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Abstract

In this note, we present a new way to associate a spectral triple to the noncommutative
C*-algebra C*(A) of a strongly connected finite higher-rank graph A. Our spectral triple
builds on an approach used by Consani and Marcolli to construct spectral triples for Cuntz-
Krieger algebras. We prove that our spectral triples are intimately connected to the wavelet
decomposition of the infinite path space of A which was introduced by Farsi, Gillaspy, Kang,
and Packer in 2015. In particular, we prove that the wavelet decomposition of Farsi et
al. describes the eigenspaces of the Dirac operator of our spectral triple. The paper concludes
by discussing other properties of the spectral triple, namely, f-summability and Brownian
motion.
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1 Introduction

Connes’ spectral triples [4] are a valuable tool for transferring geometric questions to an algebraic
context. Indeed, even within purely geometric settings, spectral triples often shed new light. For
example, the spectral triples associated to fractal spaces (cf. [2, 10, 27, 22, 18, 16, 24]) often reveal
the dimension of the fractal space as well as other aspects of the fractal geometry. The goal of
this paper is to increase our geometric understanding of higher-rank graph C*-algebras C*(A),
by constructing a new spectral triple for C*(A) when A is finite and strongly connected. Our
spectral triple was inspired by work of Consani and Marcolli [5] on spectral triples for certain
Cuntz—Krieger algebras. They used these spectral triples and other C*-algebraic techniques to
study Arakelov geometry and Archimedean cohomology.

In this note, in addition to presenting the second known construction of a spectral triple for
higher-rank graph C*-algebras C*(A), we also establish the compatibility of these spectral triples
with the representations and wavelets for higher-rank graphs which were developed in [8]. Indeed,
both spectral triples and wavelets are algebraic structures which encode geometrical information,
so it is natural to ask about the relationship between wavelets and spectral triples.

Higher-rank graphs (also called k-graphs) were introduced by Kumjian and Pask in [19] to pro-
vide a combinatorial model to the higher-dimensional Cuntz-Krieger algebras given by Robertson
and Steger in [30]. The C*-algebras C*(A) of k-graphs A have been studied by many authors and
provided concrete, computable examples of many classifiable C*-algebras. The graphical character
of k-graphs has also facilitated the analysis of structural properties of C*(A), such as simplicity
and ideal structure [28, 29, 6, 17, 1], quasidiagonality [3] and KMS states [14, 13, 12].



However, the analysis of the noncommutative geometry of C*(A) is in its infancy. Although
Pask, Rennie, and Sims establish in [26] that higher-rank graph C*-algebras often provide tractable
examples of noncommutative manifolds, the current literature contains only one class of (semifinite)
spectral triples for C*(A), namely those studied in [25]. (One can also associate Pearson—Bellissard
spectral triples (A, H, D) to higher-rank graphs, cf. [7]. However, the algebra A = Cp;,(A®)
used in these spectral triples is a commutative subalgebra of C*(A) and does not capture the
noncommutative geometry of C*(A).) Moreover, the spectral triples described in this paper can
be constructed for many higher-rank graphs to which the techniques of [25] do not apply (see
Remark 2.6 below). Thus, the spectral triples for the noncommutative C*-algebra C*(A), which we
construct in Theorem 3.4 below, constitute an important step forward in our understanding of the
noncommutative geometry of C*(A), in particular because of the link we establish between these
spectral triples and wavelet theory for C*(A).

Wavelets for higher-rank graphs A were introduced by four of the authors of the current paper
in [8], building on work of Marcolli and Paolucci [23] for Cuntz—Krieger algebras, which in turn
was inspired by the wavelets for fractal spaces developed by Jonsson [15] and Strichartz [31]. In all
of these settings, the wavelets give an orthogonal decomposition of L?(X, i) for a fractal space X,
which arises from applying dilation and translation operators to a finite family of “mother wavelets”
fi € L*(X, j1). The dilation and translation operators are determined by the underlying geometry.
In Jonsson and Strichartz’ work, the self-similar structure of the fractal space X dictates the
dilation and translation operators, while in the higher-rank graph case, the dilation and translation
operators arise from the graph structure. (See Section 2.2 for more details.)

