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A large class of problems in quantum physics involve solution of the time independent

Schrödinger equation in one or more space dimensions. These are boundary value

problems, which in many cases only have solutions for specific (quantized) values of the

total energy. In this article we describe a Python package that “automagically” transforms

an analytically formulated Quantum Mechanical eigenvalue problem to a numerical form

which can be handled by existing (or novel) numerical solvers. We illustrate some uses of

this package. The problem is specified in terms of a small set of parameters and selectors

(all provided with default values) that are easy to modify, and should be straightforward

to interpret. From this the numerical details required by the solver is generated by the

package, and the selected numerical solver is executed. In all cases the spatial continuum

is replaced by a finite rectangular lattice. We compare common stensil discretizations of

the Laplace operator with formulations involving Fast Fourier (and related trigonometric)

Transforms. The numerical solutions are based on the NumPy and SciPy packages for

Python 3, in particular routines from the scipy.linalg, scipy.sparse.linalg,

and scipy.fftpack libraries. These, likemost Python resources, are freely available for

Linux, MacOS, and MSWindows. We demonstrate that some interesting problems, like

the lowest eigenvalues of anharmonic oscillators, can be solved quite accurately in up to

three space dimensions on a modern laptop—with some patience in the 3-dimensional

case. We demonstrate that a reduction in the lattice distance, for a fixed the spatial

volume, does not necessarily lead to more accurate results: A smaller lattice length

increases the spectral width of the lattice Laplace operator, which in turn leads to an

enhanced amplification of the numerical noise generated by round-off errors.

Keywords: numpy array, FFT (fast fourier transform), quantum mechanics, python classes, eigenvalue problems,

sparse SciPy routines, Schrödinger equations

1. INTRODUCTION

The Schrödinger equation has been a central part of “modern” physics for almost a century. When
interpreted broadly, it can be formulated in a multitude of ways [1]. Here we mainly restrict our
discussion to the non-relativistic, time independent form,

[

−1q + V(q)
]

ψ(q) = Eψ(q). (1)

This constitutes an eigenvalue problem for E (there are many cases where the operator
defined by Equation (1) allows for a continuous spectrum of E-values, but this will not
directly influence the treatment of finite discretizations of such systems). In Equation (1), q

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2020.00390
http://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2020.00390&domain=pdf&date_stamp=2020-09-28
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:asif.mushtaq@nord.no
https://doi.org/10.3389/fphy.2020.00390
https://www.frontiersin.org/articles/10.3389/fphy.2020.00390/full


Mushtaq et al. Numerical Solutions of Eigenvalue Problems

denotes the configuration space coordinate for a system of one
or more particles in one or more spatial dimensions, and 1q

is a Laplace operator on this configuration space. V(q) is the
interaction potential, and E the eigenvalue parameter, interpreted
as an allowed energy for the quantum system.

Despite its appearance as a single-particle equation,
Equation (1) can also be used to model N-particle systems,
with q = (r1, . . . , rN) and 1q = (c111, . . . , cN1N). Here
each 1k is an ordinary flat space Laplace operator, and ck is a
numerical coefficient inversely proportional to the mass mk of
particle k; this mass may differ from particle to particle. By a
suitable scaling of each coordinate rk, one can mathematically
transform all ck to (for instance) unity. But such transformations
may obscure physical interpretations of the coordinates, and
make mathematical formulations more error-prone.

How to solve eigenvalue problems like (1)? Fortunately
for the rapid initial development of quantum mechanics, for
many important physical cases [like the hydrogen atom [2, 3]
and harmonic oscillators [4]] it could be reduced to a set of
one-dimensional eigenvalue problems, through the separation
of variables method. Moreover, the resulting one-dimensional
problems could all be solved exactly by analytic methods. The
origins for such fortunate states of affairs can invariably be
traced to an enhanced set of symmetries. However, not every
system of physical interest enjoy a high degree of symmetry. Even
most one-dimensional problems of the form (1) have no known
analytic solution. A popular and much investigated system is the
anharmonic oscillator,

[

−
d2

dx2
+ µx2 + εx4

]

ψ(x) = Eψ(x). (2)

This model has often functioned as a theoretical laboratory [5,
6], for instance to investigate the behavior and properties of
perturbative [7, 8] and other [9–12] expansions, and alternative
solution methods [13–15].

It this article we describe some attempts to simplify numerical
solutions of eigenvalue problems like (1). Our approach
relies on standard numerical algorithms, already coded and
freely available through Python packages like numpy [16]
and scipy [17, 18]. The main aim is to automatize the
transformation of (1) to function calls accepted by the numerical
eigenvalue solvers. Within the above class of models, the problem
is completely defined by the coefficient vector (c1, c2, . . . , cN) and
the real function V(q). In principle, this should be the only user
input required for a numerical solution.

