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A B S T R A C T   

Lumpfish is used to control sea lice in open net-pen farming of Atlantic salmon, but little is known about their 
nutritional requirements. The aim of this study was to investigate the effects of replacing marine oil (MO) with 
rapeseed oil (RO), in diets incorporating 50 % plant protein concentrates, on the growth, chemical and fatty acid 
(FA) composition of juvenile lumpfish. Four extruded diets, nearly iso-lipidic (14–15% DM) and iso-nitrogenous 
(53–54% DM) were produced with either 10 % MO (fish oil : krill oil constant proportion 2.3 : 1; Control), or the 
MO replaced with either 25 %, 50 % or 100 % replacement with RO to give the diets identified as RO25, RO50 
and RO100, respectively. Triplicate groups of fish (7 ± 0.18 g) were fed the experimental diets ad libitum during 
6 weeks. No significant effects were found on growth parameters, specific growth rate, hepatosomatic index 
(HSI), visero-somatic index, condition factor (CF), and whole body chemical composition when 50 % of MO was 
replaced by RO. Monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) in whole body, 
liver and muscles were also not affected by the 50 % replacement of MO. Total substitution of MO with RO 
significantly reduced the growth performance, and CF, but increased the HSI, and crude lipid in whole body and 
liver, accompanied by lipid deposition. At the end of the experiment, saturated fatty acids (SFA), PUFA, n-3 FA 
and eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) in whole body, muscles, and liver decreased (p <
0.05), while MUFA, and total n-6 FA increased (p < 0.05) in fish fed RO100. In conclusion, the results of the 
present study suggest that dietary inclusion of 50 % RO in diets where the protein content was derived from 
marine/plant origin (50/50), did not impair the growth of juvenile lumpfish.   

1. Introduction 

Lumpfish (Cyclopterus lumpus), also known as lumpsucker, are used 
as a biological means of preventing or reducing sea lice infestations in 
open net-pen farming of Atlantic salmon (Imsland et al., 2014a, 2014b, 
2014c; Powell et al., 2018). This has resulted in a rapid increase in their 
production, reaching 42.4 million fish in 2019 (Norwegian Directorate 
of Fisheries, 2019), making lumpfish the second most important aqua
culture species in Norway. Increasingly, attention has been paid to the 
welfare of lumpfish, warranting studies to improve knowledge of fish 
nutrition and tolerance to plant ingredients to improve fish health. 
Recent experiments showed that 50 % of fishmeal (FM) could be 

replaced with soy and pea protein concentrate without a negative effect 
on growth and development (Willora et al., 2020). To our knowledge, no 
studies have been performed to investigate the replacement of fish oil 
(FO) with plant oil (PO) in feeds for lumpfish. 

Aquaculture is the major user of FO with approximately 73 % used 
for aquafeeds, but the current direct human consumption (17 %) is 
increasing (IFFO, 2018). Fish oil is a unique source of long-chain poly
unsaturated fatty acids (LC-PUFA), particularly EPA (C20:5 n-3) and 
DHA (C22:6 n-3), essential to marine fish and incorporated in feeds to 
maintain fish growth, health, and physiological functions (Peng et al., 
2016; Tocher, 2015; Tocher et al., 2010). The aquafeed industry cannot 
rely solely on dwindling fisheries resources to supply FO (Chen et al., 
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2020; Delgado et al., 2003; Gatlin et al., 2007). Other marine derived 
oils that may become more available in the future are from underutilized 
species in lower trophic levels, such as mesopelagic fish, copepods 
(Melle et al., 2004; Olsen et al., 2010, 2004), and krill (Hewitt et al., 
2002; Olsen et al., 2010; Sprague et al., 2017). Antarctic krill (Euphasia 
superba) oil has a higher content of phospholipid-bound n-3 LC-PUFA 
(Kolakowska et al., 1994; Le Grandois et al., 2009); with a high 
bio-efficacy and bioavailability than FO, which is dominated by 
triacylglycerol-bound EPA and DHA (Salem and Kuratko, 2014). 

