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Simple Summary: Seaweeds are underutilized resources worldwide that could be used in both the
food and the feed markets. However, seaweeds decompose quickly mainly due to their high water
content and therefore cost and energy effective preservation methods must be explored. Silage is
a low-energy input method to preserve forage crops widely used worldwide, but the ensilability
of seaweeds has been little investigated. In this study, we assessed different procedures to
ensile Porphyra umbilicalis and Saccharina latissima, including the washing and pre-wilting of the
seaweeds before ensiling and the addition of formic acid. The chemical composition and in vitro
ruminal fermentation of the obtained silages were determined to investigate their potential use
as ruminant feed. Seaweeds did not undergo the typical silage fermentation, characterized by
high production of lactic acid, as usually observed for terrestrial crops, and silage characteristics
were variable depending on the seaweed species. All silages with formic acid as silage additive
had pH values below the recommended value of 4.0, whereas those without formic acid had pH
values greater than 4.50. The addition of formic acid also increased the ruminal degradability of
the silages. More studies are needed to identify optimal ensiling conditions for seaweeds.

Abstract: The study analyzed the characteristics, chemical composition, and in vitro gas production
kinetics of Porphyra umbilicalis and Saccharina latissima silages. Each seaweed was ensiled in
vacuum bags (three bags/silage) following a 2 × 3 factorial design, with two pre-treatments
(unwilted or pre-wilted) and three silage types: unwashed seaweed ensiled without additive;
seaweed washed and ensiled without additive; and seaweed washed and ensiled with 4 g of
formic acid (FAC) per kg seaweed. Silages were kept for 3 months in darkness at 20 ◦C. Pre-wilting
prevented (p < 0.001) effluent formation and reduced (p ≤ 0.038) the production of NH3-N
and volatile fatty acids for both seaweeds. Both pre-wilting and washing increased (p < 0.05)
the ruminal degradability of P. umbilicalis silages but not of S. latissima silages. The pH of the
FAC-treated silages was below 4.0, but ranged from 4.54 to 6.23 in non FAC-treated silages.
DL-lactate concentrations were low (≤23.0 g/kg dry matter) and acetate was the predominant
fermentation product, indicating a non-lactic fermentation. The estimated ruminal degradability
of the P. umbilicalis and S. latissima silages was as average, 59.9 and 86.1% of that for high-quality
rye-grass silages, respectively, indicating a medium-low nutritional value of these seaweed silages
for ruminants.
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1. Introduction

Seaweeds are still underutilized resources worldwide for both human food and animal
feed markets, and there is therefore an increasing interest in expanding the array of applications of
seaweeds to surpass the USD 7 billion annual value of today’s seaweed industry [1,2]. Seaweeds’ growth
is primarily light rather than temperature dependent, which explains their clearly seasonal growth [3,4].
This is of particular importance in most northern regions of the temperate climate zone and in the
frigid climate zone. Decomposition processes start quickly after harvest due to high water content in
seaweed [5], and it is therefore necessary to develop technologies that allow storage throughout the
year for seaweeds to become a resource of interest for animal feed industry. A feasible storage method
should be independent of harvest time, cost and energy efficient, and should preserve the content in
nutrients and bioactive compounds of the seaweed biomass. Several technologies can be considered
for seaweed preservation. Drying or freezing are two available technologies, but both are high-energy
demanding methods. Silage is a low energy input method to preserve forage crops for livestock feeding
widely used worldwide. The principle of silage is the conversion of water-soluble carbohydrates
present in the crops to organic acids, mainly lactic acid, by epiphytic lactic acid bacteria under
anaerobic conditions, resulting in a pH drop that inhibits the growth of undesirable microorganisms
and reduces feed deterioration. When the epiphytic lactic bacteria population in the crop is not
sufficient to successfully reduce the pH, the silage process can be enhanced by the use of inoculants
(i.e., lactic acid bacteria) and/or additives, such as organic acids [6].

Seaweeds differ from terrestrial crops in some key characteristics, which may challenge the
silage process. Seaweeds present sugar alcohols (i.e., mannitol) and can have high content in
non-fermentable sugars such as 3,6-anhydrogalactose in red seaweeds, and alginic acid in brown
seaweeds [7]. Furthermore, seaweeds usually have high pH, high content of water and ash, and present
low or negligible epiphytic lactic acid bacteria population [8,9], and all these factors can contribute to
inhibiting the lactic acid fermentation [10]. The presence of bioactive compounds [11,12], together with
typical seaweed polysaccharides such as sulphated fucans and sodium alginate, might also be limiting
factors for the silage fermentation processes [13–15]. Moreover, seaweeds can have high levels of
non-digestible dietary fiber [16,17] that can be fermented in the rumen [18,19], and therefore can be
more efficiently used in ruminant than in non-ruminant feeding.

Seaweeds’ composition varies widely depending on types and species [18,20,21], and these
variations may affect the ability to ensile. Although the nutritive value of different seaweeds species has
been investigated [19,22,23], research on how to ensile seaweeds for animal feeding is still scarce [24–26],
and it is necessary to adapt and further develop the existing knowledge to each of the indigenous
seaweed species. Understanding the silage of seaweeds as a cost-effective preservation method
is crucial in order to continue the development of the seaweeds industry. Our hypothesis is that
silage can be a feasible preservation method for seaweeds, and that silage procedure may change the
chemical composition and nutrients availability of the seaweed silages. Thus, the aim of this study
was to assess the feasibility of silage preservation of two commercially interesting seaweed species
(Porphyra umbilicalis and Saccharina latissima), either unwilted or pre-wilted, and with or without
addition of formic acid (FAC). The in vitro rumen fermentation of seaweed silages was also evaluated
using the gas production technique. Porphyra umbilicalis was selected for the study because it has high
N content and it can supply a high amount of digestible protein to the small intestine of ruminants [20],
but information on its ensilability is not yet available. The ensilability potential of S. latissima, a low-fiber
content seaweed, has been tested in previous studies [24,25], but the present study assess new silage
treatments that might improve the silage process. In addition, S. latissima is successfully cultivated in
sustainable aquaculture systems in Norway and other countries along the North Atlantic Ocean [27].
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2. Materials and Methods

2.1. Seaweed Collection and Silage Preparation

Biomass of P. umbilicalis and S. latissima was collected from wild stocks by hand picking at low tide in
the Bodø municipality (Norway), in June 2016 (67◦16′57” N 14◦22′30” E). Both seaweeds were collected
in mid-June at expected stage of high quality (high nitrogen (N) content and low neutral detergent
fiber (NDF) content) [19]. The seaweed biomass was maintained in tanks with running seawater until
further processing within two days after collection. The excess water was drained manually, and the
biomass was cut into pieces of about 2 cm × 3 cm using scissors before ensiling.

