.52) cultures 

to flashing light inside a photosynthetic chamber; here the factors are the culture´s 

biomass concentration, supplied averaged light intensity or adjusted duty cycles and 

frequencies. Diluted T. chui cultures had a biomass concentration (dry weight per litre; 

g DW L-1) of 0.13 g DW L-1 (±10%) and were exposed to three different average light 

intensities: Ia= 50, 500 and 1000 µmol s-1 m-2. Concentrated T. chui cultures with a 

biomass concentration of 4.7 g DW L-1 (±10%) were exposed to two average light 

intensities: Ia= 500 and 1000 µmol s-1 m-2. The lowest light intensity (Ia= 50 µmol s-1 m-2) 

did not yield a positive oxygen evolution rate, and hence excluded from the 

concentrated culture trials. The range of tested frequencies and duty cycles ranked from 

10-10,000Hz and 0.01-0.7, respectively.  

In addition to the above-mentioned broad-scale screening, supplementary trials were 

conducted to understand the effect of extreme flashing light conditions on diluted and 

concentrated cultures. Test conditions were f= 0.01 Hz-2 MHz, DC < 0.01 with maximal 
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instantaneous flash intensities of up to Il=100,000 µmol s-1 m-2 whenever technically 

feasible. Also, the simultaneous supply of continuous background light (150 µmol s-1 m-

2) emitted with flashing light (350 µmol s-1 m-2) was tested on concentrated T. chui 

cultures (f = 1-10,000 Hz, DC = 0.05 and 0.1, Ia =500 µmol s-1 m-2), as a promising 

approach for microalgal production (Abu-Ghosh et al. 2015). 

2.2. Trials under batch conditions 

In a second trial, we cultivated C. stigmatophora (RCC 661) and T. chui under batch 

conditions for 14 days using flashing light to understand long-term effects of flashing 

lights on different microalgal species. Both strains were grown for 14 days under flashing 

light at frequencies of 40 and 400 Hz and a duty cycle of 0.05 using an average light 

intensity of Ia= 200 µmol s-1 m-2. Here we considered the technical feasibility of these 

conditions for industrial artificial light-based cultivation systems. To check the effects of 

flashing light of under-saturating average light intensities, T. chui was additionally grown 

at 40 and 400 Hz (DC= 0.05) with an average light intensity of Ia= 50 µmol s-1 m-2.  

All average light intensities (Ia) under flashing light are the time integrated obtained 

during one flashing cycle, which is composed of the light flash period (tl) with a given 

instantaneous light intensity Il and the dark phase td, where no light is emitted (e.g., 

Id= 0 µmol s-1 m-2; see Schulze et al. (2017) for further details). The instantaneous light 

intensity and the duty cycle are inversely proportional at a given average light intensity. 

The applied average light intensities (Ia=50-1000 µmol s-1 m-2) were measured (QSL-100; 

Biospherical Instruments, San Diego, CA) inside the distilled water-filled photosynthetic 

chamber or cultivation flask. 

2.3. Stock cultures 

Tetraselmis chui was cultivated continuously (dilution rate: 0.7 d-1; target biomass 

concentration: 1.5 g DW L-1) in a 2 L-bubble column PBR under a light intensity of 

400 µmol s-1 m-2. This culture was kept inside a climate chamber (T= 15°C) and was used 

as inoculum for all experiments, referred as stock (1).  

For the experiments with the diluted cultures, around 150 mL of stock (1) was 

transferred into a second PBR containing 2 L fresh medium to obtain a final biomass 

concentration of ~0.13 g DW L-1, referred as stock (2). This dilute culture was maintained 

at average light intensities of Ia= 50, 500 or 1000 µmol s-1 m-2; referred as stock 2.1, 2.2 

and 2.3, respectively. After one day of acclimation to a given average light intensity, the 
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culture was used for the flashing light experiments in the photosynthetic chamber as 

described further below.  

For the experiments with the concentrated cultures, the overflow of stock (1) was 

connected to a second PBR with an adjusted light intensity of 2000 µmol s-1 m-2 to obtain 

a higher biomass concentration of ~4.7 g DW L-1, referred as stock (3).  

The growth medium for stock (1) and stock (2) was a modified F-medium consisting of 

5.3 mM NaNO3, 0.22 mM NaH2PO4H2O, 35 µM FeCL3*6H2O, 35 µM Na2EDTA*2H2O, 

0.12 µM CuSO4*5H2O, 0.078 µM Na2MoO4*2H2O, 0.23 µM ZnSO4*7H2O, 

0.126 µM CoCl2*6H2O, 2.73 µM MnCl2*4H2O, adjusted to a salinity of 35 ppt using 

artificial sea salt (PRODAC International S.r.l., Cittadella, Italy). For stock (3), twice the 

aforementioned nutrient concentration was used to ensure nutrient-sufficient growth 

conditions. Non-flashing light (current controlled warm white LEDs, 2700K) was supplied 

24 h/day to all stock cultures. The adjusted light intensities were measured inside the 

PBR when filled with distilled water (QSL-100; Biospherical Instruments, San Diego, CA). 

All cultures were aerated and supplemented with CO2 on demand at a pH of 7.5 (Hanna 

BL 931700 pH controller instruments, Bedfordshire, UK). The cultures were 

microscopically checked daily for contaminations and cell viability. The cultures were 

maintained at 15°C using a heat exchanger (F250, Julabo GmbH, Seelbach, Germany), 

which was connected to the water jacket of each PBR. 

2.4. Experimental setup 

Oxygen evolution measurements were conducted according to Brindley et al. (2010), 

using a flat panel reactor with a working volume of 200 mL as the photosynthetic 

chamber. This chamber had side lengths of 10x10 cm, providing a front surface area of 

100 cm2 and a light path length of 2 cm. The chamber was lit from the front (100 cm2), 

and the water jacket around the chamber was connected to a heat exchanger (F250, 

Julabo GmbH) to maintain the temperature of the culture inside the chamber at 15°C. A 

rubber cover on the top of the chamber served as an insulation, minimising gas exchange 

with the environment. The rubber cover had three openings to fit different accessories; 

(1) a mixer, (2) a funnel to fill the chamber with fresh culture and (3) an oxygen probe 

(Crison 6050 oxygen, Crison Instruments S.A., Barcelona, Spain) to measure the oxygen 

evolution. The mixer kept the microalgal cells in suspension and facilitated the gas 

exchange between the culture and the oxygen probe. The oxygen probe was connected 

to a Mettler Toledo O24100 transmitter (Mettler-Toledo S.A.E., Barcelona, Spain), which 
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transferred the oxygen evolution data to a data logger (Jabjack U12, LabJack ltd. 

Lakewood, US).  

The following procedures were adopted for each trial: (1) filling of the photosynthetic 

chamber with the fresh stock cultures (stock 2.1, 2.2, 2.3 or 3); (2) monitoring the oxygen 

evolution rate under a given light condition for 10-20 min; (3) draining the culture 

through an opening at the bottom of the chamber into an Erlenmeyer flask; (4) washing 

and filling of the chamber with fresh stock culture for the next experiment; and (5) 

transferring the already tested culture back to the stock culture. Every day, after the 

experiment, the chamber was cleaned and disinfected with ethanol (70% v/v). 

Every 3-4 h, we measured the oxygen evolution of the cultures under continuous light 

at the same average intensity as used for the flashing light trials (e.g., Ia=50, 500 or 

1000 s-1 m-2); to detect possible shifts in oxygen evolution due to growth-stage changes 

or cell attachment to the corners or walls of the chamber. These control measurements 

were used to normalise the data obtained under flashing light, allowing comparison of 

results from different days, culture concentrations or light intensities.  

A photosynthesis-irradiance (P-I) curve was generated to estimate the photo-

acclimation stage of the stock cultures. Here, we measured the oxygen evolution rates 

of dilute cultures adapted to 50 (Stock 2.1), 500 (Stock 2.2) and 1000 (Stock 2.3) µmol s-

1 m-2 and concentrated cultures (stock 3) under incrementally increasing actinic light 

intensities (0-10,000 µmol s-1 m-2). For these trials, control measurements at a fixed 

continuous light intensity of 500 µmol s-1 m-2 were taken every 3-4 h to detect possible 

shifts in oxygen evolution rates due to cell attachment to the chamber or changing 

growth stage of the stock culture. 

All batch cultures were carried out in 1-L borosilicate glass flasks (diameter; d=8 cm) 

filled with 900 mL algal culture (triplicates) in a climate chamber maintained at 15°C, 

using the inocula obtained from stock (1). Air enriched with 1% CO2 was used to mix the 

cultures. The growth medium was the same as used for stock (3). The biomass 

concentrations in all cultures used was determined spectrophotometrically at 750 nm 

(OD750) (CM-3500D, Minolta Co., Ltd., Osaka, Japan). In addition, at different time points 

during batch cultivation, culture samples were filtered through pre-dried glass fibre 

filters (pore size ø = 0.7 µm; VWR), washed twice with 0.5 M ammonium bicarbonate, 

dried (T= 70°C) and weighed to determine the dry biomass weight per litre (DW L-1). 

Upon plotting OD750 data vs. dry weight, a linear correlation was obtained (p< 0.05) and 

used to determine biomass concentrations of all cultures on a daily base. 
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2.5. Light supply  

Sixteen warm-white high-power LEDs (2700 K, MHDGWT-0000-000N0HK427G-SB01, 

Opulent Americas, Raleigh, US)mounted on an actively cooled aluminium heat sink 

(10 × 10 cm)lit the photosynthetic chamber. All LEDs were operated in parallel and 

were connected to the output of a pulse width modulator (PWM-OCX, RMCybernetics 

Ltd, Alsager, UK). The pulse signal was provided by a function generator (TG4001, TTi, 

Huntingdon, UK) and controlled via Waveform Manager Plus software (V. 4.01). Bench 

power supplies were used (EA-PS 2042-10B and EA-PS 2084-05B; EA Elektro-Automatik, 

Viersen, Germany) to power the pulse width modulator and LEDs. The voltages and 

currents supplied to the LEDs were regulated by the power sources to adjust the average 

light intensities and to compensate for switching and working losses by the LEDs and the 

pulse width modulator. The light flashes generated by this system were as short as 100 

nanoseconds and the peak flash intensities were up to If = 100,000 µmol s-1 m-2 inside 

the photosynthetic chamber. We were able to attain the highest flash intensities and 

maximal overloading potential only at a frequency threshold of f ≈ 400-1000 Hz. At 

frequencies beyond this threshold, maximum flash intensities decreased to 

20,000 µmol s-1 m-2 (e.g., at f = 1 Hz; duty cycle depended). This reduced the possible 

range of test frequencies and duty cycles under a given average light intensity.  

For the batch culture experiments, 36 warm-white LEDs (2700 K, MHDGWT-0000-

000N0HK427G-SB01) were mounted on an actively cooled aluminium heat sink 

(L=300cm, H=75cm, W=40cm), and the test flashing light conditions (f = 40, 400 Hz, 

DC=0.05) were adjusted by the same pulse width modulators and bench power sources 

that are mentioned above. For the continuous light control treatment, the LEDs were 

directly connected to a current-controlled power source (EA-PS 2084-05B, EA Elektro-

Automatik).  

The flashing light output of the LEDs was measured with a high-speed photodiode 

(OSI FCI-125G-006HRL, kindly provided by OSI Optoelectronics, Inc, Hawthorne, US) 

connected to an electrical resistor. To measure the intensity of flashing light that 

reached the microalgal cultures, the photodiode was mounted waterproof inside a glass 

tube and submerged into the cultures. The voltage drop at the resistor, which 

corresponded to the light output of the LEDs, was displayed on an oscilloscope 

(Picoscope 3000, Pico Technology Ltd., Cambridgeshire, UK) and the values were 

analysed using PicoScope 6 software (V.6.12.9.2917, Pico Technology Ltd.). These 

measurements confirmed that the adjusted conditions in the pulse width modulators 

were emitted by the LEDs.  
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2.6. Data treatment 

The effects of flashing light on oxygen evolution and biomass productivities were 

examined using different analysis of variance (ANOVA). Because not all flashing light 

conditions could be tested for all cultures due to technical and biological limitation, we 

conducted step-wise analysis: First (1), we evaluate effects of frequency (10-10,000 Hz) 

and duty cycle (0.001-0.3) on diluted cultures adapted to 50 µmol s-1 m-2 (Stock 2.1; 

Fig. 2 B,C), based on both the F-statistic and Tukey’s tests. Next, a general ANOVA (2) 

tested the effects of the factors culture concentrations (dilute and concentrated), 

averaged light intensities (Ia= 500 and 1000 µmol s-1 m-2), frequencies (10-10,000 Hz) 

and duty cycles on dilute (Stock 2.2, 2.3) and concentrated (Stock 3) cultures. This 

analysis was done to identify the major factor (based on F-statistics) influencing the 

oxygen evolution rates. Based on this analysis (2), we examined the effect of the main 

factor by a third (3) and fourth (4) ANOVA that tested the effects of duty cycle (0.03-0.7), 

frequency (10-10,000 Hz) and light intensity (500 and 1000 µmol s-1 m-2) on dilute (Stock 

2.2, 2.3) and concentrated (Stock 3) cultures, respectively (Fig. 3 E, F). Lastly, a fifth 

ANOVA (5) was conducted on all diluted cultures (Stock 2.1-2.3) employing the factors 

light intensity (50, 500 and 1000 µmol s-1 m-2), frequency (10-10,000 Hz) and duty cycle 

(0.03-0.3).  

