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Transcriptome sequencing 
and histology reveal dosage 
compensation in the liver of triploid 
pre‑smolt Atlantic salmon
Derrick K. Odei1,2, Ørjan Hagen1, Stefano Peruzzi2, Inger‑Britt Falk‑Petersen2 & 
Jorge M. O. Fernandes1*

Triploid Atlantic salmon (Salmo salar L.) is seen as one of the best solutions to solve key issues in 
the salmon farming industry, such as the impact of escapees on wild stocks and pre-harvest sexual 
maturation. However, the effects of triploidy on salmon smoltification are poorly understood at 
the molecular level, even though smoltification is a very sensitive period that has a major influence 
on survival rate and performance of farmed salmon. In this study, we have compared the liver 
transcriptomes of diploid and triploid Atlantic salmon at three ontogeny stages: fry, parr and smolt. 
In diploid fish, a total of 2,655 genes were differentially expressed between fry and parr, whereas 
506 genes had significantly different transcript levels between parr and smolts. In triploids, 1,507 
and 974 genes were differentially expressed between fry and parr, and between parr and smolts, 
respectively. Most of these genes were down-regulated and 34 genes were differentially expressed 
between ploidies at the same stage. In both ploidy groups, the top differentially expressed genes 
with ontogeny stage belonged to common functional categories that can be related to smoltification. 
Nucleotide and energy metabolism were significantly down-regulated in fry when compared to parr, 
while immune system processes were significantly down-regulated in parr when compared to smolts. 
The close resemblance of enriched biological processes and pathways between ploidy groups suggests 
that triploidy is regulated by genome dosage compensation in Atlantic salmon. Histological analysis 
revealed that areas of vacuolization (steatosis) were present only in fry and parr stages, in contrast 
to a compact cellular histology with glycogen granules after smoltification. There was no significant 
difference in vacuolization between ploidy groups at the fry stage but the liver of diploid parr had a 
33.5% higher vacuolization area compared to their triploid counterparts. Taken together, our data 
provide novel insights into the changes that occur at the molecular and histological level in the liver of 
both diploid and triploid Atlantic salmon prior to and during smoltification.

Abbreviations
DEGs	� Differentially expressed genes
GO	� Gene ontology
KEGG	� Kyoto encyclopaedia of genes and genomes
PCA	� Principal component analysis

The use of functionally sterile triploid fish has the potential to improve post-pubertal growth, survival and car-
cass quality under culture conditions1. Sterility may also minimize the risk of genetic and ecological interactions 
between farmed and wild stocks in the event of accidental farmed fish escapees2. In Atlantic salmon (Salmo salar 
L.) aquaculture, escaped fish from sea cages represent one of the most persistent issues for sustainable develop-
ment of the industry and have generated considerable concerns across all producing regions3. In Norway, farmed 
escapees are one of the main anthropogenic impact factors identified as an expanding threat to wild Atlantic 
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salmon populations, besides sea lice infestations4. Genetic introgression from farmed salmon is reported to vary 
across rivers but remains widespread in Norwegian wild salmon populations, encouraging additional efforts to 
implement more robust production systems, escape prevention plans and other mitigation measures5.

Despite the potential of sterile triploid fish to contribute towards the development of a more sustainable and 
environmentally-friendly Atlantic salmon industry, uncertainties regarding the performance of cultured trip-
loids have hindered their widespread adoption by most producers2. Regardless of the theoretical advantages that 
triploids might have over their diploid counterparts, comparative studies assessing their culture performance 
under different settings have produced “conflicting” results. For instance, a large and comprehensive study 
assessing the growth performance and sexual maturation in diploid and triploid Atlantic salmon of both sexes 
in seawater tanks under natural or continuous photoperiod regimes resulted in growth performance of triploid 
groups being equally or better in some cases when compared to their diploid counterparts6. In addition, a study 
assessing the performance of diploids and triploids in freshwater from hatching until smolt stages showed no 
significant differences in survival rate, but triploids were smaller in size at earlier stages7. Welfare issues such 
as high prevalence of skeletal deformities in addition to other potential limitations in triploid Atlantic salmon, 
including abnormal heart morphology and abdominal lesions has been highlighted to limit its performance 
and subsequent adoption by producers8,9. In addition, escaped triploid males have been shown to interfere with 
natural reproduction in the wild by competing with wild males for wild fertile females by stimulating spawning 
in Atlantic salmon10 and in Atlantic cod11 as well.

From a nutritional perspective, a gut morphology study comparing triploid and diploid Atlantic salmon 
revealed a lower pyloric caeca number and shorter relative gut length in triploid post-smolts compared to its 
diploid counterparts12. Contrary to expectations, the use of dietary hydrolysed fish proteins rich in free amino 
acids and low molecular peptides that may ease feed absorption had no positive influence on nutrient utiliza-
tion and growth in triploids as in diploids13. Reports at the molecular level with emphasis on understanding the 
physiology and impact of triploidy on Atlantic salmon during ontogeny until post-smoltification are quite scarce. 
A study comparing growth-related gene expression profiles of diploid and triploid bighead catfish (Clarias mac-
rocephalus) showed similar liver transcriptome responses in both ploidy groups14. In contrast, a molecular study 
showed that early nutritional programming for up to 6 weeks affected metabolic processes in the liver of diploid 
and triploid Atlantic salmon, where ploidy differences indicated the need for different ploidy-specific nutritional 
requirements for optimal performance15. A more recent study has shown that increase in dietary micronutrient 
levels led to vertebral expression of bone biomarker genes associated with reduced skeletal malformations in parr 
diploids and triploids but was found to be significant in the former16. Findings from these studies12,13,16 suggest 
that morphological, physiological and ploidy differences could play a role in determining digestive efficiency, 
nutritional requirements and subsequent growth and welfare of these fish.