For each seaweed, silage treatments followed a 2 × 3 factorial design, with two pre-wilting
treatments (either unwilted or pre-wilted) and three silage types: seaweed unwashed and ensiled
without any additive (control; CON), seaweed washed and ensiled without any additive (WAS) and
seaweed washed and ensiled with 4 g of FAC per kg seaweed (WASFAC). For the pre-wilting treatment,
1 kg of each seaweed was weighed in netting bags which were placed into an air-forced oven at 37 ◦C,
and weighed every 2 h until reaching a previously calculated weight based on a dry matter (DM)
content of 300 g/kg. The targeted weight was calculated from earlier DM determinations of both
harvested seaweeds in our laboratory [19]. The washing process of seaweeds performed for WAS and
WASFAC silages was done to reduce surface salts and it consisted of three sequential brief baths (10 s)
in plastic containers with water of decreasing salinity: seawater, a seawater:freshwater mixture (30:70),
and finally freshwater.

The seaweed was chopped up, packed (1 kg) in vacuum bags (Lavezzini, Fiorenzuola d’Arda, Italy;
dimensions 20 × 60 cm), and sealed with the aid of an automatic vacuum-packing machine (model Elix;
Lavezzini, vacuum pump 20–24 l/min). The machine was equipped with a heat-sealing mechanism,
and the bags were automatically sealed after air extraction. For the pre-wilted silages, the whole content
of each netting bag was introduced in one vacuum bag. Three bags were prepared for each treatment,
making a total of 18 silage bags for each seaweed (2 pre-wilting treatments× 3 silage types× 3 replicates).
Silages were stored in darkness for 3 months at room temperature (20 ◦C), and afterwards the silage
process was stopped by freezing. After thawing, 100 g of silage was diluted with 750 g demineralized
water and homogenized in a Waring blender (Waring 24CB10; Waring Commercial, New Hartford,
CT, USA) for 80 s (2 times× 40 s with a break of 1 min in between). The homogenate was then centrifuged
for 10 min at 2500× g, and the pH of the supernatant (silage extract) was immediately measured
(Meterlab PHM 220, Radiometer, Brønshøj, Denmark). Thereafter, subsamples of silage extracts were
stored frozen (−20 ◦C) either without stabilization or stabilized with meta-phosphoric acid (5% final
concentration in the sample). The rest of the silage was frozen, freeze-dried, and ground through a
1 mm sieve (ZM 200 mill, Retsch GmbH, Haan, Germany) before analyses of chemical composition
and in vitro incubations. For processing of silages with effluent (free juice), juice and solids were
separated using a kitchen sieve, and both fractions were weighed for calculations of effluent fraction
and for recomposing representative samples for extraction and DM determination based on weight
proportions. Recomposed samples were used for both chemical analyses and in vitro incubations.

2.2. Ruminal Fluid Donors and In Vitro Incubations

Four adult rumen-fistulated Lacaune sheep (64.2 ± 1.95 kg body weight (BW)) were used as
donors of ruminal fluid for the in vitro incubations. Sheep were managed in accordance with the
Spanish guidelines for experimental animal protection. Experimental procedures for rumen content
sampling were approved by the Institutional Animal Care and Use Committee of the Comunidad
Autónoma de Madrid of Spain (Approval number PROEX 035/17). Animals were individually housed,
had free access to fresh water, and were fed twice daily (8:00 and 18:00) a 2:1 grass hay:concentrate diet
at a rate of 45 g DM/kg BW0.75. The diet contained 114, 365 and 160 g of crude protein (CP), NDF and
acid detergent fiber (ADF) per kg DM, respectively.
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Samples of each seaweed (unwashed and washed) and of lyophilized seaweed silages were
used as substrates for in vitro incubations using batch cultures. In addition, two samples of
perennial ryegrass silages (early and late cut) were incubated as reference feeds for comparison of gas
production values. Rumen contents were collected from each sheep before the morning feeding, strained
through four layers of cheesecloth into previously warmed (39 ◦C) thermal flasks, and immediately
transported to the laboratory. The fluid of each sheep was independently mixed with a pre-warmed
(39 ◦C) culture medium ([28]; without trypticase) in a proportion 1:4 under CO2 flushing, resulting in
the incubation of each sample with four different inocula (ruminal fluid from different sheep). Samples
(200 mg of DM) of each tested feed were weighed into 60-mL glass vials. Vials were filled with 20 mL
of the rumen fluid–culture medium mixture using a peristaltic pump (Watson-Marlow 520UIP31;
Watson-Marlow Fluid Technology Group, Cornwall, UK), sealed with rubber stoppers, and incubated
at 39 ◦C for 120 h. Gas production was measured at 3, 6, 9, 12, 15, 22, 26, 31, 36, 48, 58, 72, 96 and 120 h
using a plastic syringe and a pressure transducer (Delta Ohm DTP704-2BGI, Herter Instruments SL,
Barcelona, Spain). In order to prevent gas accumulation, the gas produced at each sampling time was
released until the pressure inside the vial reached zero. Two blanks (vials without sample) were used
for each inoculum to correct gas production values for endogenous production.

The potential in vitro DM degradability (DMPD) of each tested feed was determined in order
to estimate the DM effective degradability (DMED). Samples (300 mg) of each feed were weighed
in triplicate into polyester bags of 30 µm of pore size (Ankom Corp #57, Ankom Technology Corp.,
Fairport, NY, USA). Bags were incubated in a 1:4 mixture of ruminal fluid and the incubation medium
of Goering and Van Soest [28] using an Ankom Daisy II incubator (Ankom Technology Corp.) at 39 ◦C
under continuous rotation for 120 h. A mixture of equal parts of the ruminal fluid from each sheep was
used as inoculum. After 120 h, bags were washed with cold water, dried at 60 ◦C for 48 h, and weighed
to calculate PDMD.

2.3. Chemical Analyses

Silage extracts stabilized with meta-phosphoric acid were analyzed for volatile fatty acids (VFA),
DL-lactate, NH3-N, alcohols, nonpolar amino acids, benzoate, and γ-amino-butyrate concentrations
as described by Kristensen et al. [29]. Glucose and L-lactate concentrations in the extracts were
analyzed using membrane-immobilized substrate specific oxidases (D-glucose and L-lactate oxidase,
respectively; YSI 2900; YSI Inc., Yellow Springs, OH, USA). The potential inhibition of membrane
L-lactate oxidase by seaweed compounds was tested by spiking 0, 3.75, 7.5, and 15 mM L-lactate
in four replicas to extract samples of two Saccharina and two Alaria silages with zero to 2.5 mM
measured L-lactate. The recovery of added L-lactate was 106.5 ± 0.48% indicating no inhibition of
membrane oxidase by seaweed compounds.