The F- and p-values resulting from the Type III sum of squares analysis were used to 

describe the impact of a given factor on the response variable photosynthetic oxygen 

evolution in the main text. The adjusted means with standard error from Tukey´s post 

hoc tests from ANOVA (1), (3) and (4) were used to illustrate the impact of frequency 

and duty cycle on a given culture (Fig. 2 B, C; 3 E, F). Post hoc results from ANOVA (5) 

are used to describe effects of different light intensities in the main text. The reader may 

refer to Table A.1 for test-statistics values.  

Growth parameters for the cultivation experiments were estimated according to 

(2013); Ruiz et al. (2013). A significance level of p< 0.05 was considered for all tests. 

To quantify the photo-acclimation stage for each culture (Stock 2, 3), oxygen evolution 

rates from the P-I curve were modelled, as described by Rubio et al. (2003). Their model 

provides the photosynthetic parameters (i) α, the saturation constant which is the light 

intensity (in µmol s-1 m-2) where neither the metabolic rates nor light are limiting the 

photosynthetic rates, (ii) κ, the half saturation constant of the Calvin cycle (no unit) and 

(iii) Pm, the maximum rate of photosynthesis (mgO2 g-1 s-1; eq. 1):  
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The parameters α, Pm and κ were estimated via curve fitting (Sigma Plot software 

13.0.0.83, Systat Software Inc, San Jose, US) to obtain the oxygen evolution rate (P) 

under a given continuous light intensity (I). Maintenance respiration (m) was subtracted 

from the P data prior to regression.  

Because oxygen evolution performance of cells may change from day to day or hour 

to hour, we normalised the oxygen evolution rates (Pn) from flashing light experiments 

(Pf) in relation to the continuous light measurements (Pc) (eq. 2): 

�� = ��
��           [2] 

When Pn approaches a value of one, oxygen evolution rates under flashing- and 

continuous light become similar, while a Pn lower than one indicates that oxygen 

evolution under flashing light was lower than under continuous light.  

A Sigmoidal model (eq.3) was applied to describe oxygen evolution response (P) to 

frequency or duty cycle (x). 

� = �� + �
�����	� ! "# �        [3] 

Where y0, a, x0 and b are parameters determined via iteration using Sigma Plot 

software.  

In order to visualise and interpret data from the flashing light experiment, a 

mathematical model was designed to predict the oxygen evolution rates obtained in the 

experiment (P) by the variables frequency (f) and duty cycle (DC) and four parameters a, 

b, c and d (eq. 4).  

� = ��$!%!#∗&'(�)�*+
��$!&%!#∗ -./0"&�++∗&'(�)�*∗123��&4+5      [4] 

Data from the low-light adapted cultures (Ia= 50 µmol s-1 m-2) were applied to a model 

proposed by Fernández et al. (2018):  

�
�6 = 7

48 ∙ :1 − ;��8∙<%
7∙= >       [5] 
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Where f is the frequency of the flashing cycle and fβ is the frequency at which the 

maximum photosynthetic performance (Pm) is reached. This equation was developed as 

a special case of the Camacho-Rubio model (2003) by using the following restrictions: 

very short flashes (low duty cycles) and non-saturating averaged light intensities (Ia < α). 

The data sets of flashing light at moderate average light intensity (Ia=500 µmol s-1 m-2) 

and high average light intensity (Ia=1000 µmol s-1 m-2) were not suitable for fitting to 

equation [5] because in both cases Ia > α, violating the non-saturating irradiance 

restriction. 
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3. Results and discussion 

3.1. P-I Curve 

A photosynthetic oxygen evolution rate vs irradiance curve (P-I curve) of T. chui 

cultures obtained under continuous irradiance shows the photo-acclimation stages of 

cultures exposed to the average light intensity used in the flashing light experiments (Ia= 

50, 500 and 1000 µmol s-1 m-2; Stock 2, 3; Fig. 1). The maintenance respiration (oxygen 

evolution rate measured in the darkness) of the 50, 500 and 1000 µmol s-1 m-2 adapted 

cultures (Stock 2.1, 2.2, 2.3) was m= −0.088, −0.16 and −0.26 µmol O2 g-1 s-1, 

respectively, and in concentrated cultures (Stock 3) −0.2 µmol O2 g-1 s-1. The P-I curves 

of all diluted cultures followed a typical pattern, with the following characteristics: (1) 

An increase of oxygen evolution with increasing light intensities, (2) a maximum and (3) 

a subsequent decrease of photosynthetic performance with further rising light levels. 

The ratio between enzymatic and photochemical rate constants (α in µmol s-1 m-2) 

increased with acclimation light intensity (α= 250, 456 and 559 µmol s-1 m-2 for the 50, 

500 and 1000 µmol s-1 m-2 acclimatised cultures, respectively). The α-value of cultures 

acclimatised to 50 µmol s-1 m-2 was higher than the average light intensity supplied 

(α=250 µmol s-1 m-2 > Ia=50 µmol s-1 m-2), indicating that photosynthetic rates are 

limited by the supplied light but not by metabolic turnover rates. The 500 µmol s-1 m-2- 

adapted cultures had an α-value that was similar to the light intensity supplied 

(α= 456 µmol s-1 m-2), indicating that neither the metabolic rates nor light intensity were 

limiting the photosynthetic performance of these cultures. Lastly, the 1000 µmol s-1 m-

2-adapted cultures showed a significantly lower α-value than the supplied light intensity 

(α= 559<1000 µmol s-1 m-2), indicating that photosynthetic rates were maximal for 

T. chui cells and only metabolic turnover rates were limiting the photosynthetic 

performance.  

The half saturation constant of the Calvin cycle (κ, dimensionless) was lower in 500 

and 1000 µmol s-1 m-2-acclimatised cultures (κ=0.236 and 0.497, respectively) as 

compared to 50 µmol s-1 m-2-adapted cells (κ=0.675). The kappa values can be related 

to the photo-acclimation strategies of cells including adjustment of the amount of PSUs, 

chlorophyll molecules per PSU or others (Dubinsky and Stambler 2009; Fernández et al. 

2018; Fisher et al. 1996; Quigg et al. 2006; Rubio et al. 2003).  

The maximum rate of photosynthetic oxygen evolution (Pm) increased with light 

adaption levels (Pm_50 µmol=2.094, Pm_500 µmol=2.545 and Pm_1000 µmol=3.260 µmolO2 g-1 s-1). 

Here, the maximum photosynthetic rates were reached at light intensities ranking from 
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I= 1000-2000 µmol s-1 m-2 for the 50 µmol s-1 m-2-light-adapted cultures, and I=1000-

4000 µmol s-1 m-2 for the 500 and 1000-µmol s-1 m-2-adapted cultures (Fig. 1). Similar 

trends were previously reported for dilute microalgal cultures acclimatised to low, 

moderate and high light intensities (García-Camacho et al. 2012).  

In addition, we tested the oxygen evolution of concentrated cultures in response to 

increasing light (Fig. 1). Generally, photosynthetic rates per cell were ~10 times lower 

compared to dilute cultures and a minimum light intensity of 200 µmol s-1 m-2 inside the 

chamber was necessary to achieve photosynthetic oxygen evolution. Therefore, 

subsequent flashing light experiments in concentrated cultures (Fig. 3, 4) were only 

tested with average light intensities of Ia= 500 and 1000 µmol s-1 m-2, but not with 

Ia= 50 µmol s-1 m-2. The model could not fit the data for concentrated cultures, as no 

maximum was reached at light intensities of 1-10,000 µmol s-1 m-2. 

 

Figure 1. Photosynthesis-irradiance (P-I) curves of stock cultures used in the flashing 

light experiments. The dilute (0.13 g L-1) stock cultures were adapted to continuous light 

with a light intensity of 50 (Stock 2.1), 500 (Stock 2.2) and 1000 (Stock 2.3) µmol s-1 m-2 

while the concentrated culture (4.7 g L-1; Stock 3) was previously cultivated under 2000 

µmol s-1 m-2. Oxygen evolution rates are plotted over incrementally increasing actinic 

light intensities (I= 0-10,000 µmol s-1 m-2). Solid lines are fitted to the gross 

photosynthetic rates using the P-I model described Rubio et al. (2003) until maximal 

photosynthetic oxygen evolution was achieved. We did not obtain any model for 

concentrated cultures or for light intensities under which photoinhibition occurred (no 

line plotted). All model parameters and raw data are given in the supplementary 

material (Table S1).  

The low α value of 50 µmol s-1 m-2-adapted dilute cultures indicates that this culture 

was low-light-adapted, while the high α value of 1000 µmol s-1 m-2-adapted dilute 
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cultures shows that they were high-light-adapted. The 500 µmol s-1 m-2-adapted 

cultures were moderately adapted to high light. The concentrated cultures did not show 

a plateau or any signs of decreasing oxygen evolution rates with increasing light 

intensities tested. A possible explanation is that the concentration of the cultures did 

not allow sufficient mixing of cells using the present methodology in order to respond 

to the average light intensity supplied. Such insufficient mixing conditions let cells 

respond to the instantaneous light intensity, which is considered a flashing light regime 

caused by mixing as described by Terry (1986). Notably, concentrated cultures in stock 

(3) and those in the photosynthetic chamber were characterised by high biomass 

concentration which brings a high proportion of dark layers. Consequently, a high 

residence time of cells in the dark layers (Abu-Ghosh et al. 2016) promotes high 

respiration rates and the adaption of cells to low light intensities, resulting in low 

photosynthetic efficiencies observed in concentrated cultures.  

3.2. Effect of flashing light 

The effects of frequencies, duty cycles and light intensities on dilute cultures and 

concentrated cultures were evaluated and modelled (Fig. 2, 3). Among all tested 

conditions, cultures exposed to flashing light did not exceed the photosynthetic rates 

obtained under continuous light. However, depending on culture concentration and 

average light intensity, inhibitory effects of flashing light on photosynthesis differed 

significantly.  

3.2.1. Dilute low-light adapted cultures 

Flashing light was tested at a low average light intensity (Ia=50 µmol s-1 m-2) on dilute 

microalgal cultures adapted to the same light intensity (Stock 2.1) among different 

frequencies (10-10,000 Hz) and duty cycles (0.001-0.3). The obtained model shows that 

the duty cycle and frequency significantly affected the oxygen evolution rate (p<0.01). 

Considering the F-values, we conclude that duty cycle (F= 5.7) was affecting the oxygen 

evolution rate less than frequency (F= 20.9). Oxygen evolution rates rose sigmoidally 

with increasing duty cycles (Fig. 2B). An analysis of the adjusted means from the Tukey´s 

post hoc test indicated that duty cycles between 0.07-0.3 achieved the higher oxygen 

evolution rate, than compared to 0.003, 0.007 and 0.01 (p< 0.05; Fig. 2B, Table A.1). 

Duty cycles of 0.03, 0.05, 0.0005 and 0.0001 did not differ significantly from the 

aforementioned groups (p> 0.05). A sigmoidal model (r2
adj= 0.98) includes the initial 

exponential rise of oxygen evolution rate over frequencies (Fig. 2C). Frequencies 

between 10-50 Hz produced significantly lower oxygen evolution rates while higher 
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frequencies (≥60 Hz) did not differ to continuous light treatment (Pn≈1, Table A.1). 