Fish liver is involved in numerous functions including metabolism and immune system processes, to mention 
just a few. A study assessing the liver transcriptome response in Atlantic salmon fed diets with either fish oil or 
vegetable oil for up to 55 weeks revealed that there are genotype-specific metabolic responses at the molecular 
level17. Little is known about changes in the liver transcriptome of diploid and triploid Atlantic salmon prior to 
and during smoltification. Hence, we used RNA-seq to investigate potential differences in the liver transcriptome 
of diploid and triploid individuals at three ontogeny stages (fry, parr and smolts). This molecular approach was 
complemented by histological observations aimed at examining liver morphology and degree of steatosis in 
relation to ontogeny and ploidy over the same developmental stages.

Results
Characterization of RNA‑seq libraries.  A similar number of raw reads was obtained for the three ontog-
eny groups, ranging from 7.9 to 40.9 million sequences (Supplementary info file, Fig. S1). After trimming, a total 
of 7.9 to 35.6 million reads remained and the overall mapping efficiency of these high-quality reads against the 
Atlantic salmon reference genome ranged from 82 to 99%. Three samples with total number of raw reads below 
5 million and one extreme outlier were excluded from further analysis. As observed in the PCA plot (Fig. 1), all 
individuals from fry and parr groups clustered together, whereas one smolt sample was closer to the parr cluster. 
This could be attributed to late smoltification in this individual. Diploid and triploid fish within each group were 
found in the same cluster.

Liver transcriptome differences with ontogeny and ploidy.  Comparisons of liver transcriptomes 
between diploid and triploid fish at the same stage revealed that only 34 genes in total were differentially 
expressed between diploid and triploid salmon at a false discovery rate (FDR < 0.05) (Supplementary info file, 
Table S1). The number of differentially expressed genes (DEGs) identified when diploid is compared to triploid 
fish was highest at the parr stage, with 25 DEGs (17 up- and 8 down-regulated in diploid fish when compared 
to triploid counterparts and corresponding maximum fold changes of 3.3 for up-regulated and − 4.9 for down-
regulated DEGs respectively). In contrast, there were 5,642 DEGs between successive ontogeny stages within 
each ploidy (Supplementary info file, Table S2).

The largest number of DEGs was observed when fry was compared to parr. There were 2,655 DEGs for diploid 
fry when compared to their parr counterparts, of which 1460 were up- and 1195 were down-regulated, with 
corresponding maximum fold changes of 8.7 (Table 1) and − 24.7 (Table 2). Triploid fry when compared to parr 
showed 873 up-regulated DEGs with a maximum fold-change of 44.2 (Table 1) and 634 down-regulated with fold 
changes down to − 6.9 (Table 2). It is noteworthy that 465 and 411 up- and down-regulated DEGs were common 
between diploid and triploid fry when compared to their parr counterparts. A single DEG was up-regulated in 
diploids and down-regulated in triploids (Fig. 2A).
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Figure 1.   PCA plot for all sample points. All individual samples of diploids and triploids Clustering brackets 
for: fry, parr and smolts.

Table 1.   Up-regulated DEGs in diploid and triploid fry compared to parr. Fold changes (FC) and q values (p 
adj.) are indicated. n/d: not determined.

Gene/locus Description FC q Function

Diploid

cpt1b Carnitine palmitoyltransferase 1B 8.7 0.00 Integral component of cell membrane

gtaJ GATA zinc finger domain-containing protein 10-like 8.5 0.00 DNA binding transcription factor

cpt1a Carnitine O-palmitoyltransferase 1, liver isoform-
like 7.8 0.00 Integral component of membrane

acot11 Acyl-coenzyme A thioesterase 11-likenter 7.8 0.04 Lipid binding

bhlhb2 Class E basic helix-loop-helix protein 40-like 7.7 0.00 Regulation of DNA transcription

loc106571795 n/d 7.6 0.02 n/d

loc106612462 n/d 7.5 0.01 n/d

c1ql2 Complement C1q-like protein 2e 2-like 7.3 0.02 n/d

irs2 Insulin receptor substrate 2-likeor 7.2 0.00 n/d

bnip3l BCL2/adenovirus E1B 19 kDa protein-interacting 
protein 3-like 7.0 0.00 Positive regulation of apoptotic processes

Triploid

adh1 Alcohol dehydrogenase 1-like 44.2 0.00 Alcohol metabolism and oxidative stress

urgcp Up-regulator of cell proliferation-like 12.4 0.00 GTP binding

loc106584294 n/d 11.3 0.00 n/a

inhba Inhibin beta A chain-like 10.9 0.04 Growth factor activity and Disulfide bond

fads6 Fatty acid desaturase 6-like 10.3 0.00 Lipid metabolism

taar13C Trace amine-associated receptor 13c-like 8.6 0.00 G protein receptor, integral component of membrane

c1ql2 Complement C1q-like protein 2 8.1 0.01 n/d

cox7r Cytochrome c oxidase subunit 7A-related protein, 
mitochondrial 7.7 0.00 Transmembrane

slc6a13 Sodium- and chloride-dependent GABA transporter 
2-like 7.3 0.01 Integral component of membrane

ifi44 Interferon-induced protein 44-like 6.6 0.00 Viral defence
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There were 506 DEGs between diploid parr and smolt, of which 240 were up-regulated with a maximum fold 
change of 9.6 (Table 3) and 266 were down-regulated (Table 4). The liver transcriptome of triploid parr when 
compared to their smolt counterparts showed 974 DEGs (306 up- and 668 down-regulated with maximum fold 
changes of 6.0 (Table 3) and − 12.2 (Table 4), respectively). Furthermore, there were 95 and 121 up- and down-
regulated DEGs in common to diploid and triploid fish when comparing parr to smolts, respectively. Only 6 
DEGs were up-regulated in diploids and down-regulated in triploids (Fig. 2B).