All tested feeds were analyzed for DM, ash, N, NDF, ADF, lignin, and acid detergent insoluble
N (ADIN) following the Association of Official Analytical Chemists [30] methods as detailed by
Marcos et al. [31], with the exception that DM content in silages was determined by freeze-drying.
Sodium sulphite was used in the sequential analysis of NDF, ADF and lignin, and ash-free values
are reported.

2.4. Calculations and Statistics

Data of gas production were fitted to the exponential model Gas = PGP (1 − e − (c (t − lag))) using the
Proc NLIN of the Statistical Analysis System (SAS; [32]) by an iterative least squares procedure.
In this model, PGP is the potential gas production (asymptotic value), c is the fractional rate of gas
production, lag is the time before starting gas production, and t is the time of gas measurement.
The average gas production rate (AGPR) was calculated as AGPR = PGP c/ [2 (ln2 + c lag)] and it was
defined as the rate between the incubation start and the time at which half PGP is reached [21,31].
The DMED was estimated as DMED = [(DMPD × c)/(c + Kp)] e (−kp × lag) assuming a rumen particulate
outflow (Kp) of 3% per h, which is characteristic for sheep fed at maintenance level [31,33].
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When data from both seaweeds were analyzed together, seaweed × pre-wilting treatment ×
silage type interactions (p < 0.05) were observed for most variables. Therefore, data were analyzed
separately for each seaweed as a 2 × 3 factorial design using the Proc GLM of SAS [32]. The model
included two pre-treatments (pre-wilted or not), three silage treatments (control, WAS and WASFAC)
and the interaction pre-wilting × silage type as main effects. Parameters of gas production were
analyzed using the Proc MIXED of SAS [32] as a mixed model in which the effects of pre-wilting,
silage type, and their interaction were considered fixed and that of inoculum (ruminal fluid from
four sheep) was considered random. When a significant effect (p ≤ 0.05) of silage type was detected,
differences among means within each pre-wilting treatment were tested using the Tukey’s multiple
comparison test.

3. Results and Discussion

3.1. Chemical Composition and In Vitro Gas Production Parameters of the Seaweeds Pre-Ensiling

The chemical composition and gas production parameters of fresh P. umbilicalis and S. latissima are
presented in Table 1. Both seaweeds had low DM and high ash content, which agrees with previous
studies [9,10,19] on the same seaweed species harvested in the same area. As expected, rinsing the
seaweeds with fresh water reduced their ashes content and this should therefore be a first step in the
post-harvest silage procedure, since high ash content negatively affects digestibility and silage process [15].
Although the two seaweeds differed in their N content, the proportion of ADIN was lower than 4 g/100 g
of total N in both of them. The ADIN was considered an indicator of N availability by some ruminant
feeding systems, although the validity of the analytical method has been recently questioned [34]. The
low ADIN proportion in P. umbilicalis is consistent with the low indigestible proportion of CP reported
previously for this seaweed [20], indicating that it can supply a high amount of digestible protein to the
small intestine in ruminants [20]. Both seaweeds differed in their NDF content, which was greater for
P. umbilicalis than for S. latissima, whereas the opposite was observed for ADF content. In agreement with
previous reports [35,36], lignin was not detected in any of the two fresh seaweeds, although low lignin
concentrations in some seaweeds have been reported [25].

Table 1. Chemical composition and in vitro gas production parameters of samples of fresh Porphyra
umbilicalis and Saccharina latissima pre-ensiling.

Porphyra umbilical Saccharina latissima

Item Unwashed Washed Unwashed Washed

Chemical composition 1

DM (g/kg fresh matter) 215 198 137 144
Ash (g/kg DM) 210 152 290 259
N (g/kg DM) 34.8 37.2 9.19 8.23

ADIN (g/100 g total N) 1.50 1.16 3.68 3.52
NDF (g/kg DM) 443 428 94.2 102.0
ADF (g/kg DM) 27.6 25.8 65.7 61.3

Lignin nd nd nd nd
Gas production parameters 2

PGP (mL/g DM) 80.3 85.3 185 195
c (%/h) 1.87 2.07 4.03 3.97
Lag (h) 0.15 0.0 2.90 2.28

AGPR (mL/h) 1.06 1.24 4.58 4.93
DMED (g/kg) 308 327 468 479
DMPD (g/kg) 814 811 922 921

1 DM: dry matter; N: nitrogen; ADIN: Acid detergent insoluble N; NDF: neutral detergent fiber;
ADF: acid detergent fiber; nd: not detected; 2 PGP: potential gas production; c: fractional rate of gas production,
lag: time before starting gas production, AGPR: average gas production rate until half of PGP was reached;
DMED: DM effective degradability calculated for a rumen particulate outflow of 3% per h; DMPD: DM potential
degradability after 120 h of in vitro incubation.

The lower NDF proportion of S. latissima compared with P. umbilicalis agrees well with the greater PGP,
c, AGPR and DMED values observed for S. latissima (2.3, 2.0, 4.1 and 1.5 times greater than in P. umbilicalis,
respectively; values averaged for unwashed and washed seaweeds). Gas production is directly related
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to the amount of organic matter fermented by rumen microorganisms [37] and NDF is less extensive
and rapidly fermentable than other chemical fractions such as sugars and non-structural carbohydrates.
However, previous studies have reported lower digestibility for brown seaweeds in comparison with
red seaweeds [9,38], possibly related to the presence of poorly digestible sulphated polysaccharide- and
polyphenols-protein complexes typical in brown seaweeds [39,40]. The high DMPD values observed for
both seaweeds are in accordance with previous studies [19,21].

3.2. Characteristics of the Seaweed Silages

The characteristics of the P. umbilicalis and S. latissima silages are presented in Tables 2
and 3, respectively. As expected, the DM content was greater (p < 0.001) in the pre-wilted than in
the unwilted silages for both seaweeds, but pre-wilting × silage type interactions were detected
(p < 0.001 and 0.020 for P. umbilicalis and S. latissima, respectively). No differences (p > 0.05) in DM
content were detected among the unwilted silages of both seaweeds, but when seaweeds were
pre-wilted before ensiling the CON and WAS silages had the greatest (p < 0.05) DM content for
P. umbilicalis and S. latissima, respectively. The DM content of all unwilted silages was below
190 g/kg, and was similar to that of the fresh seaweeds (Table 1). For the pre-wilted silages,
the seaweeds were dried to achieve a target content of 300 g DM/kg, but the actual content was
greater than that in all samples. A minimum DM content of 250 g/kg has been proposed as necessary
for ensuring a good silage process [41], but the DM of the fresh seaweeds was lower than 216 g/kg
(Table 1) and that could have affected the silage process negatively in the unwilted silages.

