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Municipal solid waste (MSW) is one of themost urgent issues associatedwith economic growth and urban pop-
ulation. When untreated, it generates harmful and toxic substances spreading out into the soils. When treated,
they produce an important amount of Greenhouse Gas (GHG) emissions directly contributing to global warming.
With its promising path to sustainability, theDanish case is of high interest since estimated results are thought to
bring useful information for policy purposes. Here, we exploit the most recent and available data period
(1994–2017) and investigate the causal relationship between MSW generation per capita, income level, urban-
ization, and GHG emissions from the waste sector in Denmark. We use an experiment based on Artificial Neural
Networks and the Breitung-Candelon Spectral Granger-causality test to understand how the variables, object of
the study, manage to interact within a complex ecosystem such as the environment and waste. Through numer-
ous tests in Machine Learning, we arrive at results that imply how economic growth, identifiable by changes in
per capita GDP, affects the acceleration and the velocity of the neural signal with waste emissions. We observe
a periodical shift from the traditional linear economy to a circular economy that has important policy
implications.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The impact of COVID-19 pandemic on municipal waste accentuates
the importance of sustainable waste management (Sarkodie and
Owusu, 2020). The UN Conference of Sustainable Development
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(UNCSD) parties clarified the definition of Sustainable Development
(SD) (Barbier, 2011; Wanner, 2015). It is defined as one that meets
our present needs while allowing future generations to address their
own. Meanwhile, the concept of Green Growth (GG) has emerged as a
low-carbon and climate compatible development pattern. Challenges
withMunicipalWaste (MW) stands at the core of these comprehensive
reforms since the effectiveness of the waste management sharply influ-
ences environmental quality. One reason is that global material use is
expected to double by 2060, with obvious dramatic consequences on
human health and the environment (OECD, 2019b). When not treated
(i.e., abandoned or deposited in open dumps), Municipal Solid Waste
(MSW) generates harmful and toxic substances through its direct re-
lease into soils1 (Ludwig et al., 2003; Ali et al., 2014). When treated
(i.e., collected and deposited in waste treatment facilities), it produces
an important amount of polluting emissions (notablymethane gas)2 re-
sponsible for global warming (IPCC, 2007; Bogner et al., 2008; Clarke
et al., 2019). Accordingly, it has been underlined that MSW must be
the subject of important ex-post management, but also important ex-
ante regulations (Ayalon et al., 2001). In line with a sustainable path,
minimising waste through recovery or turning waste into energy are
key areas in which circular business models3 can operate
(Malinauskaite et al., 2017; D'Adamo et al., 2019; OECD, 2020).

Facing this challenge, the European Union (EU) Sixth Environment
Action Programme (2002−2012) listed waste reduction as one of its
most urgent priorities (Sjöström and Östblom, 2010). Thus, EU policies
have been promoting sanitary landfill and waste recovery for a decade
(Sokka et al., 2007; Das et al., 2019). These globalmeasuresfind their or-
igin in a current concern: the total quantity ofMSWper capita increased
by 54% in the EU15 over the 1980–2005 period (Sjöström and Östblom,
2010). And this trend holds also for Denmark, where the per capita
MSW increased by 43.4%4 between 1994 and 2018 (OECD, 2019a).
Looking at the per capita income, this indicator recorded a 33% growth
over the same period (WDI, 2019). However, the environmental costs
related to MSW might still have decreased due to national waste man-
agement policies. Indeed, the Danish government has adopted several
policy measures in parallel to the EU's effort: reducing landfilling, in-
creasing processing for recycling, and improving composting5

(Andersen and Larsen, 2012). As a result, over the period 1993–2018,
municipal waste recovery increased from 80% to 99%; composting in-
creased from 9% to 17% and landfilling6 decreased from 20% to 1%
(OECD, 2019a). Danish households are also large food waste producers
in Europe, totalling 237,000 t annually (Kjær andWerge, 2010). Hence,
in 2011, the Danish Ministry of the Environment established an “Initia-
tive Group Against Food Waste” composed of stakeholders from public
and private sectors and aiming at achieving food waste reduction
(Halloran et al., 2014). Finally, waste-to-energy (WTE) processes have
been strongly promoted across the territory through non-profits WTE
plants owned by municipalities (Tomić et al., 2017). The effective im-
pact of these policies appears fruitful: GHG emissions from the waste
1 Mainly chlorinated solvents, heavy metals, polycyclic aromatic and aromatic hydro-
carbons, and vinyl chlorides.

2 According to the World Resource Institute (WRI, 2013), methane gas represents 15%
of the total GHG emissions and is also themain contributor to GHG emissions in thewaste
sector.

3 The OECD (2020) defines a circular economy as a system which maximises the value
of the materials and products that circulate within the economy. Allowing for sharp re-
sources preservation and environmental footprint reduction, circular business models
are attracting a growing attention from researchers, governments, and industries. For an
in-depth assessment on the potential of waste recovery and waste-to-energy under a cir-
cular economy environment in Europe, see Malinauskaite et al. (2017).

4 MSW generation per capita increased from 537.7 kg per capita to 771.1 kg per capita
over the 1994–2018 period (OECD, 2019a).

5 In fact, waste is taxed in Denmark to promote recycling over the waste incineration
and landfilling (Tomić et al., 2017).

6 By contrast, landfilling remains the main waste disposal method in OECD countries,
indicating a considerable step in the sustainable direction for Denmark (OECD, 2019c).
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sector recorded a 32%7 decrease over the period 1994–2017. Denmark
(which has greatly exceeded the EU goals) is even considered as one
of the most advanced waste management systems, making even extra
income from the import and disposal of waste fromneighbouring coun-
tries (Tomić et al., 2017). On the other hand, the last OECD report on the
environment ranked Denmark as the second largest MSWproducer per
capita among OECD countries (after New-Zealand). With 771 kg per
capita, this economy is well above the OECD average estimated at
524 kg per capita. As in most economies, MSW generation continues
to increase in Denmark (it was stated at 751 kg per capita in 2013), in-
dicating that this country has not yet managed to decouple waste gen-
eration from socio-economic developments. Facing such a burning
environmental paradox, the case of Denmark is of high interest.

Before designing any recommendations, understanding the nature
of the growth-environmental degradation relationship is mandatory.
A first strand of the literature examined the determinants of MSW gen-
eration at various levels (Johnstone and Labonne, 2004; Karousakis,
2007; Chalak et al., 2016). Upon the identified key drivers, the role of in-
come turned out to be considerable but sensitive to the country's stage
of development (Liu and Wu, 2011). Evidence of a progressive de-
linking process in advanced economies has been early noted by the
OECD. In theory, such decoupling phenomenon may occur when the
elasticity of the MSW generation indicator in relation to per capita in-
come is positive (but less than unity; relative de-linking), before becom-
ing negative (absolute de-linking) (Mazzanti, 2008). Only in that case
does income cease to be a robust driver to environmental degradation.
In practice, its empirical assessment has been made using the well-
known Environmental Kuznets Curve (EKC) approach (Kuznets, 1955;
Grossman and Krueger, 1991). While many times documented in the
literature, generalizing the inverted U-shaped curve for high-income
countries is still conflicting.8 This is notably due to the variety of meth-
odologies employed and sample selected, calling for further inquiry into
the waste-income nexus using a more consistent empirical strategy.