The largest and most widely used oil alternatives for aquafeeds 
comes from terrestrial plants. Over the past 20 years, a variety of plant 
oils have been considered as dietary substitutes for MO in feeds for 
commercially important aquaculture species, representing a more reli
able source of production of the bulk ingredient (Naylor et al., 2009; 
Turchini et al., 2009; USDA, 2020). Rapeseed (Brassica napus) is the 
third most produced PO, after palm oil and soybean oil, being used for 
both food and nonfood purposes (USDA, 2020; Wu et al., 2019). Global 
production of RO has reached 26.98 million metric tons (USDA, 2020), 
and is characterized by substantial levels of MUFA, PUFA and low levels 
of SFA (7%) (Lewinska et al., 2015). In RO, oleic acid (OA: C18:1 n-9) is 
the most abundant FA, accounting for 59 %, followed by linoleic acid 
(LA: C18:2 n-6) (19 %) and alpha-linolenic acid (ALA: C18:3 n-3) (9%), 
but it lacks LC-PUFAs such as EPA and DHA (Turchini et al., 2010). In 
Norwegian salmon feeds RO together with camelina oil accounts for 
19.8 % of the bulk content compared to FO derived from forage fish and 
trimmings from both capture and culture fisheries which makes up 10.4 
% (Aas et al., 2019). In addition to its incorporation in salmon diets, 
studies have also investigated the possibilities of replacing FO with RO, 
either alone or in combination with other POs in diets of several species 
such as European sea bass (Dicentrarchus Iabrax) (Montero et al., 2005), 
tilapia (Oreochromis niloticus) (Peng et al., 2016), carp (Ljubojević et al., 
2015; Sun et al., 2011; Yang et al., 2020), senegalese sole (Solea sene
galensis) (Pereira et al., 2019), sterlet sturgeon (Acipenser ruthenus) 
(Pourhosein Sarameh et al., 2019), yellow croaker (Larimichthys crocea) 
(Mu et al., 2020), and gilthead sea bream (Sparus aurata) (Sánchez-Moya 
et al., 2020). The total replacement of FO by POs which are devoid of 
DHA and EPA poses a major challenge in assuring the recommended 
levels of such FAs for fish growth (EFSA, 2010). An unfavorable n-6 : n-3 
ratio with increasing incorporation of PO may lead to adverse health 
effects, such as excessive lipid deposition in the liver, resulting in an 
alteration of liver morphology and functions (Boonanuntanasarn et al., 
2019; Peng et al., 2014; Torrecillas et al., 2017), as well as arresting 
growth (Bou et al., 2017a) and promoting inflammation in the distal 
intestine (Bou et al., 2017b; Moldal et al., 2014). 

The aim of the present study was to investigate the effect of replacing 
MO (fish oil : krill oil constant proportion 2.3 : 1) with 25, 50 or 100 % 
RO in feeds where 50 % of the protein was derived from plant protein 
concentrates, to evaluate the growth performance, FA, and chemical 
composition of whole body and tissues in juvenile lumpfish. 

2. Materials and methods 

2.1. Ethics statement 

The feeding trial was approved by the ethics and animal welfare 
committee at Nord University, Norway. All fish handling protocols 
comply with guidelines under the Norwegian animal welfare act (LOV- 
2009− 06-19− 97) and European Union act (EU/2010/63). MS-222 
(Tricaine methane sulphonate; Argent Chemical Laboratories, USA; 30 
g /L) was used to anesthetize the animals before handling or euthanasia; 
the latter administered by a sharp blow to the head. 

2.2. Experimental diets and feeding trial 

Four experimental diets were formulated to be nearly iso-lipidic 
(14–15% DM) and iso-nitrogenous (53–54% DM). Feed ingredient 

composition, the analyzed proximate composition, and the FA profiles of 
experimental diets are presented in Tables 1 and 2 respectively. The 
protein and carbohydrate ingredients were constant and the feed 
differed in the inclusion of RO from 0 (control, CTRL) to the three 
experimental diets consisting of 25 % (RO25), 50 % (RO50) and 100 % 
(RO100) replacement of the MO used in the CTRL diet. The key protein 
ingredients were FM, soy protein concentrate, pea protein concentrate, 
and wheat gluten in diets supplemented with L-tryptophan, DL- 
methionine, L-taurine and L-histidine to balance essential amino acids. 
Experimental diets were manufactured by SPAROS Lda. (Olhao, 

Table 1 
Ingredient composition (g 100g-1) and analyzed proximate composition (%) of 
the experimental diets on an as fed basis. Values are expressed as mean of 
triplicate samples per diet.  

