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a b s t r a c t 

The application of dynamic Autoregressive Distributed Lag (dynardl) simulations and Kernel-based Regularized 

Least Squares (krls) to time series data is gradually gaining recognition in energy, environmental and 

health economics. The Kernel-based Regularized Least Squares technique is a simplified machine learning- 

based algorithm with strength in its interpretation and accounting for heterogeneity, additivity and nonlinear 

effects. The novel dynamic ARDL Simulations algorithm is useful for testing cointegration, long and short-run 

equilibrium relationships in both levels and differences. Advantageously, the novel dynamic ARDL Simulations 

has visualization interface to examine the possible counterfactual change in the desired variable based on the 

notion of ceteris paribus . Thus, the novel dynamic ARDL Simulations and Kernel-based Regularized Least Squares 

techniques are useful and improved time series techniques for policy formulation. 

• We customize ARDL and dynamic simulated ARDL by adding plot estimates with confidence intervals. 
• A step-by-step procedure of applying ARDL, dynamic ARDL Simulations and Kernel-based Regularized Least 

Squares is provided. 
• All techniques are applied to examine the economic effect of denuclearization in Switzerland by 2034. 
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Introduction 

Though nuclear power is a clean source of energy yet, has several long-term environmental

(management of radioactive waste) and health costs [1 , 2] . The short-range characteristic of emitted

particles from nuclear reactors and electromagnetic interactions of atoms in solid matter has serious 

health consequences in living organisms [3] . Following the nuclear accidents that occurred in Ukraine

(Chernobyl) and Japan (Fukushima Daiichi), several countries including Switzerland are phasing out 

nuclear power plants [1 , 3] . In this regard, we assess the possible economic effect of phasing out

nuclear power plants in Switzerland for 20 years using novel estimation techniques. We employ four

data series from 1970 to 2018 namely GDP, gross fixed capital formation, exportation of goods, and

services (obtained from the World Bank 1 ), labor 2 , and consumption of nuclear energy 3 . 

Method details 

The application of the novel dynamic ARDL Simulations follows simple but technical guidelines 

presented in this method ( Scheme 1 ). The ARDL bounds testing procedure used in the novel dynamic

ARDL simulations requires a strict first-difference stationary, I (1) dependent variable [4] . This implies

that the only possible entrant for cointegration is a dependent variable that is non-stationary at level,

I (0). In contrast, bounds testing procedure with a dependent variable violating the initial conditions

can be tested using the standard but modified ARDL bounds test with surface regression [5] . To test

this conditional requirement, several unit root tests can be employed such as augmented Dickey-Fuller 

(ADF), Phillips-Perron (PP), Kwiatkowski-Phillips-Schmidt-Shin (KPSS), Dickey-Fuller Generalized Least 

Squares (DF-GLS), among others. Second, all sampled independent variables can either be I (0) or

integrated of order one, I (1) but not greater than I (1) devoid of a structural break, autocorrelation,

and heteroskedasticity. We generate the variables in natural logarithms to control for potential 

heteroskedasticity [6] . After importing the data into STATA, we declare the dataset as time series

using: tsset Years, yearly 

Step 1: unit root test 

To control for potential spurious regression, we examine the stationarity properties of the variables

using PP and ADF tests. To do this, we run PP and ADF unit root tests in both level and first difference

as: pperron lnGDP ; pperron d.lnGDP ; dfuller lnGDP ; dfuller d.lnGDP 

Options such as nocons, trend, lags(#) can be included. The results of PP and ADF tests are reported

in Table 1 . While we fail to reject (except for lnNUKE) the null hypothesis of unit root at level in

Table 1 , we strongly reject the null hypothesis at first-difference based on p-value < 0.01 . 
1 https://buff.ly/2ShVBtP . 
2 https://buff.ly/2GoaOa6 . 
3 https://buff.ly/3ni9zuf . 
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Scheme 1. Salient steps in applying the dynamic ARDL simulations. 

Table 1 

Unit root tests. 

