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Seasonal weather and climate 
predict area burned in grasslands 
of northeast China
Ali Hassan Shabbir1,2,3, Jiquan Zhang1,2,3*, John W. Groninger4, Eddie J. B. van Etten5, 
Samuel Asumadu Sarkodie6, James A. Lutz7 & Carlos F. Valencia8

Grassland fire dynamics are subject to myriad climatic, biological, and anthropogenic drivers, 
thresholds, and feedbacks and therefore do not conform to assumptions of statistical stationarity. 
The presence of non-stationarity in time series data leads to ambiguous results that can misinform 
regional-level fire management strategies. This study employs non-stationarity in time series data 
among multiple variables and multiple intensities using dynamic simulations of autoregressive 
distributed lag models to elucidate key drivers of climate and ecological change on burned grasslands 
in Xilingol, China. We used unit root methods to select appropriate estimation methods for further 
analysis. Using the model estimations, we developed scenarios emulating the effects of instantaneous 
changes (i.e., shocks) of some significant variables on climate and ecological change. Changes in mean 
monthly wind speed and maximum temperature produce complex responses on area burned, directly, 
and through feedback relationships. Our framework addresses interactions among multiple drivers to 
explain fire and ecosystem responses in grasslands, and how these may be understood and prioritized 
in different empirical contexts needed to formulate effective fire management policies.

Human-populated grassland ecosystems are especially responsive to interrelated and dynamic physical, social, 
and biological forces. Climate, human-driven ignition and grazing dynamics, vegetation, and fuel characteristics, 
all interact to shape fire activity in grassland  ecosystems1–9. Incidence and seasonality of grassland fire are both 
associated with natural climate variations and anthropogenic ignition  patterns3,9–12. The potentially complex 
interactions among these drivers, along with anthropogenic climate change and the importance of grasslands 
ecosystems to sustaining regional livelihoods, add urgency to better understanding these relationships over 
multi-year periods.

Burned grassland extent is influenced by regional climate change through increasing temperature which 
reduces fuel moisture and, thereby, increases  flammability13–16, but climate change also alters productivity, bio-
mass abundance, and carbon  emissions17,18, all factors which drive fuel accumulation  dynamics13,19,20. Further, 
effects of changing climates on fire activity may only manifest once critical thresholds are  crossed21,22. Such 
feedbacks and thresholds can mediate subsequent ecosystem responses to ecosystem drivers in the face of sig-
nificant change in the annual extent of burned grassland incidence. Ongoing and coherent short-term change in 
climate across the Xilingol region provide a responsive example of potential direct anthropogenic and climatic 
drivers shifting critical ecosystem responses through measurable ecological traits via threshold or non-linear 
 relationships22.

To ensure the provision of critical ecosystem services and the viability of grassland- dependent enterprises, 
ecologists and policymakers need reliable models to better understand the short- and long-term impacts of 
dynamic climatic and anthropogenic ecosystem  drivers22,23. Because ecological responses can be relatively insensi-
tive to climate, at least until thresholds are  crossed22, ecological modeling using ordinary least square regression 
(OLS) has proven to be of little value to wildfire policymakers and  managers24. Applicability of these models in 
grassland ecosystems have been limited by poor connectivity between climatic processes and ecological response 
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for two reasons: First, is the need to understand the error structure which, if not properly estimated, especially in 
the case of highly skewed and heterogeneous data, can bias parameter estimations that produce false  precision25. 
Second, fire management requires appropriate information regarding human interactions with burned grasslands 
as these may influence seasonality and extent of the fire, and their impacts over time. The issue of stationarity 
in the dominant fire-climate relationships in time-series data in response to human-caused fire activity has not 
been well represented in the previous  studies1,4,5,13,23. Further, this information is often overlooked in summarized 
fire-climate relationships.