In practice some additional decisions must be made, like how
a possibly infinite configuration space should be reduced to a
region of finite extent, how the boundaries of this region should
be treated, and how this region should be further approximated
by a finite lattice. Other options involve selection of numerical
approaches, like whether dense or iterative sparse matrix solvers
should be used. Such decisions have consequences for many
“trivial” details of the numerical programs, but they can be
provided in the form of parameters and selectors, automatically
implemented without further tedious and error-prone human
intervention. Even many of the decisions indicated above may

ultimately by delegated to artificial intelligence systems, but this
is beyond our current scope.

2. AVAILABLE PYTHON PROCEDURES
FOR NUMERICAL SOLUTION

Numerical approaches to problems like those above are in
principle straightforward: The operator

H = T+ V

defined by Equation (1) is approximated by a finite real
symmetric matrix

MH = MT +MV

where we have introduced the symbol T = −1q. For densely
defined matrices MH there are several standard numerical
eigenvalue solvers available, like eig and eigvals in the
scipy.linalg package. A 104 × 104 matrix of double
precision numbers requires 800 Mb of storage space; this is
indicative of the problem magnitudes that can be handled
by dense matrix methods on (for instance) modern laptops.
That is, such computers have more than enough memory for
numerical treatment of one-dimensional problems, and usually
also sufficient memory for two-dimensional ones.

For higher-dimensional problems one may utilize the sparse
nature ofMH to find solutions through iterative procedures, like
the eigsh eigenvalue solver in the scipy.sparse.linalg
package. This solver does not require any explicit matrix
construction of MH, only a LinearOperator function that
returns the vector MHψ for any input vector ψ . In the
representations we consider, MV is always diagonal, andMT can
be made diagonal by a Fast Fourier Transform (FFT), or some
of its discrete trigonometric variants. This opens the possibility
it to handle non-sparse matrix problems, where T is replaced
by more general expressions of F(T), by the same procedures.
For instance functions F that involves fractional and/or inverse
powers of its arguments.

3. REQUIRED PARAMETERS AND
SELECTORS

In this section we describe the additional quantities that a user
must input for a full specification of the numerical problem.
They assume that configuration space has been modeled
by a rectangular point lattice, with a selection of possible
boundary conditions.

3.1. Lattice Shape
The most basic quantity of the numerical model is the discrete
lattice approximating the relevant region of configuration space.
For rectangular approximations this is defined by the shape
parameter, a Python tuple,

shape =
(

s0, s1, . . . , sd−1
)

, (3)

Frontiers in Physics | www.frontiersin.org 2 September 2020 | Volume 8 | Article 390

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Mushtaq et al. Numerical Solutions of Eigenvalue Problems

where each sk is a positive integer specifying the number of lattice
points in the k’th direction, and d is the (effective) dimension
of configuration space. For models with continuous symmetries
(for instance rotational ones) the effective dimension may be
chosen smaller than the physical one, by separation of variables.
Likewise, discrete symmetries may can used to reduce the size of
configuration space that this lattice must approximate.

In Python programs, quantities like the wave function ψ and
the potential V are defined as floating point NumPy arrays of
shape shape.

3.2. Edge Lengths and Offsets
The geometric extent of the selected region is specified by its
edge lengths xe. This is a NumPy array of positive floating
point numbers,

xe =
[

e0, e1, . . . , ed−1
]

. (4)

A secondary quantity, derived from xe and shape is the
elementary lattice cell,

dx = xe/shape =
[

e0/s0, e1/s1, . . . , ed−1/sd−1
]

. (5)

The absolute positioning of the region, with respect to some
fixed coordinate system, is specified by a NumPy array of floating
point numbers,

xo =
[

x0, x1, . . . , xd−1
]

. (6)

This is defined as the position of the “lower left” corner of the
selected region. The placement of the lattice points within the
region still needs to be specified, as will be discussed below.

3.3. Boundary Conditions
The restriction to finite regions of space requires imposition
of boundary conditions. For regions of rectangular shape
(generalized to arbitrary dimensions), as considered here, the
perhaps simplest choice is periodic boundary conditions in each
directions. This may be viewed as a topological property of
configuration space itself. Other boundary conditions are really
properties of functions defined on this space, as specifications of
how the functions should be extended beyond the boundary. Two
natural choices are symmetric and anti-symmetric extensions.
With a lattice approximation a further distinction can be made,
related to how the lattice points are positioned relative to
the boundary.

In this connection, it is natural to consider the cases handled
by the trigonometric cousins of the fast Fourier transform (FFT).
In the one-dimensional case the extension may be symmetric
or anti-symmetric with respect to a boundary, which is situated
either (i) at a lattice point, or (ii) midway between two lattice
points. Thus, at each boundary there is 2 × 2 matrix of
possibilities, as indicated by Table 1.

With two boundaries there are altogether 4 × 4 = 16
possibilities. However, the routines in scipy.fftpack (dct
and dst of types I–IV) only implement cases where both options
come from the same row of Table 1. With the periodic extension

TABLE 1 | Individual boundary conditions covered by standard discrete

trigonometric transforms (DCT and DST).