Apart from preserving the nutritional value of the ensiled feed to the greatest extent possible,
the handling of silages must be convenient for the silage of seaweeds to be of interest for the industry,
and the presence of effluent complicates silage management. Effluent release usually occurs when the
initial forage DM content is below 250–300 g/kg [41], causing a loss of nutrients and contribution to
environmental pollution. Silage effluent is formed from the surface moisture of the plants and cell juice,
which is released due to cell lysis during silage and washes out valuable highly-digestible compounds
such as soluble carbohydrates, minerals, organic acids and alcohols [42]. Because of the low DM content of
the seaweeds, effluents were present in all unwilted silages of both seaweeds, being greater for P. umbilicalis
than for S. latissima (25.5 and 10.8% of total weight, respectively; values averaged across silage types).
In contrast, no effluent was observed in any of the pre-wilted silages, which is consistent with the greater
(p = 0.001) DM content of these silages compared with those unwilted.

For both seaweeds, the pH values in the pre-wilted silages were greater (p < 0.001) than in
those unwilted, and pre-wilting × silage type interactions were detected (p < 0.001). As expected,
the addition of FAC decreased the pH in all silages (p < 0.05) resulting in pH values below 4.0. According to
Woolford and Pahlow [43], a pH lower than 4.2 is required for an effective silage process of samples
containing about 200 g DM/kg, but due to the low DM content of the seaweeds even lower pH values might be
required to prevent clostridial fermentation and the production of butyric acid. In the present study, only the
FAC-silages reached the required pH. The pH of the pre-wilted silages without FAC (CON and WAS)
was greater than the values reported by Cabrita et al. [25] for S. latissima silages when the seaweed was
pre-wilted at 18–20 ◦C for 24 h (4.48 and 4.10 for silages with and without a microbial inoculant, respectively).
Our values were also greater than those observed in S. latissima silages by Campbell et al. [26] when the
seaweed was pre-wilted for 24 h (3.90) and by Herrman et al. [44] when the seaweed was not pre-wilted
before ensiling (3.80). To our best knowledge this is the first report on P. umbilicalis silages, but the pH
values (5.75 and 4.92 for pre-wilted CON and WAS, respectively) were in the range of those reported
in previous studies [15,16] for silages of pre-wilted Ulva rigida (5.10), Gracilaria vermiculophylla (5.20)
and Fucus vesiculosus (4.90) without any silage additive. Differences observed among seaweeds may
be due to different content in easily fermentable components, but also to the silage conditions used in
the different studies. As already discussed, ensiling seaweeds is challenging due to their low levels of
water-soluble carbohydrates and of epiphytic lactic acid bacteria [44] and high buffering capacity [45],
that can cause the poor reduction in pH during the silage fermentation process [44,46].
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Table 2. Characteristics of Porphyra umbilicalis silages 1.

Unwilted Pre-Wilted p-Value

Item CON WAS WASFAC CON WAS WASFAC SEM Pre-Wilting Silage Type Pre-Wilting × Silage Type

Dry matter (DM;
g/kg fresh matter) 181 166 170 666 b 457 a 439 a 19.2 <0.001 <0.001 <0.001

Effluent measures 2

Free juice 20.0 a 31.3 c 25.1 b nd 4 nd nd 1.47 <0.001 0.008 0.008
Particles and

particle-bound juice 80.0 c 68.7 a 74.9 b 100 100 100 1.47 <0.001 0.008 0.008

Parameters in
silage extracts 3

pH 4.67 b 4.54 b 3.98 a 5.75 c 4.92 b 3.78 a 0.08 <0.001 <0.001 <0.001
NH3-N 5.30 b 2.46 a 1.74 a 0.16 0.79 0.43 0.419 <0.001 0.006 0.001
Glucose 0.14 0.57 0.75 0.44 0.67 0.63 1.191 0.550 0.110 0.561

DL-lactate 2.26 a 23.0 b 10.0 a 0.51a 14.2 b 2.22 a 3.760 0.070 0.002 0.611
L-lactate 1.35 a 12.23 b 5.87 a 0.57 a 8.61 b 2.22 a 1.93 0.115 0.001 0.704
Acetate 34.4 c 25.7 b 18.8a 0.97 a 7.50 b 3.33 a,b 1.83 <0.001 0.008 <0.001

Propionate 33.0 b 9.8 a 4.2 a nd nd nd 2.19 <0.001 <0.001 <0.001
Butyrate 13.5 b 7.09 a,b 4.67 a nd 0.19 0.20 2.29 <0.001 0.193 0.167

Isobutyrate 0.57 b 0.18 a 0.16 a nd nd nd 0.11 0.004 0.139 0.139
Isovalerate 0.55 b 0.21 a,b 0.15 a nd 0.03 nd 0.11 0.008 0.222 0.188

Valerate 0.45 0.34 0.28 nd nd nd 0.20 0.053 0.918 0.918
Caproate 0.07 0.12 nd 0.02 nd nd 0.06 0.242 0.571 0.595
Ethanol 3.34 3.65 2.16 0.04 0.36 0.10 0.50 <0.001 0.250 0.397

Propanol 0.92 b 1.04 b 0.14 a nd 0.02 nd 0.21 0.002 0.106 0.114
2-butanol 0.01 a 0.13 b 0.05 a nd 0.02 nd 0.03 0.026 0.050 0.198

Ethylacetate 0.12 b 0.08 b 0.02 a nd 0.01 nd 0.01 <0.001 0.020 0.021
Propylacetate 0.03 b 0.02 b nd a nd nd nd 0.01 0.002 0.079 0.086

Free amino acids
Alanine 6.05 a 7.79 b 5.32 a 4.04 a 7.34 b 5.28 a 0.412 0.029 <0.001 0.077
Proline 0.28 a 1.01 b 0.42 a 0.16 a 0.65 b 0.32 a,b 0.121 0.079 <0.001 0.516

Isoleucine 0.62 a 0.82 b 0.57 a 0.12 a 0.44 b 0.23 a 0.049 <0.001 <0.001 0.239
Leucine 1.25 a 1.77 b 1.08 a 0.17 a 0.77 b 0.44 a 0.101 <0.001 <0.001 0.122
Valine 1.42 b 2.07 c 1.09 a 0.22 a 1.02 b 0.51 a 0.102 <0.001 <0.001 0.019

Phenylalanine 0.40 a 0.79 b 0.47 a 0.07 a 0.36 b 0.25 a,b 0.089 <0.001 0.009 0.560
a, b, c Within each variable and pre-wilting treatment, mean values in the same row with different superscripts differ (p < 0.05); 1 CON: seaweed unwashed and ensiled without any additive;
WAS: seaweed washed and ensiled without any additive; WASFAC: seaweed washed and ensiled with 4 g of formic acid per kg seaweed; 2 % unless stated otherwise; 3 excepting pH values,
g/kg dry matter (DM) unless stated otherwise; 4 nd: not detected.
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Table 3. Characteristics of Saccharina latissima silages 1.

