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Earth’s equilibrium climate sensitivity (ECS) measures how much the global mean surface air 
temperature will ultimately increase for a doubling of atmospheric carbon dioxide (CO2) and has 
become the standard metric to quantify how sensitive Earth’s climate is to atmospheric greenhouse 
gas perturbations. For decades, global climate models (GCMs) have produced ECSs between 
approximately 2 and 4.5°C, but interestingly, that is about to change: a large subset of GCMs 
participating in the ongoing 6th coupled model intercomparison project (CMIP6) is producing ECSs 
well above 5°C. The latest version of the Community Earth System Model, CESM21, is an example 
of such a high-ECS model. It reproduces the historical temperature record well despite its high 
ECS, contrary to what has previously been considered possible2. This can be explained by the fact 
that CESM2 has a net positive cloud-climate feedback that grows with time - the warmer it gets, the 
more clouds change in a way that further amplifies the warming, while for modest warming this 
amplification is much smaller. We have identified the physical mechanism responsible for this 
transition to a high-sensitivity climate state in CESM2 and argue that our findings demand a re-
evaluation of prior observational constraints on ECS. Further, we argue that while the exact timing 
and magnitude of the transition may be model dependent, its existence is undisputable, and the 
associated policy-implications are wide-reaching. 
 
Cloud feedbacks, i.e. the extent to which clouds amplify or dampen perturbations to Earth’s climate, 
represent the largest source of uncertainty in estimating the climate sensitivity in GCMs3. Clouds 
come in many flavours and respond differently to warming depending on their type and 
characteristics – for example, high tropical ice clouds tend to rise to higher altitudes4, while the 
amount of low subtropical clouds is expected to reduce, with warming5. These two well established 
warming-induced cloud changes both represent positive (amplifying) feedbacks6.  
 
There are multiple ways to categorize clouds, depending on the feedback mechanism of interest. For 
example, we can divide them according to their thermodynamic phase; mixed-phase clouds contain 
a mixture of ice and liquid, and are found between 0 and approximately -38°C. These clouds have a 
strong influence on Earth’s energy budget, especially at high latitudes, and are most abundant over 
the Southern Ocean7. It has been known for decades that water droplets tend to be more numerous 
and smaller than ice crystals, and that liquid clouds will therefore reflect much more solar radiation 
than an otherwise similar ice cloud8. As a consequence of this, clouds with higher supercooled 
liquid fractions (SLFs, the ratio of liquid to total cloud condensate) will generally be optically 
thicker and thus reflect more solar radiation back to space. As the Earth warms, we expect the phase 
composition in clouds to change such that SLF increases, contributing to a negative (damping) 
cloud feedback9. 
 
Gettelman et al.10 recently found that the increase in ECS from 4.0°C in CESM1 to 5.3°C in 
CESM2 was mostly due to cloud feedbacks. They further stated that while it remains unclear how 
plausible such a high climate sensitivity is, CESM2 has an improved cloud distribution and 
compares better to observations than its predecessor CESM110.  
 
To further investigate the high ECS in CESM2 we have looked into its overall cloud feedback by 
decomposing it into feedbacks associated with cloud altitude, amount and optical depth changes. 



Here we present these feedbacks and discuss the mechanism responsible for CESM2’s gradual 
transition to a high climate sensitivity state with warming. 
 
To evaluate the ECS and the cloud feedbacks we used the fully coupled CESM2 with the Cloud 
Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP)11 
enabled. Note that the simulations here have a different horizontal resolution and somewhat higher 
ECS than those in Gettelman et al. (2019) (see Methods). Following the standard procedure of 
calculating ECS12, we forced the simulation with an abrupt quadrupling of atmospheric carbon 
dioxide concentration from pre-industrial conditions. From this simulation and a control simulation 
we decomposed the cloud feedbacks by using radiative kernels following Zelinka et al.13.  
 