A second branch of the literature is constituted of studies relying on
the EKC framework to investigate the link between economic growth
and environmental pollution (Grossman and Krueger, 1991; Sarkodie
and Strezov, 2019; Stern and Common, 2001; Bilgili et al., 2016). Since
sectoral analyses have taken a growing place in this research field, a
few published works explored the determinants of GHG emissions
from the waste sector, inducing worthwhile policy implications (Lee
et al., 2016; Dong et al., 2017). In practice, the waste sector is said to
have high potential in curbing environmental pollution despite an im-
portant carbon footprint (Yi et al., 2014). Hence, numerous strategies
for GHG abatement in the waste sector have been proposed at different
locations: landfill extension and energy recovery system for waste dis-
posal (Woon and Lo, 2013 - Hong Kong, China); higher energy recovery
(notably landfill gas) efficiency from waste incineration for combined
heat and power generation (Yang et al., 2012 for China; Yi et al., 2014
for Daejeon, Korea); Food waste treatment including thermal treat-
ment, compost and anaerobic digestion (Bernstad and Jansen, 2012
for Sweden).

Nonetheless, an in-depth review of the literature highlights that
none of these studies examined the relationship among MSW genera-
tion, income and GHG emissions within a single framework.9 Yet, it is
known that a neighbouring assessment on the interrelationships
7 GHG emissions from the waste sector recorded a decrease from 1699.9 to 1145.9
thousand tonnes of CO2 equivalent over the 1994–2017 period (OECD, 2019b).

8 For instance, Mazzanti and Zoboli (2005) and Mazzanti (2008) carried an empirical
analysis on EU countries and concluded that estimated waste elasticities were far from
confirming the EKC hypothesis. Similarly, Cole et al. (1997) found no turning point for
13 OECD countries.

9 In fact, Lee et al. (2016) and Magazzino et al. (2020a) estimated two distinct models
(for the US and Switzerland, respectively). In thefirstmodel, they assessed the link among
per capita GDP andMSWgeneration; and in the secondmodel, they explored the relation-
ship between total MSW, recovery waste generation, and GHG emissions from the waste
sector.
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among energy consumption, Gross Domestic Product (GDP), and CO2

emissions has been extensively performed10 (Lozano and Gutierrez,
2008; Magazzino, 2016; Magazzino and Cerulli, 2019; Sarkodie, 2021).
Being of central importance in growth theory and providing far-
reaching policy implications, linking waste-GDP and GDP-
environmental pollution data in a unique estimation model can repre-
sent a fruitful research direction. If it is confirmed that GHG emissions
from the waste sector are both driven by per capita MSW and income,
then focusing on these key factors would help policymakers mitigating
global warming. Reciprocally, if income is identified as the main deter-
minant of waste generation, then adequate measures can be imple-
mented. Accordingly, this is where our paper finds the first of its five
contributions.

Lookingwith closer scrutiny, most publishedworks have focused on
large groups of advanced economies (EU, OECD) including often hetero-
geneous panel members in a single estimation. Due to the well-known
waste data constraint,11 it is not clear that the results obtained based
on wide income groups can be generalized for each member. Besides,
OECD and EU datasets may differ depending on the national waste clas-
sifications (Johnstone and Labonne, 2004). Yet, the knowledge onMSW
with readily available waste statistics allow for single-country
analysis.12 While never studied in previous research, analysing the
waste sector in Denmark stands as the second contribution of the pres-
ent work.

Third, studies on the waste sector remain sporadic and limited de-
spite its significant global warming contributor. The Sustainable devel-
opment goal 12 accentuates the importance of sustainable production
and consumption (United Nations, 2015), hence, a part of the debate
on Sustainable Development (SD) should focus on waste management.
Accordingly, this paper follows Domingos et al. (2017) and contributes
to the literature in analysing the waste sector.

A fourth novelty aspect is methodological. This research relies on a
Machine Learning (ML) methodology through the Artificial Neural Net-
works (ANNs). Our empirical approach differs from the great majority
of existing analyses on this topic. Nonetheless, the few studies that
used ML models on waste data failed to include additional variables
within a multivariate predictive causality framework (Kannangara
et al., 2018; Meza et al., 2019; Pan et al., 2019). Beyond a simple fore-
casting purpose, the present study relies on an innovative algorithm to
perform a strong causal analysis among multiple variables.

Finally, urbanization is included as an additional explanatory factor
to land and air degradation. This last original aspect is based on the
household utility maximization proposed by Kinnaman and Fullerton
(1997). The authors identified a vector of demographic characteristics
towards which the use of household MSW is dependent, and notably
the fact to live in urban areas or not. Then, Johnstone and Labonne
(2004) adapted this model with macroeconomic data to assess the de-
terminants of MSW generation for 30 OECD countries. To do so, they
rely on the proportion of the urban population. A more urbanized pop-
ulation is said to exert growing pressure on urban resources and envi-
ronment (Kasman and Duman, 2015; Magazzino and Cerulli, 2019).
Undoubtedly, this factor is thought to be a non-negligible driver of
MSWgeneration andGHG emissions. Hence, there is a point in incorpo-
rating it within our framework.
10 Outside thewaste framework, the empirical relationship betweenGDP, CO2 emissions
and various sources of energy has been extensively tested. See Pao and Tsai (2011); Tiwari
(2011), Farhani and Ben Rejeb (2012); Magazzino (2014); Kasman and Duman (2015);
Munir et al. (2020) for the relevant literature on this topic, which is not the explicit aim
of this paper.
11 The literature lacks single-country case studies mainly because of the data constraint.
Waste classifications may vary across countries and care must be taken when working
with data reported before the 1990s. For an interesting discussion on the data quality issue
related to the waste sector, see Mazzanti et al. (2006).
12 Beforehand, Mazzanti (2008) used the information available at that time and investi-
gated the waste-GDP nexus for 15 EU countries. Due to a time-limited dataset
(1997–2001), the authors stated that his research would only provide “preliminary evi-
dence”. Hence, the current available statistics allow us to make a step forward here.
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Overall, this paper aims at performing an in-depth assessment on
Denmark: a case study characterized by a promising (but fragile) path
to MSW sustainability. With five distinct novelty aspects, this research
seeks to contribute to the literature. We exploit the most recent and
available data period (1994–2018) and investigate the causal relation-
ship between per capita GDP, urbanization, MSW generation per capita,
and GHG emissions from the waste sector in Denmark. Following
Magazzino et al. (2020a), this study applies two independent empirical
strategies: a time-series analysis (the Breitung-Candelon Spectral
Granger-causality test) and a Machine Learning approach (Artificial
Neural Networks experiments), useful for policy formulation.