Ingredients CTRL RO25 RO50 RO100 

Fish meal 1 29.00 29.00 29.00 29.00 
Soy protein concentrate 2 14.45 14.45 14.45 14.45 
Pea protein concentrate 3 14.45 14.45 14.45 14.45 
CPSP 90 4 2.50 2.50 2.50 2.50 
Krill meal 5 5.00 5.00 5.00 5.00 
Wheat gluten 6 7.00 7.00 7.00 7.00 
Wheat meal 7 6.95 6.95 6.95 6.95 
Pea starch 8 5.35 5.35 5.35 5.35 
Fish oil 9 7.00 5.28 3.52 0.00 
Krill oil 10 3.05 2.26 1.51 0.00 
Rapeseed oil 11 0.00 2.51 5.03 10.05 
Vit & Mineral Premix 12 1.00 1.00 1.00 1.00 
Lutavit E50 13 0.05 0.05 0.05 0.05 
Antioxidant powder 14 0.20 0.20 0.20 0.20 
Sodium propionate 15 0.10 0.10 0.10 0.10 
MCP 16 0.98 0.98 0.98 0.98 
Carophyll Pink 17 0.05 0.05 0.05 0.05 
Nucleotides 18 0.50 0.50 0.50 0.50 
Garlic extract 19 0.50 0.50 0.50 0.50 
L-Histidine 20 0.25 0.25 0.25 0.25 
L-Tryptophan 21 0.17 0.17 0.17 0.17 
DL-Methionine 22 0.35 0.35 0.35 0.35 
L-Taurine 23 1.10 1.10 1.10 1.10 
Proximate composition     
Dry matter 95.4 96.5 97.2 97.8 
As fed %     
Crude Protein 52.9 53.7 54.0 53.9 
Crude lipid 14.3 14.8 14.8 15.1 
Ash 8.5 8.5 8.6 8.7 
Energy (kJ / g) 20.8 21.0 21.3 21.7 

1 NORVIK LT 70 : 70.3 % crude protein (CP) 5.8 % crude fat (CF) (Sopropêche, 
France). 
2 Soycomil : 63 % CP, 0.8 % CF (ADM, The Netherlands). 3 Lysamine GPS: 78 % 
CP, 0.9 % CF (Roquette Frères, France). 4 Soluble fish protein hydrolysate: 82.6 
% CP, 9.6 % CF (Sopropêche, France). 5 61.1 % CP, 17.4 % CF (Aker Biomarine, 
Norway). 6 VITAL: 83.7 % CP, 1.6 % CF, (Roquette, Frères, France). 7 10.2 % CP; 
1.2 % CF (Casa Lanchinha, Portugal). 8 NASTAR 90 % starch, (Cosucra, 
Belgium). 9 (SAVINOR UTS, Portugal). 10 (Aker Biomarine, Norway). 11 Henry 
Lamotte Oils (GmbH, Germany). 12 Vitamins (IU or mg kg-1 diet): DL-alpha 
tocopherol acetate, 100 mg; sodium menadione bisulphate, 25 mg; retinyl ace
tate, 20,000 IU; DL-cholecalciferol, 2000 IU; thiamin, 30 mg; riboflavin, 30 mg; 
pyridoxine, 20 mg; cyanocobalamin, 0.1 mg; nicotinic acid, 200 mg; folic acid, 
15 mg; ascorbic acid, 1000 mg; inositol, 500 mg; biotin, 3 mg; calcium pan
thotenate, 100 mg; choline chloride, 1000 mg, betaine, 500 mg. Minerals (g or 
mg kg-1 diet): cobalt carbonate, 0.65 mg; copper sulphate, 9 mg; ferric sulphate, 
6 mg; potassium iodide, 0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01 
mg; zinc sulphate,7.5 mg; sodium chloride, 400 mg; calcium carbonate, 1.86 g; 
excipient wheat middlings (PREMIX Lda, Portugal). 
13 (ROVIMIX E50, DSM Nutritional Products, Switzerland). 14 Paramega PX 
(Kemin Europe NV, Belgium) 15 Disproquímica (Portugal). 16 ALIPHOS MON
OCAL, 22.7 % P (ALIPHOS, Belgium) 17 Carophyll Pink 10 % CWS (DSM 
Nutritional Products, Switzerland). 18 Nucleoforce Salmonids (BioIbérica, 
Spain). 19 Macrogard, 67.2 % beta-glucans (Biorigin, Brazil). 20 L-Histidine 98 %, 
(Ajinomoto Eurolysine SAS, France). 21 L-Tryptophan 98 %, (Ajinomoto Euro
lysine SAS, France). 22 DL-Methionine for aquaculture 99 %, (EVONIK Nutrition 
& Care GmbH, Germany). 23 L-Taurine 98 %, (ORFFA, The Netherlands). 
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Portugal) and the extrusion process was earlier described by Willora 
et al. (2020). The oil mixtures were coated to the feeds using a Pegasus 
vacuum coater (model PG-10VCLAB, Dinnissen, Netherlands), at room 
temperature. Experimental diets were stored under chilled conditions 
until used. 