To explore the ability of dynamic simulations to understand and predict fire activity in grasslands, we need 
to target existing knowledge gaps by comparing trends in climatically driven changes in grassland fire activity 
and confirm that the outcomes are indeed consistent with our expectations of the key disturbance drivers of 
climate and ecological change on burned grasslands. To do this, we must first apply unit root tests to resolve 
non-stationarity issues in time series fire data from anthropogenic grasslands in order to select whether Johansen 
 Cointegration26, OLS, or dynamic simulations such as Autoregressive Distributed Lags (ARDL)27 models are most 
appropriate. The reason for selecting the dynamic simulated ARDL model over the others is because it not only 
addresses complicated interactions among fire-relevant climate variables at different levels but also accounts for 
dynamic processes and feedbacks in a system. This research also attempts to extract additional measures from 
the models that can improve system predictability and reliably inform stakeholders. In this study, we aim to 
clarify the key drivers of climate and ecological change on burned grasslands in Xilingol, China using the novel 
approach of dynamic simulations of autoregressive distributed lag models.

Study area and data description. The Xilingol League lies about 600 km north of Beijing in central Inner 
Mongolia, the most representative steppe grassland in northern China (Fig. 1). Grassland covers 70% of the total 
area of 2.03 × 107 ha. Grazing has been the extensive land use in the Xilingol League where climate variations 
and other factors, including fire-generating human-activities, are the principal contributing factors to increased 
incidence of grassland  burning28. Heterogeneous climate and human activities contribute to a complex burn 
matrix throughout Xilingol. Fire occurrence and severity is greatest from spring through autumn, promoted by 
drying effects of wind and other climatic drivers (Fig. 2).

We used eight climatic variables to evaluate the effects of key drivers on burned grasslands and ecological 
change: monthly average maximum temperature (in degrees C); monthly average sunlight (in hours per month); 
monthly average wind speed (in meters per second); the monthly average carbon emission (in grams per square 
 centimeter2); monthly average vapor pressure deficit; monthly average precipitation (in millimeters); and monthly 
average relative humidity (percentage).  Heteroscedasticity29,  autocorrelation30, and  multicollinearity31 are evident 
in their effect on the climate records of burned grasslands. We then reanalyzed, assessed the fire-relevant climate 
variables, and confirmed the trends that are consistent with our expectations.

Figure 1.  The location of the study area showing burned grasslands in the period 2000–2018 with each color 
representing a different month. The grey shading represents elevation from 761 to 1916 MAMSL. Map generated 
with ArcGIS 10.3, (https ://deskt op.arcgi s.com/), with data sourced from {https ://lpdaa c.usgs.gov/data_acces s/
data_pool}.

https://desktop.arcgis.com/
https://lpdaac.usgs.gov/data_access/data_pool
https://lpdaac.usgs.gov/data_access/data_pool
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Results and discussion
Consistent with best practices for homoscedastic stationary series using small data sets, we used the ADF, PP, 
KPSS, and DF-GLS tests to confirm model validation (Table 1). Maximum temperature and wind speed were 
stationary I(0) at a 1% level of significance while other variables were integrated to order one I(1) indicating 
stationarity at first difference. According to the DF-GLS test, the mean minimum monthly temperature was also 
stationary I(0). The absence of integration to order two I(2) for any of the variables indicated the suitability of 
the ARDL approach.

Published studies on fire-climate  relationship23,32 generally do not resolve the non-stationarity issue that often 
arises in time series data that measures climate variables during recent years. Particularly, for explaining the 
variability of grassland area burned, ignoring the non-stationarity of the series leads to bad specified models that 
invalidate some of the results and generate high prediction error. In addition, modeling the series as if they were 

Figure 2.  Influence of climate variables on burned grassland in Xilingol. Spring, Summer, and Autumn-burned 
grasslands are represented in red, green, and blue, respectively.

Table 1.  Unit root test results of climatic variables for Augmented Dickey–Fuller (ADF), Phillips–Perron 
(PP), Kwiatkowski, Phillips, Schmidt, Shin (KPSS), and modified Dickey-Fuller generalized least squares 
(DF-GLS). All tests, except KPSS, use the null hypothesis of the unit root (non-stationarity), while KPSS tests 
the hypothesis against the alternative of stationarity. *1% level of significance. **5% level of significance.