Besides this introduction, the remainder of the paper is organized as
follows. Section 2 presents the literature. Section 3 introduces and de-
scribes the data and methodology employed. Section 4 shows the em-
pirical results and discussion of the results. Finally, Section 5 provides
concluding remarks and careful policy recommendations.
2. Literature review

The literature on the relationship between economic activity and en-
vironmental degradation can be divided into two main components.
The first focuses on the economic growth-environmental pollution
nexus (mainly carbon dioxide (CO2) emissions). The second concen-
trates on the link between economic growth and land degradation
(i.e., waste generation). In the third part, this review highlights studies
on green supply processes and a specific focus is made on waste treat-
ment within circular models. Being nonetheless exhaustive, this survey
emphasizes the suitability of assessing theDanish case and shed light on
the key gaps in the literature.
2.1. Economic growth-environmental pollution nexus

As mentioned previously, the relationship between economic activ-
ity and environmental pollution has been abundantly studied using the
EKC framework. The origins of this assessment can be traced back to the
seminal study from Grossman and Krueger (1991). When confirmed,
this hypothesis claims that environmental pollutionwouldfirst increase
with income, and then decreases as GDP grows and technological prog-
ress emerges (Rothman and De Bruyn, 1998; Lee et al., 2016). From a
policy standpoint, it is of high interest to knowwhat relation character-
izes the GDP-CO2 emissions nexus for a country (Magazzino and Cerulli,
2019). Despite abundant empirical examinations, studies differ from
each other in terms of methodologies, time periods, and samples
(Acaravci and Ozturk, 2010; Bowden and Payne, 2009; Bilgili et al.,
2016). This review focuses on our country of interest: Denmark. Since
the economic growth-waste generation nexus is the explicit aim of
this paper, we select the only relevant information related to previous
GDP-environmental pollution investigations. Nonetheless, an extensive
overview can be found in Bilgili et al. (2016).13

The EKC is validated in Acaravci and Ozturk (2010) for 19 European
(EU) countries (including Denmark), and using Autoregressive Distrib-
uted Lag (ARDL) bounds cointegration analysis (Pesaran and Shin,
1998; Pesaran et al., 2001) and Error Correction Model (ECM). Subse-
quently, the EKC is supported in Ben Jebli et al. (2013) for 25 OECD (Or-
ganization for Economic Cooperation and Development) countries
(including Denmark). While results provided little evidence supporting
the existence of the EKC hypothesis for Artic countries (Baek, 2015),
Bilgili et al. (2016) confirmed the EKC hypothesis for 17 OECD countries
(including Denmark), through Fully Modified Ordinary Least Squares
(FMOLS) and Dynamic Ordinary Least Squares (DOLS) estimations.
Overall, despite not explicitly providing support for the EKC hypothesis,
Saidi and Hammami (2015) showed that CO2 emissions have a strong
13 Broad critical surveys are also presented in Dasgupta et al. (2002), Dinda (2004), and
Stern (2004).



Table 1
Summary of previous studies on the relationship between GDP and CO2 emissions including Denmark.
Source: our elaborations.

Author(s) Countries Sample period Methodology Pollution/GDP data EKC for Denmark

Acaravci and Ozturk (2010) 19 EU countries 1960–2005 ARDL, ECM CO2 emissions/GDP per capita Yes
Ben Jebli et al. (2013) 25 OECD countries 1980–2009 FMOLS, DOLS CO2 emissions/GDP Yes
Shafiei and Salim (2014) 29 OECD countries 1980–2011 STIRPAT model, GC CO2 emissions/GDP per capita No
Baek (2015) Artic countries 1960–2010 ARDL CO2 emissions/GDP per capita Yes
Bilgili et al. (2016) 17 OECD countries 1977–2010 FMOLS, DOLS CO2 emissions/GDP per capita Yes
Domingo et al. (2017) EU countries 1995–2012 ARDL GHG emissions from the waste sector/GDP No
Beşe and Kalayci (2019) Denmark, Spain, and the UK 1960–2014 ARDL, GC, TY CO2 emissions/GDP No

Notes: EU: European Union. OECD: Organization for Economic Cooperation and Development. ARDL: Autoregressive Distributed Lag bounds; ECM: Error Correction Model; FMOLS: Fully
ModifiedOrdinary Least Square estimation; DOLS: Dynamic Ordinary Least Square estimation; STIRPATmodel: Stochastic Impacts by Regression on Population, Affluence, and Technology
model; GC: Granger Causality test; GMM: Generalized Method of Moments; TY: Toda and Yamamoto causality test.
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negative impact on per capita GDP for 58 countries (including
Denmark).

Inversely, the EKC hypothesis is rejected in Shafiei and Salim (2014)
for 29 OECD countries (including Denmark) while using the Stochastic
Impacts by Regression on Population, Affluence, and Technology
(STIRPAT) model. As in Beşe and Kalayci (2019) who applied ARDL,
GC and Toda-Yamamoto (TY, Toda and Yamamoto, 1995) causality
tests, the EKC is rejected for Denmark, Spain, and the United Kingdom.

Focusing on a neighbouring research issue, Silva et al. (2012) applied
Impulse Response Function (IRF) models and showed that income and
CO2 emissions variables are overly sensitive to changes in the share of
renewable energy sources in the energy mix for Denmark. Despite not
confirming the EKC hypothesis, such results underline the persisting
linkages among energy, income, and pollution. Overall, previous re-
search demonstrated that extracting renewable fuel from MSW helps
to reduce GHG emissions from the waste sector in the EU (Domingos
et al., 2017). Table 1 summarizes the main information of the empirical
EKC literature.

2.2. Municipal solid waste-income nexus

MSW is a major component of total waste generation and is obvi-
ously linked to land degradation. Hence, the EKC framework has been
extensively employed to inspect per capita MSW-GDP relationship.
Nevertheless, income-land degradation nexus remains under-
investigated. As for GDP-CO2 studies, the Danish case appears only con-
sidered through multi-country examinations so far.14

The first strand of studies explored the determinants of MSWgener-
ation, underlining the key role played by income in MSW generation.
The seminal contribution from Johnstone and Labonne (2004) focused
on 30OECD countries (includingDenmark) and investigated themacro-
economic determinants of household solid waste generation. Applying
panel estimation over the period 1980–2000, the results clearly showed
that economic activity and population density are two robust drivers of
solid waste. This finding is in line with Karousakis (2006) who per-
formed a neighbouring examination including a waste legislation
index on the same sample. Empirical results showed that MSW in-
creases linearly with income. While the time-invariant policy index is
not significant, urbanization displayed an even stronger effect on
waste generation. Other research works extended this examination
and confirmed explicitly the existence of a turning point between in-
come and waste. Arbulú et al. (2015) explored the effects of tourism
(notably, expenditure per tourist) on MSW generation in 16 EU coun-
tries (including Denmark) over the period 1997–2010. The authors pro-
vided tools for tourism management policies and supported the
existence of the EKC curve between MSW and income.