Additional modelling according to Fernández et al. (2018) identified the threshold 

frequency under which the flashing light effect occurs in stock (2.1) between ~130 and 

180 Hz at duty cycles ≤0.01 (Table A.1).  

 

 

Figure 2. Effects of flashing light with Ia=50 µmol s-1 m-2 on dilute T. chui cultures 

adapted to the same average light intenstiy (Stock 2.1) among frequencies of 10-

10,000 Hz and duty cycles of 0.001-0.3. Data (black points in A) of normalised oxygen 

evolution rates (Pn) are described by a mathematical model (surface area) as a function 

of duty cycles and frequencies (A). An ANOVA (1) of the data was used to quantify the 

effects of duty cycle (B) and frequency (C, x-axis values are 10the labels), followed by 

Tukey´s post hoc tests. Error bars indicate the standard error from the ANOVA model 

(r2=0.73). Detailed statistical data are given in supplemental materials (Table A1). 

3.2.1. Concentrated vs. dilute cultures  

Concentrated and dilute T. chui cultures (Stock 2.2, 2.3 and 3) were exposed to 

average light intensities of Ia= 500 and 1000 µmol s-1 m-2 and frequencies of 10-

10,000 Hz and duty cycles of 0.01-0.7 whenever technically feasible. An overall ANOVA 

(2) model identified all parameters (duty cycle, frequency, culture concentration and 

averaged light intensity) as significantly affecting the oxygen evolution rates (p< 0.01, 

Table A.1). The culture concentration had the strongest effect on oxygen evolution 

rates, indicated by the highest F-value (F= 62.2), compared to duty cycle (F= 23.8), 

frequency (F= 31.6) and light intensity (F= 11.1; Table A.1). Based on the above result, 

to better understand the effects of culture concentration, we conducted separate 

ANOVA (3 and 4) only on oxygen evolution data from either (i) concentrated or (ii) dilute 

cultures among both average light intensities tested (Ia= 500 and 1000 µmol s-1 m-2). In 
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both models, oxygen evolution rates were mostly affected by duty cycle (Fdil_DC= 24.7, 

Fconc_DC= 10.6) and frequency (Fdil_f= 34.6, Fconc_f= 10.6) and to a lesser extent by average 

light intensity (Fdil_I= 13.7, Fconc_I= 5.4; Table A.1). A plot of the adjusted means of oxygen 

evolution in response to duty cycle and frequency (Tukey´s test; Fig. 3E, F) revealed that 

concentrated cultures scored usually higher oxygen evolution rates at frequencies 

<200 Hz compared to dilute cultures. Generally, oxygen evolution rates were higher at 

duty cycles from 0.3-0.7, while shorter duty cycles caused significantly lower rates (Table 

A.1). Similar to experiments with Stock (2.1) exposed to 50 µmol s-1 m-2 (Fig. 2), adjusted 

means of oxygen evolution exponentially with frequency, approaching its maximum at 

around ~200 Hz. 

A final ANOVA (5) was conducted on diluted cultures (Stock 2.1-2.3) exposed to 50, 

500 and 1000 µmol s-1 m-2 to quantify effects of different light intensities (Table A.1). 

Cultures exposed to average light intensity of 50 µmol s-1 m-2 showed higher oxygen 

evolution rates as compared to those exposed to 1000 µmol s-1 m-2 (Padj=0.996 vs. 

0.850). Lowest oxygen evolution rates were found in 500 µmol s-1 m-2-adapted cultures 

(Padj=0.777; p<0.01).  

Frequencies between 10 and 200 Hz were most discriminative for changes of the 

oxygen evolution, while frequencies above 200-400 Hz usually result in similar 

photosynthetic rates than obtained under continuous light. These findings confirm that 

the photosynthetic apparatus needs a frequency of at least 200 Hz, regardless of the 

adjusted duty cycle; to match the turnover rates (3-5 milliseconds) of the linear electron 

transfer chain [(e.g., Q0 acceptor in the cytochrome b6f complex; (Schulze et al. 2017)]. 
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All cells in dilute cultures received the flashing light with the adjusted average light 

intensity as light attenuation by self-shading was minimal (Brindley et al. 2010; Vejrazka 

et al. 2011), and the effect on the photosynthetic apparatus (i.e., biological flashing light 

effect; Schulze et al 2017) could be tested for low, medium and high light-adapted cells 

(Ia=50, 500 and 1000 µmol s-1 m-2; Stock 2.1-2.3). Our results showed that the 

normalised oxygen evolution rates in 50 µmol s-1 m-2-adapted cells was higher 

compared to 500 or 1000 µmol s-1 m-2-adapted cells (Padj_50µmol > Padj_500-1000µmol) at low 

frequencies (e.g., f= 10-50 Hz; Table A.1). Because the average flashing light intensity in 

50 µmol s-1 m-2-adapted cultures was below the saturation constant (Ia<α50µmol), we 

suggest that  cells may have processed flashing light better than if Ia was similar or higher 

than the saturation constant (e.g., Ia≥ α in 500 and 1000 µmol s-1 m-2-adapted cultures). 

Similar to these results, Jishi et al. (2015) and Xue et al. (2011) reported a decrease of 

light use efficiency under low-frequency flashing light by Spirulina platensis and land 

plants as the supplied average light intensity increased. Jishi et al. (2015) indicated that 

pool size of photosynthetic intermediates [e.g., plastoquinone; (Schulze et al. 2017)] is 

responsible for efficient flashing light utilization for photosynthesis. It has been reported 

that the lower the supplied average light intensity, the better the light use efficiency of 

phototrophs under low-frequency flashing light (Jishi et al. 2012; Xue et al. 2011). 

Contrary to these findings, in the present study, 1000 µmol s-1 m-2-adapted cultures 

(Stock 2.3) tolerated better low-frequency flashing light than 500 µmol s-1 m-2-adapted 

cultures (Padj_500<Padj_1000; ANOVA 5, Table A.1). The 1000 µmol s-1 m-2-adapted cultures 

that were high light-adapted (Ia>α; Fig. 1) may have accumulated more photo-protective 

metabolites (e.g., β-carotene) that protect the cells from long-lasting high light-flashes 

[e.g., low frequency and short duty cycle; (Katsuda et al. 2006; Mouget et al. 1995; Sastre 

2010; Schüler et al. 2017)] compared to 500 µmol s-1 m-2-acclimatised cells (Ia≈α). 

However, to our knowledge no such high average light intensities (Ia=1000 µmol s-1 m-2) 

were tested previously on high light-adapted cultures and further studies are needed to 

confirm the present findings. 

The higher oxygen evolution rates of concentrated over diluted cultures at flashing 

light frequencies from 10-200 Hz and duty cycles <0.1 (Fig. 3E, F) may come from a 

higher light attenuation in concentrated cultures (Abu-Ghosh et al. 2016). Through 

culture mixing, cells could move from potentially light-inhibiting zones at the periphery 

towards low-light layers. Cells travelling through the low-light layers receive a lower 

average light intensity than emitted by the LEDs. As shown in our experiments with 

dilute cultures; lower light intensities were less inhibiting than flashing light of high 
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averaged light intensities (e.g., Padj_50µmol> Padj_500-1000µmol, p<0.01). These dynamics in 

concentrated cultures may have allowed the cells to cope better with flashing light at 

high intensities (Ia=500-1000 µmol s-1 m-2) than diluted cultures where single cells were 

fully exposed to the applied light regime.  

3.2.2. Extension of flashing light frequency and duty cycle 

Previous studies found higher photosynthetic rates of dense and dilute microalgal 

cultures under flashing light compared to continuous light when the duty cycles are 

short or frequencies are high (Liao et al. 2014; Park and Lee 2001; Vejrazka et al. 2012; 

Yago et al. 2012). We were not able to confirm this finding at frequencies between 10 

and 10,000 Hz and duty cycles ≥0.01 (Fig. 2, 3), adopted in our study. In addition, 

previous studies by Abu Gosh and colleagues (2015) showed an enhancement of the 

photosynthetic performance when flashing light was combined with continuous light. 

To get more conclusive results, we conducted additional experiments, extending the 

frequency range to 0.01 Hz-1 MHz and duty cycles <0.01 (whenever technically feasible) 

at a given average light intensity (Fig. 4). We also tested flashing light in combination 

with continuous light (Ia_flashing=350 µmol s-1 m-2 + Ia_continuous=150 µmol s-1 m-2).  

Short duty cycles of 0.005 (500-800 Hz) and 0.007 (200-1000 Hz) were tested for cultures 

exposed to Ia=500 µmol s-1 m-2 (Fig. 3A). Dilute cultures showed slightly reduced oxygen 

evolution rates (Pn= 0.7-0.9) when exposed to a duty cycle of 0.007, f=200-300 Hz and a 

duty cycle of 0.005, f=400-500 Hz, while higher frequencies resulted in similar rates 

compared to continuous light. Oxygen evolution rates of concentrated cultures were 

similar to continuous light among the same test conditions. 
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Figure 4. Effects of extreme flashing light conditions with average light intensities of 

Ia= 500 and 1000 µmol s-1 m-2. Duty cycles < 0.01 were tested on cultures exposed to 

Ia= 500 µmol s-1 m-2 (A; f= 200-800 Hz; Stock 2.2, 3). Frequencies < 10 Hz were tested on 

dilute and concentrated cultures with an average light intensity of Ia= 1000 µmol s-1 m-2 

(B; Stock 2.3, 3) and Ia= 500 µmol s-1 m-2 (C; Stock 2.2, 3). Flashing light with 

Ia= 350 µmol s-1 m-2 combined with 150 µmol s-1 m-2 continuous light (D; Stock 3) was 

tested for a duty cycle of 0.1 and 0.05 and compared with flashing light in dilute cultures 

(Stock 2.2) exposed to only flashing light at the same average light intensity. Sigmoidal 

models (solid lines) were fitted to the normalised oxygen evolution rates (Pn). All data 

and model parameter are given in Table A1 (supplemental material).  
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Low frequencies until 0.01 Hz were tested for cultures exposed to Ia= 1000 µmol s-1 m-

2 at a duty cycle of 0.1 (Fig. 3B) and f≥ 4 Hz for cultures exposed to Ia= 500 µmol s-1 m-2 

and a duty cycle of 0.03 (Fig. 3C). In dilute cultures, oxygen evolution rates at frequencies 

≤10 Hz approached to Pn≈ 0, indicating that rates of photosynthesis and respiration were 

similar. In concentrated cultures, frequencies ≤7 Hz caused a consumption of oxygen 

(negative oxygen evolution rates), indicating that rates of respiration were higher than 

the photosynthetic rates. Oxygen evolution rates reached a minimum of Pn= −0.32 when 

exposed to f= 1 Hz, Ia= 1000 µmol s-1 m-2 and DC= 0.01. Additional testing of frequencies 

of 0.1 and 0.01 Hz showed that oxygen evolution rates did not drop below those 

obtained under dark (no light) conditions (Pn(Dark)=-0.6; Table A.1 in supplemental 

material). 

At frequencies (f> 7-10 Hz), oxygen evolution rates increased sigmoidally in dilute and 

concentrated cultures with rising frequencies until oxygen evolution rates became 

similar to those obtained under continuous light (Pn≈ 1). In concentrated cultures, the 

maximum photosynthetic rate was reached at lower frequencies (f≈ 30-50 Hz) as 

compared to dilute cultures (f= 100-400 Hz).  

At a duty cycle of 0.1, frequencies up to 1 MHz were tested for 50-µmol s-1 m-2-

adapted diluted cultures and up to 200,000 Hz for concentrated cultures exposed to 

Ia=500 µmol s-1 m-2 (Data provided in Table A.1 in supplemental material). Similar to our 

previous findings for frequencies up to 10,000 Hz (Fig. 2, 3), photosynthetic rates 

remained similar compared to continuous light-lit cultures. 

Lastly, concentrated cultures were exposed to continuously emitting LEDs with 

Ia=150 µmol s-1 m-2 in combination with flashing LEDs (Ia= 350 µmol s-1 m-2; DC= 0.05, 

0.1). Again, this treatment was not found to improve oxygen evolution rates of 

concentrated cultures that were exposed to continuous light alone. However, oxygen 

evolution rates were usually higher when compared to the application of only flashing 

light at frequencies from of 10-200 Hz (Fig. 4D). 

Similar to our previous results (Fig. 2, 3), shortening the duty cycles to <0.01 or 

increasing the frequency to 0.2-1 MHz did not improve photosynthesis of dense or dilute 

cultures compared to continuous light. Dilute cultures adapted to Ia= 500 and 

1000 µmol s-1 m-2 did neither show oxygen evolution nor consumption at low 

frequencies and short duty cycles (Fig. 4 B, C), as previously reported for other strains 

under similar conditions (Brindley et al. 2010; Nedbal et al. 1996; Takache et al. 2015; 

Vejrazka et al. 2015). In mass cultures, insufficient mixing can also lead to short duty 
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cycle and low frequency-light regimes, which comes with high residence time of cells in 

the dark layers. Under these conditions, the low light availability could have been 

compensated by depleting intracellular photochemical energy, thereby resulting in 

limited growth (Brindley et al. 2016; Terry 1986). To maintain a high productivity, Grima 

et al. (1999) proposed to design PBRs and scale-up cultures by defining an acceptable 

duration of the dark and light periods.  