Function extension Symmetric Anti-symmetric

Boundary at lattice point “S” “A”

Boundary midway between points “s” “a”

P in addition, one ends up with a set of nine possibilities in
each direction:

B =
{ ′PP′, ′SS′, ′SA′, ′AS′, ′AA′, ′ss′, ′sa′, ′as′, ′aa′

}

.
(7)

Hence, the numerical model must be further specified by a
Python tuple of two-character strings, defining the selected
boundary condition in all directions,

bc =
(

b0, b1, . . . , bd−1
)

(8)

with each bk ∈ B (or in an enlarged set of possibilities).

3.4. Lattice Positions. Dual Lattice Squared
Positions
When bc is given, one may automatically calculate the positions
of all lattice points

xlat =
(

X0,X1, . . . ,Xd−1
)

, (9)

provided shape, xe, and xo are also known. In Equation (9),
the property xlat is a tuple of one-dimensional arrays. For
illustration, consider the case of a 3-dimensional lattice of shape
(sx, sy, sz). Then xlat is a Python tuple (X,Y,Z), where X is a
numpy array of shape (sx, 1, 1), Y is a numpy array of shape
(1, sy, 1), and Z is a numpy array of shape (1, 1, sz). These are all
one-dimensional arrays, but their shape information implies that
(for instance) the Python expressionX∗Y automatically evaluates
to a numpy array of shape (sx, sy, 1).

A Python function V(x, y, z), defined by an expression that
can involve “standard” functions, may then be evaluated on the
complete lattice by the short and simple expression V(∗xlat).
When V depends on all its arguments, the result will be a numpy
array of shape (sx, sy, sz).

In general, when Fourier transforming a periodic function
f (x), where x takes values on some discrete lattice, the result

becomes another periodic function f̃ (k), where k takes values
on another discrete lattice (the dual lattice/reciprocal space).
Modulo an overall scaling, a set of k-values (labeling the
points of some complete, minimal subdomain to be extended
by periodicity) can be defined such that f (x + a) transforms

to e−ik·a f̃ (k). A natural choice for that minimal domain is,
in physicists language, the first Brillouin zone (this choice
may still leave a somewhat arbitrary selection of boundary
points to be included). On this subdomain of the dual lattice,
derivatives can be defined as the multiplication operators −ik.
But these operators must still be extended to the full dual
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lattice by periodicity. The common stensil expressions for lattice
derivatives correspond to the lowest Fourier components of the
(periodically extended) multiplication operator−ik.

For the other (discrete trigonometric) transformations a
complication arises, because a derivation also induces a
transposition of the boundary conditions in B. However, two
derivations in the same direction leave the boundary conditions
unchanged, and hence can be represented as a multiplication
operator q on the transformed functions. Let ∂k be shorthand
notation for ∂/∂xk. The previous conclusion implies that all
operators of the form F(∂20 , ∂

2
1 , . . . , ∂

2
d−1) can be evaluated

through multiplications and fast discrete transforms,

F(∂20 , ∂
2
1 , . . . , ∂

2
d−1) = T

−1 F(q0, q1, . . . , qd−1) T . (10)

We have implemented code that performs T and T −1 through
a sequence of discrete trigonometric or fast Fourier transforms,
dependent on bc and the other parameters. Analogous to
the arrays xlat of lattice positions (Equation 9), one may
automatically calculate similar arrays of squared positions for
reciprocal lattice,

qlat = (Q0,Q1, . . . ,Qd−1). (11)

3.5. Lattice Laplacian. Stensil
Representations
Instead of relying on FFT type transforms, one may directly
construct discrete approximations (stencils) of the Laplace
operator, and similar differential operators. The simplest
implementation of a lattice Laplacian in one dimension is
obtained by use of the formula

d2ψ

dx2
(xn) ≈

ψ(xn + δx)− 2ψ(xn)− ψ(xn − δx)
δx2

, (12)

where δx is the distance between nearest-neighbor lattice points.
The formal discretizations error of this approximation is of order
δx2. By summing such expression in d orthogonal directions one
finds the (2d + 1)-stensil expression for the lattice Laplacian.

A more accurate approximation is the (4d + 1)-stencil,

1ϕ(xn) ≈
d−1
∑

k=0

−ϕ(xn + 2δk)+ 16ϕ(xn + δk)− 30ϕ(xn)+ 16ϕ(xn − δk)− ϕ(xn − 2δk)

12|δk|2
. (13)

Here δk denotes a vector of length |δk| pointing in positive
k-direction.

An arbitrary (short-range) position independent operator O
can in general be represented by a stensil sO(b) such that

(Oψ) (xn) =
∑

b

sO(b)ψ(xn−b). (14)

When n− b falls outside the lattice, the value of ψ(xn−b) must is
interpreted according to the boundary conditions bc. This can
again be automatized. We have implemented an algorithm for
this, currently only for 5 of the 9 cases in B in each direction,
but for an arbitrary number of directions.