However, other studies failed to confirm the existence of the EKC be-
tween waste and income. Cole et al. (1997) collected data on 13 OECD
14 By contrast, some single-country analyses onneighbouring countries are available. For
a specific assessment in Switzerland, see Jaligot and Chenal (2018) and Magazzino et al.
(2020a). Evidence for the US case are provided in Lee et al. (2016).

4

countries (including Denmark) to examine the relationship between
per capita income and a wide range of environmental indicators (nitro-
gen dioxide, carbon dioxide, methane, and municipal waste). Results of
the panel analysis failed to support the EKC relationship, indicating no
existing turning point. This is in line with Mazzanti and Zoboli (2005)
who considered 18 EU countries (including Denmark) and examined
the waste-income relationship over the period 1995–2000 but rejected
the EKC. Subsequently, Mazzanti (2008) estimated waste elasticities
with respect to income for 15 EU countries (including Denmark).
Exploiting data over the period 1997–2001, results rejected the exis-
tence of hypothetical turning point among variables. Overall, Mazzanti
and Zoboli (2008) extended their analysis to 25 EU countries (including
Denmark) and found no de-linking process between final consumption
household expenditure and waste generation per capita, although elas-
ticity to income drivers appeared lower than in their previous study.
Baalbaki and Marrouch (2020) examined the relationship between
MSW and GDP per capita for 33 OECD countries (including Denmark).
The authors employed Wang (2013)'s flexible polynomial model with
data spanning the 1995–2012 period. Despite evidence of a downward
sloping relationship among variables, the results rejected the EKC hy-
pothesis. Table 2 summarizes the main information of this literature.
2.3. Green logistics indicators-environmental degradation nexus studies
and waste management within circular business models

Logistic management is a crucial part of the supply chain manage-
ment. This refers to a set of integrated actions improving inventory stor-
age, material handling, freight transport and information processing
(Martel and Klibi, 2016). Even though logistics is known as a significant
contributor to economic growth, its interlinkages with environmental
degradation remain ambiguous and under-estimated. The seminal
study fromKhan et al. (2017) shed light on an original prospect: carbon
emissionsmay also affect adversely economic growth. As awareness be-
comes stronger, customers are more conscious regarding green prod-
ucts and sustainability, with governments being more aggressive to
implement environmental policies. Interestingly, customer pressure
can impact the firm's adoption of green supply chain management
(GSCM) practices (Khan et al., 2018). Hence, specific literature linking
green logistic operations and economic and environmental indicators
have emerged. Khan et al. (2018) considered 43 different economies
(including Denmark) and claimed that logistics operations deplete en-
ergy and fossil fuel, while the amount of fossil fuel and non-green en-
ergy sources has a substantial adverse impact on the sustainability of
the atmosphere. With a special focus on emerging Asian countries,
Khan et al. (2019) showed that logistics operations – especially the effi-
ciency of customs clearance processes, the quality of logistics services,
and trade-related infrastructure – positively impact per capita income,
value-added manufacturing, and trade openness. Nevertheless, greater
logistics activities are negatively associated with social and environ-
mental issues, including climate change, global warming, carbon pollu-
tion and ozone poisoning.



Table 2
Summary of previous studies on the relationship between waste and GDP including Denmark.
Source: our elaborations.

Author(s) Countries Sample period Methodology Waste/GDP data EKC for
Denmark

Cole et al. (1997) 13 OECD countries 1975–1990 FE Municipal solid waste generation/GDP per capita, No
Johnstone and Labonne
(2004)

30 OECD countries 1980–2000 FE Municipal solid waste generation per capita/GDP per capita –

Mazzanti and Zoboli
(2005)

18 EU countries 1995–2000 RE, FE Municipal solid waste generation per capita/GDP per capita No

Karousakis (2006) 30 OECD countries 1980–2000 RE, FE Municipal solid waste generation/GDP per capita –
Mazzanti (2008) 15 EU countries/28 EU

countries
1997–2001/1995–2000 FE Waste generation per capita/GDP per capita No/No

Mazzanti and Zoboli
(2008)

25 EU countries 1995–2005 FE Municipal solid waste generation per capita/Final consumption
expenditure of households

No

Arbulú et al. (2015) 16 EU countries 1997–2010 FE Municipal solid waste generation per capita/GDP per capita Yes
Baalbaki and Marrouch
(2020)

33 OECD countries 1995–2012 FE Municipal solid waste generation per capita/GDP per capita No

Notes: FE: fixed effects model. RE: random effects model.
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Far from being a coincidence, the nature of MSW disposal plays a
leading role in the path to sustainability. This allows for sharp resources
preservation and environmental footprint reduction, circular business
models coincide with waste treatment operations (OECD, 2020). Thus,
interesting literature is emerging, underlining the potential of waste re-
covery for the circular economy. Nonetheless, D'Adamo et al. (2019) ar-
gued that the economic feasibility of such amodel is confirmed for a few
scenarios only in Italy. Focusing on the transport sector, the authors con-
cluded that the use of green gas is capable of reducing GHG emissions,
but the economic cost of the environmental externality (i.e., 226 €/cer-
tificates of emission of biofuel in consumption (CIC)) remains lower
than the value released by the current Italian decree (i.e., 375 €/CIC).
Van Fan et al. (2020) proposed an integrated design of waste manage-
ment systems under a circular environment using P-graph (bipartite
graphical optimisation tool). The authors showed that each ton of
MSW processed could avoid 411 kg of GHG emissions (expressed in
CO2 equivalent), besides, it could achieve an estimated profit of 42 €/
ton of MSW treated. Looking at the case of Croatia, Luttenberger
(2020) built a relevant review on national waste policies, and provided
careful measures to strengthen Croatia's path towards a circular
economy.

Based on this review, an in-depth assessment on the Danish case
mayfill a crucial gap in the literature, while presenting accuratefindings
useful for researchers and policymakers. Hence, this paper investigates
the causal relationship between per capita GDP, MSW generation per
capita, andGHGemissions from thewaste sector in Denmark. Following
Magazzino et al. (2020a), a novel time-series analysis coupled with a
Machine Learning approach is utilized.