To further our understanding of the noncommutative geometry of C*(A), we construct in The-
orem 3.4 a spectral triple (Ay, L2(A*, M), D), where A, is a dense (noncommutative) subalgebra
of C*(A). This spectral triple was inspired by the spectral triples for Cuntz—Krieger algebras
constructed in [5], and offers a different perspective on the noncommutative geometry of C*(A)
than the spectral triples of [25]. Theorem 3.5 then establishes our link between spectral triples
and wavelets for higher-rank graphs by showing that the eigenspaces of the Dirac operator D of
this spectral triple agree with the wavelet decomposition of [8]. Finally, we conclude the paper in
Section 4 by analyzing the f-summability and Brownian motion of our spectral triple.
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2 Background material

We begin by detailing some foundational material needed for our results, and in particular reviewing
the definition of a higher-rank graph A, the definition of its C*-algebra C*(A), and associated
wavelets.



2.1 Higher-rank graphs and their C*-algebras

Throughout this paper, we will view N := {0,1,2,...} as a monoid under addition, or as a category.
In this interpretation, the natural numbers are the morphisms in N. Thus, for consistency with
the standard notation n € N, we will write

AEA

to indicate that A is a morphism in the category A.

Definition 2.1. A higher-rank graph or k-graph by definition is a countable small category A with
a degree functor d : A — NF satisfying the factorization property: for any morphism A € A and any
m,n € N¥ such that d(\) = m + n € N¥, there exist unique morphisms p, v € A such that A\ = pv
and d(p) = m, d(v) = n.

We often think of k-graphs as a generalization of directed graphs, so we call objects v € A°
“vertices” and morphisms A € A are called “paths.” We write 7,5 : A — A" for the range and
source maps and vAw = {\ € A : r(\) = v,s(\) = w}. Similarly, for any n € N* we write
vA" ={A e A:r(N\) =v,d(N\) =n}.

For m,n € N* we denote by m V n the coordinatewise maximum of m and n. Given \,n € A,
we write

AN 7)) = {(a, B) € A x A = =1, d(\a) =d(\) Vd(n)}.

We say that a k-graph A is finite if A" is a finite set for all n € N* and say that A has no sources
or is source-free if vA™ # ) for all v € A® and n € N*. It is well known that this is equivalent to
the condition that vA% # () for all v € A and all basis vectors e; of N*. Also we say that a k-graph
is strongly connected if, for all v,w € A°, vAw # (). If A is strongly connected then it is source-free
by [14, Lemma 2.1].

Definition 2.2. [19] If A is a finite k-graph with no sources, write C*(A) for the universal C*-
algebra generated by partial isometries {s)}rea satisfying the Cuntz—Krieger conditions:

(CK1) {s,:v € A"} is a family of mutually orthogonal projections;
(CK2) Whenever s(\) = r(n) we have s)s, = sy;
(CK3) For any A € A, 535y = Ss(0):
(CK4) For allv € A® and all n € N*, 37, . 5383 = 5.

Condition (CK4) implies that for any A\,n € A we have

S\Sy = Z SaSh
(a,B)€A™In(X,n)

where we interpret empty sums as zero. Consequently, C*(A) = span{sys; : A,n € A}.
Definition 2.3. Let A, denote the dense *-subalgebra of C*(A) spanned by {sxsy }xzea-

An important example of a k-graph is the category ), where

Obj(%) =N*,  Mor(%) = {(p,q) € N*: p < ¢}.