Unwilted Pre-Wilted p-Value

Item CON WAS WASFAC CON WAS WASFAC SEM Pre-Wilting Silage Type Pre-Wilting × Silage Type

Dry matter (DM;
g/kg fresh matter) 161 136 134 405 a 459 b 390 a 12.2 <0.001 0.040 0.020

Effluent measures 2

Free juice 8.1 b 3.7 a 20.7 c nd 4 nd nd 0.69 <0.001 <0.001 <0.001
Particles and

particle bound juice 91.9 b 96.3 c 79.3 a 100 100 100 0.69 <0.001 <0.001 <0.001

Parameters in
silage extracts 3

pH 4.87 b 5.11 b 3.73 a 6.23 c 5.84 b 3.52 a 0.12 <0.001 <0.001 <0.001
NH3-N 0.63 b 0.29 a 0.28 a 0.25 c 0.07 a 0.16 b 0.016 <0.001 <0.001 <0.001
Glucose 78.8 c 47.5 b 14.9 a 40.4 b 46.3 b 6.22 a 5.051 0.002 <0.001 0.008

DL-lactate 8.48 b 7.98 b 0.23 a 0.22 0.13 nd 1.109 <0.001 0.004 0.005
L-lactate 0.25 a,b 1.34 b 0.06 a 0.47 0.33 0.42 0.401 0.673 0.327 0.215
Acetate 4 18.3 b 5.20 a 5.36 a 5.35 3.13 1.89 3.241 0.038 0.046 0.229
Butyrate 2.06 b nd a nd a nd nd nd 0.060 <0.001 <0.001 <0.001
Ethanol 1.99 1.27 0.85 0.07 2.14 0.05 0.582 0.220 0.142 0.094

Propanol nd nd nd 0.004 nd 0.002 0.0018 0.195 0.586 0.586
2-Butanol 0.003 a 0.008 b 0.001 a 0.001 nd nd 0.0012 0.002 0.003 0.019

Ethylacetate 0.018 0.001 a 0.002 a 0.001 0.001 0.002 0.0035 0.060 0.059 0.042
Free amino acids

Alanine 2.39 c 1.69 b 1.34 a 2.35 b 0.69 a 0.64 a 0.049 <0.001 <0.001 <0.001
Proline 0.23 c nd a 0.07 b 0.27 b 0.11 a 0.07 a 0.021 0.019 <0.001 0.079

Isoleucine 0.25 b nd a nd a 0.15 b nd a nd a 0.012 <0.001 <0.001 <0.001
Leucine 0.29 b nd a nd a 0.17 b nd a nd a 0.011 <0.001 <0.001 <0.001
Valine 0.31 c 0.13 b nd a 0.22 b 0.02 a nd a 0.030 0.017 <0.001 0.185

Phenylalanine 0.19 c 0.11 b nd a 0.12 b nd a 0.02 a 0.022 0.019 <0.001 0.053
a, b, c Within each variable and pre-wilting treatment, mean values in the same row with different superscripts differ (p < 0.05); 1 CON: seaweed unwashed and ensiled without any additive;
WAS: seaweed washed and ensiled without any additive; WASFAC: seaweed washed and ensiled with 4 g of formic acid per kg seaweed; 2 % unless stated otherwise; 3 excepting pH values,
g/kg dry matter (DM) unless stated otherwise; 4 No propionate, isobutyrate, isovalerate, valerate, caproate and propylacetate were detected in any silage; 4 nd: not detected.
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Concentrations of NH3-N were greater (p < 0.001) in the unwilted than in pre-wilted silages for
both seaweeds, and CON silages showed the greatest (p < 0.05) NH3-N concentrations except for
the pre-wilted silages of P. umbilicalis which showed no differences among them. The concentration
of NH3-N is a common indicator of the proteolytic activity during silage fermentation [41], and our
results indicate that pre-wilting decreased the proteolysis in both seaweeds. In general, the NH3-N
concentrations were low, especially in the pre-wilted silages (<0.80 g/kg DM), suggesting a low
proteolytic activity. When the NH3-N content was expressed as proportion of total N content in
the silages, the NH3-N in unwilted S. latissima silages was 6.61, 3.24 and 3.39% of total N content for
CON, WAS and WASFAC, respectively, and only 2.42, 0.89 and 1.88% of total N for the CON, WAS and
WASFAC pre-wilted silages. These proportions are lower than the values ranging between 4.7 and
6.7% of total N reported previously for pre-wilted S. latissima silages [25,26]. The NH3-N content in the
unwilted P. umbilicalis silages, expressed as % of total N, reached greater values (15.1, 7.32 and 5.11%
for CON, WAS and WASFAC, respectively), but most of them were lower than the 10.7 to 100% values
reported in other studies for pre-wilted silages of Ulva rigida, F. vesiculosus and G. vermiculophylla [25,26].
Content of NH3-N in P. umbilicalis pre-wilted silages was low, reaching only 0.49, 2.19 and 1.17% of total
N for CON, WAS and WASFAC, respectively. In accordance with the greater NH3-N concentrations
observed for the unwilted silages, free amino acids content was in general greater in the unwilted
silages compared with those pre-wilted for both seaweeds. Significant pre-wilting × silage type
interactions were detected for valine in P. umbilicalis and for most amino acids in S. latissima silages.
For P. umbilicalis, the WAS silage had greater (p < 0.05) concentrations of free amino acids than CON
and WASFAC, whereas for S. latissima CON silages had the greatest content in free amino acids.

Glucose concentrations were low in the P. umbilicalis silages (<0.760 g/kg DM) and were not
affected (p ≥ 0.110) by either pre-wilting or silage type, but glucose concentrations in S. latissima silages
were greater (6.22 to 78.8 g/kg DM) and were affected (p ≤ 0.002) by both pre-wilting treatment and
silage type. S. latissima, also known as “sugar kelp”, is rich in high fermentable sugars [44], which might
help to explain the greater glucose concentrations in its silages. Pre-wilting decreased (p = 0.002)
glucose concentrations in S. latissima silages. Similarly, the use of FAC reduced (p < 0.05) the glucose
concentration in the silages compared with those untreated with FAC.