3. Data collection and empirical strategy

3.1. Data collection

To implement our model, we derived the following data for
Denmark: Total Municipal Solid Waste Generation (TMWG) is
expressed in kilograms per capita; per capita GDP (GDPp) is expressed
in Purchasing Power Parity (PPP) constant 2017 international $; GHG
emissions from the waste sector are expressed in thousand tonnes of
CO2 equivalent (GGWS). As a proxy for urbanization, we use urban pop-
ulation, expressed in % of total population (Urban). TMWG and GGWS
are taken from the OECD Environment Statistics database.15 GDPp and
Urban data are derived from the World Development Indicators
database.16 According to the OECD (2015), MSW indicator corresponds
15 Per capita MSW generation and GHG emissions from the waste sector data are avail-
able at: https://data.oecd.org/environment.htm.
16 Per capita GDP and urban population data are available at: https://databank.
worldbank.org/source/world-development-indicators.
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to the totalwaste collected by or on behalf of themunicipalities. It incor-
porateswaste originating fromhouseholds, and small commercial activ-
ities. GHGemissions are constituted of carbon dioxide (CO2 from energy
use and industrial processes) andmethane emissions that are produced
by the waste sector (OECD, 2019b). The data cover the period
1994–2018. The choice of the starting period was constrained by
waste and GHG emissions data availability, oftenmissing or unavailable
before 1995 for most of the advanced economies.
3.2. Empirical methodology

The causality relationship expressed in econometric modeling is
now tested through the ANNs approach. According to Pearl (2009)
and Kocaoglu et al. (2017), we develop Feed-forward Neural Networks
as a Structural Causal Models (SCMs), to verify how (in a predictive
way) TMWG, GDPp, and Urban cause GGWS in Denmark.

ANNs are made up of elementary computational units (neurons)
known as Processing Units (PU). Neurons are combined according to
different architectures: for example, they can be organized in layers
(multi-layer network), or they can have a topology in which each neu-
ron is connected to all the others (fully connected network). Wemainly
refer to layered networks, consisting of the input layer, with n neurons
equal to the number of network inputs; the hidden layer, with one or
more hidden (or intermediate) layers consisting ofm neurons; the out-
put layer, with p neurons equal to the number of desired outputs. The
connectionmethods allowus to distinguish between two types of archi-
tectures. In feedback architectures, the presence of connections be-
tween neurons of the same layer or between neurons of the previous
layer creates a feedback connection. In feed-forward architectures, the
connections between the levels are interconnected and do not generate
minimum levels. Thus, the signal is transmitted only to neurons belong-
ing to the next layer. McCulloch and Pitts (1943) proposed the repre-
sentation of the ANNs reported in Fig. 1.

Each neuron receives n input signals from the other neurons (the
vector x), through connections of intensity w (synaptic weights). The
input signals are consolidated into a postsynaptic potential y, which is
the weighted sum of the inputs. The sum function, thus, calculates the
activation value, which is then transformed into the output F(y) by an
appropriate transfer or activation function. Neurons in the input layer
have no input. Their activation status corresponds to the data input to
the network. They do not perform any calculation, and the activation
function transfers the input value to the network without changing it.
The operational capacity of a network, i.e. its knowledge, is contained
in the synapses, i.e. theweights of the input connections of each neuron.
The latter assumes the correct values thanks to training. TheNNs are not
directly programmed but explicitly trained, through a learning algo-
rithm to solve a given task, with a process that leads to learning through

https://data.oecd.org/environment.htm
https://databank.worldbank.org/source/world-development-indicators
https://databank.worldbank.org/source/world-development-indicators


Fig. 1. A simple ANNs scheme.

C. Magazzino, M. Mele, N. Schneider et al. Science of the Total Environment 755 (2021) 142510
experience. There are at least three types of learning: 1) supervised,
2) unsupervised, and 3) reinforcement. In the case of unsupervised
learning, the network is trained only on an input set, without providing
the corresponding output set. For supervised learning, however, it is
necessary to identify a set of examples consisting of appropriate sam-
ples of the inputs and the corresponding outputs to be presented to
the network, so that it learns to represent them. Finally, reinforcement
learning is used in cases where it is not possible to specify input-
output patterns for supervised learning systems. Reinforcement is pro-
vided to the system, which interprets it as a positive/negative signal
on its behaviour, adjusting the parameters accordingly. The set of con-
figurations used for learning the network constitutes the learning set,
called the training set. Basically, we adopted an empirical strategy sim-
ilar toMagazzino et al. (2020a, 2020b, 2020c), andMele andMagazzino
(2020).

In the following analysis, we consider more complex ANNs than the
one in Fig. 2. Our ANN design has a multilayer structure (feed-forward
multilayer, multilayer perceptron), and it is defined by M input nodes,
lacking the capacity for processing, associated with inputs xi ∈ R; a set
of neurons organized in L ≥ 2 layers, of which L − 1 hidden layers and
an exit layer, which provides the outputs network yi; a set of oriented
andweighted arches that establish connections. The functions that rep-
resent the ANNs can be expressed as:

aj ¼ ∑
M

i¼1
wj,ixi−θj ð1Þ
4
6

8
1
0

1
2

1995 2000 2005 2010 2015 2020

Year

TMWG GDPp Urban GGWS

Fig. 2. Municipal solid waste generation, real per capita GDP, urban population, and
greenhouse gas from thewaste sector inDenmark (log-scale, 1994–2018). Data onmunic-
ipal solid waste generation are expressed in kilograms per capita; per capita GDP is
expressed in Purchasing Power Parity (PPP) constant 2017 international $; urban popula-
tion is expressed inpercentage (%) of the total population;Greenhouse gas emissions from
the waste sector are expressed in thousand tonnes of CO2 equivalent. Sources: OECD and
WDI data.
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zj ¼ ψ aj
� � ð2Þ

j ¼ 1, . . . ,N ð3Þ

y ¼ ∑
N

j¼1
vjzj ¼ ∑

N

j¼1
vjψ ∑

M

i¼1
w j,ixi−θj

 !
¼ ∑

N

j¼1
vjψ wT

j x−θj
� �

ð4Þ

where:
xi: i-th input/s;
wj, i: weight of the connection between the input i and the hidden

neuron j;
θj: hidden neuron threshold j;
vj: weight of the connection between the neuron hidden j and the

output neuron;
ψ: activation function of the neurons of the hidden layer;
zj: hidden neuron output j;
aj: combination of signals input to the hidden neuron j;
y: target
wj = (wj1,…,wjM)T.
The activation functionψ is usually supposed to be differentiable and

sigmoidal. We can use two types of functions. The logistics function:

ψc tð Þ ¼ 1
1þ e−ct , c > 0 ð5Þ

or the hyperbolic tangent function:

ψc tð Þ ¼ tanh
t
2

� �
¼ 1−e−t

1þ e−t : ð6Þ

Once the logical process for our ANNs has been constructed, we can
use the same dataset of the time-series analysis. However, since the
ANNs require an extensive dataset, we have also generated the first-
differences (d) and the logarithm (ln) of the series. This procedure al-
lows us to grasp the variation between the data of the same variable
in a context, that of ML, in which the time-series loses importance.
Our algorithm, constructed through the extension of the Oryx protocol,
use a combination of data equal to 495948561.17 They represent all the
possible input-target combinations necessary to generate the neural
processing process that generates the final target. Subsequently, after
building the neural process, we will proceed by testing the results ob-
tained through the latest testing techniques on NN models.

After applying the ANN algorithm, we access the hypothesis that
Denmark is on the verge of achieving a circular economy—a situation
where waste and pollution is eliminated through recycling, reusing
and regeneration of natural resource capital. To test this, we utilize re-
gression to examine the nexus, variable importance of projection to in-
vestigate the impact of income level, waste generation and urban
population on GHG emissions from waste sector. We finally apply the
Breitung-Candelon Spectral Granger-causality to investigate the
17 Result = DRn,k. In this case, k, a positive integer, can also be greater than or equal to n.