The feeding trial was conducted over a 6 week period at Nord Uni
versity research station, Faculty of Biosciences and Aquaculture (FBA). 
The four feeds were randomly assigned to triplicate tanks (n = 3 / feed 
group), each equipped with an automatic feeder (ArvoTec, Sterner, 
Norway). Fish were fed in abundance at a level of 2.5 % of their body 
mass on a daily basis between 06:00 to 21:00 at eight time intervals to 
make sure the fish were fed to apparent satiation. 

2.3. Lumpfish and experimental set-up 

Juvenile lumpfish of 4 g initial mean body weight were provided by 
Mørkvedbukta AS, Bodø, Norway. The fish were randomly allocated into 
12 indoor rearing tanks (500 L) with 200 fish per tank and acclimated to 
laboratory conditions for 16 days before the start of the feeding trial, 

during which time they were fed a commercial diet (Gemma Silk, 
Skretting, Stavanger, Norway). During acclimation fish grew to 
approximately 7 ± 0.18 g for all groups. Tanks were supplied with 
constant seawater flow (500 L / h) with water drawn from a depth of 250 
m from Saltenfjorden. The average salinity was 34‰ and the oxygen 
level remained above 86.7 ± 0.11 %, with an average temperature of 7.6 
± 0.9 ◦C. Light intensity was controlled by four florescent lamps (24 h) 
(Grunda Viktor work lamps, 38 W, luminous flux1350 lm) facing up
wards to provide similar light conditions to those in commercial lump
fish farms. Critical physical and chemical parameters; temperature, 
salinity and dissolved oxygen were monitored daily. 

2.4. Sample collection 

At start and termination of the experiment, all fish were anesthetized 
before individual body weight (g), length, and height (cm) were 
measured. Additionally, liver and visceral weights were recorded during 
the course of the experiment; at the start and after 3 and 6 weeks. A total 
of 28 fish per tank were sampled and stored at − 40 ◦C for subsequent 
whole body chemical composition and FA analysis. Samples of muscle 
(dorsal loin from left fillet) and liver from 10 fish per tank were also 
collected for determination of chemical composition and FA profile. 

2.5. Sample preparation for chemical and fatty acid analyses 

Whole body, liver, and muscle samples were thawed and divided into 
two groups of pooled samples, containing 14 whole fish, 5 livers and 5 
muscle samples per pool (n = 6 pooled samples / feed group). Fish were 
homogenized and part of this homogenate used to determine the mois
ture and ash content. Liver, muscle, and feed samples were also ho
mogenized and freeze dried for 72 h at − 70 ◦C using a VirTis benchtop K 
Mod (SP industries, Warminster, U.S.A) and dry matter recorded. 