The range and source maps r, s in € are given by r(p,q) = p, s(p,q) = ¢, and the degree map
d: Q, — N is given by
d(p.q) =q—p.
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Definition 2.4. An infinite path in a k-graph A is a degree preserving functor = : 2, — A. We
write A* for the set of infinite paths in A.
Given A € A, we define the cylinder set [\] C A> by

N = {z € A% : 2(0,d())) = A}

to be the infinite paths with initial segment A. It is well-known (cf. [19]) that the collection of
cylinder sets {[A\]} xea forms a compact open basis for a locally compact Hausdorff topology on A>°.
If a k-graph A is finite, then A* is compact in this topology.

For each m € N¥, we have a shift map o™ on A> given by

o™ (@)(p,q) = x(p+m,q+m). (1)

for € A* and (p,q) € Q. In duality to the shift map ¢™, for each A € A we also have a prefixing
map o) : [s(N\)] = [A] given by

AP, q), q < d(\)
oxx) =Az = [(p,q) = qz(p—d(N),qg—d(}),  p=>d}) (2)
Ap,d(N) x(0,q —d(N)), p<dA)<q

According to [14, Proposition 8.1], for any finite and strongly connected k-graph A, there is a
unique self-similar Borel probability measure M on A*>°. To describe M, we require more definitions.

Definition 2.5. For a finite k-graph A and 1 < i < k, the vertex matriz A; € Myo(N) is
Ai(v,w) = #(vA%w).

Lemma 3.1 of [14] establishes that if A is finite and strongly connected, then there exists a
unique vector £* € (0, oo)AO, called the Perron—Frobenius eigenvector of A, such that

ZK?Zl and AmA:pmA V1<i<k.

veAD

The unique self-similar Borel probability measure M of [14] is given on cylinder sets by
M(IN) = (p(A)) by for A€ A.

Here p(A) = (p1,...pr), where p; denotes the spectral radius of the vertex matrix A; € Myo(N),
and (p(A))" := pit ... pp* for n = (nq,...ny) € R¥. We call the measure M the Perron—Frobenius
measure on A,

Remark 2.6. The spectral triples for C*(A) studied by Pask, Rennie, and Sims [25] are constructed
using a ZF grading on a Hilbert space that arises from the gauge action of T* on the C*-algebra
C*(A) and a faithful k-graph trace (see [25, Definition 3.5]) on the k-graph A. For source-free k-
graphs (in particular for strongly connected k-graphs), the set vA=" of [25] coincides with vA™.
It follows by taking n = e; in [25, Definition 3.5] that in this case, a faithful k-graph trace is a
common eigenvector g for the adjacency matrices Ay, ..., Ag, such that A;(g) = g for all i and
all entries of g are positive. Thus, [14, Proposition 3.1 and Lemma 4.1] imply that for a strongly
connected k-graph A with p(A) # 1, C*(A) does not admit a Pask-Rennie-Sims spectral triple.
There are many examples of strongly connected k-graphs A for which p(A) # 1; cf. [21, Example
7.7] or [8, Example 3.7]. For these k-graphs A, Theorem 3.4 below establishes the first spectral
triple for C*(A).



2.2 Wavelets on higher-rank graphs

According to Proposition 3.4 and Theorem 3.5 of [8], there is a separable representation 7 of C*(A)
on L2(A®, M) when A is a finite, strongly connected k-graph. Theorem 3.4 below identifies a Dirac
operator D for which this representation gives a spectral triple (A, L2(A®, M), D).

Before stating Theorem 3.4, we review the definition of the representation 7 and the associated
wavelet decomposition of L2(A>®, M). For p € N¥ and A € A, let o and o, be the shift and
prefixing maps on A given in (1) and (2). If we let Sy := 7(sy), the image of the standard
generator s, of C*(A) under the representation 7, then [8, Theorem 3.5] tells us that S) is given
on characteristic functions of cylinder sets by

p(A)AN/2if 2 = Any for some y € A®

s _ AV (A0 (1)) —
X () = xp()p(A) X (0™ () 0 otherwise 3)

= p(A) "N 2y ().