In the present study, concentrated cultures exposed to low frequencies (f≤7 Hz) 

showed negative oxygen evolution rates, indicating higher respiration than 

photosynthetic rates. Such negative growth for high average light intensities was also 

reported by Xue et al. (2011). Furthermore, Brindley et al. (2011) predicted the oxygen 

evolution rates for similar conditions. Towards higher frequencies, oxygen evolution 

rates reached those obtained under continuous light, as previously reported for other 

strains (Brindley et al. 2010; Matthijs et al. 1996; Nedbal et al. 1996; Vejrazka et al. 2013; 

Vejrazka et al. 2012, 2011; Vejrazka et al. 2015).  

The light regimes in concentrated cultures are complex and were studied extensively 

(Brindley et al. 2016; Loomba et al. 2018; Melis 2009; Melis et al. 1998). For the sake of 

simplicity, we considered three light zones in concentrated cultures: (1) A high-light zone 

at the surface of the PBR where cells are exposed to most of the emitted light; (2) a low- 

to moderate-light zone i.e., a few millimetres after the high light zone, where cells are 

exposed to low average light intensity; and (3), a dark zone where cells do not receive 

any light and respiration exceeds photosynthetic rates.  

Our cultures with biomass concentrations of ~4.7 g DW L-1 and a light path of 2 cm 

were characterised by a high proportion of dark to light zones; leaving cells most of the 

time in the dark and only for short durations in the (low-) light zones (Loomba et al. 

2018). The cells will have high retention time in the dark regions and hence will 

experience only short exposure to light, causing a low-light adaption of most cells in the 

culture (Brindley et al. 2010). Such a low light adaption comes with a downregulation of 

photoprotective metabolisms (Schüler et al. 2017), and the microalgal cells passing 

through the high light zone will not be able to cope with high light flashes, eventually 

leading to both photodamage (Schulze et al. 2017) and increase in respiration rates. If 

light adaption can account for the negative oxygen evolution rates found at frequencies 

<8 Hz, then a low light-adapted diluted culture (e.g., I= 50 µmol s-1 m-2, Stock 2.1) 

exposed to low-frequency flashing light with short duty cycles at a high average light 

intensity (e.g., Ia=500 µmol s-1 m-2, DC=0.1, f=10 Hz) should also trigger a negative 

oxygen evolution rate. In an additional experimental set up, we tested these conditions 
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(Table A.1, supplementary material) and indeed observed that 50 µmol s-1 m-2-adapted 

dilute cultures (Stock 2.1) exposed to 500 µmol s-1 m-2-flashing light showed a negative 

oxygen evolution rate at low frequencies (f= 10-80 Hz, DC= 0.05, 0.07).  

When the cells were stimulated with frequencies from 10 to 100 Hz, the growth of 

cells in the periphery of dense cultures were less inhibited, and cells in the low- to 

medium-lit zones could already use this flashing light efficiently for photosynthesis, as 

shown in our results with dilute cultures that achieved a higher normalised oxygen 

evolution rate at low average light intensities as compared to higher intensities (ANOVA 

5). Such effect could explain why concentrated cultures exposed to frequencies of f=10-

100 Hz achieved higher oxygen evolution rates than dilute cultures in the same flashing 

light range. 

Regardless of the flashing light conditions, cells in dark zones were likely to show 

higher respiration rates than photosynthetic rates, as these cells received no light, 

adding up the total respiration of the culture. 

In summary, cells in each zone of concentrated cultures responded differently to 

flashing light, depending on the prevailing average light intensity. We suggest that the 

observations in concentrated cultures are a result of three factors: (1) inhibition of cells 

in high light intensity zones; (2) better light utilisation efficiency of cells in low- or 

moderate-lit zones and (3) high respiration rates of cells in dark zones. 

3.3. Batch experiments 

Previous studies about microalgae cultivation using flashing light indicated practically 

better growth as compared to continuous light (Katsuda et al. 2006; Liao et al. 2014; 

Lunka and Bayless 2013; Park and Lee 2000; Sastre 2010; Vejrazka et al. 2012; Xue et al. 

2011; Yago et al. 2014; Yoshioka et al. 2012). Even though photoproduction processes 

occur within milliseconds (Bernardi et al. 2017), the short exposure time of cultures to 

flashing light during the oxygen evolution trials (10-20 min; Fig. 1-4) could not detect 

beneficial effects that may come from cell acclimation to flashing light or from changing 

biomass concentration (or optical properties) of cultures. Therefore, we cultivated 

C. stigmatophora and T. chui under flashing light with frequencies of 40 and 400 Hz at a 

duty cycle of 0.05 during 14 days in cultivation flasks with a maximum light path of 

d= 8 cm (Fig. 5). At a light intensity of Ia= 200 µmol s-1 m-2, 40 Hz-treated 

C. stigmatophora and T. chui cultures had lower biomass productivities (0.18±0.01 and 

0.49±0.01 g DW L-1 d-1, respectively) compared to continuous and 400 Hz-flashing light 
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treated ones (p<0.01). Continuous light did not differ significantly to 400 Hz-flashing 

light treatments (average: 0.21±0.01 g DW L-1 d-1 for C. stigmatophora and 

0.59±0.02 g DW L-1 d-1 for T. chui, p> 0.05).  

 

Figure 5. Batch cultivation under flashing light with frequencies of 40 and 400 Hz at a 

duty cycle of 0.05. Chlorella stigmatophora (A) and Tetraselmis chui (B) were cultivated 

under an averaged light intensity of Ia=200 µmol s-1 m-2. T. chui was additionally 

cultivated at Ia= 50 µmol s-1 m-2 (C). Solid lines are fitted using a sigmoidal growth model, 

based on the growth data (symbols at each time point). All model parameters are given 

in the supplementary material (Table A.1). Data are shown as mean ±SD, n=3. 
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Because the effects of flashing light on algal growth depends also on supplied average 

light intensity (Fig. 2-4) and previous reports indicated that flashing light at under-

saturating intensities is particular promising to improve photosynthesis of microalgae 

(Martín-Girela et al. 2017), we tested a lower average light intensity of Ia= 50 µmol s-1 m-

2 on T. chui cultures. As a result, biomass productivities did not differ among all 

treatments (average: 0.19±0.01 g DW L-1 d-1; Fig. 5C; p> 0.05; Table A.1). These results 

confirm our findings that flashing light of lower average light intensities inhibit cells less 

than high average light intensities. In conclusion, our data indicate that cells do not 

acclimatise to flashing light in accordance with the report of Grobbelaar et al. (1996), 

and flashing light has no enhancing effects in batch cultures where culture 

concentrations change over time. 

3.1. Comparison with other publications 

We derived Pn from several flashing light studies conducted on various microalgal 

species (Fig. 6, Table A.1). The studies employed different culture densities, light 

intensities and light adaption levels. For most studies that reported improved growth or 

photosynthetic performance, the Pn value was ~1.2 (20% better growth compared to 

continuous light) [e.g., Fig. 6, (Liao et al. 2014; Nedbal et al. 1996; Park and Lee 2000; 

Vejrazka et al. 2012; Vejrazka et al. 2015; Yago et al. 2014; Yago et al. 2012)]. Only few 

studies have reported higher values (Lunka and Bayless 2013; Luzi et al. 2019). It was 

often suggested that photosynthesis does not require continuous light and that short 

intense light flashes can penetrate deeper into the water column so that the cells in 

deeper layers can carry out photosynthesis (Park and Lee 2000; Vejrazka et al. 2011; 

Vejrazka et al. 2015). At present, self-shading is one of the most discussed factors for 

explaining flashing-light-induced growth enhancement in microalgal cultures (Abu-

Ghosh et al. 2016; Brindley et al. 2011; Grobbelaar et al. 1996; Lunka and Bayless 2013; 

Sastre 2010). We previously suggested flashing light conditions that favour light 

penetration (e.g., short duty cycle) and do not inhibit photosynthesis (e.g., frequencies 

~500 Hz) as promising approaches to overcome self-shading and increase culture 

performance (Schulze et al. 2017). Such conditions were tested in our experiments with 

concentrated cultures and batch cultures. To our surprise, we did not find any 

improvements of flashing- over continuous light, even at shortest technically possible 

duty cycles (e.g., 0.005) with highest possible flash intensities (e.g., If= 100,000 µmol s-

1 m-2) or frequencies (≤1 MHz). By measuring the light pattern of flashing light with a 

photodiode inside concentrated cultures, we could confirm that the light flashes indeed 

penetrated deep into a dense culture (data not shown). However, the average light 
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intensity of flashing light decreased to the same extent as continuous light with 

increasing light path. Since the (biological-) flashing light effect only causes similar 

photosynthetic rates as under continuous light (Jishi et al. 2015; Schulze et al. 2017) and 

cells respond to the average light intensity when frequencies are above 200-500 Hz, 

flashing light could not improve photosynthetic performance under any conditions.  

 

 

Figure 6. Summary of studies with flashing light on microalgae and cyanobacteria. 

Data from different studies were normalised to a continuous light reference and is given 

as relative growth parameter (Pn). The horizontal plane (frequency-duty cycle plane) 

that passes through Pn = 1 indicates the maximum value of the oxygen evolution rate 

obtained under continuous light. Data for each study are provided in the supplemental 

material (Table A.1). 

If flashing light becomes inhibiting for a culture, a given duty cycle, frequency or 

average light intensity seems to depend on the light acclimation stage of cells and the 

light attenuation potential of their culture. These factors influenced the threshold 

frequency where growth was inhibited (e.g., f= 200-500 Hz). Among all experiments, 

oxygen evolution rates of cultures exposed to flashing light with frequencies >500 Hz 

were only similar (but not higher) to cultures exposed to continuous light with the same 

average light intensity. Nevertheless, the penetration of light flashes deep inside the 

culture may be still used to deliver signals to cells that trigger a desired metabolic 

pathway [e.g., pigment or fatty acid biosynthesis; (Sastre 2010)]. Until now, only few 

studies are found in this field and the conditions to induce a desired biocompound 

without impairing growth remain to be identified.  
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4. Conclusion 

The microalgae T. chui and C. stigmatophora exposed to flashing light of various 

frequencies (0.01 Hz-1MHz), duty cycles (0.001-0.7) and light intensities (50-

1000 µmol s-1 m-2) always showed similar or less growth compared to continuous light. 

Frequencies <100 Hz and duty cycles <0.1 were inhibitory for most cultures while 

frequencies ≤7 Hz caused higher respiration than photosynthesis in concentrated 

cultures. We conclude that flashing light cannot improve growth performance of 

photosynthetic microalgal cultures, but may remain a promising tool to induce 

photoprotective metabolites such as pigments or fatty acids.  
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Highlights: 

 Low frequency flashing light inhibits species-specific growth. 

 Microalgae respond similarly to high frequency flashing light and continuous light. 

 Flashing light used in a two-stage cultivation system improves pigment productivity. 

 Microalgae under low frequency flashing light show low- and high-light responses. 

 Protein, PUFA or pigment contents increased under low-frequency flashing light. 
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Abstract 

Pigments, fatty acids or proteins from microalgae can be tapped by nutrition and 

nutraceutical industries. Industrial phototrophic microalgal cultivation is commonly 

achieved outdoors using sunlight as a photon source. However, countries in high 

latitudes face low solar irradiances, making the use of artificial light indispensable for 

the commercial production of microalgae. Light emitting diodes (LEDs) are often used to 

overcome this hindrance, and these photon sources can be tailored to emit flashing light 

that could improve the production of biomass and target biomolecules. Therefore, we 

assessed the effect of continuous and flashing light (f = 5, 50 and 500 Hz; duty 

cycle = 0.05) on the biomass productivity and biochemical composition of 

Nannochloropsis gaditana, Koliella antarctica and Tetraselmis chui grown in batches. In 

addition, a two-stage cultivation approach was implemented, where the flashing light 

regimes were applied only after six days of cultivation under continuous light. The 

biomass productivity and biochemical composition of all strains cultivated under 500 Hz 

were not different compared to continuous light. At lower flashing light frequencies 

(e.g., f= 5 and 50 Hz), a strain-dependent growth inhibition and induction of proteins, 

polyunsaturated fatty acids (PUFA), chlorophyll and carotenoids (lutein, β-carotene, 

violaxanthin and neoxanthin) was observed. By applying low frequency flashing light in 

a two-stage cultivation, productivities of eicosapentaenoic acid (EPA), violaxanthin β-

carotene and neoxanthin was two to three times higher compared to continuous light-

treated cultures. Overall, the effect of biomass concentration on the culture as indicator 

for the prevailing growth stage was identified as a major factor affecting the observed 

biochemical changes in all the tested strains. In conclusion, protein, PUFA or pigment 

productivities can be maximised by applying low-frequency flashing light at exponential 

or late growth stages and harvesting the culture at a well-defined time point.  