Variable Level.PP �.PP Level.ADF �.ADF 

lnGDP 0.350 −4.972 ∗∗∗ 0.407 −5.097 ∗∗∗

lnNUKE −6.367 ∗∗∗ −5.876 ∗∗∗ −4.613 ∗∗∗ −5.689 ∗∗∗

lnGFCF −0.366 −4.267 ∗∗∗ −0.159 −4.289 ∗∗∗

lnLABOR 0.363 −3.833 ∗∗∗ 0.785 −3.833 ∗∗∗

lnEXPORTS −0.753 −8.831 ∗∗∗ −0.697 −8.044 ∗∗∗

Notes: Where Level.PP and �.PP denote the level and first-difference of Phillips-Perron unit root test; Level.ADF 

and �.ADF denote the level and first-difference of augmented-Dickey Fuller unit root test; ∗∗∗denotes rejection 

of the null hypothesis of no unit root at 1% significance level. 
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tep 2: ARDL estimation 

After meeting the condition of strict first-difference stationary dependent variable (lnGDP), we

etermine the optimal lag for the proposed model using varsoc lnGDP lnNUKE lnGFCF lnLABOR

nEXPORTS, maxlag(2) . Using the optimal lag selected, we test for cointegration using Pesaran, Shin,

nd Smith (PSS) bounds test with novel Kripfganz & Schneider (KS) critical values and approximate p -

alues. Before running the customized ARDL model, the following packages [ parmest, eclplot, dynardl,

rls ] must be installed using: 

ssc install parmest ; ssc install eclplot ; ssc install dynardl ; ssc install krls 

We modify the original model specification of the ARDL to express the estimated parameters in a

lot expressed as: 

parmby “xi:ardl lnGDP lnNUKE lnGFCF lnLABOR lnEXPORT, maxlag(2 2 2 2 2) nocons ec1 regstore(res)”,

label norestore 

sencode parm, gene(parmid) 

eclplot estimate min95 max95 parmid 

Where nocons suppresses the constant term, ec1 estimates the long-run parameter in time, t-

; regstore saves the estimated regression for validation through diagnostic tests. The resulting

arameters based on ARDL(1,2,2,0,0) are presented in Fig. 1 with empirics repeated in Table 2 for

larity. 
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Fig. 1. Parameter estimates of the ARDL model. Notes: black ( ●) is the estimate in a log-log model, olive teal long-dash 3-dots 

is the reference line, red-spike denotes lower 95% and upper 95% confidence limit. Legend: GFCF represents Gross Fixed Capital 

Formation, LABOR represents labor, EXPORTS denotes exportation of goods and services from Switzerland, and NUKE means 

consumption of nuclear energy. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 2 

ARDL estimation model. 

EQN Parm Estimate SE P -value Min 95 Max 95 

ECT lnGDP t-1 −0.505 0.081 0.0 0 0 ∗∗∗ −0.668 −0.341 

Long-Run lnNUKE t-1 −0.028 0.010 0.008 ∗∗∗ −0.048 −0.008 

lnGFCF t-1 0.244 0.036 0.0 0 0 ∗∗∗ 0.171 0.317 

lnLABOR t-1 0.230 0.023 0.0 0 0 ∗∗∗ 0.183 0.277 

lnEXPORTS t-1 0.279 0.026 0.0 0 0 ∗∗∗ 0.227 0.331 

Short-Run �lnNUKE 0.009 0.015 0.564 −0.021 0.039 

�lnNUKE t-1 0.020 0.008 0.014 ∗∗ 0.004 0.036 

�lnGFCF 0.242 0.041 0.0 0 0 ∗∗∗ 0.159 0.325 

�lnGFCF t-1 −0.071 0.034 0.042 ∗∗ −0.139 −0.003 

�lnLABOR 0.116 0.025 0.0 0 0 ∗∗∗ 0.065 0.168 

�lnEXPORTS 0.141 0.024 0.0 0 0 ∗∗∗ 0.092 0.189 

ARDL(1,2,2,0,0) Obs 47 R 2 0.916 Root MSE 0.008 

Notes: Where SE is the standard error; ∗∗∗ , ∗∗ denote statistical significance at 1, 5% level. Legend: GFCF 

represents Gross Fixed Capital Formation, LABOR represents labor, EXPORTS denotes exportation of goods and 

services from Switzerland, and NUKE means consumption of nuclear energy. 

 

 

 

 

 

 

After testing the unit root properties of sampled variables, we proceed to examine cointegration 

using the modified PSS bounds test with KS critical values and approximate p -values. Based on

ARDL(1,2,2,0,0), we run the long-run relationship using: estat ectest 

The subsequent results of the bounds test are reported in Table 3 . The estimated F-statistic based

on a finite sample of 4 variables, 47 observations, 4 short-run coefficients is 18.563 whereas t-

statistic is −6.245 — which is above the upper bound critical values (3.832, −3.625) at 5% significance

level and above the critical values of all I(1) variables in 10 and 1% level. This is further validated

by Kripfganz & Schneider approximate p -values [ p-value < 0.01 ], hence, rejecting the null hypothesis

of no level relationship. Thus, both PSS bounds test and Kripfganz-Schneider critical values with 

approximate p -values confirm the presence of cointegration. 