Moreover, the adjoint S} of Sy is given on characteristic functions of cylinder sets by

p(A) =N/ if \g = ny for some y € A®

S* — s A _d()‘)/2 —
X (7) = Xl ()P (B) VX (oa(@)) = otherwise

= p(A)V2 N (@),

(¢E)eAmin(An)

We can think of the operators Sy as combined “scaling and translation” operators, since they
change both the size and the range of a cylinder set [n], and are intimately tied to the geometry of
the k-graph A.

This perspective enabled four of the authors of the current paper to use the representation 7
to construct a wavelet decomposition of L*(A>, M); we recall the details from [8, Section 4]. For
each vertex v in A, let

D, = vALb),

One can show (cf. [14, Lemma 2.1(a)]) that D, is always nonempty when A is strongly connected.
Enumerate the elements of D, as D, = {Ao,...,\g(,)-1}. Observe that if D, = {A} is a
1-element set, then [v] = [A]. If #(D,) > 1, then for each 1 <1i < #(D,) — 1, we define

F1 = X — T )

One easily checks that in L*(A>, M), (", xp)) = 0 for all ¢ and all vertices v, w, and that
{7 ve A 1<i<#(D,) -1}

is an orthogonal set. Therefore, the functions {f**};, span the subspace Wy, C L?(A>, M) from
[8, Theorem 4.2|, which we will henceforth call W.

The following theorem, which was proved in [8], justifies our labeling of the orthogonal decom-
position (6) as a wavelet decomposition: the subspaces W, are given by applying “scaling and
translation” operators Sy to the finite family of “mother functions” {f**},,.



Theorem 2.7. [8, Theorem 4.2] Let A be a finite, strongly connected k-graph and define ¥, :=
span{xp) : v € A°}. Let ¥ := span{x) : v € A°}, and set

Wh = 'Spa’n{s)\fi’so‘) : d<A) = (n> s 7n)7 1<:< #(Ds()\)) - 1}

for each n € N. Then {Syf>*™ : d(N) = (n,...,n),1 <i < #(Dsn)) — 1} is a basis for W, and

LA(A®, M) = % & P Wi (6)
n=0

3 Spectral triples of Consani-Marcolli type for strongly
connected finite higher-rank graphs

In Section 6 of [5], Consani and Marcolli construct a spectral triple for the Cuntz-Krieger algebra
O, associated to a matrix A € M, (N). Recall from [20] that if E is the 1-graph with adjacency
matrix A, then Oy = C*(E).

In this section, we generalize the construction of Consani and Marcolli to build spectral triples
for higher-rank graph C*-algebras C*(A). For these spectral triples (described in Theorem 3.4
below), it is shown in Theorem 3.5 that the eigenspaces of the Dirac operator agree with the
wavelet decomposition from [§]. We also discuss in Remark 3.6 at the end of the section how
to modify the construction of the spectral triple to make the eigenspaces of the Dirac operator
compatible with the J-shape wavelets of [9].

Definition 3.1. Let A be a finite, strongly connected k-graph. Define R_; € L*(A*, M) to be
the linear subspace of constant functions on A*®. For s € N, define R, C L*(A>, M) by

R, = span {X[n] :meAN, sup{d(n);:1<i<k} < 5},

where d(n) = (d(n)1,...,d(n)x) € N~
Let =, be the orthogonal projection in L?*(A>, M) onto the subspace Rs. For a pair (s,r) €
N x (NU{-1}) with s > r, let

(11
[1]

—_
— —
— —

S,

S T

Since R, C R, gsm is the orthogonal projection onto the subspace Ry N (RT)L.

Given an increasing sequence o = {a,}qen of positive real numbers with lim, ., o, = oo, we
define an operator D on L*(A> M) by

D= a,Z41 (7)

q€eEN

Note first that the operator D has eigenvalues o, with eigenspaces R, ﬂR(Lq_l) by construction.
Also note that when A has one vertex, R_; = Ry and the orthogonal projection 207_1 is the zero

projection.

Proposition 3.2. The operator D on L*(A*, M) of Equation (7) is unbounded and self-adjoint.