Key words: Pulsed light, Duty cycle, Fatty acids, Pigments, Polyunsaturated fatty acids. 

  



3 

 

1. Introduction  

Microalgae are being commercialized, mainly for the nutraceutical and aquafeed 

sectors. They are also currently considered as emerging feedstocks in the fields of 

bioenergy, biomaterials and bioremediation (Richmond and Hu, 2013). Beside their 

great potential for different biotechnological applications, current industrial scaled 

phototrophic microalgal cultivations faces low biomass productivities, deriving from 

inefficient light delivery to cells inside the culture (Ruiz et al., 2016). 

The light sources, both natural and artificial, can be used for the photoautotrophic 

production of microalgal biomass (Blanken et al., 2013). Large scale production facilities 

use sunlight as the cheapest light source, and the systems are therefore commonly 

located in places with high annual solar irradiances (e.g., countries near the equator). 

On the other hand, microalgae production facilities in high latitudes rely on expensive 

artificial light due to insufficient year-round natural irradiance (Kim and Choi, 2014; 

Powers and Baliga, 2010). High costs of these production systems are connected to 

artificial lighting, as a result of electric energy consumption and acquisition of lamps 

(Blanken et al., 2013).  

To cut costs and improve biomass and biocompound productivities of microalgal 

cultures, light emitting diodes (LEDs) can be used to emit wavelengths tailored to the 

strain under cultivation (Schulze et al., 2014; De Mooij et al., 2016). Alternatively, LEDs 

can emit flashing or pulsed light, which is the periodic supply of high intense light flashes 

alternated by extended dark periods. Similar to the optimal supply of light with specific 

wavelengths, flashing light can be tailored to improve production of microalgal biomass 

and accumulation of target biocompounds (De Mooij et al., 2016; Glemser et al., 2016; 

Phillips and Myers, 1954; Schulze et al., 2017b). Although flashing light has not always 

caused an improvement in microalgal growth over continuous light (Vejrazka et al., 

2012; Yoshioka et al., 2012), the use of flashing light has the potential to promote the 

induction of target biomolecules (Katsuda et al., 2008; Kim et al., 2014, 2006). However, 

it has become clear that microalgae respond differently to flashing light, and hence 

change their protein, carbohydrate, lipid or pigment contents (Park and Lee, 2000; 

Schulze et al., 2017b; Sforza et al., 2012). Such differences can be due to strain-specific 

genetics, the use of distinct culture systems, the occurrence of unique biotic and abiotic 

growth conditions, and the analytical and processing procedures that are employed in 

each case (Moody et al., 2014). In addition, the prevailing culture growth stage at the 

time of harvesting is a major cause for intracellular changes of the biochemical profile in 

any microalga (Rebolloso Fuentes et al., 2000; Su et al., 2013).  
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In this context, the present study examines the growth and changes in the protein, 

carbohydrate, lipid, fatty acid and pigment contents of the Eustigmatophyte 

Nannochloropsis gaditana, and of the chlorophytes Tetraselmis chui and 

Koliella antarctica exposed to flashing light. Flashing light conditions that effectively 

induce biocompounds often inhibit growth (Schulze et al. 2017b), necessitating a 

production system that employs a two stage cultivation approach. In the first stage, 

enough algal biomass is produced under growth-stimulating light conditions, while the 

second stage that employs flashing light helps in induction of target biocompounds. 

Hence, we have employed one- and two-stage cultivation systems to assess the 

efficiency of flashing LEDs in artificial light-based facilities located in countries with low 

solar irradiances (e.g., in Norway). 

2. Materials and methods 

2.1. Experimental setup 

Nannochloropsis gaditana (CCAP 849/5) (Ochrophyta, Eustigmatophyceae) was 

obtained from the Scottish Association for Marine Science (Oban, Scotland); 

Tetraselmis chui (Chlorophyta, Chlorodendrophyceae), Butcher (SAG 1.96) and 

Koliella antarctica (SAG 2030) (Chlorophyta, Trebouxiophyceae) were obtained from the 

Culture Collection of Algae at Göttingen University (SAG, Germany). N. gaditana was 

used as a representative mesophilic model strain, whereas T. chui and K. antarctica were 

tested because of their promising growth performance at extreme latitudes (Schulze et 

al., unpublished data, Suzuki et al., 2018). The cultivation temperature for N. gaditana 

was 20 °C, while T. chui and K. antarctica cultures were grown at 15°C. 

The inocula used for all experiments were grown in Erlenmeyer flasks placed on 

orbital shakers for 14 days. The flasks were illuminated from above at an intensity of 

100 µmol s-1 m-2 supplied by cool-white fluorescent lamps (Philips TLD 840, Amsterdam, 

Netherlands). Seawater from the North Atlantic shoreline of Bodø (Norway, 35 ppt) was 

enriched with a modified F-medium consisting of 5.3 mM NaNO3, 0.22 mM NaH2PO4H2O, 

35 µM FeCl3 6H2O, 35 µM Na2EDTA 2H2O, 0.12 µM CuSO4 5H2O, 0.078 µM Na2MoO4 

2H2O, 0.23 µM ZnSO4 7H2O, 0.126 µM CoCl2 6H2O and 2.73 µM MnCl2 4H2O. 

Tissue culture flasks (Falcon Scientific, Seaton Delaval, UK) with a total volume of 

250 mL and 30 mL were filled with 200- and 25-mL cultures for one-stage or two-stage 

cultivation systems, respectively. The light paths were 3.7 and 2.0 cm in the 250- and 

30-mL flasks, respectively. The cultures were placed on different shelves inside a climate 
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chamber and illuminated from the front by 36 LEDs (2700 K, MHDGWT-0000-

000N0HK427G-SB01, Opulent Americas, Raleigh, US, emission spectrum provided in 

Table A.1) with the following light regimes: continuous light and flashing light with a duty 

cycle of 0.05 with the frequencies of 5, 50 and 500 Hz (see Table A.1 for definition of 

flashing light conditions). The time-averaged light intensity was Ia= 300 µmol s-1 m-2 in 

all conditions, which corresponded to an instantaneous flash intensity of Il= 6000 µmol s-

1 m-2. Each shelf was covered in aluminium foil to prevent light interference among 

treatments. The cultures were mixed by aeration, with humidified and 0.2 µm-filtered 

air enriched with CO2 (1% v/v; GMS-150, Photon Systems Instruments, Drasov, Czech 

Republic) at a flow rate of 160 mL min-1. All algae were cultivated during the one-stage 

batch cultivation for 13 days (n = 3). The two-stage cultivation approach consisted of a 

first stage (1) during which cultures were grown for 6 days at Ia= 300 µmol s-1 m-2 under 

continuous light in the same flasks used in the first experiment, and a second stage (2) 

where the cultures (n = 3) were split into 30-mL flasks and cultivated for five days under 

the same (flashing-) light treatments used for the one-stage approach. Continuous light 

was used as a control treatment across all experiments employing the same average 

supplied light intensity as used under flashing light (Ia=300 µmol s-1 m-2). 

Optical density at 540 nm (OD540) was measured daily (n = 4) for each algal culture 

using a 96-well plate spectrophotometer (Tecan Sunrise A-5082, Männedorf, 

Switzerland). To determine the biomass concentration in the culture in grams of dry 

weight (DW) per litre, a known volume of algal suspension was filtered using glass fibre 

filters (pore size ø = 0.7 µm; VWR), washed twice with 10 mL ammonium bicarbonate 

(0.5 M) and dried at 105°C for 24 h. The dry weight was determined gravimetrically. 

Significant linear correlations between OD540 and dry weight were obtained for each 

microalga (r2≥ 0.9, p< 0.05).  

Culture samples for biochemical analysis were taken at the end of all experiments. 

The harvested cultures were centrifuged (5000 g, 5 min), washed (0.5 M ammonium 

bicarbonate), freeze-dried and stored at -80 °C until further analysis. Furthermore, at 

the end of the cultivation an aliquot of sample was diluted to reach the concentration 

of approximately 1g DW L-1 and centrifuged at 5000 g for 5 min at 10 °C. The pellet was 

stored at -20 °C for spectroscopic quantification of total carotenoids and chlorophylls. 
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2.2. Light source 

An array of 36 warm-white LEDs (2700 K, MHDGWT-0000-000N0HK427G-SB01), 

mounted on an actively cooled aluminium heat sink, with a total length, height and 

width of 300, 75 and 40 cm, respectively, was used as an artificial light source. The test 

flashing light conditions (f= 5, 50, 500 Hz, DC= 0.05) were adjusted by PWM-OCX 

(RMCybernetics Ltd, Alsager, UK) pulse width modulators (PWMs) powered by bench 

EA-PS 2084-05B (EA Elektro-Automatik) power supply units. The pulse signal was 

provided by a TG4001 (TTi, Huntingdon, UK) function generator or directly through the 

PWMs. For the continuous light control, the LEDs were directly connected to a current-

controlled EA-PS 2084-05B power supply units. The voltages and currents supplied to 

the LEDs were regulated by the power supply units to adjust Ia to 300 µmol s-1 m-2 and 

compensate switching and working losses at the LEDs and PWMs. The supplied light 

intensity (i.e., photosynthetically active radiation) was measured for 1 min at the same 

position as the flasks (SPQA 5234 connected to a data logger LI-1500, Li-Cor, Lincoln, 

USA) and averaged over time. 

2.3. Total lipids, proteins and carbohydrates 

Total lipids were determined gravimetrically using a modified Bligh and Dyer (1959) 

method as described in Pereira et al. (2011). Briefly, 10 to 30 mg of freeze-dried 

microalga samples were weighed and transferred to glass tubes. Afterwards, 0.8 mL of 

distilled water was added to soften the samples and kept for 20 min. Subsequently, 2 mL 

methanol and 1 mL chloroform were added and homogenized with an IKA T18 Ultra-

Turrax disperser (IKA-Werke GmbH & Co. KG, Staufen, Germany) in an ice bath for 

60 seconds. A 1-mL aliquot of chloroform was added and samples were homogenized 

for 30 seconds, followed by the addition of 1 mL of distilled water and further 

homogenized for 30 seconds. Phase separation was performed by centrifugation 

(2000 g for 10 min). Subsequently, 1 mL of the organic phase was transferred into a new 

pre-weighed tube, and the chloroform was evaporated at 60 °C in a dry bath overnight 

and cooled down to room temperature in a desiccator. Finally, the remaining lipids in 

the tube were determined gravimetrically. 

Protein contents of the algal biomass was determined with a Bio-Rad DCTM Protein 

Assay (Bio-Rad Ltd., Hemel Hempstead, UK). Water-soluble proteins from freeze-dried 

biomass were extracted by re-suspending ~7 mg freeze-dried biomass in 4 mL NaOH 

(1 M) and bead milled using three cycles of 60 s (6500 rpm, 120 s break between bead 

milling; Precellys Evolution, Bertin technologies, Montigny-le-Bretonneux, France). The 
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samples along with glass beads were centrifuged (2000 g, 10 min, 20°C) and the 

supernatant was transferred into clean vials. The water-soluble proteins contained in 

the supernatant was measured according to Bio-Rad DC Protein Assay manual, at a 

wavelength of 750 nm (Dr3900, Hach Lange, Salford Quays, UK). 

An elemental analysis of the harvested biomass for carbon (C), hydrogen (H) and 

nitrogen (N) was conducted (Vario EL iii, Elementar Analysensysteme GmbH, 

Langenselbold, Germany). Thereafter, the protein contents obtained by the Bio-Rad 

DCTM Protein Assay were confirmed by multiplying the nitrogen content in the biomass 

(%N) by 4.78 (Lourenço et al., 2004).  

Total carbohydrate content was determined according to Trevelyan et al. (1952). 