2.6. Chemical analyses 

All chemical analyses followed standard methods. Experimental 
diets and tissue samples were performed in triplicate and duplicate 
respectively. In brief, moisture content was determined by drying whole 
fish (2.0 g) and feed (5.0 g) samples to a constant weight at 104 ◦C for 20 
h (ISO 6496− 1999). Whole fish samples were combusted in a muffle 
furnace to a constant weight at 540 ◦C for 16 h to determine the ash 
content at the FBA; the feed was analyzed by Eurofins (Moss, Norway) 
(ISO 5984− 2002). Crude protein of whole body (0.5 g), feed (0.5 g), and 
liver were determined by the Kjeldahl titration method (N x 6.25, 
KjeltecTM 2300, Foss Tecator AB, Höganäs, Sweeden ISO 5983− 1987). 
Crude fat in whole body (2.0 g), feed (5.0 g), and liver (0.2 g) were 
determined gravimetrically using the diethyl ester extraction method, 
according to the Norwegian Standard Association (1994). Also energy in 
feed and whole body were analyzed using a bomb calorimeter (IKA 
C200, Staufen, Germany: ISO 9831− 1998). 

2.7. Fatty acid analysis 

An optimum total lipid extraction of freeze dried feeds, whole body, 
liver, and muscle (n = 6 pooled samples / feed group) samples was 
carried out according to the chloroform and methanol gravimetric 
determination described by Bligh and Dyer (1959). All analyses were 
performed in triplicate (feed) and duplicate (tissues). Briefly, homoge
nization of freeze dried samples was carried out by mixing 0.8 mL of 
distilled water, 2 mL of methanol, and 1 mL of chloroform followed by 
addition of 1 mL of chloroform and 1 mL of distilled water. Samples were 
then centrifuged (2000 g) to separate the phases. The lower chloroform 
phase containing lipids was transferred into a Kimax tube and dried 
under a gentle nitrogen flow to prevent FA oxidation. Fatty acid methyl 
esters (FAMEs) of samples were obtained by transesterification and 
methylation according to the AOCS Official Method Ce 1b-89. FAMEs 

Table 2 
Fatty acid composition of the experimental diets.  

Fatty acid (%) CTRL RO25 RO50 RO100 

Saturates (SFAs)     
C14:00 6.81 ±

0.11d 
5.41 ±
0.07c 

4.02 ±
0.02b 

1.63 ± 0.02 
a 

C16:00 22.03 ±
0.38d 

18.25 ±
0.15 c 

15.03 ±
0.13b 

9.23 ± 0.07 
a 

C18:0 3.98 ± 0.02 
d 

3.42 ±
0.01c 

3.01 ± 0.03 
b 

2.20 ± 0.02 
a 

∑SFAs 1 32.82 ±
2.97b 

27.08 ±
2.46ab 

22.06 ±
2.04ab 

13.06 ±
1.29a 

Monounsturates 
(MUFAs)     

C16:1: n-9 5.92 ± 0.03 
d 

4.71 ± 0.43 
c 

3.49 ± 0.01 
b 

1.39 ± 0.01 
a 

C18:1 n-9 (OA) 16.10 ±
0.08 a 

25.70 ±
0.04 b 

34.67 ±
0.17 c 

49.30 ±
0.13 d 

C18:1 n-7 4.40 ± 0.02 
d 

4.17 ± 0.02 
c 

4.05 ± 0.44 
b 

3.66 ± 0.01 
a 

C20:1 n-11 3.97 ± 0.04 
b 

3.27 ± 0.29 
ab 

3.12 ± 0.23 
ab 

2.37 ± 0.12 
a 

C22:1 n-11 4.61 ± 0.03 
d 

3.75 ± 0.03 
c 

3.02 ± 0.02 
b 

1.77 ± 0.01 
a 

∑MUFAs2 35.00 ±
1.27a 

41.6 ±
2.41ab 

48.35 ±
3.45ab 

58.49 ±
5.18b 

Polyunsturates 
(PUFAs)     