GO enrichment analysis for biological processes.  Not all genes differentially expressed between dip-
loid and triploid fish at the same stage had significantly enriched GO terms, while DEGs between successive 
stages within the same ploidy group showed significantly enriched GO terms (q < 0.05). There were 69 signifi-
cantly enriched GO terms associated with down-regulated DEGs in diploid fry when compared to their parr 

Table 2.   Down-regulated DEGs in diploid and triploid fry compared to parr. Fold changes (FC) and q values 
(p adj.) are indicated. n/d: not determined.

Gene/locus Description FC q Function

Diploid

pck1 Phosphoenolpyruvate carboxykinase 1 − 24.7 0.00 Involved in glucogenesis

lipc Hepatic triacylglycerol lipase-like − 19.4 0.00 Lipid metabolism

dcor1 Ornithine decarboxylase 1-like − 11.1 0.00 Polyamine metabolism

pfkfb3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 − 8.3 0.00 Fructose metabolism

pla2g3 Group 3 secretory phospholipase A2-like − 7.5 0.03 Phospholipid metabolism

loc106603905 n/a − 7.0 0.01 n/d

cyp7a Cholesterol 7-alpha-monooxygenase-like − 6.9 0.00 Bile acids biosynthesis, cellular response to glucose stimulus, cholesterol catabolism and 
homeostasis

dd1t4 DNA damage-inducible transcript 4 protein-like − 6.2 0.00 Negative regulation of signal transduction

lipe Lipase, hormone-sensitive − 6.1 0.00 Lipid metabolism

ppp1r3b Protein phosphatase 1 regulatory subunit 3B − 5.5 0.00 Glycogen metabolism

Triploid

lipc Hepatic triacylglycerol lipase-like − 6.9 0.00 Lipid metabolism

dcor1 Ornithine decarboxylase 1-like − 5.4 0.00 Polyamine biosynthesis

impa1 Importin subunit alpha-1-like − 4.9 0.02 Protein import into nucleus

cybg2 Cytoglobin-2-like − 4.7 0.00 Heme, ion and oxygen binding

tubb4b Tubulin beta 4B class IVb − 4.7 0.01 Microtubule based processes

gilt Gamma-interferon-inducible lysosomal thiol reductase − 4.7 0.03 Signal peptide

ima2 Importin subunit alpha-1-like − 4.6 0.00 Protein import into nucleus

ret7 Retinoid-binding protein 7-like − 4.3 0.00 Lipid binding

ppp1r3b Protein phosphatase 1 regulatory subunit 3B − 4.3 0.00 Glycogen metabolism

aurkb Aurora kinase B-like − 4.3 0.00 Cell cycle

Figure 2.   Venn diagrams for differentially expressed genes identified for comparisons between ‘fry vs. parr’ and 
‘parr vs. smolt’ of diploid and triploid groups.
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Table 3.   Up-regulated DEGs in diploid and triploid parr compared to smolt. Fold changes (FC) and q values 
(p adj.) are indicated. n/d: not determined.

Gene/Locus Description FC q Function

Diploid

pck1 Phosphoenolpyruvate carboxykinase 1 9.6 0.03 Involved in glucogenesis

gnai2 Guanine nucleotide-binding protein G(i) subunit alpha-2 9.0 0.00 Adenylate cyclase-modulating G-proteins coupled receptor pathway

loc106566987 n/d 6.5 0.00 n/d

lpin1 Phosphatidate phosphatase LPIN1-like 6.4 0.00 Lipid metabolism

odc1 Ornithine decarboxylase 1 6.3 0.01 Polyamine biosynthesis

cyp2r1 Vitamin D 25-hydroxylase-like 6.1 0.00 Heme and ion binding, monooxygenase and oxidoreductase activity

cyp7a1 Cholesterol 7-alpha-monooxygenase-like 5.6 0.00 Bile acids biosynthesis, cellular response to glucose stimulus, cholesterol catabolism 
and homeostasis

4ebp Eukaryotic translation initiation factor 4E binding protein 3–1 4.9 0.00 Negative regulation of translational initiation

epo Erythropoietin-like 4.8 0.00 Erythrocyte maturation

ga45b Growth arrest and DNA damage-inducible protein 4.7 0.00 Regulation of cell cycle and response to stress

Triploid

loc106566987 n/d 6.0 0.00 n/d

c2cd4c C2 calcium-dependent domain-containing protein 4C-like 5.6 0.00 n/d

cish Cytokine inducible SH2 containing protein 5.3 0.03 Intracellular signal transduction, protein ubiquitination and others

cdh6 Cadherin-6-like 5.0 0.03 Homophilic cell adhesion via plasma membrane

fkbp5 FK506 binding protein 5 4.9 0.03 Heat shock protein binding

cyp2k1 Cytochrome P450 2K1-like 4.8 0.02 Heme and ion binding and oxidoreductase activity

bhmt Betaine–homocysteine S-methyltransferase 1-like 4.8 0.03 Methionine biosynthesis

4ebp Eukaryotic translation initiation factor 4E binding protein 3–1 4.7 0.02 Negative regulation of translational initiation

cyp27b1 25-hydroxyvitamin D-1 alpha hydroxylase, mitochondrial-like 4.6 0.04 Heme and ion binding, monooxygenase and oxidation

odc1 Ornithine decarboxylase 1-like 4.5 0.00 Polyamine biosynthesis

Table 4.   Down-regulated DEGs in diploid and triploid parr compared to smolt. Fold changes (FC) and q 
values (p adj.) are indicated. n/d: not determined.