Variables

ADF PP KPSS DF-GLS

Level 1st Diff Level 1st Diff Level 1st Diff Level 1st Diff

ln  Tmin  − 7.05  − 19.05**  − 9.91  − 16.08** 0.255 0.052**  − 1.41*  − 16.08**

ln Rel.humidity  − 8.63  − 13.32**  − 8.75  − 24.93** 0.183 0.092**  − 3.05  − 23.63**

ln  Tmax  − 9.14*  − 14.41**  − 8.55*  − 12.43** 0.234* 0.011**  − 4.55*  − 23.63**

ln Precip  − 8.96  − 13.21**  − 9.17  − 28.49** 0.196 0.061**  − 7.97  − 32.39**

ln Sunlight  − 5.91  − 16.39**  − 8.92  − 26.92** 0.241 0.059**  − 2.02  − 34.62**

ln wind speed  − 7.44*  − 7.06**  − 8.86*  − 30.45** 0.344* 0.016**  − 8.76*  − 23.65**

ln Cem  − 8.16  − 11.01**  − 9.47  − 21.09** 0.126 0.044**  − 8.17  − 30.09**

ln Vpd  − 6.01  − 15.09**  − 9.02  − 25.02** 0.291 0.041**  − 2.92  − 31.69**
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stationary may produce spurious relations that, although perceived as statistically significant, are not real and do 
not have a correct  interpretation33,34. These potential problems generated by non-stationarity provide possible 
explanations for the large errors we observed in predictions and estimated relationships between area burned 
and climate. Cointegration is therefore a solution to model the complex dynamics of multivariate ecological 
time series when some of them are non-stationary. However, even under cointegration, all model parameters, 
including the lags of independent variables and the error correction term must be correctly specified. Moreover, 
the error term should not be serially dependent, in order to prevent spurious relationships arising from temporal 
 correlations33,35. Implementation of statistical tests for stationarity of time series, known as unit root tests, is then 
a fundamental tool for the ecologist to analyze longitudinal data.

The ADF is among the most used and powerful unit root tests under constant variance and if the lag p is 
correctly selected. Alternatively, PP unit root tests differ mainly in how they address serial correlation and heter-
oskedasticity in the errors. ADF tests use a parametric autoregression to approximate the autoregressive moving 
averages structure of the errors in the test regression, whereas the PP tests ignore any serial correlation in the 
test regression. Unlike ADF tests, PP tests are robust to general forms of heteroskedasticity and do not require a 
specified lag length for the test  regression23. The ADF and PP tests are asymptotically equivalent but may differ 
substantially in finite samples due to differences in correcting serial correlation in the test regression. In contrast, 
DF-GLS is a sensitive test that may increase the power of the previous, especially near stationarity and for small 
samples. Another recommendation, especially for short time series, is the simultaneous use of the KPSS test.

The lag selection criteria of log-likelihood36 (LR), the final prediction  error37 (FPE), Akaike information 
 criterion38 (AIC), Schwarz Bayesian  criterion39 (SBC), and Hannan-Quinn information  criterion40 (HQ) were 
used to select the optimal lag on all variables prior to testing for cointegration (see Supplementary Information 
Table S1). All these criteria are based on the minus maximized value of the respective likelihood function includ-
ing a penalization term that increases with the number of estimated parameters to favor a more parsimonious 
model. Balancing out these two terms creates a metric that can be used as a model selection criterion. Both SBC 
and HQ are harsher in the selection than AIC, tending to choose a more parsimonious model. Therefore, we 
preferentially select the lag(1) as the optimal lag for subsequent model estimation in order to keep the model 
more compact and interpretable. The final prediction error, Schwarz Bayesian criterion, and Hannan-Quinn 
information criterion were used to confirm lag(1) as the optimal lag for subsequent model estimation.

The ARDL bounds testing approach is advantageous over traditional cointegration methods because it 
can examine a mixed order of integrations. We used the F-statistic to test for the null hypothesis of no-level 
 relationship41 (SI Table S2). The bounds test for cointegration that the F-statistic was above both lower [1(0)] and 
upper [1(1)] bounds critical values, thus, all the models presented reject the null hypothesis of no cointegration. 
To validate the cointegration test, we further examined the null hypothesis  following42,43 in the light of response 
surface regressions that report critical p-value  approximations44. The p-values strongly rejected the null hypoth-
esis at a 1% significance level, confirming a level relationship in the proposed models.

We implemented a graphical representation of the ARDL model simulation to provide an easily understand-
able representation of an instantaneous change (i.e., a shock) in one independent variable on the response in 
posterior observations (Fig. 3). This contrasts with the more elaborate interpretation of estimated coefficients, 
given their separation in long and short-run effects. For example, the dynamic plot shows that a positive shock 
(one standard deviation increase) at time t = 10 in wind speed produces a rapid positive short-run increase in 
burned grassland area.