Despite the high ECS of the CESM2 simulations presented here (6.8°C with an 95% uncertainty 
range from 6.5 to 7.1°C), the historical temperature evolution remains well represented and 
generally lies within the observational uncertainty (Figure 1a). Figure 1b shows the simulated 
temporal evolution of surface air temperature after CO2 quadrupling, which already after 150 years 
of simulation approaches 9°C, driven by a radiative energy imbalance (EI) at the top-of-the-
atmosphere (TOA) induced by the CO2 quadrupling. Initially, the EI decreases rapidly with 
warming, but after 10-15 years this rate of decrease slows considerably, resulting in an EI which 
after 150 years remains large at approximately 2.5 Wm-2. This is also evident from Figure 1c, which 
shows a regression of EI against the global mean surface air temperature (SAT) change. The slope 
of this regression gives the feedback parameter while the inferred ECS is obtained by dividing the 
intercept of the regression line with the x-axis by two14. A regression over the first 15 years of the 
simulation results in a steeper slope and thus a weaker inferred ECS14while using the full simulation 
results in a larger inferred ECS. The latter is currently the standard method of calculating ECS3. The 
difference between the two regression lines indicates that the overall climate feedback changes over 
the 150-year simulation period. Figure 1c further shows that the reason the EI is far from zero even 
after 150 years of simulation is that the climate system increasingly absorbs more shortwave (SW) 
radiation with warming over time, which compensates for much of the warming-induced increase in 
outgoing longwave (LW) radiation to space (the well-known Planck feedback). Figure 1d shows 
that cloud changes that amplify with time can largely explain the weak reduction of the EI with 
warming. 

 
Figure 1: Near surface temperature and radiative responses to a quadrupling of atmospheric CO2. (a) Historical 
global mean near surface temperature evolution from observations (GISTEMP v4) and three ensemble members of 
CESM2 (b) Change in near surface temperature (K) and TOA radiative imbalance (W m-2) development between a 



simulation of abrupt atmospheric CO2 quadrupling (4xCO2) and a control simulation. (c) Dots show global annual-
mean changes in TOA downward radiative flux under “all-sky” conditions against the corresponding global annual-
mean change in near surface temperature between the 4xCO2 and the control simulations. Lines show linear regression 
fits to the data, where the slope and the intercept gives the feedback parameter (W m-2 K-1) and the effective radiative 
forcing (W m-2), respectively. Net flux changes are shown in black, longwave (LW) in purple and shortwave (SW) in 
green. The dotted grey line shows a regression where only the first fifteen years of the net all-sky conditions are 
utilised. (d) As in (c), but for cloudy conditions only. 
 
To further demonstrate how cloud changes influence the EI over time, Figure 2a shows the net 
cloud feedback evolution over the simulated 150 years post CO2 quadrupling. Evident is a cloud 
feedback that is initially large and positive, but which thereafter grows with time. This cloud 
feedback increase is responsible for the transition in CESM2 from a medium-ECS state under 
historical and present-day conditions, to an extremely high-ECS state for warming beyond 3-4°C 
(feedbacks as a function of SAT change are shown in Figure S1).  Figures 2a further shows that it is 
mainly a change in the feedback associated with cloud optical depth changes that drives the overall 
cloud feedback change (~63%), with smaller contributions from changes in cloud altitude (~21%) 
and amount (~16%). Figures 2b and 2c show that the net cloud feedback changes stem primarily 
from changes to the shortwave cloud feedback.  
 

 



Figure 2: Total and decomposed cloud feedbacks with time. 15-year average net (a), SW (b) and LW (c) cloud 
feedbacks for the 150 years of the CESM2 simulation after quadrupling of CO2. Dots are placed at the middle of each 
15-year interval, for the total cloud feedback (black) and separated into the cloud amount feedback (yellow), the cloud 
altitude feedback (red) and the cloud optical depth feedback (blue).  
 
From the maps shown in Figure 3 we can see that most of this change in the optical depth feedback 
occurs over the Southern Ocean (though notable changes occur also in the Arctic and the Southeast 
Pacific). The importance of the different latitude regions for the overall feedback change is also 
shown in figure S2. Early in the 150-year simulation, the zonal mean optical depth feedback is 
generally positive at low latitudes (linked to dehydration of the low-cloud layer with warming), and 
negative at mid- to high latitudes, particularly in the Southern Ocean. Mixed-phase clouds are 
abundant in this region, which therefore has a large potential for a negative optical depth feedback, 
as evident in Figure 3a (45-60°S mean of -1.25 Wm-2 K-1). However, towards the end of the 
simulation, the negative optical depth feedback in the Southern Ocean has virtually vanished (-0.02 
Wm-2 K-1, Figure 3b). 