C18:2 n-6 (LA) 9.32 ± 0.05 
a 

12.61 ±
0.04 b 

15.11 ±
0.01 c 

19.65 ±
0.13 d 

C18:3 n-3 (ALA) 1.84 ± 0.01 
a 

3.09 ±
0.02b 

4.04 ±
0.07c 

5.80 ± 0.07 
d 

C20:5 n-3 (EPA) 9.33 ± 0.09 
b 

7.08 ± 0.02 
ab 

4.79 ± 0.11 
ab 

1.70 ±
0.03a 

C22:6 n-3 (DHA) 9.15 ± 0.12 
d 

6.68 ± 0.09 
c 

4.30 ± 0.17 
b 

1.41 ±
0.04a 

∑PUFA3 31.84 ±
0.98a 

31.27 ±
1.04 a 

29.53 ±
1.31 a 

28.56 ±
2.07 a 

∑n-3 4 22.52 ±
1.13b 

18.66 ±
0.71ab 

14.42 ±
0.43 ab 

8.91 ±
0.64a 

∑n-6 5 9.32 ± 0.05 
a 

12.61 ±
0.04 b 

15.11 ±
0.01 c 

19.65 ±
0.13 d 

n-3/n-6 6 2.42 1.48 0.95 0.45 
EPA þ DHA 7 18.48 ±

0.07d 
13.76 ±
0.11c 

9.09 ±
0.15b 

3.11 ±
0.75a 

Values are expressed as mean value ± SEM of triplicate samples per diet. 
Σ SFA is the sum of saturated fatty acids. 
Σ MUFA is the sum of monounsaturated fatty acids. 
Σ PUFA is the sum of polyunsaturated fatty acids. 
n-3 is the sum of n-3 polyunsaturated fatty acids, includes C18:4. 
Σ n-6 is the sum of n-6 polyunsaturated fatty acids. 
n-3/n-6 is the ratio of Σ n-3 and Σ n-6. 
Sum of EPA and DHA. 
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analyses were performed in a gas chromatograph, (SCION 436-GC) 
fitted with a flame ionization detector, at 250 ◦C in duplicate. Separa
tion was achieved using a wax embedded column of 25 m length, 0.25 
mm internal diameter, and 0.2 μm film thickness (Agilent Technologies). 
Standard mixtures of FAMEs were used for identification and quantifi
cation of common FAs in samples (FAME MIX 2/GLC-473, Nu-Chek 
Prep, Elysian, MN, USA) and quantified using the relative percentage 
area of the total FA using Compass CDS, Bruker Co-operation software. 

2.8. Calculations 

Condition factor was calculated according to the formulae B1 and K 
proposed by Richter et al. (2000) and Fulton (1911). B1 (g cm− 3) = fish 
weight (g) / [fork length (cm) x body height 2 (cm)]. K (g cm− 3) = [fish 
weight (g) / fork length3 (cm)] × 100. Somatic indices and specific 
growth rate (SGR) were calculated employing the following formulae: 
Hepatosomatic index (HSI) = [liver weight (g) / fish weight (g)] × 100. 
Visero-somatic index (VSI) = [visceral weight (g) / fish weight (g)] ×
100. SGR (% day -1) = 100 × ln [final mean weight (g) − initial mean 
weight (g)] / number of feeding days. 

2.9. Statistical analysis 

All statistical analyses were performed and graphs generated using 
Sigmaplot 14.0 (Systat software, San Jose, CA). Data were tested for 
normality (Shapiro-Wilk test) and homogeneity of variances (Brown- 
Forsythe F-test). Individual means were compared by one-way analysis 
of variance (ANOVA), followed by Tukey’s multiple comparison test. A 
Kruskal-Wallis one-way analysis of variance on ranks, followed by 
Tukey’s multiple comparison test, was used for nonparametric data. 
Dunn’s pairwise multiple comparison test was used only to assess the 
significance of the unequal size of growth-related data at the end of the 
experiment. All data were presented as means ± SE (standard error), and 
differences were considered significant only if their p-value was < 0.05. 
Correlation of selected main FAs present in the whole body, liver, and 
muscles of the dietary groups with the FAs in their respective feeds were 

determined using Pearson’s correlation coefficient (r). The different 
strengths of (r) were defined as very high, high, moderate, low and 
negligible (Mukaka, 2012). 