At t = 15 this effect vanishes and the response value stabilizes thereafter (Fig. 3a). The confidence intervals 
(blue lines) indicate that the long-run change in burned grassland area is statistically significant using 75% con-
fidence intervals, rather than significant with 90% confidence intervals. In contrast, the resulting plot of negative 
shock wind speed at time t = 10 decreased the mean response over several periods, resulting in a statistically 
significant equilibrium shift over four periods (Fig. 3b).

To validate the model, we used diagnostic tests to examine the residual independence (Table 2). The coef-
ficient of determination (R-squared) resulted in a goodness of fit of ~ 78.3%. The diagnostic tests showed that 
functional misspecification error, first-order serial correlation, heteroskedasticity, and non-normality assump-
tions are adequately controlled in the estimated model. To corroborate the independence of the residuals, we 
further employed the recursive cumulative sum (CUSUM) plots to examine the stability of the data series over 
the sampled period (Fig. 4).

Simulation and analysis of ARDL dynamics. The grassland ecosystems of Xilingol are characterized by 
highly dynamic and complex interactions among climate, human settlement patterns, ignition, and vegetation 
cover. Increased grazing constrains grassland burning leading to an “area burned deficit”. Otherwise, the system 
is highly responsive to high-speed seasonal winds with low relative humidity, quickly drying fuel, and increasing 
the potential for extensive grassland fires across the  region28,42.

The long-run and short-run dynamics illustrated in Table 2 show that wind speed represents the dominant 
variable that extensively increases grassland area burned over both the long and short run. Arithmetically, a 1% 
increase in mean monthly wind speed increases the burned grassland area by 6.9% (different from zero in a 99% 
confidence interval (99% CI)) in the long run, and 2.2% (99% CI) in the short run, while holding other variables 
constant. Besides the direct impact of wind speed on the grassland area burned, it is likely to affect other environ-
mental conditions which also influence fire behavior throughout the Xilingol region. That is, the dynamics of the 
whole system show complex causal relations that may not be completely explicit on single equation coefficients. 
For example, our data suggest that wind speed increased following the burning of grasslands (see Supplementary 
Information Fig. S1). This is consistent with the observation of more extensive burned grasslands over the study 
period also associated with a dramatic increase in wind speed, an indicator of potential positive feedback not 
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considered in previous  studies23. Importantly, high wind speeds were measured in May–August accompanied 
by the dry land surface conditions and atmospheric aridity, contributing to the influence of burning grasslands 
feeding back to further promote pyrogenic conditions. Above the threshold, each incremental increase in wind 

Figure 3.  Plots of the dynamic simulated ARDL model showing the effect of: (a,b) positive and negative 
one standard deviation change in predicted wind speed on burned grasslands (c,d) positive and negative one 
standard deviation change in predicted maximum temperature on burned grasslands (e,f) positive and negative 
one standard deviation change in predicted carbon emission on burned grasslands (g,h) positive and negative 
one standard deviation change in predicted sunlight on burned grasslands. Dots represent average predicted 
value while dark blue to light blue lines denote 75, 90 and 95% confidence intervals. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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speed on a monthly scale leads to larger burned grasslands across the Xilingol region, overriding other ecological 
properties, and grassland functions.

Threshold maximum temperature causes uncertainty in ecological change. The maximum 
temperature is also an important predictor of the increasing extent of burned grasslands. The estimated elas-
ticity of maximum temperature in the long-run indicates that a 1% increase in maximum temperature results 
in a 2.4% increase in burned grassland extent (99% CI) while holding other variables constant (Table 2). The 
short-run estimated elasticity of maximum temperature is similar to the long-run response, as a 1% increase in 
maximum temperature leads to a 2.3% (99% CI) increase in burned grasslands. The results corroborate similar 
 studies13–15,22.

The effect of maximum temperature could have more uncertainty because significant relationships between it 
and burned grasslands occur only when the regional summer maximum temperature exceeded a threshold level, 
producing a nonlinear  relationship22. That is, slight changes in maximum temperature are unlikely to change the 
ecosystem except when a threshold is crossed, above which effects can be dramatic.