Briefly, 10 mg of freeze-dried biomass were suspended in 3 mL HCl 37% (v/v) and 

hydrolysed in a water bath for 1 h at 100°C. Subsequently, 4 mL of a fresh anthrone 

solution (Sigma-Aldrich, Oslo, Norway, 2 mg mL-1 in 99% H2SO4) were added to 1 mL of 

sample extract. The absorbance of each sample was read at 620 nm (Dr3900, Hach 

Lange, Salford Quays, UK). Aliquots of different glucose concentrations (0.02-0.1 mg L-1) 

were prepared and processed in the same way as microalgal extracts, to obtain a 

calibration curve. 

The contents of protein, carbohydrates and total lipids in microalgal biomass were 

expressed as % of DW.  

2.4. Fatty Acid Analysis 

For fatty acid analysis, 4 mL of a chloroform:methanol solution (2:2.5 v/v) containing 

an internal standard (Tripentadecanoin, C15:0 Triacylglycerol, Sigma-Aldrich, Oslo, 

Norway) were added to ~6 mg of freeze-dried microalgal biomass. Cells were disrupted 

by bead milling using 0.1 mm glass beads (Precellys Evolution, Bertin technologies, 

Montigny-le-Bretonneux, France). Thereafter, 2.5 mL tris-buffer (6 g L-1 Tris, 58 g L-

1 NaCl) were added, mixed with a vortex mixer and centrifuged (2000 g) to separate the 

phases. The lower chloroform-phase containing the lipids was transferred into a new 

glass tube and evaporated under a gentle nitrogen flow to prevent fatty acid oxidation. 

Subsequently, 3 mL of a methanol solution containing 5% H2SO4 were added and kept 

for 3 h at 70 °C, to convert the fatty acids into the corresponding methyl esters. After 

the reaction, 3 mL of hexane were added and mixture was shacked for 15 min in an 

orbital shaker. Finally, the fatty acid methyl esters (FAMEs) in the hexane phase were 

quantified using gas chromatography equipped with a Flame Ionisation Detector (SCION 

436m Bruker, Massachusetts, US) and a CP-Wax 52 CB column (Agilent, Santa Clara, US) 
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using split-less mode. To identify and quantify the most common FAMEs, an external 37-

compound standard (Supelco, Bellefonte, US) was used.  

2.5. Spectrometric Pigment Analysis 

For the chlorophyll and total carotenoid extraction, beat beads were added to the 

tube with the algae pellet (containing  ̴1 mg DW) together with 1.5 mL of methanol 

(100%). Tubes were beat milled for three cycles of 20 s at 6000 rpm (Bertin technologies, 

Precellys Evolution, Montigny-le-Bretonneux, France). Subsequently, tubes were stored 

in ice in darkness for 2 h. Afterwards, the extract along with glass beads were mixed 

(Vortex mixer, Stuart, UK) and centrifuged (7000 g, 10 min, 10°C). Finally, a 1-mL aliquot 

of the supernatant was transferred into a micro-cuvette (1 mL, Polystyrene cuvettes 

VWR, Oslo, Norway) and the spectrum from 400 to 700 nm was recorded by means of a 

Uviline 9400 (Schott, Mainz, Germany) spectrophotometer. All analyses were done 

under dimmed light. Chlorophyll a (Ca) and b (Cb) and total carotenoids (Ccarot) were 

determined according to Lichtenthaler and Wellburn (1983) by applying the OD 

measurements at 666, 653 and 470 nm (A666, A653, A470) from the methanol extracts to 

equations 1, 2 and 3: 

Ca = 15.65 A666-7.34 A653         1 

Cb = 27.05 A653-11.21 A666         2 

Ccarot = (1000 A470-2.86 Ca-129.2 Cb)/221       3 

Because Nannochloropsis microalgae do not contain chlorophyll b, a modified formula 

according to Henriques et al. (2007) was used (equations 4 and 5): 

Ca = 15.65 A666          4 

Ccarot = (1000 A470-44.76 A666)/221        5 

Results obtained from equations 1-5 in μgpigments mL-1 were divided by the sample 

concentration (1 g DW L-1) to obtain the pigment concentration in terms of algal biomass 

(μgpigment g DW-1). 
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2.6. HPLC Pigment Analysis 

For extraction of single carotenoids (lutein, β-carotene, violaxanthin and neoxanthin), 

~3 mg of freeze-dried biomass was transferred into a tube together with 50 μL deionized 

water. Afterwards, 3 mL acetone and 0.7 g of glass beads were added; the samples were 

then vortexed for 2 min (Vortex Mixer, Stuart, UK) and centrifuged (5000 g, 5 min). 

Subsequently, the supernatant was transferred into a clean and light-proof tube and the 

extraction was repeated sequentially thrice. Acetone was evaporated under a gentle 

nitrogen stream and resuspended in methanol prior to HPLC injection. Carotenoid 

extracts were analysed with a Dionex 580 HPLC System (DIONEX Corporation, Sunnyvale, 

United States) equipped with a PDA 100 Photodiode-array detector and STH 585 column 

oven set to 20°C. Separation of the compounds was achieved using a LiChroCART RP-18 

(5 µm, 250x4 mm, LiChrospher, Merck KGaA, Germany) column with a mobile phase 

consisting of acetonitrile:water (9:1; v/v) as solvent A and ethyl acetate as solvent B and 

a constant flow of 1 mL min-1. The gradient program applied was: (i) 0–16 min, 0–60% B; 

(ii) 16–30 min, (iii) 60% B; (iv) 30–32 min 100% B and (v) 32-35 min 100% A (adapted 

from Couso et al. 2012). The injection volume of the samples was 100 µL, 

chromatograms were recorded at 450 nm and analysed by Chromeleon 

Chromatography Data System software (Version 6.3, ThermoFisher Scientific, 

Massachusetts, US). For the quantification of individual carotenoids, calibration curves 

for lutein, β-carotene, violaxanthin and neoxanthin were used. All pigment standards 

were supplied by Sigma-Aldrich (Sintra, Portugal). All HPLC grade solvents were 

purchased from Fisher Scientific (Porto Salvo, Portugal).  
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2.7. Data analysis 

Growth parameters were estimated according to Ruiz et al. (2013) and are detailed in 

Table A.1 (supplementary material). Productivities of target biocompounds were 

calculated for the two-stage cultivation system by multiplying the total amount of a 

given biocompound in the biomass (e.g., mg gDW-1) by the biomass concentration in the 

culture (g DW L-1) and dividing by the total cultivation time (10 days).  

ANCOVA analysis were performed to detect differences in intracellular biochemical 

contents among treatments, strains and cultivation approaches (one- or two stage) 

while considering the co-variate biomass concentration at the time point of harvesting 

(Xt in g DW L-1) as indicator for the prevailing growth stage. The inclusion of biomass 

concentration in the statistical analysis was necessary to separate the effects of the 

treatments (e.g., flashing light) and strains from culture maturation (or aging) effects. 

Two-way ANOVA was used to detect differences in productivity data using the 

explanatory variables strains and treatment. 

To compare biomass productivities or biochemical contents among different 

treatments and strains, all data were normalised with the control treatment (continuous 

light). In this case, productivities approaching a value of 1 are similar to continuous light, 

while values lower or higher than 1 indicate a lower or higher productivity under a given 

treatment, respectively.  

Biomass concentration data were log10-transformed to meet the assumption of 

linearity and homogeneity of variance. The Type III sum of squares analysis was 

considered and the output F-values together with p-values were used to describe the 

impact of treatment, biomass concentration, strain or cultivation approach on the 

response variables (biomass productivity, protein, carbohydrates, lipids, fatty acids or 

pigments). The adjusted means with 95% confidence interval from Tukey´s post hoc 

tests were used to illustrate the results of the ANCOVA and ANOVA analysis in the 

figures. 

Pearson´s correlations (r) were used within the ANCOVA analyses to quantify the 

effects of biomass concentration on the response variables. The closer the r-value to 1 

or -1, the stronger the positive or negative effect of culture maturation, respectively. A 

significance level () of 0.05 was used for all tests. Normality of the response variables 

was tested using the Shapiro-Wilk test.   



11 

 

3. Results and discussion 

3.1. Growth performance 

The growth curves of N. gaditana, K. antarctica and T. chui were obtained for three 

flashing light conditions (5, 50 and 500 Hz) and a control grown under continuous light 

(CL), for one-stage (Fig.1 A, C, E) and two-stage (Fig. 1 B, D, F) cultivation-systems. The 

results obtained revealed that the microalgal cultures growing under the highest 

flashing light (FL) frequency tested (f = 500 Hz; FL 500) reached similar growth as those 

under CL. Conversely, microalgae under FL at low frequencies (f = 5 and 50 Hz) often 

showed slower growth (Fig. 1; Table 1). Using the one-stage cultivation approach, all 

tested strains under FL at 5 (FL 5) and 50 (FL 50) Hz displayed lower biomass productivity 

and a prolonged lag phase as compared to those under FL 500 and CL. Notably, T. chui 

cultures performed better at FL 50 when compared to those of other species (Fig. 1, 

Table 1). For example, biomass productivity of T. chui was only about 30% lower than 

cells under CL, whereas N. gaditana and K. antarctica cultures displayed a 70% decrease 

in biomass productivity (Table A.1). 

In the two-stage cultivation approach, all strains treated with the lowest frequency 

(FL 5) consistently presented lower biomass productivities when compared to control 

cultures under CL. On the other hand, only K. antarctica under the FL 50 treatment 

showed decreased biomass productivity, while N. gaditana and T. chui showed similar 

values as obtained under CL (Table 1). However, all strains cultured in the two stage 

approach and exposed to FL 5 reached considerably higher biomass productivities (0.34-

0.43 g DW L-1 d-1) as compared to those cultivated in the one-stage approach 

(<0.05 g DW L-1 d-1).  
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Figure 1. Growth curves of algae grown in a one- and two stage batch culture under 

different flashing light conditions. Nannochloropsis gaditana (A, B), Koliella antarctica 

(C, D) and Tetraselmis chui (E, F) were cultivated under continuous light or flashing light 

with a duty cycle of 0.05 and frequencies of 5, 50, 500 Hz at an average light intensity of 

Ia= 300 µmol s-1 m-2. Data points at each day are shown as mean ±SD, n=3. 

Previous studies conducted in various algae and plants (e.g., Dunaliella salina, 

Nannochloropsis salina, Lactuca sativa (Combe et al., 2015; Jishi et al., 2015; Simionato 

et al., 2013a) indicated that if the FL frequency is high enough, the photosynthetic 

apparatus cannot distinguish between single FL pulses and CL (Grobbelaar et al., 1996), 

a condition referred to as the “flashing light effect” (Schulze et al., 2017b) . Other studies 

(Abu-Ghosh et al., 2015; Lunka and Bayless, 2013; Park and Lee, 2000; Grobbelaar et al., 

1996) have suggested that microalgal cultures could benefit from intense light flashes, 

which improve photon penetration into the culture. In the present study, the authors 

could not identify a significant growth enhancement of the strains tested. However, 

biomass productivities under FL became similar to CL at higher frequencies (e.g., FL 500). 

The thresholds of specific flashing light parameters (e.g., frequency and duty cycle) 

beyond which growth performance becomes similar to those for CL depends on various 

factors, including the applied average light intensity of flashing light and species. For 

example, in both higher plants (Jishi et al. 2015) and cyanobacteria (Xue et al. 2011), the 

inhibitory effects of low-frequency FL increase when the applied average light intensity 
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is higher. In the present study, microalgae-specific responses were observed; T. chui 

responded better to low-frequency FL (e.g., FL 50) as compared to K. antarctica or 

N. gaditana. Similarly, Nedbal et al. (1996) tested different strains under various flashing 

light conditions and identified strain-specific threshold frequencies. Jishi et al. (2015) 

showed that such thresholds depend on various factors, including morphological or 

photoprotective strategies of phototrophs. In microalgae, cell architecture and size 

determines the amount of light that gets absorbed and that is used for photosynthesis 

inside the cell (Dubinsky et al., 1986). As regards the cell size, T. chui cells that have an 

oval-shape (13 × 5 × 4 μm; Bottino et al., 1978) and an estimated volume of 

about 260 μm3 are larger than those of other tested strains; N. gaditana, round-shaped, 

with a diameter of 2-4 μm and a volume of 40 μm3 (Rocha et al., 2003), or K. antarctica, 

cylindrical shaped, 7.5 × 2.5 µm (La Rocca et al., 2009) with a volume of 60 μm3. Since 

light absorbing characteristics of the cell will determine the light available for 

photosynthesis (Dubinsky et al. 1986), larger cells may withstand better low-frequency 

FL conditions than smaller cells, because they are less susceptible to photoinhibition, as 

confirmed by Key et al. (2010), and cope better with long-lasting high-light intensities 

applied at low flashing frequencies (e.g., FL 5).  