3. Results 

3.1. Growth performance and somatic indices 

Biometric parameters, condition factor, and somatic indices 
measured during the feeding trial are presented in Table 3. No mortal
ities occurred during the experiment and all fish appeared healthy. Fish 
grew from an average of 7 g to 34 − 39 g over the 6 weeks feeding trial. 
Body weight, length, and height of fish showed significant differences 
among fish fed the experimental diets. All these parameters in RO100 
group were significantly lower than all other groups, while no differ
ences were observed among the other three groups at the mid- and end- 
points of the experiment (p < 0.05). The lower weight gain of fish fed 
RO100 was characterized by a tendency towards a lower SGR (p = 0.09). 
HSI was slightly, but significantly, higher in fish fed RO100 diet at the 
end of the experiment. Viserosomatic index was not affected by the diet, 
but all groups showed a small numerical drop at week 3 and 6 compared 
to the initial levels (p > 0.05). Condition factor (B1), was significantly 
lower in fish fed RO100 than CTRL and RO25 at the end of the 
experiment. 

3.2. Chemical composition of whole body and liver 

Chemical composition of crude protein, lipid, ash and energy in the 
whole body and liver are presented in Table 4. Whole body composition 
remained unaffected by dietary treatment up to 3 weeks of the feeding 
trial. At the end of the trial, whole body moisture was slightly higher in 
the fish fed RO100 (p < 0.05). The crude lipid was slightly, but signif
icantly higher, while crude protein was significantly lower in the RO100 
group compared to the control diet. Ash content was lower in RO50 fed 
fish compared to the other three diets (p < 0.05). Whole body energy 
content was similar among all groups (p > 0.05). Changes in liver 

Table 3 
Growth parameters and condition indices of lumpfish fed diets with different levels of rapeseed oil.  

Parameter Feeding trial period CTRL RO25 RO50 RO100 p - Value 

Growth parameters       
Body weight (g) Start 6.68 ± 0.17 6.93 ± 0.18 6.89 ± 0.18 6.78 ± 0.18 0.177  

Mid (3 W) 19.34 ± 0.41b 19.52 ± 0.42 b 19.13 ± 0.34 b 17.18 ± 0.41 a < 0.001  
End (6 W) 38.86 ± 0.48 b 39.05 ± 0.45 b 39.76 ± 0.49 b 34.25 ± 0.45 a < 0.001 

Body length (cm) Start 4.41 ± 0.04 4.44 ± 0.04 4.45 ± 0.04 4.43 ± 0.04 0.711  
Mid (3 W) 6.17 ± 0.05 b 6.10 ± 0.04 b 6.13 ± 0.04 b 5.90 ± 0.05 a < 0.001  
End (6 W) 8.49 ± 0.04 b 8.54 ± 0.03 b 8.53 ± 0.04 b 8.08 ± 0.04 a < 0.001 

Body height (cm) Start 2.23 ± 0.02 2.25 ± 0.03 2.25 ± 0.03 2.22 ± 0.03 0.185  
Mid (3 W) 3.50 ± 0.03 b 3.53 ± 0.03 b 3.53 ± 0.03 b 3.38 ± 0.03 a 0.050  
End (6 W) 4.25 ± 0.02 b 4.27 ± 0.02 b 4.34 ± 0.02 b 4.16 ± 0.02 a 0.001 

SGR (% day − 1) Start n.a n.a n.a n.a –  
Mid (3 W) 4.29 ± 0.22 4.33 ± 0.10 4.29 ± 0.10 3.80 ± 0.44 0.298  
End (6 W) 3.81 ± 0.07 3.86 ± 0.02 3.83 ± 0.09 3.55 ± 0.16 0.090 

Condition indices       
HSI (%) Start 2.26 ± 0.04 2.43 ± 0.04 2.63 ± 0.06 2.35 ± 0.04 0.046  