A more meaningful understanding of the effect of maximum temperature on burned grassland areas can 
be achieved by the use of the simulations of the ARDL model, given that all the relationships among variables 
are considered. At time t = 10, a small increase in maximum temperature in the short run is not statistically 
significant, but becomes statistically significant in the long run. Following a negative shock on the temperature 
at t = 10, the maximum temperature decreases, stabilizing three periods later. The equilibrium temperature shift 
over the long-run scenario time is statistically significant (95% CI). Discrepancies between burned grassland 
area and maximum temperature trends in Xilingol may be rooted in urbanization, vegetation type transitions, 
and/or natural variability to climate response. Additionally, the frequency of human ignitions, along with other 
anthropogenic disturbances, strongly supported the abrupt impact of maximum temperature overpowering the 
influence of other environmental variables (SI Fig. S2).

Influence of sunlight on burned grasslands and ecological change. The amount of sunlight exac-
erbates changes in burned grassland area both directly via the drying effect of radiant heat on fuel and indirectly 
by influencing other climatic parameters such as temperature and humidity. A 1% increase in sunlight resulted 
in a 1.98% and 0.24% (99% CI) increase in burned grasslands in the long and short-runs, respectively (Table 2). 

Table 2.  Short-run and long-run coefficients of dynamic ARDL. ARDL (1,1,0,1,1,1,1) was selected based on 
the Schwarz Bayesian Criterion. **1% level of significance. *5% level of significance.

Variable Coefficient Std. error t-Statistic Prob

ln Windt 6.929* 1.591 4.352 0.01

∆ln Windmt−1 2.237* 0.106 21.06 0.01

ln Tmaxt 2.361** 0.095 24.521 0.01

∆ln Tmaxt−1 2.281* 0.519 4.393 0.01

ln Rel.humanityt 0.097 0.064 1.514 0.134

∆ln Rel.humanityt−1 0.068 0.067 1.034 0.305

ln Precipt 0.106 0.099 1.070 0.288

∆ln Precipt−1 0.091 0.103 0.883 0.380

ln Sunlightt 1.986* 0.412 4.814 0.01

∆ln Sunlightt−1 0.239* 0.112 2.128 0.01

ln Tmint 0.043 0.083 0.519 0.605

∆ln Tmint−1 0.073 0.126 0.578 0.564

ln Bpdt 0.180 0.155 1.161 0.249

∆ln Vpdt−1 0.017 0.064 0.271 0.786

ln Cemt 0.913** 0.155 5.872 0.01

∆ln Cemt−1 0.864* 0.189 4.562 0.01

ECTt−1  − 0.601* 0.124  − 4.81 0.000

R2 0.783

Adjusted R2 0.714

Simulations 5000

Durbin–Watson-stat 2.082

Diagnostics

χLM − ARCH
2 0.38

χLM − B− G
2 0.41

Functional form 2.131 (0.121)

Ramsey RESET test 3.421 (0.154)

Normality 0.761 (0.681)
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A negative shock in ln(sunlight) at time (t = 10), insignificantly impacted burned grassland area over the next 
several periods (Fig. 3). This rapid response is explained by the inclusion of sunlight with a lagged-difference as 
a dependent variable. Conversely, a positive shock to ln(sunlight) at time (t = 10) increases area burned, which, 
in turn, shifts the equilibrium and predicts the ecological change just beyond t = 10.

Impacts of burned grasslands to carbon emissions and ecological change. The consequence of 
carbon emissions from burned grasslands was found to be an important relationship in the long run. Carbon 
emissions, whether from these fires or other sources in Xilingol may influence the extent of burning in this 
region by contributing to the forcing of atmospheric temperature. More directly, grassland fires resets succes-
sion, potentially increasing ecosystem flammability (SI Fig. S3). The estimated elasticity of carbon emission, in 
the long run, is 0.91, hence, a 1% increase in carbon emissions is related to a 0.86% increase in burned grasslands 
(95% CI) in the long run and 0.91% (99% CI) in the short run (Table 2).

The graphical representation of Fig. 3 shows that a change in predicted carbon emissions on burned grasslands 
and ecological change. The positive shock of carbon emission on burned grasslands and ecological change was 
associated with a small increase in carbon emission in the short run that is statistically significant at time t = 10. 