Pre-wilting tended to decrease (p = 0.070) DL-lactate concentrations in P. umbilicalis silages, and the
WAS silages showed greater (p < 0.05) concentrations of DL-lactate than CON and WASFAC regardless
of pre-wilting. Pre-wilting also decreased (p < 0.001) DL-lactate concentrations in S. latissima silages,
but a pre-wilting × silage type interaction was detected (p = 0.005). For the unwilted silages, WASFAC
had lower (p < 0.05) DL-lactate concentrations than CON and WAS, whereas no differences among silage
types were detected in the pre-wilted silages. In agreement with our results, low lactate concentrations
(<14.0 g/kg DM) have been reported for silages of G. vermiculophylla [25], F. vesiculosus [26], U. lactuca [47]
and Ascophyllum nodosum [44], but much greater lactate concentrations (up to 228 g/kg DM) have been
shown for pre-wilted silages of S. latissima [25,26,44]. In well-preserved silages, lactic acid bacteria are
active in degrading water-soluble carbohydrates and the lactate produced causes a decrease in pH
that preserves the silage [41]. The low lactate contents observed in our study are consistent with the
greater pH values compared with those reported in previous studies with S. latissima silages previously
discussed [25,26,44]. Altogether, these results indicate that the activity of lactic acid bacteria in our
silages was scarce, and that the good ensilability characteristics of S. latissima reported by other authors
were not observed in our study.

In unwilted S. latissima silages, the average L:DL-lactate ratio was 0.15 indicating that bacteria
mainly producing D-lactate were responsible for most of the lactate production in these silages.
By comparison, average L:DL-lactate ratio was 0.57 in unwilted P. umbilicalis silages. In silages made
from terrestrial plants like grass, clover and maize whole crop, a L:DL-lactate ratio close to 0.50 (racemic)
is found, and this was also expected for seaweed silages. Substances in the complex seaweed matrix
might have inhibited the membrane oxidase used in L-lactate analysis causing the low L-lactate
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concentrations in S. latissimi; however, the recovery test of added L-lactate to seaweed silage samples
showed complete recovery.

Pre-wilting of P. umbilicalis silages decreased (p ≤ 0.004) the production of all VFA detected
(Table 2), except for valerate and caproate. In general, washing the seaweeds and adding FAC
decreased (p < 0.05) concentrations of acetate, propionate, butyrate, isobutyrate and isovalerate
of the unwilted silages. Similar or even greater VFA concentrations have been reported for
silages of G. vermiculophylla [25], U. lactuta [44] Laminaria digitata [44]. The high VFA content
(especially of butyrate) of the unwilted silages, together with their great NH3-N concentrations,
seems to indicate a clostridial fermentation with proteolytic clostridia degrading the proteins to
NH3-N [43]. However, in the pre-wilted silages acetate was practically the only VFA noticed, as the
other VFA were detected in negligible amounts and only for some silage types. The low butyrate
and NH3-N concentrations (<0.21 and 0.80 g/kg DM, respectively) would not indicate a clostridial
fermentation in these silages.

In contrast to that observed for P. umbilicalis, acetate and butyrate were the only VFA detected in
S. latissima silages, and butyrate was only detected in the unwilted CON silages (Table 3). The CON
silage also showed the greatest (p < 0.05) acetate concentration for unwilted silages, whereas there
were no differences among silage types when S. latissima was pre-wilted. These results, together
with the low NH3-N concentrations (<0.64 g/kg DM), seem to preclude a clostridial fermentation
in S. latissima silages. Our results agree well with previous studies showing acetate concentrations
ranging from 2.2 to 3.9 g/kg DM and very low or null levels of other VFA in pre-wilted S. latissima
silages [25,26].

Ethanol concentrations in P. umbilicalis silages were decreased (p < 0.001) by pre-wilting to low
values (≤0.36 g/kg DM), but they were not affected (p = 0.250) by silage type. In addition, very low
levels of propanol, 2-butanol, ethylacetate and propylacetate (≤1.04 g/kg DM) were observed in all
P. umbilicalis silages, being undetectable in most of the pre-wilted silages. Ethanol concentrations in
S. latissima ranged from 0.050 to 2.14 g/kg DM, were not affected by either pre-wilting or silage type,
and were lower than those reported previously (up to 47 g/kg DM) for S. latissima silages [26,44].
Similar to that observed for P. umbilicalis silages, concentrations of other alcohols and esters were
negligible (≤0.018 g/kg DM) in S. latissima silages. In agreement with our results, ethanol was the
main alcohol in silages of F. vesiculosus, L. digitata and S. latissima silages, and concentrations of other
alcohols were minor in previous studies [26,44]. Ethanol content in silages is usually attributed to the
activity of epiphytic, salt-tolerant yeast populations [47].

The differences observed in the characteristics of S. latissima and P. umbilicalis silages are yet to
be elucidated, but they indicate different ensilability possibly due to differences in chemical composition,
content in lactic acid bacteria, and buffering capacity, among others [44,47,48].

3.3. Chemical Composition and In Vitro Gas Production Parameters of the Seaweed Silages

Pre-wilting promoted limited changes on chemical composition of silages (Tables 4 and 5),
as the only changes observed were an increase in the NDF content for P. umbilicalis (p < 0.001;
156 vs. 334 g/kg DM; values averaged across silage types) and in the N content for S. latissima
(p = 0.036; 8.90 vs. 9.10 g/kg DM). The increase in NDF content of P. umbilicalis might be due
to losses of small particles through the holes of the net used in the pre-wilting process, as these
particles probably had lower NDF content. In contrast, there were marked differences among
silages type, and pre-wilting × silage type interactions (p ≤ 0.043) were observed for all chemical
fractions of P. umbilicalis. As expected, washing decreased (p < 0.05) ash content, and for pre-wilted
P. umbilicalis resulted in greater (p < 0.05) N, ADIN and ADF content and lower (p < 0.05) NDF content;
however, when P. umbilicalis was not pre-wilted washing only decreased (p < 0.05) N and NDF content
of the silages. The inclusion of FAC did not affect chemical composition of P. umbilicalis, with the
exception of a decrease (p < 0.05; 324 vs. 234 g NDF/kg DM) in the NDF content of pre-wilted silages.
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Previous studies [49,50] have shown that formic acid can cause a decrease in NDF concentrations of
ensiled plants due to acid hydrolysis.

Differences among the S. latissima silages were less marked than those observed for
P. umbilicalis silages, and pre-wilting × silage type interactions were only observed for N content
(p = 0.014). Washing decreased (p < 0.05) both ash and N contents, although differences for unwilted
S. latissima silages did not reach the significance level. The use of FAC did not change chemical
composition of S. latissima silages. Previous studies showed that ensiling S. latissima decreased
their ash content [26,44], whereas Cabrita et al. [25] reported an increase in ash content in the silage.
In our study, the ash content of both seaweeds in the silage was similar than that observed in the
fresh biomass (Table 1). The N content in the silages of both seaweeds was similar to that of the
fresh biomass (34.5 and 36.0 g N/kg DM for silages and fresh biomass of P. umbilicalis, respectively;
9.00 and 8.71 g N/kg DM for S. latissima; values averaged across treatments). This indicates that no
N losses occurred during silage fermentation and it is in accordance with the low NH3-N content
observed in the silage extracts. In agreement with our results, Cabrita et al. [25] reported no CP
losses during silage fermentation of pre-wilted S. latissima for 9 weeks.