S.A. Sarkodie and P.A. Owusu / MethodsX 7 (2020) 101160 5 

Table 3 

Pesaran, Shin, and Smith bounds testing. 

10% 5% 1% p-value 

K I(0) I(1) I(0) I(1) I(0) I(1) I(0) I(1) 

F 18.563 2.021 3.227 2.476 3.832 3.547 5.225 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗

t −6.245 −1.608 −3.231 −1.962 −3.625 −2.660 −4.398 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗

Notes: Where I(0) and I(1) denote the lower and upper band critical values at 10%, 5% and 1% significance level of Pesaran, Shin, 

and Smith bounds test; P -value is Kripfganz & Schneider critical values and approximate p-values ; ∗∗∗denotes rejection of the 

null hypothesis of no level relationship at 1% significance level. 

Table 4 

Breusch-Godfrey LM test for autocorrelation. 

lags(p) F df Prob > F 

1 0.068 1, 37 0.796 

2 0.275 2, 36 0.761 

3 0.611 3, 35 0.612 

4 0.567 4, 34 0.689 

Table 5 

Cameron & Trivedi’s decomposition of IM-test. 

Source chi 2 df p -value 

Heteroskedasticity 47.00 46 0.4313 

Skewness 15.78 9 0.0717 

Kurtosis 0.63 1 0.4274 

Total 63.41 56 0.2316 

Table 6 

Skewness/Kurtosis tests for normality. 

Variable Obs Pr(Skewness) Pr(Kurtosis) joint adj chi 2 (2) Prob > chi 2 

Residuals 47 0.2155 0.7297 1.74 0.4187 
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tep 3: diagnostics of ARDL estimation 

As part of the initial conditions of the dynamic ARDL simulations, we perform several tests to

et rid of serial correlation, heteroskedasticity, violation of normality, and structural breaks. First, we

estore the saved estimated regression using: estimates restore res 

Second, we examine the residuals of the estimated model for autocorrelation using Breusch-

odfrey LM test by running: estat bgodfrey, lags(1/4) small 

The resulting estimates of Breusch-Godfrey LM test with four lags are presented in Table 4 . We fail

o reject the null hypothesis of no serial correlation based on 5% significance level — confirming the

esiduals of the estimated ARDL(1,2,2,0,0) model are free from autocorrelation. 

Third, we test for heteroskedasticity in the residuals using Cameron & Trivedi’s decomposition of

M-test by running: estat imtest, white 

It can be observed from Table 5 that the null hypothesis of homoskedasticity cannot be rejected at

% significance level — confirming the residuals are homoskedastic. 

Next, we assess the independence of the residuals by testing for normality using Skewness/Kurtosis

ests by running: predict res1, residuals ; sktest res1 

The results in Table 6 reveal that the null hypothesis of normal distribution cannot be rejected at

% significance level. 
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Fig. 2. Standardized normal probability plot. 

Fig. 3. Quantiles of residuals against quantiles of normal distribution. 

 

 

 

 

 

 

We further validate the distribution using both standardized normal probability plot ( Fig. 2 ) and

quantiles of residuals against quantiles of normal distribution estimates ( Fig. 3 ) by running: pnorm

res1 ; qnorm res1 

The resulting plots ( Figs. 2 and 3 ) confirm the residuals based on the estimated ARDL(1,2,2,0,0) are

normally distributed. 

Finally, we investigate potential structural breaks using cumulative sum test for parameter stability 

by running: estat sbcusum, ols 

Evidence from Fig. 4 reveals that the estimated test statistic is within the 95% confidence band,

hence, confirming that stability of the estimated coefficients over time. 