Table 1. Biomass productivities (in g DW L-1 d-1) of Nannochloropsis gaditana, 

Koliella antarctica and Tetraselmis chui under continuous light (CL) and flashing light at 

frequencies of 5 (FL 5), 50 (FL 50) and 500 (FL 500) Hz and a duty cycle of 0.05 using a 

one or two-stage cultivation approach. Productivities that do not share the same letter 

for a given alga in a particular cultivation approach are significantly different from each 

other. 

 One-stage cultivation Two-stage cultivation 

 CL FL 5 FL 50  FL 500 CL FL 5 FL 50 FL 500 

Nannochloropsis 

gaditana 

0.361 
a 

0.008 
c 

0.085 
b 

0.329 
a 

0.686 
a 

0.431 
b 

0.602 
a 

0.653 a 

(0.003) (0.000) (0.009) (0.046) (0.056) (0.012) (0.016) (0.035)  

Koliella 

antarctica 

0.117 
a 

0.042 
b 

0.032 
b 

0.106 
a 

0.588 
a 

0.340 
b 

0.407 
b 

0.636 
a 

(0.021) (0.025) (0.004) (0.013) (0.024) (0.012) (0.023) (0.069) 

Tetraselmis 

chui 

0.255 
a 

0.000 
c 

0.183 
b 

0.246 
a 

0.510 
a 

0.393 
b 

0.531 
a 

0.523 
a 

(0.022) (0.000) (0.031) (0.024) (0.029) (0.002) (0.029) (0.032) 

 

In the adopted two-stage cultivation approach, low-frequency FL led to a less 

pronounced decrease in growth compared to those observed with the one-stage 

approach. This might be due to differences in biomass concentration prior to the 

application of the FL regime. For example, in the two-stage approach, a higher biomass 

concentration (≈2 g DW L-1) during the second stage allowed the distribution of the total 

dose of supplied photons to more cells. On the other hand, the one-stage cultures 

started at a low initial biomass concentration (0.1 g DW L- 1) and all cells received the full 
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applied photon dose (e.g., Ia= 300 µmol s-1 m-2, Il=6000 µmol s-1 m-2). Therefore, the 

perceived average light intensity by each microalgal cell was lower in the two-stage 

compared to the one-stage cultivation approach. As mentioned by Xue et al., (2011), a 

low average light intensity is less disruptive than the higher intensities under low-

frequency FL conditions. In addition, the higher biomass concentrations and 

productivities in the two-stage cultures stem from shorter light paths (L= 2.0 cm) 

compared to those in the flasks used for the one-stage approach (L= 3.7 cm).  

3.2. Biochemical composition 

3.2.1. Proteins, carbohydrates and lipids 

The proximate composition of macronutrients in the three strains, grown under 

different light regimes, was evaluated with an ANCOVA analysis and Tukey´s post hoc 

test (Fig. 2, Table A.1). The results obtained revealed that the total protein content 

registered for N. gaditana (20.5±1.8%) was similar to that of K. antarctica (23.8±1.9%). 

However, T. chui showed the lowest protein contents (14.6±1.9%). The ANCOVA model 

for protein content was mostly affected by the growth stage (F= 55.8, p< 0.01) and to a 

lesser extent by the species (F= 16.7) and light treatments (F= 5.7). The content of total 

carbohydrates was lowest in N. gaditana (9.6±2.7%, p< 0.01) compared to the values 

obtained for K. antarctica (28.3±2.9%) and T. chui (26.7±2.8%), which displayed similar 

values. Regarding total lipids, N. gaditana (36.8±2.3%) displayed the highest content, 

followed by K. antarctica (15.7±2.4%), whereas T. chui (11.6±2.4%) presented the lowest 

values. The overall proximate composition results match those previously reported for 

Nannochloropsis, Koliella and Tetraselmis strains (Camacho-Rodríguez et al., 2015; 

Dinesh Kumar et al., 2018; Fogliano et al., 2010; Hulatt et al., 2017; Khatoon et al., 2018; 

Schulze et al., 2017a; Suzuki et al., 2018).  

When the light regimes are compared, the protein levels (Fig. 2A) tended higher for 

all strains under FL 5 and FL 50 as compared to CL. On the contrary, a decrease of 

carbohydrates (Fig. 2B) and lipids (Fig. 2C) was only observed in T. chui and N. gaditana 

cultures, respectively. No noteworthy effects on proteins, carbohydrates and lipids were 

found for FL 500 treated cultures compared to CL. 
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Figure 2. Biochemical composition of Nannochloropsis gaditana, Koliella antarctica 

and Tetraselmis chui exposed to flashing light. Total proteins (A), carbohydrates (B) and 

lipids (C) expressed as % in dry weight (DW) are shown by the adjusted means ±95% 

confidence interval obtained from Tukey´s post hoc test (ANCOVA) for one- and two 

stage cultivation (n= 3). Treatments that do not share the same letter are significantly 

different from each other.  

Previous studies hardly reported effects of low frequency flashing light on the protein, 

carbohydrate and lipid content of Scenedesmus bicellularis (f= 100-120 Hz, DC=0.1-0.5), 

or Scenedesmus obliquus (f= 5,10,15 Hz, DC= 0.5) (Gris et al., 2014; Mouget et al., 1995). 

In the present study, effects of flashing light on proteins, carbohydrates and lipids 

seemed to be species-dependent. For example, K. antarctica exposed to FL 50 doubled 

its protein contents (from 15 to > 30%) when compared to cultures under CL (Fig. 2A). 

Low solar irradiance at extreme latitudes make polar strains more prone to low-light 

adaption, which is also connected to dense packaging of pigments and binding proteins. 

Furthermore, polar microalgae seem to have a higher number of ribosomal proteins to 

counteract cold stress (Lyon and Mock, 2014; Toseland et al., 2013). The high protein 

levels found in K. antarctica cells exposed to low-frequency FL may be thus explained by 

its natural cold-adaptation and a response to low-light. Unlike K. antarctica, the tested 

T. chui strain seemed not to be a true psychrotroph (Schulze et al., unpublished data) 

and naturally only contained low amounts of proteins, which could explain the minor 

effects of FL 5 and 50 treatments on protein contents. However, future work should be 

carried out to investigate if similar trends could be also observed in other polar strains. 

On the other hand, Nannochloropsis is known to upregulate lipid biosynthesis under 

high-light conditions (Packer et al., 2011; Solovchenko et al., 2008). In the present study, 

N. gaditana showed lower lipid and high protein levels when exposed to FL 5 and FL 50 
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(Fig. 2C), which also indicates a low-light adaption. On the other hand, T. chui showed 

lower carbohydrate contents in cultures exposed to FL 5 and FL 50, which was previously 

described as low-light response in Tetraselmis (Michels et al., 2014). Indeed, low-light 

responses of microalgae exposed to low-frequency flashing light was reported by 

Grobbelaar et al., (1996). At high frequencies, we did not find any differences in protein, 

carbohydrate and lipid levels of the strains compared to CL, indicating no inhibition by 

high frequency flashing light, as previously reported (e.g., f> 100Hz; Yoshioka et al., 

2012). In terms of productivity in the two-stage cultivation system, the most promising 

species for protein production were N. gaditana and K. antarctica (average: 75.4±4.3 

and 77.8±17.1 mg L-1 d-1, respectively). T. chui and K. antarctica were most promising for 

carbohydrate production (average: 119.8±49.1 and 137.7±14.2 mg L-1 d-1, respectively), 

while lipids (average: 136.7±46.2 mg L-1 d-1) were most efficiently produced by 

N. gaditana. Notably, protein productivities were on average 1.1-1.3 times higher for all 

microalgae when cultivated under flashing light (FL 5 and FL 50) compared to CL, while 

carbohydrate and lipid productivity decreased by 20-50% (Table A.1). 

In general, protein levels correlated negatively with the biomass concentration of all 

species (r= -0.8, p< 0.01). This trend can also be described as growth stage-dependent 

protein drop and a strain-specific accumulation of intracellular carbohydrates or lipids 

at late growth stages (Brown et al., 1996; Lv et al., 2010; Zhu et al., 1997). N. gaditana is 

a lipid-accumulating microalga, which becomes evident from the positive correlation of 

the biomass concentrations with the lipid contents (r= 0.8, p< 0.01; Table A.1) and the 

negative correlation with carbohydrate contents (r=-0.6, p<0.05; Table A.1). On the 

other hand, the biomass concentration of K. antarctica and T. chui cultures correlated 

positively with the total carbohydrate levels (r= 0.8, 0.4; p< 0.05, p= 0.88, respectively) 

but not with lipids (r= -0.2 and -0.4, p> 0.05). Indeed, these results match data from 

previous studies describing carbohydrate or lipid accumulation in Nannochloropsis and 

Tetraselmis strains during the late growth stages (Dunstan et al., 1993; Kim et al., 2016). 

We did not find any previous reports connected to the macronutrient accumulation in 

the genus Koliella.  

Taken together, these results suggest that processes regulating the biosynthesis of 

proteins, carbohydrates and lipids depend on the growth stage and the flashing light 

conditions. The biochemical response to low frequency flashing light suggests a low-light 

adaption in all tested species, indicated by lower carbon-bound compounds 

(carbohydrate or lipids) and higher proteins compared to CL. Lastly, the magnitude of 
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low-frequency flashing light effects on a given compound is species-specific (e.g., lipids 

in Nannochloropsis, proteins in Koliella and carbohydrates in Tetraselmis). 

3.2.2. Fatty acids 

The fatty acid profile (given in % of total fatty acids; TFA) differed among species and 

treatments (Table A.1 and Fig. 3). The major fatty acids in N. gaditana were C16:0 

(palmitic acid, 9-40%), C16:1n-7 (23-40%) and C20:5n-3 (eicosapentaenoic acid; EPA, 6-

41%). In K. antarctica, C16:0 (8-13%), C18:1n-9 (oleic acid; 9-43%), C18:2n-6 (linoleic 

acid; 3-13%), C18:3n-3 (α-linolenic acid; ALA, 10-34%) and C20:5n-3 (4-14%) were the 

most abundant fatty acids. Regarding the fatty acid profile of T. chui, mostly C16:0 (6-

16%), C16:4n-3 (hexadecatetraenoic acid; 9-16%), C18:1n-9 (10-23%), C18:3n-3 (11-

20%) and C20:5n-3 (9-13%) were found. The fatty acid profiles obtained are in 

accordance with those previously reported for the genera Nannochloropsis (Hulatt et 

al., 2017), Koliella (Fogliano et al., 2010; Suzuki et al., 2018) and Tetraselmis (Lang et al., 

2011; Mohammadi et al., 2015; Rasoul-Amini et al., 2014). N. gaditana showed the 

highest productivities of fatty acids (104.3 mg TFA, 16.5 mg SFA, 66.1mg MUFA and 

19.7 mg PUFA L-1 d-1), confirming that this oleaginous species presented the highest lipid 

contents among the microalgae tested (Fig 2C). 

The TFA (Fig. 3A) content did not differ under any flashing light treatment compared 

to CL in all tested strains. Concerning SFA (Fig. 3B), N. gaditana and K. antarctica did not 

show any difference between treatments, whereas T. chui contained less SFA under the 

FL 50 treatment. Interestingly, across all algae, the MUFA (Fig. 3C) fraction tended to be 

lower in microalgae under FL 5 and FL 50 compared to those under FL 500 and CL. On 

the other hand, higher PUFA contents (Fig. 3D) were obtained in all species tested under 

FL 5 and FL 50 compared to those grown under FL 500 and CL.  
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Figure 3. Major fatty acid classes for Nannochloropsis gaditana, Koliella antarctica 

and Tetraselmis chui exposed to flashing light. Contents of total fatty acids, TFA (A), 

saturated fatty acids, SFA (B), monounsaturated fatty acids, MUFA (C) and 

polyunsaturated fatty acids, PUFA (D) in dry weight (mg g DW-1) are given as adjusted 

means ± 95% confidence interval obtained from Tukey´s post hoc test (ANCOVA) for one- 

and two stage cultivation (n= 3). Treatments that do not share the same letter are 

significantly different to each other. 