The NDF content of P. umbilicalis silages was lower than that in the fresh seaweed, especially in
the unwilted silages. Cabrita et al. [25] observed similar NDF decreases during silage fermentation
of the red seaweed G. vermiculophylla. These results, together with the lack of decrease in ADF
content, might suggest that hemicellulose-like components were degraded during the silage
fermentation process. Cabrita et al. [25] observed increases in acetate and butyrate content in the
silages showing reduced NDF levels, which was attributed to fibre degradation during silage
fermentation. In accordance with these results, greater concentrations of both acids were observed
in the silages that showed decreased NDF levels compared with fresh P. umbilicalis (all silages
except the pre-wilted CON; Table 2). The negative correlations between NDF content and both
acetate (r = 0.699; p = 0.002; n = 18) and butyrate (r = 0.479; p = 0.050; n = 18) concentrations in the
extracts of P. umbilicalis silages support this hypothesis.

On the contrary, the NDF content in all S. latissima silages was similar to that in the fresh biomass,
and no relationships between NDF content and concentrations of acetate (p = 0.911) and butyrate
(p = 0.344) were detected. Similarly, Cabrita et al. [25] observed no changes in NDF content during
the silage fermentation of S. latissima. On the contrary, Campbell et al. [26] reported that NDF
and ADF contents were 4.5 and 2.4 times lower, respectively, in S. latissima silages than in the
fresh seaweed. These authors attributed the NDF and ADF losses to the degradation of laminarin
and/or mannitol during the silage fermentation process, as they are the main storage carbohydrates
in brown seaweeds [51] and can be used as substrate by the lactic acid bacteria during silage
fermentation [52]. It should be noticed that the NDF and ADF content of the S. latissima ensiled in
the study of Campbell et al. [26] was unusually high (384 and 184 g/kg DM, respectively), and the
samples used by Cabrita et al. [25] and in our study had lower NDF and ADF levels (<130 and
66 g/kg DM, respectively). Differences in the carbohydrate content and profile of P. umbilicalis
and S. latissima might be responsible for the different changes in fiber content observed in our
study for both seaweeds, and for the contrasting results among studies in which the same seaweed
was ensiled. Finally, it is worth to mention that lignin contents in S. latissima silages were similar
to those reported previously [25,26], despite no lignin was detected in the fresh biomass of this
seaweed. The presence of lignin in the silages might be due to protein-fiber interactions occurring
during silage fermentation, similar to those produced during heating that result in increased ADIN
proportions [35,53]. The greater ADIN proportions in the S.latissima silages compared with the
fresh seaweed are consistent with this hypothesis.
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Table 4. Chemical composition and gas production parameters of Porphyra umbilicalis silages 1.

Unwilted Pre-Wilted p-Value

Item CON WAS WASFAC CON WAS WASFAC SEM Pre-Wilting Silage Type Pre-Wilting × Silage Type

Chemical composition 2

Ash (g/kg DM) 253 b 119 a 111 a 224 b 131 a 138 a 10.0 0.698 <0.001 0.043
N (g/kg DM) 35.0 b 33.6 a 34.1 a 31.8 a 36.0 b 36.4 b 0.462 0.224 0.004 <0.001

Acid detergent insoluble N
(g/100 g total N) 1.33 1.69 1.96 0.25 a 2.92 b 3.04 b 0.237 0.101 <0.001 0.002

Neutral detergent fiber
(g/kg DM) 184 b 129 a 156 a,b 455 c 324 b 234 a 18.2 <0.001 <0.001 <0.001

Acid detergent fiber (g/kg DM) 37.4 a 41.6 a 51.9 b 20.5 a 55.2 b 58.9 b 4.5 0.954 <0.001 0.013
Gas production parameters 3

PGP (mL/g DM) 89.1 a 87.8 a 95.7 b 88.8a 85.7 a 98.4 b 1.59 0.266 <0.001 0.610
c (%/h) 1.59 a 2.07 b 2.14 b 1.80 a 2.05 b 2.41 c 0.072 0.006 <0.001 0.093
Lag (h) 0.01 0.05 0 0 0 0 0.022 0.274 0.409 0.409

AGPR (mL/h) 1.00 a 1.24 b 1.46 c 1.15 a 1.26 b 1.70 c 0.043 <0.001 <0.001 0.018
DMED (g/kg) 279 a 331 b 325 b 298 a 319 b 356 c 6.7 0.022 <0.001 0.008

Potential DM degradability
(g/kg) 817 816 789 808 789 805 9.3 0.380 0.288 0.110

a, b, c Within each variable and pre-wilting treatment, mean values in the same row with different superscripts differ (p < 0.05). 1 CON: seaweed unwashed and ensiled without any additive;
WAS: seaweed washed and ensiled without any additive; WASFAC: seaweed washed and ensiled with 4 g of formic acid per kg seaweed; 2 no lignin was detected in any silage; 3 PGP:
potential gas production; c: fractional rate of gas production, lag: time before starting gas production, AGPR: average gas production rate until half of PGP was reached; DMED: DM effective
degradability calculated for a rumen particulate outflow of 3% per h; DMPD: DM potential degradability after 120 h of in vitro incubation.
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Table 5. Chemical composition and gas production parameters of Saccharina latissima silages 1.

Unwilted Pre-Wilted p-Value

Item CON WAS WASFAC CON WAS WASFAC SEM Pre-Wilting Silage Type Pre-Wilting × Silage Type

Chemical composition
Ash (g/kg DM) 278 264 268 302 b 252 a 264 a 9.6 0.735 0.017 0.200
N (g/kg DM) 9.58 8.88 8.25 10.2 b 8.34 a 8.75 a 0.264 0.036 0.009 0.014

Acid detergent insoluble N
(g/100 g total N) 12.9 12.5 12.9 12.6 13.1 13.0 1.37 0.477 0.726 0.549

Neutral detergent fiber
(g/kg DM) 105 110 118 127 110 111 6.0 0.304 0.570 0.073

Acid detergent fiber (g/kg DM) 81.4 86.5 92.5 84.7 83.0 85.6 4.1 0.492 0.353 0.474
Lignin (g/kg DM) 10.6 8.77 7.73 16.3 10.2 9.30 2.81 0.129 0.216 0.826

Gas production parameters 2

PGP (mL/g DM) 191 195 196 185 a 206 b 203 b 2.4 0.054 <0.001 0.002
c (%/h) 3.36 a 3.71 b 3.59 ab 3.73 a 4.03 b 3.64 a 0.102 0.003 0.003 0.192
Lag (h) 1.32 a 2.90 b 1.43 a 2.66 b 3.66 c 1.01 a 0.301 0.026 <0.001 0.015