The various ways to approximate the Laplace operator, or
more generally the kinetic energy operator, is made available
through the selector ke, whose value is currently limited to the
set of options { ′2dplus1′, ′4dplus1′, ′fftk2′}. The last of
these options is discussed in section 5.

4. SIMPLE APPLICATIONS

In this section we will demonstrate some applications of our
automatic code. The main requirement is that in each case
only a set of parameters and selectors should be provided, with
no coding required by the application itself. This should be
sufficient to generate eigenvalues En as requested, and optionally
also the associated eigenfunctions (an issue which we have not
yet tested).

4.1. Example: One-Dimensional Harmonic
Oscillator
Consider the eigenvalue problem of the one-dimensional
harmonic oscillator,

− ψ ′′
n (x)+ x2 ψn(x) = En ψn(x). (15)

The eigenvalues are En = 2n+ 1 for n = 0, 1, . . ., and the extent
of the wavefunctionψn(x) can be estimated from the requirement
that a classical particle of energy En is restricted to x2 ≤ En. A
quantum particle requires a little more space than the classically
restricted one.

For a numerical analysis we provide the parameters

shape = (128, ), bc = ( ′a′, ′a′), xe = (25, ), xo = (−12.5),

V = lambda x : x ∗ ∗2,

selects the 3-stensil approximation for T (default choice), and the
dense matrix solver eigvalsh (default choice). This instantly
returns 128 eigenvalues as plotted in Figure 1. We may easily
change shape to (1024), for a much better result. The potential
for additional explorations, without any coding whatsoever,
should be obvious.

For a better quantitative assessment of the accuracy obtained

we plot some energy differences, E(exact)n − En, in Figure 2.

This brute force method leads to a dramatic increase in
memory requirement with increasing lattice size. For a lattice
with N = 2m sites, the matrix requires storage of 4m double
precision (8 byte) numbers. For m = 13 this corresponds to
about 1

2 Gb of memory, for m = 14 about 2 Gb. The situation
becomes even worse in higher dimensions.

Assuming that we are only interested some of the lowest
eigenvalues, an alternative approach is to calculate these by the
iterative routine eigsh from scipy.sparse.linalg. This
allows extension to larger lattices, as shown in Figure 3.

With a sparse eigenvalue solver the calculation becomes
limited by available computation time, which in many cases is a
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FIGURE 1 | The 128 lowest eigenvalues of Equation (15), computed with the

standard 3-stensil approximation for the Laplace operator (here the kinetic

energy T ). The parameters are chosen to illustrate two typical effects: With the

bc=(a, a) boundary conditions the harmonic oscillator potential is effectively

changed to V = ∞ for x ≥ 12.5, thereby modifying the behavior of extended

(highly exited) states. The effect of this is to increase the eigenenergies of such

states, to a behavior more similar to a particle-in-box. This is visible for n & 80.

The effect of using the 3-stensil approximation for T is to change the spectrum

of this operator from k2 to (the slower rising) (2/δx)2 sin2 (kδx/2). This is visible

in the sub-linear rise of the spectrum for N = 27.

FIGURE 2 | The discretizations error of energy eigenvalues when using the

standard 3-stensil approximation for the one-dimensional Laplace operator

(here the kinetic energy T ). There is no improvement in E90 beyond a certain

lattice size N, because the corresponding oscillator state is too large for the

geometric region. Hence, for improved accuracy of higher eigenvalues one

should instead increase the xe, while maintaining xo = −xe/2. For the other

states the improvement is consistent with the expectation of an error

proportional to δx2. This predicts an accuracy improvement of magnitude

212 = 4, 096 when the number of lattice sites increases from N = 27 to

N = 213 for a fixed geometry. The eigenvalues are computed by the dense

matrix routine eigvalsh from scipy.linalg.

much weaker constraint: With proper planning and organization
of calculations, the relevant timescale is the time to analyze
and publish results (i.e., weeks or months). The computation
time is nevertheless of interest (it shouldn’t be years). We have
measured the wall clock time used to perform the computations
for Figures 2, 3, performed on a 2012 Mac Mini with 16 Gb
of memory, and equipped with a parallelized scipy library.

FIGURE 3 | The discretizations error computed by the routine eigsh from

scipy.sparse.linalg. For a fixed lattice size the discretizations error is

essentially the same as with dense matrix routines. However, with a memory

requirement proportional to the lattice size (instead of its square) it becomes

possible to go to much larger lattices. This figure also demonstrates (E70) that

the error can be limited by boundary effects instead of the finite discretization

length δx.

FIGURE 4 | The wall clock time used to find the lowest 128 eigenvalues, for

various systems and methods. We have also used the dense matrix routine

eigvalsh to compute the eigenvalues of a 27 × 27 (N = 214)

two-dimensional lattice; not unexpected it takes the same time as for a 214

one-dimensional lattice. Somewhat surprisingly, with eigsh it is much faster

to find the eigenvalues for two-dimensional lattice than for a one-dimensional

with the same number of sites, and somewhat faster to find the eigenvalues

for a three-dimensional lattice than for the two-dimensional with the same

number of sites.