Figure 4.  Recursive CUSUM plot of (a) Maximum temperature, (b) minimum temperature, (c) sunlight, (d) 
wind speed, (e) vapor pressure deficit, (f) relative humidity, (g) precipitation, (h) carbon emission with 95% 
confidence bands around the null. For all variables, residuals fall between the limits, validating the ARDL 
bounds testing model and showing stability of the variances of coefficients over time.
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Consistent with other modeled changes, carbon emissions also increase significantly over the predicted value 
in the long run.

Ecological properties under threshold-governed ecosystems. The mechanism underpinning eco-
logical properties can vary widely with significant uncertainty where threshold relationships among different 
biophysical processes  occur22. The model suggests significant changes in the frequency of climatic variations 
prior to and in response to, the increased areal extent of burned grasslands (SI Figs. S1–S3). Our results highlight 
the importance of varying patterns in dominant burned grassland climatic factors (e.g., SI Figs. S1–S3) may also 
hint at broader implications, suggesting that sudden ecosystem state changes, fire-related or otherwise, may 
naturally exhibit significant variability across space and  time22. The results strongly suggest that area burned 
increases mainly due to increases in wind speeds during the summer season when characteristically warm tem-
peratures and low humidity facilitate fuel drying and fire spread (see SI Fig.  S2) and not due to concurrent 
changes in anthropogenic activities such as fire suppression practices, land management, and human ignitions. 
This is not to say that anthropogenic activities are negligible in dictating the modern extent of annually burned 
grasslands. Rather, increased human ignition is associated with increased burned grassland extent, further con-
founding a modeling effort based solely on physical ecosystem drivers.

Our long-run analyses suggested that predicted burned grassland extent is insensitive to change in maximum 
temperature, vapor pressure deficit, precipitation, or relative humidity. These findings contrast with studies that 
predict increased fire impacts in north-eastern China in response to higher maximum temperature, decreased 
precipitation, greater vapor pressure deficit, and lower  humidity28,42,45–48. We posit four potential explanations for 
this divergence: First, although inter-annual precipitation outside the fire season varies significantly in Xilingol 
grasslands, little precipitation arrives during the fire season itself. Therefore, inter-annual variation in fire season 
precipitation is insufficient to impact burned grassland extent. Second, grassland soil field capacity in this region 
is quite high. Therefore, fire season fuel moisture levels are accordingly unresponsive to precipitation variation. 
Third, the vast majority of fires in Xilingol originate from human  activities23,28,42. These ignitions, and wind speeds 
and temperatures coincident with them, rather than fuel conditioning, may explain burned grassland extent. 
Finally, it is also possible that our statistical approach is insufficiently sensitive to detect a precipitation response 
under the conditions experienced across the 18-year time series used in this study.

Model estimation. Our empirical strategy for estimating the proposed models follows a series of tests 
required before the application of the novel dynamic simulations of  ARDL27. First, the dynamic ARDL simula-
tions require that the series are integrated below order two, I(2), meaning that the series can be integrated of 
order one, I(1); integrated of order zero, I(0), or a mixture of both I(1) and I(0). To test the level of integration 
in the series, we utilized the Augmented Dickey–Fuller (ADF)49, Phillips–Perron (PP)50, Kwiatkowski, Phillips, 
Schmidt, Shin (KPSS)51, and modified Dickey-Fuller generalized least squares (DF-GLS)52 unit root techniques. 
While all the unit root techniques are tested based on the null hypothesis of unit root, KPSS is tested based on 
the null hypothesis of stationarity. Testing for unit root is an important component in the model estimation to 
prevent a spurious relationship between the series. A simplified version of testing for unit root can be expressed 
in AR (1) as:

where  yt is the series to be tested for unit root, εt is the error term. εt is independent and identically distrib-
uted, independent of the initial detected value  y0, and has a zero-mean if the previous observation of y is: 
E
(

εt |yt−1 . . . y0
)

= 0 . The null hypothesis of the unit root can be tested by H0: ρ = 1 against the alternative H1: 
ρ < 1. If the null hypothesis is true, the model is non-stationary and would have an order of integration larger 
than 0. The ADF test includes lagged values of the response allowing for testing stationarity in higher-order 
autoregressive processes. The PP test makes a similar correction as ADF but uses a non-parametric modification 
of the t statistic that makes it more robust for unspecified autocorrelation and non-constant variance. The KPSS 
test may be used as a complementary test for stationarity due to its null hypothesis, which can be used with data 
on which other unit root tests are not conclusive. The DF-GLS test presents an improvement over ADF by using 
a generalized least squares rationale. On several empirical  studies53,54 it has been shown to have better power 
performance for small-sample sizes and especially when the coefficient ρ is close to 1, that is, the series is near 
to non-stationarity.