Low frequency flashing light (FL 5 and 50) caused often an accumulation of species-

specific PUFA at the expenses of MUFA (Fig. 4). For example, N. gaditana accumulated 

more C20:5n-3 under FL 5 and FL 50, whereas the MUFA, C16:1n-4 and 18:1n-9, tended 

to decrease (Fig. 4A). Conversely, when exposed to FL 500, this microalga showed a fatty 

acid profile comparable to cells under CL. Similarly, K. antarctica increased the major 

PUFA, C18:3n-3 and C20:5n-3, at the expense of the MUFA C18:1n-9 under FL 5 and 50, 
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compared to CL and FL 500. Lastly, T. chui showed higher amounts of C16:4n-3, C18:3n-

3 and C18:4n-3 and lower C18:1n-9 contents upon exposure to FL 5 and FL 50, whereas 

no effect on C20:5n-3 was observed. Similarly, productivities of C20:5n-3 increased in 

FL 5 and FL 50 treated N. gaditana and K. antarctica cultures by 1.4-1.9 times, while 

T. chuii showed a 1.4 times higher C18:4n-3 productivity compared to CL (Table A.1). 

Apart from effects caused by flashing light, significant correlations between fatty acids 

and biomass concentration were observed. For example, biomass concentration 

correlated positively with TFAs, SFA and MUFA in N. gaditana (r= 0.8 to 0.9, p< 0.05) and 

negatively in T. chui (r= -0.8 to -0.9, p< 0.01). Conversely, PUFA contents correlated 

negatively with biomass concentration in all microalgae (r= -0.5 to -0.8; Table A.1). 

However, a significant effect was noted only for the ANCOVA model for N. gaditana 

(p< 0.05; Table A.1). Major PUFA in N. gaditana, C20:5n-3, decreased with increasing 

biomass concentration (r= -0.9, p< 0.01). This effect was stronger (F= 48.9) compared to 

that of flashing light treatments (F= 5.7, p< 0.01). In K. antarctica, C18:3n-3 and C20:5n-

3 tended to decrease with increasing biomass concentration (r= -0.8 to -0.6, p<0.5), an 

effect that was not as strong (F=0.6, 8.9) as that of the flashing light treatments (F=9.2, 

21.5). In T. chui, a correlation between biomass concentration and C18:3n-3 (r= 0.7, 

p< 0.01) and C18:4n-3 (r= -0.9, p< 0.01) levels was stronger (F=26-78) as compared to 

flashing light treatments (F= 9). Notably, strong effects of the prevailing growth stage on 

major fatty acids have previously been reported for these genera (Fernández-Reiriz et 

al., 1989; Hodgson  et al., 1991; Suzuki et al., 2018). 

 

Figure 4. Major fatty acids of Nannochloropsis gaditana (A), Koliella antarctica (B) and 

Tetraselmis chui (C) exposed to flashing light and continuous light. Data given are 

adjusted means ±95% confidence interval obtained from Tukey´s post hoc test 

(ANCOVA) for one- and two stage cultivation. Treatments that do not share the same 

letter are significantly different to each other. A detailed fatty acid profile is available in 

the supplementary material (Table A.1).
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The fact that the fatty acid profiles are usually more affected by the biomass 

concentration than the flashing light treatment in N. gaditana and T. chui (Table A.1) 

may be linked to a higher biomass productivity and faster transition from one growth 

stage to another (e.g., lag, exponential and stationary phases), as compared to the 

slower growing K. antarctica (Fig. 1, Table 1). Similar species-specific fatty acid shifts 

under flashing light have been reported previously. For example, 

Chlamydomonas reinhardtii was not affected by flashing light (f= 0.05-5 Hz, DC= 0.5, Kim 

et al., 2014), while Isochrysis galbana accumulated more phospholipids and 

docosahexaenoic acid (DHA) when exposed to blue flashing LEDs (e.g., f= 10 KHz, 

DC= 0.5, Yoshioka et al., 2012). 

From our results, the prevailing growth stage had the strongest effect on the fatty 

acid profiles of a given microalga (Statistical analysis in Table A.1). However, higher PUFA 

contents consistently obtained under low frequency flashing light (FL 5) indicate that 

these cells are under stress linked to the production of reactive oxygen species caused 

by highly intense light flashes (Schulze et al., 2017b; Wiktorowska-Owczarek et al., 

2015). However, unlike previous suggestions that flashing light might induce a response 

similar to that obtained in cells under high light (Schulze et al., 2017b), high PUFA 

contents usually arise from exposure to low light (Schüler et al., 2017). 

3.2.3. Pigments 

The contents of most pigments were significantly higher in all microalgae exposed to 

FL 5 and FL 50 as compared to those under CL and FL 500 (p< 0.05; Fig. 5A). The 

carotenoids β-carotene, violaxanthin, and neoxanthin (in T. chui and K. antarctica) were 

on average three to four times higher in all microalgae as compared to cultures under 

CL. Total chlorophyll and total carotenoids as well as lutein increased moderately by 1.7-

2.3 times in FL 5 compared to CL treatments (Fig. 5A). 
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Figure 5. Pigment contents (A) and productivities (B) for Nannochloropsis gaditana, 

Koliella antarctica and Tetraselmis chui exposed to flashing light (f= 5, 50, 500 Hz ; 

DC= 0.05). Data for each microalgal species were normalised to results obtained under 

continuous light (= 1) and are given as adjusted means ±95% confidence interval 

obtained from a Tukey´s test. Asterisks indicate significant differences compared to 

continuous light. Neoxanthin was only detected in T. chui and K. antarctica. Original 

pigment data are available in the supplementary material (Table A.1). 

Interestingly, the productivity of the accessory light harvesting pigments neoxanthin 

and violaxanthin and the photoprotective pigments β-carotene and lutein (Mulders et 

al., 2014) were on average two to three times higher in all microalgae under low 

frequency flashing light (FL 5 and FL 50) compared to cultures under CL or FL 500 

(Fig. 5B). However, productivities of total carotenoids, chlorophyll and lutein were only 

slightly enhanced (1.1-1.6 times higher) under FL 5 and FL 50 compared to cells exposed 

to CL. 
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Intracellular contents of total chlorophyll and carotenoids ranked among all strains 

from 1.8-13.8 mg g DW-1 and 0.7 to 7.4 mg g DW-1, respectively. The major carotenoid 

was violaxanthin (0.24-2.07 mg g DW-1) in N. gaditana, whereas lutein (0.27-

2.05 mg g DW-1) was predominant in K. antarctica. T. chui contained mostly lutein (0.29-

2.2 mg g DW-1) and β-carotene (0.40-1.25 mg g DW-1, Table A.1). These findings are 

similar to previous reports for these algae (Ahmed et al., 2014; Fogliano et al., 2010; 

Simionato et al., 2013b). Under FL 5, N. gaditana was the most productive in terms of 

chlorophyll, total carotenoids and violaxanthin (2.97, 1.34 and 0.45 mg L-1 d-1, 

respectively), whereas T. chui was efficient in producing chlorophyll, neoxanthin, lutein 

and β-carotene (2.97, 0.04, 0.47 and 0.35 mg L-1 d-1, respectively; Table A.1). Conversely, 

K. antarctica was unable to reach any of these productivities. Flashing light has 

previously been reported to induce pigments and improve their production. Production 

of astaxanthin in Haematococcus pluvialis under CL was the same as that in cells under 

flashing light (f= 100 Hz, DC= 0.67, Katsuda et al., 2006), whereas low frequency flashing 

light (e.g., f<30 Hz) often increased pigment production (Katsuda et al., 2008). 

Furthermore, Takache et al. (2015) found that Chlamydomonas reinhardtii accumulated 

more carotenoids when exposed to lower frequencies (f=0.00138-1 Hz, DC=0.5). 

Likewise, the results presented here showed a trend towards higher pigment contents 

in cells under FL 5 compared to those exposed to FL 50. 

The violaxanthin-antheraxanthin-zeaxanthin (VAZ) cycle is an important regulator for 

the adaptation to different light intensities. Shifts towards the biosynthesis of 

zeaxanthin occurs in plants and algae under high-light stress to avoid photodamage of 

the photosynthetic apparatus (Jahns et al., 2009). Conversely, violaxanthin accumulates 

under low-light stress to allow efficient light harvesting (Jahns et al., 2009). In the 

present study, cultures exposed to FL 5 tend to contain more violaxanthin compared to 

FL 50 treatments, while high frequency FL conditions (FL 500) were not different to CL. 

Both in Chlorophytes such as Koliella and Tetraselmis and in Eustigmatophytes (i.e., 

Nannochloropsis) pigments are bond to proteins in order to constitute light harvesting 

complexes (LHC; Basso et al., 2014; Jahns et al., 2009; Sukenik et al., 1992; Thornber, 

2013). In addition, thylakoids number can increase resulting in more membranes 

containing PUFA and LHC and, thus, leading to a more efficient light harvesting (Berner 

et al., 1989). Therefore, the concomitant increase of proteins (Fig. 2), PUFA (Fig. 3, 4) 

and pigments (Fig. 5) could be attributed to an increase in photosynthetic units in cells 

treated with low-frequency flashing light which indicates an acclimation of cells to low-

light conditions (He et al., 2015; Schüler et al., 2017), as suggested earlier for microalgae 

exposed to low-frequency FL (Grobbelaar et al., 1996; Yarnold et al., 2015). 
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Furthermore, biomass concentration correlated negatively with all the pigments (r= -

0.4 to -0.9, p< 0.01-0.7; significance strain-dependent; Table A.1). Generally, cells in 

aging cultures are subjected to nutrient depletion or light limitation, leading to 

downregulation of their photosynthetic activity and decrease in photosynthetic 

pigments (e.g., chlorophyll, violaxanthin, Oukarroum, 2016). Our statistics revealed that 

flashing light seemed to counteract this effect significantly (Fig. 5) because higher 

pigment contents were found under low frequency FL when considering the co-variate 

biomass concentration. Therefore, our results suggest that the long flash duration (e.g., 

1-10 ms) and high instantaneous intensity (Il= 6000 μmol s-1 m-2) of FL 5 and FL 50 

treatments may still stimulate protein, PUFA and pigment biosynthesis even at 

advanced growth stages where otherwise proteins and pigments decrease or the fatty 

acids become saturated. Because increasing levels of β-carotene and lutein found in 

cultures exposed to low-frequency FL are connected to photoprotection (Mulders et al., 

2014), cells may experience also a moderate high-light stress. This indicates that future 

studies are needed to better understand the high-light responses of microalgal cells 

exposed to low frequency FL. Such studies should focus on high-light typical pigments 

such as zeaxanthin (e.g., in Nannochloropsis) or diatoxanthin (e.g., in diatoms) as well as 

metabolic pathways using transcriptomic approaches. 

4. Conclusions 

The effects of flashing light were most discriminative at low frequencies (5 and 50 Hz, 

DC=0.05), whereas cultures exposed to 500 Hz showed similar growth and biomass 

composition compared to cells cultivated under continuous light. The effects on growth 

was strain- and culture concentration-depended. Low-frequency flashing light 

conditions (f= 5 and 50 Hz) induced intracellular biocompound that typically accumulate 

under low-light conditions, including protein, PUFA, chlorophyll, lutein and β-carotene. 

Strikingly, the productivity of these compounds was highly improved when using a two-

stage cultivation system. Our statistical analysis revealed that most biomolecules were 

strongly affected by the biomass concentration in the mediumwhich is an indicator for 

the prevailing growth stage of a culturerather than the flashing light treatments 

applied. We conclude that microalgal cultivation at high latitudes can benefit from 

employing artificially emitted low frequency flashing light (e.g., f≤ 50 Hz) to produce 

high-value microalgal biomass rich in high value metabolites, including PUFA or 

pigments. 
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Marine cold-adapted microalgae are a promising bioresource to replace 

unsustainable fish oil or soybean-based proteins and their production 

does not compete with traditional agriculture for arable land. Even though 

low ambient temperatures at high latitudes (e.g., Northern Norway) are 

optimal for their cultivation, low solar irradiance limits photosynthesis and 

therefore expensive artificial light is needed. The present thesis identified 

cold-adapted microalgae that grow fast at temperatures 15°C or below and 

contain valuable polyunsaturated fatty acids, (PUFA), proteins or pigments 

that could be used either as food or as feed components. By optimising 

cultivation parameters such as temperature, light intensity and nutrient 

or salt supply, PUFA production could be greatly enhanced. Furthermore, 

a technological advance in microalgal cultivation was made through the 

application of light emitting diodes (LEDs) that periodically emit short but 

intense light pulses (i.e., flashing light). This alternative way of artificial light 

supply substantially improved PUFA or pigment production, compared to 

continuous light. Both the optimisation of cultivation conditions and the 

supply of flashing light will be key for high latitude production of cold-

adapted microalgae rich in valuable biomolecules.
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