Hence, the eigvalsh and eigsh routines are running with
four threads. The results are plotted in Figure 4.

Here we have used the eigsh routine in the most
straightforward manner, using default settings for most
parameters. This means, in particular, that the initial vector for
the iteration (and the subsequent set of trial vectors) may not
be chosen in a optimal manner for our category of problems.
It is interesting to observe that eigsh works better for higher-
dimensional problems. The (brief) scipy documentation [17]
says that the underlying routines works best when computing
eigenvalues of largest magnitude, which are of no physical
interest for our type of problems. It is our experience that the
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FIGURE 5 | One may think that it takes longer to compute more eigenvalues.

This is not always the case when the number of eigenvalues is small, as

demonstrated by this figure. The default choice of eigsh is to compute k = 6

eigenvalues. For our two- and three-dimensional problems this looks close to

the optimal value, but it is too low for the one-dimensional problem.

suggested strategy, of using the shift-invert mode instead, does
not work right out-of-the-box for problems of interesting size
(i.e., where dense solvers cannot be used). We were somewhat
surprised to observe that the computation time may decrease if
the number of computed eigenvalues increases (cf. Figure 5).

4.2. Example: 2- and 3-Dimensional
Harmonic Oscillators
The d-dimensional harmonic oscillator

[

−1+ r2
]

ψn(r) = En ψn(r), (16)

has eigenvalues En = (d + 2n), for n = 0, 1, . . .. The degeneracy
of the energy level En is gn = (n + 1) in two dimensions, and
gn = 1

2 (n + 1)(n + 2) in three dimensions1. This degeneracy
may be significantly broken by the numerical approximation.
For a numerical solution we only have to change the previous
parameters slightly:

shape = (128, ) ∗ dim, bc = (( ′a′, ′a′), ) ∗ dim,

xe = (25, ) ∗ dim, xo = (−12.5, ) ∗ dim, (17a)

V = lambda x, y : x ∗ ∗2+ y ∗ ∗2 (dim = 2), (17b)

V = lambda x, y, z : x ∗ ∗2+ y ∗ ∗2+ z ∗ ∗2 (dim = 3),
(17c)

for dim = 2, 3.
As already discussed, the routine eigsh works somewhat

faster in higher dimensions than in one dimension (for the
same total number N of lattice points). The corresponding
discretizations errors are shown in Figures 6, 7.

The discretizations error continues to scale like δx2. This
means that a reduction of this error by a factor 22 = 4
requires an increase in the number of lattice points by a factor
2d in d dimensions. This means that is becomes more urgent

1The general formula is gn =
(d−1+n

d−1

)

.

FIGURE 6 | The discretization error of energy eigenvalues when using the

standard 5-stensil approximation for the two-dimensional Laplace operator.

Exactly, the states E78 and E90 are the two edges of a 13-member multiplet

with energy 26, and the state E12 is the middle member of a 5-member

multiplet with energy 10. With the chosen parameters all states considered a

well confined inside the geometric region; hence we do not observe any

boundary correction effects.

FIGURE 7 | The discretization error of energy eigenvalues when using the

standard 7-stensil approximation for the three-dimensional Laplace operator.

Exactly, the states E56 and E83 are the two edges of a 28-member multiplet

with energy 15, and the state E15 is the middle member of a 10-member

multiplet with energy 9.

to use a better representation of the Laplace operator in higher
dimensions. Fortunately, as we shall see in the next sections,
better representations are available for our type of problems.

5. FFT CALCULATION OF THE LAPLACE
OPERATOR

One improvement is to use the reflection symmetry of each axis
(x → −x, y → −y, etc.) to reduce the size of the spatial
domain. This reduces δx by a half, without changing the number
of lattice points.

A much more dramatic improvement is to use some
variant of a Fast Fourier Transform (FFT): After a Fourier
transformation, ψ(r) → ψ̃(k), the Laplace operator turns into
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FIGURE 8 | With a FFT representation of the Laplace operator the

discretization error drops exceptionally fast with δx ∝ N−1. When it becomes

“small enough” the effect of numerical roundoff becomes visible; the latter

leads to an increase in error with δx. The results in this figure is for a

one-dimensional lattice, but the behavior is the same in all dimensions. The

lesson is that we should make δx “small enough” (which in general may be

difficult to determine a priori), but not smaller. It may also be possible to rewrite

the eigenvalue problem to a form with less amplification of roundoff errors.

FIGURE 9 | Accuracy of computed eigenvalues for a 1D oscillator, using the

FFT approximation for kinetic energy T. This figure may suggest that an

increase in the number of lattice size N will lead to a accurate treatment of

states with higher n. Our findings are that this is not the case: The results for

N = 27 and N = 28 have essentially the same behavior as for N = 26.

multiplication operator,

(−1ψ) (r) → k2 ψ̃(k).