Gene/locus Description FC q Function

Diploid

gtaJ GATA zinc finger domain-containing protein 
10-like − 5.4 0.00 DNA binding transcription factor

ccl19 C–C motif chemokine 19-like − 5.3 0.00 Immune processes

gvinp1 Interferon-induced very large GTPase 1-like − 5.1 0.00 GTP binding

bhlhb2 Class E basic helix-loop-helix protein 40-like − 4.1 0.00 Regulation of transcription, DNA templated

scyb7 Platelet basic protein − 4.1 0.00 Immune system processes

egr1 Early growth response protein 1-like − 4.0 0.00 Regulation of transcription, DNA templated

fcn1 Ficolin-1-like − 3.9 0.01 Disulphide bond

loc106575521 n/d − 3.9 0.00 n/d

irf-1 Interferon regulatory factor 1 − 3.8 0.01 Apoptotic processes immune response

arrdc3 Arrestin domain-containing protein 3-like − 3.5 0.00 Signal transduction

Triploid

ifi44 Interferon-induced protein 44-like − 12.2 0.00 Viral defence

adh1 Alcohol dehydrogenase 1-like − 8.5 0.05 Alcohol metabolism and oxidative stress

c1ql2 Complement C1q-like protein 2 − 8.1 0.04 n/d

fgg Fibrinogen gamma chain-like − 8.0 0.03 Platelet activation, protein polymerisation

ccl19 C–C motif chemokine 19-like − 7.8 0.01 Immune processes

loc106597213 n/d − 7.6 0.00 n/d

gimap4 GTPase IMAP family member 4-like − 7.5 0.02 GTP binding

gvinp1 Interferon-induced very large GTPase 1-like − 7.4 0.01 GTP binding

ccl19 C–C motif chemokine 19-like − 7.3 0.01 Immune processes

pisd Phosphatidylserine decarboxylase − 7.2 0.00 Phosphatydyleethanolamine biosynthesis and 
protein auto processing
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counterparts (Supplementary info file, Table S3). Of these, approximately 91% were involved in metabolism and 
9% were involved in cellular and other processes. Within comparisons between triploid fry and parr, there were 
77 enriched GO terms (q < 0.05), only associated with down-regulated genes between stages (Supplementary 
info file, Table S3). Similarly to the diploid groups, 81% were involved in metabolism and 19% were involved in 
cellular and other processes. The top GO terms identified for fry when compared to parr in both ploidy groups 
were related to either nucleotide or energy metabolism (Fig. 3 A,B). A total of 18 GO terms were significantly 
enriched (q < 0.05) within the down-regulated genes between parr diploids and smolt diploids, and were involved 
in immunity (50%) or cellular processes (50%) (Supplementary info file, Table S4). There were 17 significantly 
enriched GO terms (q < 0.05) associated with the down-regulated genes for triploid parr when compared to their 
smolt counterparts. (Supplementary info file, Table S4). Approximately 57% of these were involved in immunity 
and 43% were related to cellular processes. In both diploid and triploid fish, the top GO terms identified for parr 
when compared to smolt fish were associated with general or cell-mediated immune processes (Fig. 3 C,D).

KEGG pathway analysis for down‑regulated DEGs.  The KEGG pathway analysis was performed on 
only down-regulated genes, since there were no significantly enriched GO terms associated with up-regulated 
genes. Diploid fry when compared to their parr counterparts had 17 KEGG pathways linked to 6 functional 
categories (Supplementary info file, Table S5): metabolism, genetic information processing, environmental pro-
cessing, cellular processing, organismal systems and human diseases. DEGs down-regulated between triploid 
fry and parr were involved in 12 KEGG pathways associated with 5 functional categories (Supplementary info 
file, Table  S6): genetic information processing, cellular processing, organismal systems and human diseases. 
There were 18 distinct KEGG pathways for diploid parr versus smolts (Supplementary info file, Table S7), which 
were associated with 6 functional categories: metabolism, genetic information processing, environmental pro-
cessing, cellular processes, organismal systems and human diseases. The 10 KEGG pathways associated with 
down-regulated genes for triploid parr when compared to their smolt counterparts were linked to the functional 
categories genetic information processing, environmental processing and cellular processing (Supplementary 
info file, Table S8).

Top regulated genes in diploid and triploid fish.  The top up-regulated genes in diploid fry when 
compared to their parr counterparts belonged to functional categories including, cellular processes and lipid 
metabolism (Table 1). Alternatively, when triploid fry were compared to parr, top up-regulated DEGs in parr 
had relatively higher maximum fold-change values compared to diploids. A gene involved in alcohol metabolism 

Figure 3.   GO enrichment of down-regulated DEGs in fry when compared to parr in diploids (A) and 
respective triploids (B), while C (diploids) and D (triploids) represents GO enrichment of down-regulated 
DEGs in parr when compared to smolts. T.B.P (triphosphate biosynthetic process), B.P (biosynthetic process), 
C.P.T (coupled proton transport), P.M.P (phosphate metabolic process), M.P (metabolic process), M.B.P 
(monophosphate biosynthetic process).
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and oxidative stress (alcohol dehydrogenase 1-like) was the most up-regulated in fry, with a fold-change of 44.2 
when compared to smolt fish. Other up-regulated DEGs in this comparison were related to immune system and 
cellular processes (Table1).

Within diploids, most down-regulated DEGs for fry compared to parr were associated with either carbo-
hydrate, lipid or other metabolic processes (Table 2). Notable genes involved in lipid metabolism were hepatic 
triacylglycerol lipase-like. Down-regulated genes found for triploid fry compared to parr counterparts had func-
tions related to cellular processes (importin subunit alpha-1-like, tublin beta 4B class IVb and aurora kinase B-like), 
lipid metabolism (hepatic triacylglycerol lipase-like) and carbohydrate metabolism (Table 2). A gene involved in 
amino acid metabolism through polyamine biosynthesis (ornithine decarboxylase 1-like) was down-regulated in 
both diploid and triploid fry when compared to their parr counterparts.