Proof. The fact that D is unbounded follows from the hypothesis that lim, ., oy = oo. Thus, to
see that D is self-adjoint we must first check that it is densely defined, and then show that D and
D* have the same domain. For the first assertion, recall from Lemma 4.1 of [8] that

{[n] : d(n) = (n,...,n) for some n € N}

generates the topology on A*, and hence span{xp,; : d(n) = (n,n,...,n), n € N} is dense in
L?(A*>, M). Given such a “square” cylinder set [n] with d(n) = (s,...,s), since xj; € Rs, we can

write Xp; = > <, Err—1(X[y)- Then,

X[n] ZO‘T'—‘TT 1 X[n]

r<s

which is a finite linear combination of vectors with finite L?-norm, and hence is in L*(A>, M).
In other words, for any finite linear combination & of characteristic functions of square cylinder
sets, D¢ is in L?(A°, M). Thus D is defined on (at least) the finite linear combinations of square
cylinder sets, which form a dense subspace of L?(A*, M).

Moreover, our definition of D as a diagonal operator on L?(A°, M) with real eigenvalues implies
that D = D* formally; since the operators D and D* are given by the same diagonal formula, their
domains also agree, and hence we do indeed have D = D* as unbounded operators. [l

Proposition 3.3. Let D be the operator on L?*(A*°, M) given in (7). For all complex numbers
A & {p bnen, the resolvent Ry(D) := (D — X\)~! is a compact operator on L*(A>, M).

Proof. By definition, D is given by multiplication by a4 on R, N ”R(Lq_l). Consequently, for all
g €N, (D — )" is given by multiplication by — on Ry N R(q B

Since A\ € {a, tnen and lim, o o, = 00, glven ¢ > 0, we can choose N so that for all n > IV,
< e. Fix s € N; then for any f € R;NRL, of norm 1,

i L2 |~ -0 = [ ——Ea)
q=1 A q>Nozq A

] s N
0 if s<N

[on—=Al

< €,

since ||f|| = 1 by hypothesis. Since the subspaces {R, N RL ; : s € N} span L*(A®, M), it follows
that (D — X) ! is the norm limit of finite rank operators and hence is compact. O

Theorem 3.4. Let A be a finite, strongly connected k-graph, and denote by w the representation of
C*(A) on L*(A>, M) given in Equations (3) and (4). Let Ay be the dense x-subalgebra of C*(A)
given in Definition 2.3 and let D be the operator given in (7). If there exists a constant C' > 0 such
that the sequence o = {ay,}qen satisfies

’aq—i-l - O‘ql <C, VqeN,

then the commutator (D, (a)] is a bounded operator on L*(A®, M) for any a € Ay.
Combined with the above results, this implies that the data (Ax, L*(A*, M), D) gives a spectral
triple for C*(A).



Proof. To prove that (Ax, L2(A*, M), D) is a spectral triple we need to show that D is self-adjoint,
(D%*+4)7! is compact and [D, w(a)] is bounded for all @ € Ax. The first statement is the content of
Proposition 3.2, and the second follows from Proposition 3.3, thanks to the fact that +i & {a, }nen
and hence (D 4-7)~! is compact. Thus, to complete the proof of the Theorem, we will now show
that [D,7(a)] is bounded for all finite linear combinations a = ). ¢;sy, 85, € Aa, where ¢; € C.

Given A € A, write max, = max;{d()\);} and min, = min;{d()\);}. Then the formula (3)
implies immediately that, for any fixed s € N, the operator Sy on L*(A>, M) takes Ry t0 R+ max, -

Moreover, Equation (4) implies that the operator S on L*(A>, M) takes Ry t0 Ry min, if
min, < s, and to Ry otherwise. To see this, suppose xp; € Rs and d(n) = (n1,...,n). Then
SYX[y 1s a linear combination of cylinder sets x(q with

4(C); = 0, d(\); > d(n);
S ld)i —d(V)i, d(N)s < d(n)i

Consequently, we see that (as desired)
max{d(¢);} = max{0,n; — d(\); : 1 <i <k} < s— min,.