This means that application of the Laplace operator can
be represented by (i) a Fourier transform, followed by (ii)
multiplication by k2, and finally (iii) an inverse Fourier
transform. Essentially the same procedure works for the related
trigonometric transforms.

For rectangular lattices, these options can also be
implemented as practical procedures, due to the existence
of efficient and accurate2 algorithms for discrete Fourier

2The error of a back-and-forth FFT is a few times the numerical accuracy, i.e., in
the range 10−14 to 10−15. with double precision numbers. However, when an
error of this order is multiplied by k2 it can be amplified by several orders of

FIGURE 10 | Accuracy of computed eigenvalues for a 2D oscillator, using the

FFT approximation for kinetic energy T. As can be seen, a large number of the

lowest eigenvalues can be computed to an absolute accuracy in the range

10−14–10−12 with a lattice of size 26 × 26. We observe not improvement by

going to 27 × 27 lattice, but no harm either (except for an increase in the wall

clock execution time from about 3 to 30 s for each combination of boundary

conditions).

FIGURE 11 | Accuracy of computed eigenvalues for a 3D oscillator, using the

FFT approximation for kinetic energy T. As can be seen, a large number of the

lowest eigenvalues can be computed to an absolute accuracy in the range

10−14 to 10−12 with lattice of size 26 × 26 × 26. We observe no improvement

by going to 27 × 27 × 27 lattice, but no harm either (except for an increase in

the wall clock execution time from about 6 to 95 min for each combination of

boundary conditions).

and trigonometric transforms. The time to perform the above
procedure is not very much longer than the corresponding stensil
operations. The benefit is that the Laplace operator becomes
exact on the space of functions which can be represented by the
modes included in the discrete transform.

We have coded this FFT-type representation of the Laplace
operator for the various types of boundary conditions listed in
Table 1. This possibility can be chosen as an option for the kinetic
energy selector, ke. The obtainable accuracy through this option
increases dramatically, as illustrated in Figures 8–11. As shown
in Figure 8, a decrease of the lattice length δx does not necessarily

magnitude. Hence, the range of k2-values should not be chosen significantly larger
than required to represent ψ(r) to sufficient accuracy.
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TABLE 2 | The 10 lowest eigenvalues of the quantum anharmonic oscillator,

calculated to high precision by the method described in [14], from the Schrödinger

equation
(

− d2

dξ2
+ ξ4

)

ψn(ξ ) = εnψn(ξ ).

n εn

1 1.060 362 090484182899647046016693

2 3.799 673 029801394168783094188513

3 7.455 697 937986738392156591347186

4 11.644 745511378162020850373281371

5 16.261 826018850225937894954430385

6 21.238 372918235940024149711113589

7 26.528 471183682518191813828183681

8 32.098 597710968326634272106438332

9 37.923 001027033985146516378551910

10 43.981 158097289730785318113752827

The eigenfunctions obey the (anti-)symmetry property, ψn (ξ ) = (−1)n−1 ψn (−ξ ).

lead to a more accurate result. We attribute this to an enhanced
amplification of roundoff errors.

It might be that the harmonic oscillator systems are
particularly favorable for application of the FFT representation.
One important feature is that the Fourier components of the
harmonic oscillator wave functions vanishes exponentially fast,

like e−k2/2, with increasing wave-numbers k2. This feature
is shared with all eigenfunctions of polynomial potential
Schrödinger equations, but usually with different powers of k in
the exponent, which quantitatively leads to a somewhat different
behavior. Furthermore, the onset of exponential decay will occur
for larger values of k2 for the more excited states (i.e., with larger
eigenvalue numbers).

For systems with singular wavefunctions the corresponding
Fourier components may vanish only algebraically with k2. An
equally dramatic increase in accuracy cannot be expected for
such cases.

6. ANHARMONIC OSCILLATORS

Our general setup allows for any computable potential, by simply
changing the definition of the function assigned to V (This
does not mean that every potential will lead to a successful
calculation of eigenvalues). For demonstration and comparison
purposes, like here, one encounters the problem that the exact
answers are no longer known. This makes it more difficult
to assess the accuracy and other qualities of the code. As an
example where some instructive comparisons are possible, we
consider the two-dimensional anharmonic oscillator obeying the
Schrödinger equation,

1

2

(

−
d2

dx2
−

d2

dy2
+ x4 + 6 x2y2 + y4

)

9E(x, y) = E9(x, y).

(18)
By construction, this problem has separable solutions of the form

9E(x, y) = ψm(ξ )ψn(η), with ξ = (x+y)/
√
2, η = (x−y)/

√
2,

(19)

TABLE 3 | The 22 lowest eigenvalues E of the two-dimensional quantum

anharmonic oscillator, as defined by the Schrödinger equation
1
2

(

− d2

dx2
− d2

dy2
+ x4 + 6 x2y2 + y4

)

9E (x, y) = E9E (x, y), displayed to 30 decimals

accuracy.