Table 3
Descriptive statistics.

Variable Mean Median SD Skewness Kurtosis Range IQR 10-Trim

TMWG 6.5571 6.6047 0.1339 −0.7705 2.5087 0.4654 0.1726 6.573
GDPp 10.8202 10.8385 0.0760 −0.7587 2.7957 0.2879 0.0783 10.830
Urban 4.4563 4.4555 0.0122 0.2274 1.4909 0.0338 0.0237 4.456
GGWS 7.1930 7.1696 0.1455 0.0842 1.5604 0.4498 0.2740 7.191

Notes: SD: standard deviation; IQR: inter-quartile range; 10-Trim: 10% trimmed mean. Sources: our calculations on OECD and WDI data.
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direction of causality in a frequency domain—useful for policy formula-
tion. The empirical specification of the regression model can be
expressed as:

yt ¼ δ0 þ βxt þ εt ð7Þ

where yt denotes the greenhouse gas from waste sector, δ0 is the con-
stant, xt represents the regressors namely total Municipal waste gener-
ation, income level and urban population. β is the parameter to be
estimated and εt is the error term in time t.

Following the specification expounded in Sarkodie and Adom
(2018), the variable importance of projection can be expressed as:

VIPw ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑u

w¼1

Sv Z

Z2vw

h i
∑
u

v¼1
Sv

vuuuuut ð8Þ

where VIPw denotes the variable importance of projection, № is the
number of independent variables, u is the number of dimensions ex-
tracted using partial least squares algorithm, Zvw represents the weight
of the variable importance of projection of input variable w and the
number of dimensions v explained by partial least squares algorithm,
and Sv denotes the explained sum of squares. The VIPw algorithm is crit-
ical to explaining the influence of total Municipal waste generation, in-
come level and urban population in predicting the observed changes in
GHG emissions attributed to the waste sector in Denmark.

Contrary to the traditional Granger causality test employed in the
extant literature, we adopt the Breitung-Candelon Spectral Granger-
causality algorithm that has an advantage in the prediction of causal-
effects along a specific time-frequency, useful for waste control policy
formulation. Here, we follow the specification presented in Breitung
and Candelon (2006); Sarkodie (2020) to examine the direction of cau-
sality. For brevity, the generic specification is presented in a VAR equa-
tion as:
Table 4
Results for unit roots and stationarity tests.

Variable Unit root and stationarity tests

NP
Intercept

NP
Intercept and tren

TMWG −0.9738
(−8.1000)

−6.1393
(−17.3000)

GDPp 0.9199
(−8.1000)

−7.1426
(−17.3000)

Urban 0.3059
(−8.1000)

−94.2148⁎⁎⁎

(−17.3000)
GGWS −0.5767

(−8.1000)
−8.7074
(−17.3000)

Notes: NP: Ng-Perron Modified test; ERS: Elliott-Rothenberg-Stock DF-GLS test. When it is re
(SBIC). For NP testsMZa statistics are reported; for ERS tests t statistics are reported. 5% Critica
⁎⁎⁎ p < 0.01.
⁎ p < 0.10.
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ln xt ¼ δ1 ln xt−1 þ . . .þ δp ln xt−p þ ∂1 ln yt−1 þ . . .þ ∂p ln yt−p þ ε1,t
ð9Þ

where xt|yt denotes the causal effect between lnGHG and lnUP; lnGHG
and lnTMWG; lnGHG and lnRPCGDP; lnTMWG and lnRPCGDP; and
lnTMWG and lnUP. ln is the logarithmic transformation of the data se-
ries to control for heteroskedasticity, δ|∂ are parameters to be estimated,
t is the time period, ε1, t is the error term and p denotes the lags. To ob-
tain an optimal lag-order for the frequency domain causality test, we
utilize the pre-estimation syntax for vector autoregressive models that
employmultiple reporting and selection indicators such asAkaike infor-
mation criterion (AIC), final prediction error (FPE), Hannan & Quinn in-
formation criterion (HQIC) and Schwarz Bayesian information criterion
(SBIC). The resulting optimal lags selected for subsequent analysis are
presented in Appendix B. The null hypothesis of Eq. (9) is based on a bi-
variate framework technique [Myt→xt(ω) = 0] that yt does not predict xt
at a specific frequency ω. Thus, a rejection of the null hypothesis at p-
value < 0.05 stipulates yt predicts xt in the frequency domain.

4. Empirical results

As a preliminary check, descriptive statistics are presented in
Table 3. All variables except greenhouse gas exhibit a negative skew-
ness, which indicates that the tail on the left side of the distribution is
longer or wider.

In Fig. 2, we show the evolution of the logarithmic transformations
for the analyzed series.

In Table 4 we report the results of two different time-series tests on
unit root to determine the order of integration of the variables.

In Table 4, it can be observed that the four selected series are non-
stationary at levels. The null hypothesis (H0) of non-stationarity is
rejected, in general.

Table 5 represents the summary of the dataset used in the Oryx pro-
cessing of our ANNs. The variables used are 12, of which 11 represent
the input process, and 1 is the generated target.

In Fig. 3, we report the behaviour of the instances through a pie chart
elaborated by the protocol.
d
ERS
Intercept

ERS
Intercept and trend

−1.1827
(−1.9557)

−2.0641
(−3.1900)

−0.4621
(−1.9557)

−2.0657
(−3.1900)

−1.6743⁎

(−1.9557)
−2.8326
(−3.1900)

−0.8634
(−1.9557)

−2.6467
(−3.1900)

quired, the lag length is chosen according to the Schwarz Bayesian Information Criterion
l Values are given in parentheses.



Table 5
Variables bars chart.
Source: our elaborations.

Fig. 5. Quasi-Newton method algorithm errors history.
Source: our elaborations.
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The instances of the ML process are equal to 47 whereas those
representing the training are 29 (61.7%). This result underlines how,
compared to a choice of n projects, our model chose 29 models out of
47 potentials. They are the ones that best suit the target. The result con-
firms the goodness of the choice. The selection requests are 9 (19%),
therefore, the instances selected the best possible ANNs process gener-
ated target, allowing us to continue the processing. The instances are 9
(19%) and represents the choice of numerous training models. Since it
is the same and never less than the selection instances, this reinforces
the previous findings. Finally, the number of unused instances is 0
(0%), confirming the goodness of the model. In fact, no anomalous
values – which would have invalidated the results – were generated.
Fig. 3. Instances pie chart.
Source: our elaborations.

Fig. 4. ANNs
Source: our
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After observing the processing behaviour of the datasets in ML algo-
rithm, we analyze the result of the Back-Propagation Neural Networks
(BPNNs) presented in Fig. 4. It represents the result of 96 possible con-
structions of the ANNs.We chose the one that had the best neural trans-
mission in the Mean Square Error (MSE) test (0.0012).