If s < min,, then n; — d(X); <0 for all 4, so S{x; € Ro for all xp; € Rs.
Similarly, if f € RY, then Sy\f € Rsﬁrmim. Namely, if (f,h) = 0 for all h € R, then our
description of S} above yields
<f> S§g> =0V g e ,R's—',-minx

An analogous argument shows that S takes Ry to Rj_mm if s > max,.

Now fix g €N, f € R,NR.L,, and fix A\, p € A with s(\) = s(u). We use the reasoning of the

q—1
previous paragraphs to identify the subspaces R, R;- which contain S AT
If max, > ¢, then we cannot guarantee that Sjf is orthogonal to any R, with ¢ > 0; in order
to do so, we must have (S} f,§) = (f,5,£) = 0 for all £ € R;. In other words, we must have
Su& € Ry for all € € Ry. However, S, takes Ry into Rijmax, 2 Rq-1 if max, > ¢ and ¢ > 0.
Moreover, if ¢ < miny, then S} f € Ro. Thus,
¢ < min,, = SAS;f € Rumax,; min, < ¢ < max, = S,\S;f € Rgtmaxy — min,;

1
(g—1)+miny —maxy, "

q > max, = S\S, [ € Ryimax, —min, TR
For now, assume ¢ > max,,. Writing g = S\S, f, we have

g+maxy — miny,

g = <:'q+max/\ —min, — =(g—1)+miny —maxu>g = E <:'w - ‘:w—l)g

w=qg-+miny — max,

and consequently

g+max) — miny, g+max) — miny,

D(S,\S%f) =: Dg = 3 D((Ew — Ew_l)g> - Y O <<Ew — Ew_l)g>.

w=g+miny —max, w=g+miny —max,
It now follows that, if f € R, N qu_l for ¢ > max,,

g+maxy — miny,

D, S\Silf = DS\SLf = S\SaDf = Y (aw —ay) ((Ew - Ew_1>SASZ f).

w=q-+miny — max,
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Consequently, since |a,, — ay—1| < C for all w,

g+max) — miny,

I[D, SxSz1f]| < > v — gl |25 £

w=g+miny —maxy

g+max) — min maxy — miny
<Isspfl Y. Cle—dl=ISsiflc > il
w=g-+miny —maxy t=min) — maxy

Since S)5), is a partial isometry and hence norm-preserving, whenever f € R, ﬂRqL_l for ¢ > max,,
|[D, SxS;]f]| is bounded above by a constant which depends only on A and .

If we have min,, < ¢ < max;,, since we no longer know that S\ S, f € R for any ¢, in calculating
|[D, SxS, f || we have to begin our summation over w at zero, rather than at ¢ + miny — max,,. In
this case, the final (in)equality above becomes

maxy — ming, q

1D, SaSfl < D CHISNS fI + > CISSafl.
t=1 t=1

In this case, ¢ < max,, so we obtain the norm bound

11D, 5,511 < IISASZfIIC(

(max) — min, )(max, — min, +1) n max,, (max,, +1)>
2 2

In other words, [[[D,S\S;]f| is again bounded by a constant which only depends on A and .
A similar argument shows that if ¢ < min,,, [|[D,S)\S}]f|| is bounded by a constant which only
depends on \ and . Since {R, N R, 1}4en densely spans L*(A>, M), it follows that [D, S\Sy] s
a bounded operator for all (A, ) € A x A with s(\) = s(p).