 
 
Figure 3: Maps of the net optical depth feedback at the beginning and end of the simulation. 
The spatial distribution of the net optical depth feedback (Wm-2K-1) for the first (a) and the last (b) 15 years of the 150-
year simulation following a quadrupling of CO2 simulation with CESM2. 



The increase in optical depth feedback over the Southern Ocean can be explained by the following 
mechanism: As the temperature increases, more of the Southern Ocean clouds become liquid and 
fewer consist of ice, which increases their optical thickness. The increase in optical thickness in turn 
reduces the warming, giving the negative feedback that we see over the Southern Ocean early in the 
simulation. The existence of a negative cloud feedback over the Southern Ocean has been 
confirmed observationally from space15, and the magnitude of the feedback in CESM2 appears to 
be consistent with that inferred from these satellite observations (95% confidence interval for 45-
60°S of -1.7 to -0.1 Wm-2 K-1). However, as the temperature increases, eventually most clouds in 
the Southern Ocean will already be liquid and no further phase-related changes to cloud optical 
depth can occur. This results in a weakening of the negative Southern Ocean feedback as the 
temperature increases, causing the overall global (positive) cloud feedback to increase with time. As 
evident from Figure 4, the fractional content of ice within the clouds over the Southern Ocean 
clearly decreases as the atmosphere warms. The decrease is largest in the lower troposphere where 
the average temperature increases to be above 0°C, moving the mixed-phase cloud region upwards. 
This is also the altitude range in which we find most of the cloud water (measured in mass mixing 
ratios) in the region (Figure 4).  
 

 
 
Figure 4: Cloud water and temperature profiles for summer over the Southern Ocean. 
The summer (DJF) grid-box average of cloud water amount and temperature profiles (red lines) for the pre-industrial 
control simulation (a) the first 15 years (b) and the last 15 years (c) of the 150-year simulation with quadrupling of CO2. 
The ice fraction is light blue and the liquid fraction in dark blue. The mixed-phased cloud region (temperatures between 
0 and -38°C) is shown in grey shading. 
 
This confirms that the low clouds over the Southern Ocean are over the 150-year simulation 
approaching a state where almost all the ice in the clouds is gone, particularly for the part of the 
year when the amount of solar radiation reflected back to space is most susceptible to cloud changes 
(December-February is shown in Fig. 4, see Figures S3-S5 for other seasons). Figure S6 shows that 
CESM2 has vertical profiles of total cloud water, phase partitioning and temperature which are 
broadly consistent with atmospheric reanalyses and active spaceborne remote sensing16,17. 
 
We argue that the mechanism described above must operate, and thus the optical depth feedback  
should change with warming both in reality and in other GCMs. However, exactly how important 
this effect becomes depends crucially on the amount of warming in the Southern Ocean region, and 
is thus tightly interlinked with other (cloud) feedbacks. Intuitively, GCMs that have more ice in 
mixed-phase clouds initially, will also require more warming for the transition to a high-sensitivity 
state to occur, because the optical depth feedback starts out much more negative over the Southern 
Ocean. Too low SLF was a known problem for many of the CMIP5 models 18 19, as was a large bias 
in the optical depth of Southern Ocean clouds20. These biases have been corrected in many of the 
CMIP6 models21 10, and thus it is very likely that the demonstrated increase in cloud feedbacks seen 
in CMIP6 models relative to CMIP5 can be explained by a weaker negative cloud phase feedback. 



This is corroborated by the fact that the increased cloud feedback in CMIP6 has been traced back to 
extratropical clouds, and primarily to the Southern Ocean22. 
 
While the idea of state-dependent cloud feedbacks is not new23 24, the literature has so far focused 
on tropical cloud feedbacks. In contrast, the results presented here support a strong state-
dependence of feedbacks operating in extratropical clouds, that is particularly prevalent in the 
Southern Hemisphere. The existence of a strong negative cloud feedback at present, that retards 
warming in the Southern Ocean, may well have played an important role in the considerable 
hemispheric asymmetry in surface air temperature increase seen over the last century25, and 
potentially also in the observed sluggish rate of Antarctic sea ice loss so far. This has so far 
primarily been attributed to the fact that it takes centuries for a global warming signal to emerge in 
the deep ocean waters upwelling in this region26. There is now recent evidence from multi-century 
GCM simulations that ocean processes that govern the emergence of Southern Ocean surface 
warming may control the triggering of the cloud phase feedback weakening27, thus highlighting the 
urgency of understanding how both mechanisms operate and interact in nature as well as in the 
latest generation of GCMs. Recent indications that Antarctic and Southern Ocean climate change is 
accelerating28 further underscore this urgency. 
 