After confirming the order of integration, the dynamic ARDL simulations require the series in the models to 
be cointegrated. The traditional concept of cointegration exists when a set of series are I(1) but there are some 
linear combinations of them that are I(0). This will, in effect, control for spurious regression that affects statisti-
cal inferences. Validation of the existence of cointegration confirms a possible long-run relationship between 
the series. Contrary to the traditional forms of cointegration that require all series to exhibit both I(0) and I(1), 
Pesaran proposed a vibrant cointegration method that deals with a sophisticated order of  integration41. This 
means that the autoregressive distributed lag (ARDL) bounds testing cointegration do not require strict pre-
conditions, except that the order of integration should not be I(2). Before cointegration was tested, we utilized 
lag selection criteria to determine the optimal lag. We used the ARDL bounds testing approach to examine the 
level relationship between the variables. The null hypothesis of no cointegration is tested using Fisher’s  test55 
statistic matched against the lower and upper bound critical values. The null hypothesis of no level relationship 
is rejection if the F-statistic is extreme compared to the upper bound critical values. To validate the bounds test-
ing procedure for cointegration, we utilized the novel critical value bounds test and approximate p-values using 
response surface  regression44.

(1)yt = a+ ρyt−1 + εt , t = 1 . . .T
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Third, after validating the existence of a level relationship, the dynamic ARDL simulations require that the 
series are fitted with the error correction based-ARDL, expressed as:

where  yt denotes a change in the target variable, a0 is the constant,  yt−1 represents the lagged target variable at 
levels, x represents the independent series in time (.)t−1 at levels, a?? is the first difference, p and q are the optimal 
lags, and εt is the error term. Model 2 corresponds to a particular formulation called Error Correction Model 
(ECM), where long and short-run effects are combined. Parameters δj for j = 0, 1,…, k; are related to the long-
run relations that were found by cointegration. Expressing  and  for j = 1,…, k, then all variables related to δ 
coefficients maybe rearranges as: 

(

α0yt−1 + α1x1,t−1 + · · · + αkxk,t−1

)

= α0ECt−1 where ECt−1 is known as the 
error correction term, that allows to estimating parameters in Model 2 given cointegration.

The estimated models were validated using the cumulative sum and cumulative sum of  square56, to examine 
the stability of the estimated models. After meeting all the pre-conditions, the novel dynamic simulations of 
ARDL can then applied using Eq. (2) but modified to include counterfactual change using a single shocked 
regressor, amount of shock to be applied (±), length of the scenario for the simulation, shock scenario time, 
number of simulations, burn-in rate, and the resulting dynamic plot.

Conclusion
This study demonstrates the importance of addressing non-stationarity of time series data, using the unit root test 
to elucidates short- and long-term ecosystem responses. Models for fire-prone grassland, and other landscapes 
existing near-threshold levels for key ecosystem drivers are susceptible to compounding data inaccuracies. The 
dynamic simulated ARDL approach identified wind speed as the most important climatic variable in determin-
ing the model outputs in the complex fire-climate-human relationship, followed by maximum temperature, with 
sunlight and carbon emission having only minor to modest influence. Potential positive and negative feedbacks 
were identified and these are needed to inform best management practices. Adaptation of this approach would 
help generate the more precise information needed by ecologists and stakeholders to plan and respond appro-
priately to management challenges in fire-prone landscapes under future environmental scenarios.

Data availability
The data of climatic variables from 2001 to 2018 were taken from the China Meteorological Data Sharing Service 
Centre (https ://data.cma.cn/en; accessed 28 June 2020). Xilingol burned grasslands records were collated from 
the Monitoring Centre of the Ministry of Agriculture (https ://www.moa.gov.cn/; accessed 28 June 2020). The 
field data of Xilingol burned grasslands are available from the corresponding author upon request.
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