By linearity, it follows that [, 7(a)] is bounded for all finite linear combinations a = ) 7, cisx, sy,
of the generators sys; of C*(A). Since every element of the dense x-subalgebra Ay of C*(A) is
given by such a finite linear combination, it follows that (Ay, L2(A®, M), D) is a spectral triple,
as claimed. O

Theorem 3.5. Let (Ap, L?(A*°, M), D) be the spectral triple described in Theorem 3.4. The
eigenspaces of the Dirac operator D given in (7) agree with the wavelet decomposition

L*(A®, M) = Y% o P W,
q=0

of Theorem 2.7 above (also see [8, Theorem 4.2]). In particular,
H=Ro2R-1 and W; =Ry NRy, q 2 0.

Proof. By definition, R_; C R = % = span{x[,) : v € A°}. For the second assertion, recall that
W, = span{Sy\f : f € Wy, d(A) = (q,q,...,q)}. Since max, = min, = ¢ for all such A, each such
Sy takes Ry "Ry to Ryyg MRy, ;- Thus, it suffices to see that Wy € Ry N Ry, and that W,
and R, MR, have the same dimension for all ¢ € N.

For the first statement, recall that W, was constructed precisely to be the span of a family
{f""} of functions (see Equation (5)) which were orthogonal to ¥ = Ro. Moreover, every function



/%" is a linear combination of characteristic functions x, with d(n) = (1,...,1), and therefore lies
in Rl N Ré_

From the fact that {Syf>*™ : d(\) = (¢,q,...,q), 1 <i < #(Dy(n)) — 1} is a basis for W,, and
the factorization rule in A, it follows that W, has dimension

Moreover, we know from [8, Lemma 4.1] that “square” cylinder sets generate the topology on A>;
it follows that R is spanned by {xpy : d(A) = (s,...,s)}. Indeed, this set forms a basis for R: if
d(N\) =d(u) = (s,...,s), then the factorization rule implies that

(XA X[ul) :/A XX [ M = 85, M([N]).

Consequently, R 41 ﬂRqL also has dimension # (A@FL-a+D) — 4 (A@-2)) Hence, W, = Ry11 ﬂRqL
for all ¢ € N, as desired. O

Remark 3.6. Fix J € N* with J; > 0 for all i. We described in Section 5 of [9] how to construct
wavelets with “fundamental domain” J — the original construction in Section 4 of [8] used J =
(1,...,1). By defining

R = span{xp, : d(n) < sJ}

we can construct a Dirac operator D on L2(A>, M) which gives rise to a spectral triple (Ax, L2(A>, M), D)
whose eigenspaces agree with the wavelet decomposition given in Theorem 5.2 of [9]. We omit the
details here as they are completely analogous to the proofs of Theorems 3.4 and 3.5 above.

4 6H-summability and Brownian motion

In this section we identify conditions under which the spectral triple of Theorem 3.4 is §-summable.
We also show that the Dirac operator for this spectral triple generates a Markovian semigroup,
which (as discussed in [27]) can be viewed as Brownian motion associated to this representation of
C*(A) on L*(A>, M).

Recall that a spectral triple (A, H, D) is 6-summable if the operator e~t" is trace class for all
t > 0. If there exists s > 0 such that (1 + lDQ)_S is trace class then we say (A, H, D) is finitely
summable.

Recall that the jth adjacency matrix A; € Myo(N) of A is given by

Aj(v,w) = #vA9w;

the factorization rule implies that the matrices A; pairwise commute. We will write p for the
spectral radius of A := Ay --- A,. Observe that if A is source-free and there exists a vertex v such
that |[vA%| > 2, then p > 1. Finally, we write f(n) = ©(g(n)) if there exist positive constants ¢y, co
such that for large n, c1g(n) < f(n) < cog(n).