Most up-regulated DEGs in diploid parr versus smolt counterparts were linked to metabolism, genetic infor-
mation processes, immune system and other cellular processes (Table 3). Notable of all DEGs identified was, 
ornithine decarboxylase 1. On the other hand, DEGs up-regulated for triploid parr when compared to smolt 
were linked to cellular processes, polyamine biosynthesis (ornithine decarboxylase 1-like), genetic information 
processes (eukaryotic translation initiation factor 4E binding protein 3–1),heme and ion binding and oxidoreduc-
tase activity (Table 3). Down-regulated genes in diploid parr when compared to smolt were mostly involved in 
genetic information processes and immunity (Table 4).. Within triploids, the top down-regulated DEGs in parr 
when compared to smolt include metabolism, general immune system-related genes, alcohol metabolism and 
oxidative stress (alcohol dehydrogenase 1-like) (Table 4).

Liver histology.  There were no obvious differences in the general liver morphology between ploidy groups 
at fry, parr or smolt stages (Fig. 4). Liver steatosis was only observed and therefore quantified in the first two 
ontogeny stages. No sign of vacuolization in hepatocytes was found in smolts, which had only glycogen granules 
and a very compact cellular structure, independently of ploidy (Fig. 4). The degree of liver steatosis was similar 
between diploid and triploid individuals at the fry stage and significantly decreased (P < 0.001) in both ploidy 
groups at the parr stage. This was more pronounced in triploid parr, which had a degree of vacuolization sig-
nificantly lower (P < 0.001) than their diploid counterparts (Fig. 5). The nuclear size (minor and major axis) of 
hepatocytes was significantly larger (P < 0.001) in triploid than in diploid fish at all three developmental stages 
(Table 5). The minor and major axis of hepatocytes in triploids measured 1.2–1.4 times and 1.2–1.3 times those 
of diploids, respectively, with a tendency for nuclear differences between ploidies to decrease, although not sig-
nificantly, from fry to smolt stage.

Discussion
We have found very similar liver transcriptomes between diploid and triploid Atlantic salmon at the same ontog-
eny stage. In contrast, gene expression levels changed substantially from fry to parr to smolt. Only the DEGs 
up-regulated during ontogeny (i.e., down-regulated in fry versus parr and parr versus smolt) were significantly 
enriched for biological processes and pathways in both diploid and triploid fish.

There were several down-regulated pathways in both diploid and triploid fry when compared to parr, namely 
genetic information processes, cellular processes and organismal systems. Some pathways involved in metabo-
lism (carbohydrate, energy and amino acid) and environmental processes (signal transduction) were exclusively 
down-regulated between diploid fry and diploid parr. Nevertheless, the biological processes observed for the 

Figure 4.   Liver sections (H&E staining) of diploid (A–C) and triploid (D–F) Atlantic salmon. The images show 
various degrees of vacuolization (arrowheads) in hepatocytes at fry (A,D) and parr (B,E) stage, and a compact 
cellular histology with glycogen granules (arrows) at smolt stage (C,F). Scale bars represent 50 µm.
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top 10 GO terms significantly enriched and down-regulated between fry and parr were identical in diploid and 
triploid fish. Most biological processes significantly down-regulated in fry when compared to parr were involved 
in either energy or nucleotide metabolism. Nucleotides are known to be involved in a variety of chemical func-
tions, including energy metabolism18,19. Therefore, a down-regulation of nucleotide metabolism can potentially 
decrease energy metabolism. It has been reported that nucleotide deficiency negatively impacts the performance 
of key organs and processes, such as liver, heart, intestine and immune functions20. The higher levels of transcripts 
related to nucleotide and energy metabolism in parr when compared to fry are likely related to a surge in energy 
metabolism needed for subsequent smolt transformation, according to a previous report21.

Compared to parr, fry had lower transcript levels of genes related to lipid, carbohydrate and amino acid 
metabolism. In fish, a lower lipid content is known to favour increase in body water content and vice versa22,23. 
It has been reported that decline in lipid metabolism of salmonids during smoltification helps mobilise energy 
reserves (triglycerols) required for environment and ontogeny-associated changes21. Also, Wedemeyer et al.24 
highlighted the contribution of lipid decline as salmonid develops into smolts towards silvering, increased 
growth rate, salinity tolerance and increased pituitary growth hormones in order to adapt to environmental-
associated changes at sea. These findings demonstrate the importance of down-regulating lipid metabolism 
during ontogeny and environmental-associated changes encountered by salmonids during smoltification. In 
addition, the interactions between lipid, carbohydrate and amino acid metabolism decline in Atlantic salmon 
facilitate smoltification24,25. Lipid and carbohydrate depletion during smoltification are the results of increased 
lipolytic/glygenolytic enzyme activity, decrease in lipid/glycogen synthesis and increase in the rate of plasma 
fatty acid/glucose turn over21. Hence, the observed down-regulation of genes involved in lipid and carbohy-
drate metabolism in the liver of fry compared to parr probably favour mobilisation of energy required to reach 
the parr stage. Common to both ploidy groups for the same comparison was the down-regulation of ornithine 
decarboxylase 1-like, which is known to be involved in immune and inflammatory responses through directing 
arginine flux away from nitric oxide synthase and nitric oxide production by existing as a free radical toxic to 
bacteria and a signalling molecule26. Down-regulation of this gene in fry when compared to parr stages may be 

Figure 5.   Quantification of liver steatosis (vacuolization area) in diploid and triploid Atlantic salmon at fry and 
parr stages. Data are presented as means ± SEM (n = 3). Different letters denote significant differences (P < 0.05).