The graphical elaboration on the ANNs generated in Oryx with NN
Design is depicted in Fig. 4. The architecture of the ANNs reveals a com-
plexity, represented by hidden neurons, of 15: 10: 8: 6: 3. The distribu-
tion of the ANNs is of the hyperbolic tangent type. The yellow circles
represent the scaling neurons, the blue circles the perceptron neurons,
and the red one the unscaling neurons. The number of inputs is 11,
and the number of outputs is 1. Each combination of the inputs gener-
ated the variation of the GGWS, in a process in which there were no
anomalous values. Therefore, the graph of ANNs can be read as the n
combinations of inputs that generate a variation of the target through
a hyperbolic combination, with a linear result about the target.

After building the ANNs, we proceed through numerous tests that
may validate the model. These tests represent the only way for the op-
erator to know the probability that there is a better algorithm different
from the one chosen in the initial phase.

The first phase of the model algorithm's goodness begins with the
analysis of the Perform Training. The Quasi-Newton method is used
results.
elaborations in NN Design Software on Oryx.



Fig. 6. Incremental order error plot test.
Source: our elaborations. Fig. 8. Predictive linear regression test.

Source: our elaboration.
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here for training. It is based onNewton'smethod, but it does not require
calculation of second derivatives. Instead, the Quasi-Newton method
computes an approximation of the inverse Hessian at each iteration of
the algorithm, by only using gradient information.

Fig. 5 shows the training and selection errors in each iteration. The
blue line represents the training error, while the orange one is the selec-
tion error. The initial value of the training error is 1.75489, and its final
value after 13 epochs is 0.045617. The initial value of the selection error
is 1.84954, and its final value after 13 epochs is 0.15654. The downward
trend of both error assessments highlights how our strategy turned out
to be ideal for the ANNs elaboration process. Next, we run the Per-
formed Order Selection (POS) test. The best selection is achieved by
using a model whose complexity is the most appropriate to produce
an adequate fit of the data. The order selection algorithm is responsible
for finding the optimal number of neurons in the network. Incremental
order is used here as an order selection algorithm in the model selec-
tion. Fig. 6 shows the error's history for the different subsets during
the incremental order selection process. The blue line shows the train-
ing error, while the orange line symbolizes the selection error.

Both the training error and the selection error decreasewith increas-
ing order. Only at order number 9, we observe aminimal increase in the
output error. In this level, the training error is only 2.8%, while the selec-
tion error is 6%. This result highlights the presence of a better-hidden ar-
chitecture. It presents even lower algorithm errors than our initial
architecture. Thus, following the ML process in Fig. 7, we elaborated
the final architecture of the ANN.

Fig. 7 represents the result of our elaboration considering the find-
ings achieved with the POS test. The number of inputs is 3, and the
Fig. 7. Final architectur
Source: our elaboration
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number of outputs is 1. The complexity, represented by the numbers
of hidden neurons, is 6:4:2. Therefore, compared to Fig. 4, this ANNs
presents an automatic choice that has reduced the third hidden layer
of a neuron. Afterwards, we test the final architecture through different
operations. A standardmethod to test the loss of amodel is to perform a
linear regression analysis between the scaled ANNs outputs and the cor-
responding targets for an independent testing subset.

As observed in Fig. 8, the prediction line (with respect to the target,
GGWS) perfectly confirms the goodness of the elaboration about the al-
gorithmon the final architecture. As required by theory, the slope of the
straight line records a value close to unity (0.908); the correlation value
is very high (0.997).

Finally, we proceed with the ANNs error test (Table G) to ascertain
the goodness offit test of this algorithm. It analyzes the result of four dif-
ferent errors concerning the three main instances of the NN model.

Table 6 analyzes four possible scenarios of prediction errors
concerning training, selection, and testing. For ANNs theory, values
from training to testing should be gradually lower and lower than
unity. The results obtained fully confirm the theory of this test. All the
errors of the three main components of the ANNs are less than one. Be-
sides, it is clear how the training errors are lower than the selection er-
rors, which are lower than the testing errors. This test confirms how the
latest architecture of the ANNs respects the hypothesis of the slightest
prediction error and that our generated target is correctly affected by
the influence of the numerous combinations between the inputs.

We complemented the ANN algorithm using time series-based re-
gression in a bivariate framework to examine the influence of the
e of ANNs results.
s in NN Design Software on Oryx.



Table 6
ANNs error test.
Source: our elaborations.

Training Selection Testing

Sum squared error 0.000 0.005 0.021
Mean squared error 0.000 0.001 0.004
Root mean squared error 0.001 0.033 0.064
Minkowski error 0.000 0.026 0.066
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predictors on GHG from waste sector. It can be observed in Fig. 9 that
total municipal waste generation, income level and urban population
have a negative relationship with waste sector attributed GHG, with a
predictive power between 65 and 87% and strength of correlation be-
tween −0.81 to −0.93. This confirms the hypothesis that Denmark is
on the verge of achieving a circular economy—meaning that, while
urban population increases with growth in income and levels of munic-
ipal waste generated, waste sector attributed GHG emissions decline
periodically. In terms of variable influence in reducing GHG emissions,
it can be observed from the variable importance of projection plot that
while urban population is highly influential (VIP > 1) municipal waste
generation and income level are moderately influential
(0.8 < VIP < 1), thus, corroborating both estimated Pearson's correla-
tion and R-square.
Fig. 9.Nexus between GHG fromwaster sector and (a) municipal waste generation (b) income
Legend: UP: Urban population; TMWG: Total Municipal Waste Management; RPCGDP: per cap
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Evidence from Breitung-Candelon Spectral Granger-causality test in
Fig. 10 reveals that the null hypothesis of no predictability from urban
population to GHG from waste sector and municipal waste generation
to GHG from waste sector is rejected at 5% significance level. We ob-
serve that among all odds, urban population has a strong unidirectional
causality along the entire frequency range compared tomunicipalwaste
generation that turns insignificant between ω ∈ [1, 2.5] frequency
range. In contrast,we findno causality fromurbanpopulation tomunic-
ipal waste generation, income level to municipal waste generation, and
income level to GHG fromwaste sector. From a policy perspective, it ap-
pears that urbanization has a mitigation effect on waste sector attrib-
uted GHG emissions which might perhaps be due to Denmark's urban
waste management options that underscore recycling, reusing and effi-
cient conversion of waste-to-energy. Previously, waste generation in
Denmark had strong positive monotonic associated with economic de-
velopment and emissions, which supported the traditional linear econ-
omy (Mst.dk, 2015). However, our empirical estimation confirms a drift
from linear economy to circular economy. This implies that the Danish
government is implementing conservation and management policies
that favour environmental sustainability.

Finally, we report the result of the predictive causality effect from
the inputs to the target. This result highlights three possible variations
of the target: position, velocity, and acceleration. The three variables
presented in Table 7 cause a predictive variation of the target with
level (c) urban population. (d) variable importance of projection (VIP) for sampled series.
ita GDP.