AGPR (mL/h) 4.36 a 4.47 ab 4.72 b 4.34 a 4.89 b 5.04 b 0.103 0.006 <0.001 0.088
DMED (g/kg) 453 a 450 a 483 b 439 a 430 a 486 b 5.5 0.029 <0.001 0.092

Potential DM degradability
(g/kg) 898 a 914 b 934 c 878 a 880 a 925 b 4.3 <0.001 <0.001 0.041

a, b, c Within each variable and pre-wilting treatment, mean values in the same row with different superscripts differ (p < 0.05). 1 CON: seaweed unwashed and ensiled without any additive;
WAS: seaweed washed and ensiled without any additive; WASFAC: seaweed washed and ensiled with 4 g of formic acid per kg seaweed; 2 PGP: potential gas production; c: fractional rate
of gas production, lag: time before starting gas production, AGPR: average gas production rate until half of PGP was reached; DMED: DM effective degradability calculated for a rumen
particulate outflow of 3% per h; DMPD: DM potential degradability after 120 h of in vitro incubation.
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The gas production kinetics of silages was measured as an index for their ruminal degradation,
as the amount of gas produced is closely related to the amount of organic matter degraded by
ruminal microorganism [37]. As shown in Table 4, pre-wilting of P. umbilicalis increased (p ≤ 0.022)
the fractional rate of gas production (c), AGPR and DMED, and pre-wilting × silage type interactions
were detected for these parameters (p ≤ 0.093). The greater PGP, c, AGPR and DMED values of
the WASFAC silages compared with CON and WAS would indicate that FAC treatment increased
the ruminal degradation of silages. These results are in accordance with the lower NDF levels in
WASFAC compared with CON silages, as NDF has usually lower ruminal degradation than other
compounds such as protein or soluble carbohydrates [53]. The gas production parameters of the
silages were similar to those of the fresh P. umbilicalis for CON and WAS silages, but WASFAC
silages had greater PGP, c, AGPR, DMED values, which indicates that FAC treatment increased the
ruminal fermentation of the silages DM.

In agreement with the results observed for P. umbilicalis, pre-wilting of S. latissima increased
(p ≤ 0.006) c and AGPR values, but pre-wilting × silage type interactions (p ≤ 0.092) were detected
for all gas production parameters excepting c (Table 5). Pre-wilting also increased (p = 0.026) the
time until gas production started (lag) and decreased DMED (p = 0.029; 462 vs. 452 g/kg; values
averaged across silage types) and PDMD values (915 vs. 894 g/kg), which might be due to the loss
of small particles of high-degradable material during pre-wilting. However, the differences were
low and no relevant in the practice. Including FAC in the S. latissima silages increased (p < 0.05)
AGPR and DMED compared with the FAC-untreated silages. Altogether the results indicated that
FAC could increase the ruminal degradation of seaweeds silages.

Samples of two good-quality silages [54] of perennial rye-grass were included in the in vitro
incubations to be used as a reference (Table 6). Chemical composition of rye-grass silages differed
markedly from that of seaweeds silages, as they had greater NDF and ADF content, their N content
was lower than in P. umbilicalis silages but greater than in S. latissima silages. Chemical composition
of the perennial rye-grass silages was similar to that previously reported for high-quality rye-grass
silages [55,56]. The lower DMED of the seaweed silages compared with that of the rye-grass
silages (59.9 and 86.1% of the rye-grass silage values for P. umbilicalis and S. latissima, respectively)
indicates lesser nutritional quality of the seaweed silages, especially of those from P. umbilicalis.
The differences observed in the DMED of the two seaweeds silages are probably related to their
chemical composition, as brown seaweeds are richer in non-structural carbohydrates than red
and green seaweeds and are therefore more degradable in the rumen [12,21]. In addition, the
presence of complex carbohydrates and biocompounds in seaweeds might limit their ruminal
fermentation, as specific enzymes are needed for their degradation [12], and other factors, such as
the structure of the cell wall, can also limit the access of microbial enzymes to the substrates [57].
Interestingly, the DMPD of the S. latissima silages was similar to that of the rye-grass silages (905
and 915 g/kg, respectively; averaged values), although that of P. umbilicalis silages was lower
(804 g/kg). These results disagree with the fact that PGP of the rye-grass silages was 3.0 and
1.4 times greater than in the P. umbilicalis and S. latissima silages, respectively (averaged values,
273, 90.3 and 196 mL/g DM). All seaweed silages had high content of ash (>110 and 252 g/kg
DM for P. umbilicalis and S. latissima silages, respectively), that can disappear instantly from the
bags during the incubations in the rumen or in vitro, causing an overestimation of their rumen
degradability [58]. In contrast, ash is not fermented in the rumen and therefore does not contribute
to gas production as measured in the present study.
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Table 6. Chemical composition of samples of early and late first cut of pre-wilted perennial
ryegrass silages.

Pre-Wilted Perennial Ryegrass Silage

Item Early First Cut Late First Cut

Chemical composition 1

DM (g/kg fresh matter) 350 350
Ash (g/kg DM) 77.1 62.9
N (g/kg DM) 18.0 14.5

ADIN (g/100 g total N) 0.0 1.10
NDF (g/kg DM) 389 438
ADF (g/kg DM) 186 227

Lignin (g/kg DM) 5.80 6.14
Gas production parameters 2

PGP (mL/g DM) 271 274
c (per h) 5.70 4.81
Lag (h) 1.79 1.54

AGPR (mL/h) 9.67 8.56
DMED (g/kg) 548 513
DMPD (g/kg) 930 899

1 DM: dry matter; OM: organic matter; N: nitrogen; ADIN: acid detergent insoluble N; NDF: neutral detergent
fiber; ADF: acid detergent fiber; Lignin: cellulose solubilization by sulfuric acid after extraction with acid detergent;
2 PGP: potential gas production; c: fractional rate of gas production, lag: time before starting gas production,
AGPR: average gas production rate until half of PGP was reached; DMED: DM effective degradability calculated for
a rumen particulate outflow of 3% per h; DMPD: DM potential degradability after 120 h of in vitro incubation.

4. Conclusions

Pre-wilting before ensiling is recommended for both P. umbilicalis and S. latissima seaweeds,
as reduced the formation of effluent and the production of NH3-N and volatile fatty acids,
indicating better silage quality. Washing the seaweeds before ensiling is advisable to reduce the
ash content of the silages, although the effect on ruminal degradability can vary with the seaweed.
The use of formic acid as a silage additive contributed effectively to reduce the pH and increased the
ruminal degradability of silages. The estimated DM ruminal degradability of the P. umbilicalis and
S. latissima silages was, as average, 59.9 and 86.1% of that in a high-quality rye-grass silage, respectively,
indicating a medium-low nutritional value of these seaweed silages for ruminants. More studies are
needed to optimize the conditions for good silage fermentation both seaweeds.
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