METHODS 
 
In the comparison of observed historical surface air temperature with that of CESM2 ensemble 
members (Figure 1a), the CESM2 data (from simulations at approximately 2 by 2 degree resolution) 
was downloaded from the CMIP6 archive (date of download from the Earth System Grid 
Federation: April 3rd 2020), while observations were taken from the GISTEMP v4 data set29 30. The 
spread of CESM2 ensemble members illustrates uncertainty related to natural variability, while 
observational uncertainty is on the order of 0.2°C (95% confidence interval) in the early 1900s, 
reducing to near 0.05°C for the last 50 years29.   
The change in TOA downward radiative flux and near surface air temperature shown in Figure 1(b-
d) is calculated based on CESM2 simulations performed by the authors (same horizontal resolution, 
but with COSP enabled), by taking the global annual-mean values of a 150-year 4xCO2 simulation 
and subtracting a linear regression of the values in the corresponding time segment of a control 
simulation following Forster et al.31. This method removes any drift from remaining energy 
imbalance in the control simulation from the analysis. The linear regressions of Figure 1c show 
what is commonly referred to as the “Gregory estimates” following e.g. Gregory et al.14, Forster et 
al.31 and Andrews et al.32. The effective radiative forcing (W m-2) is given by the regression line y-
axis intercept, the effective climate sensitivity is found by dividing the x-axis intercept by two and 
the slope of the line gives the climate feedback parameter (W m-2 K-1). The effective climate 
sensitivity is found to be 6.76°C (95% confidence interval of 6.50 – 7.07, produced based on 
bootstrapping using 3000 realizations). Figure 1d shows the true (all-sky) radiative contribution 
from cloudy conditions. 
The comparison between CESM2 and spaceborne remote sensing shown in Figure S6 uses satellite-
retrieved liquid water content (LWC) and ice water content (IWC) data that stem from observations 
with the Cloud Profiling Radar (CPR) on CloudSat16 and the Cloud-Aerosol Lidar with Orthogonal 
Polarization (CALIOP)17 on CALIPSO between June 2006 and March 2011. The LWC profiles 
from the CloudSat Radar-Only Cloud Water Content Product33 (2B-CWC-RO version P1_R05, 
variable ‘RO_liq_water_content’) and the IWC profiles from the CloudSat and CALIPSO Ice Cloud 
Property Product34,35 (2C-ICE version P1_R05, variable ‘IWC’) are complemented by atmospheric 
temperature and pressure profiles from the ECMWF-AUX data set (version P_R05) that contains 
ancillary European Center for Medium-Range Weather Forecast (ECMWF) state variable data 
interpolated to each CPR bin. Each LWC, IWC, and temperature profile over the Southern Ocean 
(45-60°S) is re-gridded on a common pressure grid using nearest-neighbour interpolation to 
facilitate along-track averaging. The LWC and IWC data (kg m-3) are screened using the provided 



quality flags and converted to mixing ratios (kg/kg) by means of the air density calculated from the 
pressure and temperature data for each bin. Finally, the seasonal and annual averages for all-sky 
conditions in the Southern Ocean region are computed between 2006 and 2011. Note that the radar 
reflectivity strongly depends on the particle size of the hydrometeors and, thus, is influenced by 
precipitation particles. For the comparison with CESM2, the simulated IWC and LWC profiles 
shown in Fig. S6 additionally include snow and rain (in contrast to the profiles shown in Fig. 4). For 
the satellite retrieval, uncertainties for LWC and IWC are included in the satellite products for each 
individual profile. They are mostly in the order of 20 to 40 %, varying considerably with altitude 
and atmospheric conditions. The given error estimates were propagated in the calculation of the 
averaged LWC and IWC profiles. As several hundred thousand of profiles are averaged over the SO 
region each month, the propagated error becomes negligible. 
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