(Px,Py) Comp E

(S,S) ε1 + ε1 2.120 724 180968365799294092033385

(S,A) ε1 + ε2 4.860 035 120285577068430140205205

(A,S) ε1 + ε2 4.860 035 120285577068430140205205

(S,S) ε2 + ε2 7.599 346 059602788337566188377025

(S,S) ε1 + ε3 8.516 060 028470921291803637363878

(A,A) ε1 + ε3 8.516 060 028470921291803637363878

(S,A) ε2 + ε3 11.255 370967788132560939685535698

(A,S) ε2 + ε3 11.255 370967788132560939685535698

(S,A) ε1 + ε4 12.705 107601862344920497419298064

(A,S) ε1 + ε4 12.705 107601862344920497419298064

(S,S) ε3 + ε3 14.911 395875973476784313182694372

(S,S) ε2 + ε4 15.444 418541179556189633467469884

(A,A) ε2 + ε4 15.444 418541179556189633467469884

(S,S) ε1 + ε5 17.322 188109334408837542000447077

(A,A) ε1 + ε5 17.322 188109334408837542000447077

(S,A) ε3 + ε4 19.100 443449364900413006964628557

(A,S) ε3 + ε4 19.100 443449364900413006964628557

(S,A) ε2 + ε5 20.061 499048651620106678048618897

(A,S) ε2 + ε5 20.061 499048651620106678048618897

(S,A) ε1 + ε6 22.298 735008720122923796757130281

(A,S) ε1 + ε6 22.298 735008720122923796757130281

(S,S) ε4 + ε4 23.289 491022756324041700746562742

This equation is separable in terms of two identical one-dimensional problems, with

eigenvalues εm as listed in Table 2. Hence each eigenvalues E is composed of two

eigenvalues εm, εn as indicated in the second column. The reflection parities (Px ,Py ) listed

in the first column indicate how the wavefunctions 9E (x, y) can be chosen symmetric (S)

or anti-symmetric (A) under the reflections x → −x or y → −y.

where the factors ψ obey a one-dimensional equation,

(

−
d2

dξ 2
+ ξ 4

)

ψm(ξ ) = εm ψm(ξ ), (20)

and E = εm + εn. As mentioned in the introduction, equations
like the latter have been quite intensely studied in the literature.
Accurate values for the even parity eigenvalues of Equation (20)
can for instance be found in Table 1 of [9]. In Table 2, we list
the 10 lowest eigenvalues to 30 decimals precision, calculated
by the very-high-precision method described in [14]. Hence, for
practical purposes all εm of interest can be considered exactly
known. This means that the eigenvalues E of Equation (18) can
also be considered exactly known. We list the 22 lowest ones of
them in Table 3. These are the values we want to compare against
the standard solution methods. The latter make no use of the
separability property of the problem, which anyway is destroyed
by the lattice approximation.

The first column of Table 3 associates a symmetry
classification (Px, Py) to each eigenvalue E, or rather to its
corresponding eigenfunction 9E(x, y). Since Equation (18) are
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TABLE 4 | Numerical calculations of the lowest eigenvalues of the two-dimensional quantum anharmonic oscillator, by various approximations and lattice sizes.

(Px,Py) Stensil (210 × 210) “FFT” (24 × 24) “FFT” (25 × 25) “FFT” (27 × 27)

(S,S) 2.120 574 864327 2.121 724 631908 2.120 724 180968 2.120 724 180969

(S,A) 4.859 463304350 4.863 978 042739 4.860 035 120276 4.860 035 120286

(A,S) 4.859 463304350 4.863 978 042731 4.860 035 120269 4.860 035 120289

(S,S) 7.597 839625245 7.580 886 360302 7.599 346 064273 7.599 346 059599

(S,S) 8.514 505169411 8.443 877 132728 8.516 060 033 426 8.516 060 028467

(A,A) 8.514 700940122 8.466 735 662572 8.516 060 024 420 8.516 060 028467

(S,A) 11.252 295 795135 11.091 953 034554 11.255 371027420 11.255 370967792

(A,S) 11.252 295 795137 11.091 953 034552 11.255 371027446 11.255 370967784

(S,A) 12.702 160 201238 12.713 861 518776 12.705 107605729 12.705 107601868

(A,S) 12.702 160 201248 12.713 861 518777 12.705 107605757 12.705 107601861

(S,S) 14.905 839 565650 16.827 495 880048 14.911 396413962 14.911 395875970

(S,S) 15.438 616 444914 17.044 711 067731 15.444 418909471 15.444 418541178

(A,A) 15.439 522 886891 14.126 665 759659 15.444 418063518 15.444 418541175

(S,S) 17.316 965 583271 18.162 997 853055 17.322 188195788 17.322 188109337

(A,A) 17.317 047 769535 16.740 653 634905 17.322 187929414 17.322 188109328

(S,A) 19.091 567 414142 18.071 825 773508 19.100 442397522 19.100 443449360

(A,S) 19.091 567 414151 18.071 825 773501 19.100 442397503 19.100 443449361

(S,A) 20.053 053 266697 20.244 253 292135 20.061 496254183 20.061 499048648

(A,S) 20.053 053 266716 20.244 253 292132 20.061 496254153 20.061 499048648

(S,A) 22.290 449 617012 22.809 096 276441 22.298 734848064 22.298 735008720

(A,S) 22.290 449 617033 22.809 096 276438 22.298 734848071 22.298 735008718

(S,S) 23.276 097 201666 35.427 997 419504 23.289 486014610 23.289 491022749

The accuracy obtained is indicated by an underscore of the first inaccurate position (when taking roundoffs into account). The first column list the symmetry types (reflection parities) of

the associated wavefunction.