Table 5.   Nuclear size (minor and major axis) of hepatocytes in diploid and triploid Atlantic salmon from 
fry to smolt stage. Data are presented as means ± SEM (n = 4–8 individuals). Different letters in the same row 
denote significant differences (Students t-test) between ploidy groups. *Ratio of means in hepatocytes of 
triploid over diploid fish.

Stage

Minor axis (µm) Major axis (µm)

Diploid Triploid Ratio* P Diploid Triploid Ratio* P

Fry 0.79 ± 0.02b 1.09 ± 0.03a 1.38  < 0.001 0.97 ± 0.02b 1.28 ± 0.04a 1.32  < 0.001

Parr 0.87 ± 0.02b 1.08 ± 0.02a 1.24  < 0.001 0.99 ± 0.02b 1.25 ± 0.03a 1.26  < 0.001

Smolt 0.79 ± 0.01b 0.95 ± 0.02a 1.20  < 0.001 0.92 ± 0.01b 1.09 ± 0.02a 1.18  < 0.001
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related to the susceptibility of Atlantic salmon fry to bacterial infections27 during transition to parr. Some genes 
involved in various cellular processes (e.g., aurora kinase B-like and importin subunit alpha-1-like) were down-
regulated exclusively in triploid fry when compared to their parr counterparts. This could be due to the fact that 
triploidy leads to an overall reduced cell number in comparison to diploids, which limits their normal cellular 
functions and organ system processes to some extent28. We did not observe significant differences in hepatocyte 
number between diploid and triploid fish but our histology analysis was limited to the mid-portion of the liver.

Both diploid and triploid fry had relatively few up-regulated DEGs when compared to their parr counterparts 
and these DEGs belonged to similar functional categories, mostly related to cellular processes. A notable differ-
ence between ploidy groups was the 44-fold up-regulation exclusively in triploid fry of adh1, a gene involved in 
alcohol metabolism and oxidative stress. This may be linked to the fact that triploid salmonids tend to be more 
prone to oxidative stress than their diploid counterparts at juvenile29 and post-smolt stages30.

The enriched GO terms for down-regulated genes between parr and smolt fish were very similar in dip-
loid and triploid fish, and they were related to cell-mediated immunity or general immune system processes. 
In both ploidy groups, the top significantly enriched GO terms down-regulated in parr when compared to 
smolts included taxis and chemotaxis, cellular response to chemical stimulus and cell migration, which indicate 
increased cell-mediated immunity and directional phagocytosis in smolts. Movement of microphages in fishes 
has already been demonstrated to be by either chemokinesis (a non-directional movement of the phagocyte) or 
chemotaxis (a directional movement of the phagocyte) in response to bacterial antigens in vivo or in vitro31–33. 
Cell-mediated immunity is particularly important in the elimination of intracellular pathogens31. A recent study 
showed a strong relationship between MHC and disease resistance of Atlantic salmon to infectious salmon 
anaemia34. The potential changes in the immune system of smolts is likely important for their survival at sea, 
where they will be exposed to new pathogens.

The most up-regulated DEGs in diploid and triploid parr when compared to smolts included genes involved 
in metabolism and cellular processes. For example, a gene involved in polyamine biosynthesis (ornithine decar-
boxylase 1-like) was up-regulated in parr with fold changes of 6.3 and 4.5 in diploids and triploids, respectively. 
The enzyme encoded by this gene is a key regulator in growth processes in vertebrates and has been positively 
correlated with specific growth rate in Atlantic salmon35. Its higher transcript levels in parr may be related to 
the rapid growth change known to occur in pre-smolts. Up-regulated metabolic rates could also be due to the 
fish being bigger in size and with a subsequently higher basal metabolic rate. The eukaryotic translation initia-
tion factor 4E binding protein 3–1 was also up-regulated in parr and it can affect growth, since it encodes a vital 
mRNA cap-binding protein that controls global translation rates36.

Similar KEGG pathways for down-regulated DEGs were observed in both diploid and triploid parr when 
compared to their smolt counterparts, and include genetic information processing, environmental processing 
and cellular processing. The down-regulated pathways specific to diploid parr were involved in lipid and amino 
acid metabolism and organismal system processes related to development.

The top up- and down-regulated genes in fry compared to parr and in parr versus smolt were remarkably 
similar in diploid and triploid fish. Moreover, the significantly enriched down-regulated GO terms showed a 
striking resemblance in functional categories for both ploidy groups (Fig. 6). Compared to mammals, lower 
vertebrates such as fish cope quite well with polyploidy37,38. Generally, polyploidisation is regulated through 
two processes: genome dosage effect or genome dosage compensation39. The genome dosage effect is reflected 

Figure 6.   Overview of the changes in the Atlantic salmon liver transcriptome during ontogeny. There were 
very few differences between diploid and triploid individuals at the same stage, indicating a clear dosage 
compensation. The main DEGs between fry vs parr and parr vs smolt are indicated, along with their functions 
and significantly enriched GO terms.
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by a correlation between expressed genes and the number of chromosomes, while in the case of genome dosage 
compensation, gene expression for polyploids tends to mirror that of diploids40.