Step 4: applying dynamic ARDL simulations 

The novel dynamic ARDL simulations technique has been utilized in several studies to capture

future shocks in socioeconomic and climatic indicators [7 , 8] . In contrast, we present policy-based
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Fig. 4. Cumulative sum test using OLS CUSUM plot for parameter stability. 
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pecific inputs to account for potential shocks due to the recent phasing out of nuclear plants

n Switzerland [1] . The dynamic ARDL simulation is based on ~21% (2018 estimate from BP [9] )

ontribution of nuclear to the energy mix used as counterfactual shock over 20 years from 2018

o 2038. The model specification of the proposed dynamic ARDL simulations can be expressed

s [4 , 10] : 

ln ( GDP ) t = β0 l n ( GDP ) t−1 + β1 l n ( NUKE ) t + β2 l n ( NUKE ) t−1 + β3 l n ( GF CF ) t + β4 l n ( GF CF ) t−2

+ β5 l n ( LABOR ) t + β6 l n ( LABOR ) t− + β7 l n ( EXP ORT S ) t + β8 l n ( EXP ORT S ) t−1 + εt 

(1)

here GDP denotes economic growth, GF CF is Gross Fixed Capital Formation, LABOR represents Labor,

XP ORT S means exports of goods and services, and NUKE denotes nuclear energy consumption. ε is

he error term in time t . 

Thus, the dynamic ARDL simulations technique is applied by running: 

parmby “xi:dynardl lnGDP lnNUKE lnGFCF lnLABOR lnEXPORT, lags(1, 1, 2, 1, 1) diffs(., ., 1, 1, 1)

shockvar(lnNUKE) nocons ec shockval( −21) time(10) range(30) graph change sims(50 0 0)”, label

norestore 

Afterward, we run: 

sencode parm, gene(parmid) 

eclplot estimate min95 max95 parmid 

Here, shockvar is the variable to examine potential shocks whereas shockval is the amount of shock

o be applied to the target variable. It is noteworthy that the length of scenario ( range ) should always

e greater than the scenario time . The parameter plot of the dynamic simulated ARDL is depicted in

ig. 5 whereas the expounded empirics are presented in Table 7 . Like the ARDL estimates, long-term

uclear energy consumption has depreciating effects on economic development. This may perhaps be

inked to environmental and health costs of radioactive waste management, decommissioning, and

ealth hazards in Switzerland [1] . In contrast, increasing level of labor, gross fixed capital formation,

xportation of goods and services have economic expansion effect in both short and long -run (i.e. in

oth ARDL and dynARDL). 

To account for the effect of decreasing marginal returns of nuclear energy on sustained economic

rowth, we assess the counterfactual shocks via the dynamic ARDL simulations by incorporating the
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Fig. 5. Parameter estimates of dynamic ARDL Simulations. Notes: black ( ×) is the estimate in a log-log model, olive teal long- 

dash 3-dots is the reference line, red-spike denotes lower 95% and upper 95% confidence limit. Legend: GFCF represents Gross 

Fixed Capital Formation, LABOR represents labor, EXPORTS denotes exportation of goods and services from Switzerland, and 

NUKE means consumption of nuclear energy. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

Table 7 

Estimates of dynamic simulated ARDL model. 

Parm Estimate SE P -value Min 95 Max 95 

lnGDP t-1 −0.343 0.101 0.002 ∗∗∗ −0.548 −0.137 

lnNUKE t-1 −0.012 0.005 0.010 ∗∗∗ −0.022 −0.003 

�lnGFCF 0.247 0.045 0.0 0 0 ∗∗∗ 0.157 0.338 

�lnLABOR 0.337 0.110 0.004 ∗∗∗ 0.116 0.559 

�lnEXPORT 0.139 0.027 0.0 0 0 ∗∗∗ 0.085 0.193 

lnGFCF t-2 0.100 0.027 0.001 ∗∗∗ 0.046 0.154 

lnLABOR t-1 0.091 0.026 0.001 ∗∗∗ 0.037 0.144 

lnEXPORT t-1 0.084 0.032 0.013 ∗∗ 0.018 0.149 

Prob > F 0.0 0 0 ∗∗∗ R 2 0.906 Root MSE 0.009 

Notes: Where SE is the standard error; ∗∗∗ , ∗∗ denote statistical significance 

at 1, 5% level. Legend: GFCF represents Gross Fixed Capital Formation, 

LABOR represents labor, EXPORTS denotes exportation of goods and 

services from Switzerland, and NUKE means consumption of nuclear 

energy. 

 

 

share of nuclear energy in the energy portfolio (~21% [9] ), and period estimated for denuclearization

(2018–2038). The plot showing dynamic ARDL simulations reveals that −21% shock in predicted 

nuclear energy consumption may affect economic growth in the first period but growth accelerates 

thereafter ( Fig. 6 ). Thus, denuclearizing the economy will have no lasting impact on sustained

economic growth. 