Fig. 10. Breitung-Candelon Spectral Granger-causality showing (a) Urban population → GHG from waste sector (b) municipal waste generation → GHG from waste sector (c) urban
population→ Municipal waste generation (d) GDP per Capita → Municipal waste generation (e) GDP per Capita → GHG from waste sector.
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different speed and acceleration levels. We can note that the emissions
from waste are accelerated by the quantity of municipal solid waste
products in the country under study. However, we note that this accel-
eration would represent a linear transition from urban growth to the
Table 7
Inputs on the target.
Source: our elaborations.

Position Velocity Acceleration

TMWG 0.4 0.8 0.9
GDPp 0.3 0.7 0.8
Urban 0.2 0.4 0.7

11
change in per capita GDP towards waste production. We can also inter-
pret these results by weighing the role of the change in per capita GDP
compared to the urban increase. The variable of which represents eco-
nomic growth in a high-income country such as Denmark, generates a
more significant effect in the production of waste and emissions, com-
pared to a hypothetical growth of the population. If the transition be-
tween speed and acceleration towards the target passes from
economic growth to waste production, the increase in the demand for
goods and services of the population is directly a consequence of the
emissions (target). Besides, the changes in target acceleration is predic-
tively caused by the change in speed and acceleration of the Municipal
solid waste. Therefore, a separate waste collection policy would gener-
ate a change in the decrease in the acceleration of the target and, thus,
in emissions. The effects of such an economicwastemanagement policy
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would have a recordable economic impact on the acceleration of GDPp.
Different waste collection companies, as is happening in Denmark, can
adopt policies of opening up to the economic market. By purchasing
the rawmaterial produced by users (plastic, metal, glass), the materials
could be used in a (re)transformation cycle. Therefore, they will create
newproducts in the economic system. In this way, users are not pushed
and throw waste onto the street for which they are remunerated.

Finally, we tested our NN algorithm in the process that generates dif-
ferent alternative models with the Optimization Test in Machine Learn-
ing (OPTML). This experiment created 70 different transformations of
Fig. 11. Optimization test in m
(Source: our elaborations in B

12
the dataset and developed 30 different algorithms (including ours) ca-
pable of predicting a causal link between the variables. The process
(Fig. 11), which lasted 4min and 36 s, found 16 candidates for the solu-
tion of the experiment. Of these 16models, only 8 were selected. Of the
8 models selected, the system showed the result of the comparative R-
squared. As observed from the results, our algorithm (Back Propagation
Neural Networks) has a relatively large R-squared (0.738).

The optimization test also took into consideration hypothetical
econometric and statistical models. However, they turned out to be
less suitable than alternative models like ours or the boosted trees.
achine learning results.
IG protocol on the Apache Maven 3.2.5 software.)
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Therefore, we can conclude that there is no algorithm better than the
one used in this study.

5. Conclusion and policy implications

This paper presented the first evidence on the causal relationship be-
tween MSW generation per capita, per capita GDP, urbanization, and
GHG emissions from the waste sector in Denmark. We exploited the
most recent and available data period (1994–2018) and a very current
estimate model based on Artificial Neural Networks and Breitung-
Candelon Spectral Granger-causality. In contrast to traditional statistic
or econometric techniques, we employed sophisticated mathematical
methods since they better penetrate the laws of the “environment”. In
fact, after processing the data through numerous combinations in the
so-called learning phase, our Neural Network proposed a linearization
of the problem, which we solved using a mathematical formula that
binds the different ones together variables. Our Neural Network re-
quired a double construction to choose autonomously through the In-
cremental Order Test, the best “input neurons” capable of generating
the final signal to the selected target. This procedure, confirmed by the
most sophisticated Machine Learning tests, allowed us to obtain a neu-
ral network from which we observed how GHG emissions from the
waste sector in Denmark undergo variations based on the economic
trend of the Total Municipal Solid Waste Generation, from the proxy
for urbanization and GDP per capita. The results showed how the vari-
ance of per capita GDP represents the variable that can accelerate emis-
sions from waste.

Our results obtained from the analysis of neural networks could be
interpreted as a coupling-decoupling relationship between economic
growth and management of waste that causes harmful emissions. In-
deed, a greater wealth that certainly translates into a higher amount
of waste generated is associated with a reduction of emissions from
the waste sector. Similarly, our time series model corroborated these
findings and found a significant negative monotonic relationship be-
tween waste sector GHG emissions, income, urbanization, and munici-
pal waste generation. In line with that, the Breitung-Candelon Spectral
Granger-causality supports the existence of a unidirectional causal link
from urban population and municipal waste to waste emissions. Bring-
ing high value information, our time-series findings confirmed logically
the results of the machine learning approach. Hence, an accurate inter-
pretation of them is required to design consistent policy measures.

In a given economy, the amount of waste generated is effectively
linked to the level of income, and thus wealth. However, it has also
been shown that such relation can be non-linear. As income grows
over time, recycling, composting, and incinerating processes may re-
place standard landfills. As a matter of fact, a de-linking relationship
among wealth and waste may emerge, with major positive effects on
the environmental quality. Since Denmark displays one of the world's
highest income per capita, this economy may have reached a turning
point of economic development after which, wealth enhances waste
generation while it reduces emissions from the waste sector. Accord-
ingly, it is a relevant perspective for policy making at a national
scale — as the nation-specific waste situation is a crucial issue in
Europe. First, reducing the costs and improving the effectiveness of
major waste treatment policies is necessary. This concerns phasing-
out from landfill strategies, but also developinghigh-techwaste inciner-
ation and recycling processes across the Danish territory. Because the
proportion of urban population is decidedly linked to waste generation
and emissions in Denmark, specific attention should be drawn to
densely populated areas, where waste management is at the heart of
environmental concerns but also the core of solutions. Second, lowering
the generation of waste at its source should explicitly be pursued, since
strengthening the waste management in the post-production phase is
not sufficient. Thus, waste policy efforts should focus on changing
agents' behaviour and firms' decisions at the level of waste production.
Otherwise, an increasing gap will emerge between the policy objective
13
(slowing down climate change and land use degradation in Denmark)
and its effective implementation (uncontrolled polluting emissions
from the Danish waste sector).

Opening to an international prospect, our results would represent
policy advice based on a global policy that sees wealth as the solution
to waste emissions. Obviously, investments in waste management are
functions of the economic and social capacity of the country, but also
on its willingness to achieve environmental targets. While logical for
such an advanced economy like Denmark, other developing countries
face chronic difficulties inmanagingwaste because of a crucial lack of fi-
nancial capacity and public infrastructures devoted to this issue. There-
fore, future studies should examine the wealth-waste-emissions nexus
in developing countries if data availability allows that. Since numerous
urban areas display critical levels of untreated and polluting waste, re-
searchers should identify the conditions under which a cutting-edge
waste chain may be implemented in low- and middle- income coun-
tries. But first and foremost, promoting adequate waste management
practices would substantially help turning these cities towards a sus-
tainable path.
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