A recent study has shown that performance and growth of triploid Atlantic salmon is linked to the second 
maternal chromosome set41. These findings suggest that maternal and paternal contributions from diploid brood-
stock may not have equal weight when selecting for best performing triploids. To add up to these findings, a study 
determining dosage compensation using liver transcriptome of diploid parent grass carp (Ctenopharyngodon 
idella) and their triploid offspring showed similar expression levels in both ploidies where expression level 
dominance (ELD) was found to be biased towards the maternal genome42. In addition, homolog gene expression 
levels in this study showed the combined role of regulatory functions and epigenetics through a transcriptome 
network vital for adaptation during growth of triploids42 which is likely to be the case of this study. Generally, 
triploid salmon shows either a positive or negative dosage compensation when compared to diploid full-sibs 
counterparts39,43. Determining dosage compensation with focus on the liver can be questionable because the 
liver of eukaryotic organisms has been reported to form variable percentages of polyploidy cells during liver 
growth and under other circumstances44. In mammals, the onset and degree of polyploidization in hepatocytes 
vary across species and can be observed during normal or pathological conditions but the functional signifi-
cance of the process remains uncertain46. To date, polyploidization events have not been reported for the liver 
of fish45–47, including salmonids48, irrespective of their ploidy status but information on Atlantic salmon is still 
lacking. In our study, we compared the nuclear size of hepatocytes in the liver of diploid and triploid salmon13 
as indicator of their ploidy status. Cell size measurements (e.g. minor axis of erythrocytes) are frequently used 
as indirect measurements of DNA content in artificially induced triploids28,49. Overall, hepatocyte cell nuclei in 
triploids measured 1.2–1.4 times those of diploids and contained by definition correspondingly higher levels 
of DNA than diploid nuclei. Overall, these quantitative histological findings validate the use of liver as central 
organ regulating energy metabolism and several other functions to assess the possibility of dosage compensation 
in our study. This is in line with the work of Christensen et al.50 where liver tissue was chosen to measure gene 
expression levels in coho salmon under different metabolic states.

Triploid cell nuclei are expected to contain one extra haploid set of maternal chromosomes and therefore 
50% more DNA than diploid cell nuclei with some degree of variation likely to occur across tissues within the 
same individual49. For example, variability in terms of nuclear differences between these two ploidies, possibly 
induced by specific cellular and nuclear adjustments, has been reported across tissues and organs of the marine 
medaka, Oryzias dancena51. In our work, cell measurements performed on histological sections showed that the 
nuclear size (minor and major axis) of triploid over diploid hepatocytes of juvenile Atlantic salmon was below 
the expected 1.5 ratio and further studies are required to explore the cellular processes occurring in the liver of 
these two ploidy groups.

Overall, our results indicate clear similarities in the general liver morphology and steatosis between dip-
loid and triploid fish prior to and after smoltification. Quantification of liver steatosis based on the degree of 
vacuolization in the cytoplasm and the degree of distribution of the vacuolated hepatocytes has been employed 
in numerous fish studies addressing lipid metabolism. In Atlantic salmon, examples include nutritional and 
nutrigenomics studies performed to assess the effects of plant meal diets and natural plant extracts52, functional 
feeds53,54 and inclusion of micronutrients in low marine fish diets16 on fish growth, development and health. In 
the present work, the observed decrease in liver steatosis from fry to parr reflected the hepatic transcriptome 
profiles, which showed a significant up-regulation of genes involved in lipid metabolism in parr compared 
to fry, independently from their ploidy status. Such higher levels of relevant transcripts likely supported the 
mobilisation of energy required to reach this phase of development and in preparation of smoltification. These 
results are in agreement with Peruzzi et al.13, where the same experimental diploid and triploid fish fed a stand-
ard commercial fishmeal diet displayed a surge in somatic growth in the period from fry to parr. It is known 
that alterations in lipid metabolism during parr-smolt transformation in Atlantic salmon lead to smolt having 
reduced available liver, as well as muscle, energy reserves compared to parr and these are regarded as an integral 
part of the process21,55,56. In the present study, the lack of vacuolisation in the hepatocytes of both diploid and 
triploid smolts points indicates additional similarities between these two ploidy groups in the pattern of lipid 
mobilisation required during the final steps of parr-smolt transformation.

In Atlantic salmon, the liver transcriptome is different between fry, parr and smolts, as expected. The top 
differentially expressed genes between ontogeny stages are involved in preparation for smoltification. These 
include aurkb, ima2, cpt1b, cpt1a, slc6a13, odc1, lipc, lipe, dcor1, pla2g3, ppp1r3b, ccl19, gnvip1, scyb7, ifi44, adh1, 
which are involved in oxidative stress, metabolism, immune system and cellular processes. Most of these genes 
were common to both ploidy groups, except one gene that plays a role in oxidative stress (adh1) and two genes 
involved in cellular processes (ima2 and aurkb), which were differentially regulated exclusively in triploids. At 
each ontogeny stage, the biological processes enriched for down-regulated genes showed a striking resemblance 
in diploid and triploid fish, which was reflected in a similar liver morphology and level of vacuolisation between 
ploidy groups.

Materials and methods
Experimental setup and fish husbandry.  Details on the relationship, origin, production, growth param-
eters and rearing protocols of the experimental fish are provided by Peruzzi et al.13. Briefly, experimental fish 
comprising of diploid (2n) and triploid (3n) ova were produced using siblings composed of n = 17 full-sib and 
half families produced by a commercial hatchery (Stonfiskur HF, Iceland) where triploidy was induced by a pres-
sure shock of 9500 psi applied for 5 min, 300° minutes post-fertilization at 5 °C46. Eyed-ova (~ 400 day-degrees) 
were then shipped to the Aquaculture Research Station in Kårvika (Tromsø, Norway). Prior to start-feeding, the 
ploidy status of the experimental groups was verified by flow cytometry as previously reported13. The experi-
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mental fish were reared in triplicate tanks and fed a commercial standard diet (Skretting AS, Stavanger, Norway) 
whilst being reared at low temperature from start-feeding to completion of the parr-smolt transformation. Con-
stant light was used throughout the experiment, except for a period of reduced day length required to simulate 
winter conditions and induce parr-smolt transformation13. For sampling purposes, fish were euthanized using an 
anaesthetic overdose of benzocaine (120 mgL-1, Sigma-Aldrich Company Ltd., United Kingdom). Liver samples 
were collected from fish at the ontogeny stages below, snap-frozen in liquid nitrogen and transported on dry ice 
to Nord University (Bodø, Norway) where they were stored at − 80 oC until transcriptome analysis. The average 
weight of fish at each stage used for this: fry (2n = 3.62 g and 3n = 4.11 g), parr (2n = 27.83 g and 3n = 29.89 g) and 
smolt (2n = 56.44 g and 3n = 66.56 g). Samples collected for all analyses had weights close to the mean weight.