Step 5: applying Kernel-based regularized least squares 

We subsequently apply Kernel-based Regularized Least Squares (KRLS), a machine learning 

algorithm that implements the pointwise derivatives to examine the causal-effect relationship. The 
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Fig. 6. Representation of counterfactual shock in predicted nuclear energy using dynamic ARDL simulations. Notes: black dot 

( ●) is the predicted GDP by −21% shock in nuclear energy in a log-log model; olive teal, red and light-blue spikes denote 75, 

90, and 95% confidence interval. (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

Table 8 

Pointwise derivatives using KRLS. 

lnGDP Avg. SE t P > t P-25 P-50 P-75 

lnNUKE 0.023 0.009 2.463 0.018 0.001 0.036 0.057 

lnGFCF 0.223 0.020 10.876 0.0 0 0 0.163 0.249 0.289 

lnLABOR 0.421 0.035 12.084 0.0 0 0 0.238 0.472 0.607 

lnEXPORTS 0.093 0.011 8.848 0.0 0 0 0.036 0.098 0.156 

Diagnostics 

Lambda 0.091 Sigma 4.0 0 0 R 2 0.998 obs 40.0 0 0 

Tolerance 0.049 Eff. Df 11.220 Looloss 0.059 F -test 5.886 

Notes: Where Avg. is the average marginal effect; SE is the standard error; P-25, 

P-50, and P-75 represent 25th, 50th , and 75th percentile. Legend: GFCF represents 

Gross Fixed Capital Formation, LABOR represents labor, EXPORTS denotes exportation 

of goods and services from Switzerland, and NUKE means consumption of nuclear 

energy. 
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athematical elaborations of the technique can be found in Hainmueller and Hazlett [11] . To account

or the 2034 plan to denuclearize the economy, we examine the structural adjustments in economic

rowth using empirical estimation via pointwise marginal effect. We re-run the economic function

ith KRLS as: krls lnGDP lnNUKE lnGFCF lnLABOR lnEXPORT, graph 

The pointwise derivatives of the estimated KRLS model are presented in Table 8 . The model is

tatistically significant at 1% level, with a predictive power of 0.998. Meaning that the regressors

xplain 99.8% variation in economic development. An assessment of heterogeneous marginal effects

sing derivatives of regressors is reported as 25th, 50th 

, and 75th percentiles in Table 8 . We

bserve no evidence of heterogeneous marginal effects across sampled variables, thus, confirming

he robustness of the pointwise derivatives. It can be observed that the mean pointwise marginal

ffect of nuclear energy consumption, gross fixed capital formation, labor, and exports of goods and

ervices are 0.02%, 0.22%, 0.42%, and 0.09%, respectively. This underscores the importance of nuclear

nergy, gross fixed capital formation, labor, and exports of goods and services in sustaining economic

evelopment in Switzerland. The question still persists on how phasing out of nuclear energy will

ffect future economic development. Going further, we examine the long-term variation in nuclear
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Fig. 7. Representation of Pointwise marginal effect of nuclear energy. 

 

 

 

 

energy consumption and how it affects economic growth and vice versa. To do this, we plot the

pointwise derivative of nuclear energy consumption against GDP to capture varying marginal effects. 

We run lowess deriv_ lnNUKE lnGDP 

It can be observed in Fig. 7 that higher levels of nuclear energy consumption increase economic

growth at lower levels to a threshold where increasing marginal returns occur, however, declines

nuclear energy consumption thereafter with increasing economic growth. Thus, nuclear energy 

consumption has decreasing marginal returns with increasing economic growth. This infers potential 

energy technological obsolescence with increasing growth. 

Conclusion 

Decoupling nuclear energy consumption from economic growth has several structural implications 

but advantageous to reducing environmental risk and nuclear weapon proliferation. Here, we 

investigated the relationship between nuclear energy consumption and economic growth in 

Switzerland over the period 1970–2018. With Switzerland’s energy policy of phasing out nuclear 

energy production by 2034, we examined the long-term economic structural impact by utilizing 

novel estimation techniques such as Kernel-based Regularized Least Squares (krls) and dynamic ARDL 

simulations (dynardl) to capture counterfactual shocks in denuclearizing the economy. We find that 

decoupling nuclear energy from the economy will affect economic growth in the first year but has a

rebound effect afterward. Our customized ARDL and dynamic simulated ARDL are useful in producing 

plot estimates with confidence intervals — useful for policy modeling in environment, health, and 

energy economics. 
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