invariant under reflections,

Px : x → −x or Py : y → −y,

all eigenfunctions can be constructed to transform symmetrically
(S) or anti-symmetrically (A) under such reflections. For m < n,
such a construction is

9(±)
mn (x, y) =

1
√
2

[

ψm(ξ )ψn(η)± ψn(ξ )ψm(η)
]

. (21a)

Form = n there is only one possibility,

9mm(x, y) = ψm(ξ )ψm(η). (21b)

By use of the properties that

ψm(−ξ ) = (−1)m−1ψ(ξ ), Px :(ξ , η) → −(η, ξ ), and

Py :(ξ , η) → (η, ξ ),

we find that

9(±)
mn (−x, y) = ±(−1)m+n9(±)

mn (x, y), and

9(±)
mn (x,−y) = ±9(±)

mn (x, y). (22)

and further that 9mm(−x, y) = 9mm(x,−y) = 9mm(x, y).
The conclusion is that in an exact calculation the states 9mn

will be double degenerate when m 6= n, with parities (Px, Py)
equal to (S, S) and (A,A) when m, n are both even or both
odd, otherwise with parities (S,A) and (A, S). The states 9mm

are singlets with parities (S, S). The first column of Table 3 is
constructed according to these rules.

Table 4 displays the results of some standard numerical
solutions to Equation (18), “automagically” generated in the
same way as the previous treatments of the harmonic (linear)
oscillators. In the second column we show the results of
using the minimal 5-point stensil approximation of the Laplace
operator on a 1, 024 × 1, 024 lattice (approximating the whole
space). The resulting numerical problem is solved with the
eigsh sparse solver. The numerical accuracy is indicated by
an underscore of the first inaccurate position, when taking
proper roundoffs into account: The exact and numerical results
are rounded off to the same number of digits, and compared;
the underscore indicates the first position where the results
differ.

As can be seen, the results are less than impressive,
taking into account the amount computational work invested.
One straightforward improvement is to utilize the reflection
symmetries of the problem to reduce the magnitude of the
problem (with the same lattice cell size δx2) by a factor 4,
or to reduce the lattice cell size δx2 (with the same problem
magnitude) by a factor 4. Another option is to use a higher order
stensil approximation like (13). However, as already discussed in
section 5, an even better option (for this class of problems) is to
use a FFT type of approximation of the Laplace operator. The
resulting eigenvalues are listed in columns 3–5, for various lattice
sizes approximating the upper right quadrant (x ≥ 0, y ≥ 0) of
space. For each lattice size the problem must be solved 4 times,
with symmetric (S) and anti-symmetric (A) boundary conditions
at the axes x = 0 and y = 0.
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By symmetry under interchange, x ↔ y, we expect the
(S,A) and (A, S) to give identical results (as long as the lattice
approximation respects this symmetry). As can be seen, the
numerical results satisfy the symmetry within a numerical
accuracy of few × 10−12, regardless how close the results
are to the exact values. The degeneracy of states with (S, S),
respectively, (A,A) symmetry cannot be deduced in the same
way from the lattice approximated problem. In the infinite space
formulation the problem is separable, which in turn implies
this degeneracy. However, the lattice approximation introduces
boundaries that are non-factorizable in the (ξ , η)-coordinates.
This means that the problem is no longer separable in the lattice
approximation. As a result the degeneracy of the (S, S) and (A,A)
energies are split by a much larger amount, of the same order as
the difference between exact and numerical results. (In this case,
the lattice problem could be made separable by a rotation of the
lattice orientation by 45 degrees.)

We observe that even a 24 × 24 lattice with in the “FFT
approximated” Laplace operator provide almost equally accurate
results as a 210 × 210 lattice with the 5-stensil approximation.
The results from a 25 × 25 lattice seems more than sufficient
for practical purposes (say compared to experimental obtainable
accuracy), with little to be gained by further decrease of the lattice
length δx.

The computation times for the “FFT approximation” are
about 0.06, 0.8, and 75 s for respectively 16 × 16, 32 × 32, and
128× 128 lattice sizes. For the same number of lattice points, the

5-stensil formulation may lead to somewhat shorter computation
times. But this is completely offset by the need to work with a
much larger number of lattice points: The computation time for
the 1, 024× 1, 024 stensil approximation was about 30 min.

The Python package described in this paper is available at [19].
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