Preparation of RNA‑seq libraries and sequencing.  Total RNA was extracted from frozen liver sam-
ples following the QIAzol protocol (Qiagen, Germany) and further cleaned with the RNeasy MinElute cleanup 
kit (Qiagen, Germany). Quality and quantity of total RNA were determined using the 2200 TapeStation from 
Agilent (USA). Each RNA sample used had a RINe (RNA integrity) value above 7. RNA was extracted from 5 
individual liver samples (n = 5) per ploidy group at selected sampling stages fry (1455 degree-days post-start 
feeding, ddPSF), parr (1888 ddPSF) and smolt (2745 ddPSF). RNA-seq libraries were prepared from total RNA 
using the NEBNext Ultra II Directional RNA Library Prep kit (NEB, USA). The barcoded libraries were checked 
for quality and quantity on a 2200 TapeStation before pooling and sequencing. Library pools were sequenced 
on the NextSeq500 (Illumina, USA) with the Nextseq 500/550 high output kit v2.5 sequencing kit (150 cycles 
single-end reads) at Nord University, Norway.

Bioinformatics.  Data were converted from BCL to FASTA format and demultiplexed using the Illumina 
script bcl2fastq conversion software v2.17 with default parameters. Adapters were then removed using the 
Cutadapt57 and quality of the trimmed reads was checked using the FastQC software58. Clean reads were mapped 
to the Atlantic salmon genome and transcriptome annotation databases (RefSeq accession: GCF_000233375.1 
from the NCBI database) using TopHat259. Uniquely mapped transcripts were quantified using HTSeq (high-
throughput sequence) counts60 and DEGs were then identified using DESeq2.

(https​://www.bioco​nduct​or.org/packa​ges/relea​se/bioc/html/DESeq​2.html), with an adjusted p-value < 0.05 
(Benjamin-Hochberg method)61. The R packages ggplot2 and heatmap were used for graphical representation 
of the data. DEGs were then subjected to GO enrichment analysis for biological processes using DAVID v6.8 
with an EASE score ≤ 0.0162,63. Selected DEGs obtained from DESeq2 in Entrez gene identifier format were con-
verted to FASTA format for downstream analysis on the Kyoto Encyclopaedia for Genes and Genomes (KEGG) 
Automatic Annotation Server (KAAS)64.

Liver histology.  Liver samples from different fish belonging to the same group used for transcriptomic 
analysis were fixed in 10% (v/v) neutral buffered formalin for 48  h before transferred to 70% (v/v) ethanol 
for storage. Samples were then transferred to standard cassettes, dehydrated, embedded in paraffin wax and 
sectioned at 5 μm on a RM2255 rotary microtome (Leica Microsystems, Germany). The sections were stained 
with haematoxylin/eosin (Thermoscientific, USA) according to standard histological procedures and examined 
on a DM 2000 LED light microscope (Leica Microsystems, Germany) equipped with a Leica DFC 295 digital 
Colour Camera. Photographs of the sections were processed using the Leica software application suite. A total 
of 41 individual samples were selected for this study: 10 fry (2n = 4 and 3n = 6), 15 (2n = 8 and 3n = 7) parr and 
16 (3n and 2n = 8) smolts. Liver steatosis (lipid vacuolization) was assessed on images captured at magnifica-
tion of 40 × and analysed with ImageJ following a modification of the method by Campos et al.65. Briefly, three 
sections per individual were scored for vesicular steatosis (clear vacuoles with a diameter greater than 5 μm) in 
hepatocytes using a set scale of 7 pixels/ μm. For each section, a 5,000 μm2 rectangular frame was placed over 
three hepatic regions distant from large vessels and the average area (μm2) occupied by lipid vacuoles within 
hepatocytes was calculated. Nuclear size (minor and major axis) of hepatocytes was assessed on the above-
reported histological sections (ca. n = 10 nuclei/section) captured at a magnification of 40 × and analysed with 
ImageJ using a set scale of 1.0 μm.

Statistical analysis.  Liver steatosis data (i.e., vacuolization area) were log-transformed and checked for 
normality and equality of variance prior to two-way ANOVA with fish ploidy and ontogeny stage as fixed fac-
tors. When significant differences were found, the Hochberg’s post-hoc test was used to determine differences 
between individual fish groups. Hepatocytes’ nuclear size measurements in both ploidies and at different ontog-
eny stages were compared by Students’ t-test. Ratios of nuclear measurements in hepatocytes of triploid over 
diploid fish at different stages were analysed by one-way ANOVA with ontogeny stage as fixed factor. All data 
analyses were performed using SPSS (IBM SPSS statistics, USA) and the results were considered significant at 
P < 0.05. Data are reported as means ± standard error of the mean (SEM).

Ethics statement.  All experimental procedures involving Atlantic salmon were in accordance with the 
Norwegian legislation on animal experimentation and the guidelines of the European Union Council (Direc-
tive 2010/EU) and were approved by the Norwegian Committee on Ethics in Animal Experimentation (Project 
license permit ID: 8180) issued by the Norwegian Food Safety Authority (Mattilsynet).

Data availability
Raw sequenced data has been submitted to the National Centre for Biotechnology Information (NCBI) under 
the BioSample accession: SAMN13315576, ID: 13315576.

https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
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