Proposition 4.1. If p > 1 then the spectral triple (A, L*(A>, M), D) is never finitely summable.
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Proof. The proof of Theorem 3.5 establishes that the nth eigenspace of D has dimension

#A(n+1,n+1 ,,,,, n+l) #A(n ..... n) _ Z (A”H(v,w) _ A”(v,w)) . where A = A, ... A,.

v,wEA0

First notice that, since A has a (unique) positive normalized right eigenvector of eigenvalue p
(namely " = (k%),en0), Corollary 8.1.33 of [11] implies that (see also [7, Proof of theorem 3.8])

v

Ad(v,w) _ max{rd }pero

, Yo,w € A°)V ¢ € N\{0},

pe - min{/@{)\ }bEAO
Ad(v, w) max{r?};ecpo
d theref — L AP N\{0}.
an erefore vzl; P < |A”) min{/‘ié‘x}jeAO ,V ¢ € N\{0}

But, since all the entries of the positive normalized Perron-Frobenius eigenvector x* of A are less
than 1, we also have

1 1 1
1 1 1 A
S Atww)y = (| LA )= (] ] A%
o 1 1 1
1 1
1 1
=< ,pqﬁA>=pq< : 7/~@A>, v q € N\{0}.
1 1
Therefore,
1
P ! WM< ZAq(U w) < |A°? %{7\}1’@’0 09, ¥ q € N\{0}
a T ’ - min{zd bpey, | '
1

Tr((1+D%) ) =D (1+a2)*(dimR, — dimR,_,)

2\—s/ n p"
NHEZN@"'O%) (p )ngv

7

and this latter series diverges since lim,,_, o i = oo for all s > 0. O

1+(Cn)?)s

Proposition 4.2. If the sequence (a)nen satisfies a, = O(n") for r < 1/2, then the spectral
triple (Ap, L*(A>®, M), D) is O-summable. If o, = O(n") for r < 1/2, then the spectral triple
(Ap, L3(A%°, M), D) is not 0-summable.
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Proof. Observe that

Tl"(e_tDz) _ Z e—ta% (#A(n+1,n+1,.‘.,n+1) _ #A(n,,n)) ~ Z e—ta%pn‘

neN neN

If o, = ©(n"), then there exist constants B, C' > 0 such that Bn" < «,, < Cn" for large enough n.

Consequently
D2 p" p\"
Tr(e tD)ZZmZZ(w) :

neN neN

tD?

When r < 1/2, the ratio test tells us that this series diverges, so e " is not trace class. On the

other hand,
—tD? 2 : pn o 2 : P "
TI'(@ ) S eBtnzr - <eBtn2r—1 > .

neN neN

tD?

When r > 1/2, this series converges by the ratio test and therefore e 7" is trace class. O

We now proceed to show that the Dirac operator D from the spectral triple (Ay, L?(A*, M), D)
also gives rise to a Markovian semigroup, which is an analogue of Brownian motion for noncom-

mutative dynamical sytems. As defined in [27], a Markovian semigroup is a family of operators
{Ti }er., € B(L*(X,m)) for a measure space (X,m), such that

.0L<f<lae = Vt, 0<T,f<1a.e.
2. Each T; is a self-adjoint contraction.
3. Ty = TWT,
4. For all f € L*(X,m), we have lim; o || T;(f) — f]| = 0.
Proposition 4.3. For the Dirac operator D, the operators {e_'fD2 Y=o form a Markovian semigroup.

Proof. Properties 2 and 3 of the definition of a Markovian semigroup are immediate from the
construction. For Property 1, observe that if 0 < f < 1 then we can approximate f a.e. by simple
functions which are supported on cylinder sets and have coefficients in [0, 1]; for these simple
functions &, we have 0 < e~*2° (€) <1, so it follows that 0 < e‘tDz(f) <1 a.e. as well.

To see Property 4, fix f € L*(A®°, M) and ¢ > 0. Choose n € N and £ € R, such that
€ — f|l < €/3. Then

€7 (F) = £ < e (f = €)1+ le™ (&) — €l + 11 — &Il < 2¢/3+ [} () — ¢
<2¢/3+ 3 [l(eF — 1)Esa (€.

k=1

The fact that for all k ~we have lim; o e tei =1 implies the existence of 0 > 0 such that if t < ¢

then S0, [[(e7"% — 1)Zpx_1(€)|| < €/3. Since € > 0 was arbitrary, it follows that Property 4 holds
as well. O
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