Mid (3 W) 2.11 ± 0.05 2.10 ± 0.04 2.24 ± 0.89 2.01 ± 0.05 0.249  
End (6 W) 2. 23 ± 0.07 b 2.25 ± 0.05 b 2.27 ± 0.05 b 2.54 ± 0.05 a 0.001 

VSI (%) Start 15.08 ± 0.16 15.58 ± 0.09 15.91 ± 0.11 15.21 ± 0.12 0.163  
Mid (3 W) 14.65 ± 0.25 15.36 ± 0.27 14.84 ± 0.33 15.17 ± 0.25 0.136  
End (6 W) 14.19 ± 0.17 14.05 ± 0.26 14.18 ± 0.28 14.52 ± 0.24 0.545 

CF, K (g cm− 3) Start 8.33 ± 0.97 8.04 ± 0.38 7.69 ± 0.15 7.72 ± 0.22 0.119  
Mid (3 W) 8.15 ± 0.09 a 8.47 ± 0.08 b 8.20 ± 0.07 ab 8.23 ± 0.07 ab 0.023  
End (6 W) 6.31 ± 0.05 b 6.22 ± 0.04 b 6.35 ± 0.04 ab 6.47 ± 0.07 a 0.002 

CF, B1 (g cm− 3) Start 0.30 ± 0.0022 0.31 ± 0.0025 0.30 ± 0.0015 0.30 ± 0.0017 0.061  
Mid (3 W) 0.25 ± 0.0022ab 0.25 ± 0.0022a 0.24 ± 0.0014b 0.24 ± 0.0016ab 0.034  
End (6 W) 0.25 ± 0.0016b 0.25 ± 0.0010b 0.24 ± 0.0011a 0.24 ± 0.0001a 0.001 

Values represented as means ± SEM. Growth parameters and CF for week 0 are based on measurements of all fish. Similarly, growth parameters and CF at the end of the 
feeding trial are based on both fish sampled and fish remaining after 42 days. Significant differences between treatment groups at the same time point are indicated by 
different superscript letters (p < .05). 
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protein and lipid followed a similar trend as whole body protein and 
lipid at the end of the experimental period. The liver lipid content 
increased in the RO100 group compared to other dietary groups, and 
protein content was reduced compared to the CTRL diet (p < 0.05). 

3.3. Fatty acid composition 

Fatty acid composition of the whole body, liver, and muscle are given 
in Table 5. Total SFA, PUFA, n-3, and amount of EPA and DHA of whole 
body, liver, and muscle were significantly different in all treatments, 
with the highest value in fish fed CTRL and the lowest in those fed 100 % 
RO (p < 0.05), reflecting the FA profile of each feed. Whole body FAs in 
fish fed RO25, RO50 and RO100 diets were dominated by MUFA (37 −
51 %), followed by PUFA (34 − 38 %), and SFA (13 − 19 %). Total 
MUFA and n-6 was higher in fish fed RO100 compared to the CTRL 
group (p < 0.05). Muscle FAs showed a similar trend as whole body FA, 
while FA of the liver in all experimental feeds was dominated by MUFA 
(47 − 60 %), followed by PUFA (32 − 33 %), and SFA (12 − 19 %). SFA 
in whole body, muscles and liver comprised mostly of myristic acid 
(C:14), palmitic acid (C16:0) and stearic acid (C:18), and were reduced 
with increasing levels of RO in the diets (p < 0.05). Palmitic acid rep
resented the majority of SFA and was lower in fish fed RO100 diet 
compared to the CTRL (p < 0.05). MUFA was the dominant lipid class in 
whole body and muscle for all experimental groups fed RO, and the 
dominating fatty acid OA (C18:1 n-9) was higher in fish fed RO100 
compared to the CTRL group (p < 0.05). PUFAs were the second most 
prevalent FAs and were dominated by LA, ALA, EPA, and DHA. Rape
seed oil in the feed increased LA and ALA and reduced the content of 
EPA and DHA (p < 0.05), in the whole body, liver and muscles (p <
0.05). The n-3 : n-6 ratios were higher in fish fed CTRL diet compared to 
RO100 (p < 0.05). The different FAs (PA, OA, LA, ALA, EPA, and DHA) 
and total amounts of SFA, MUFA and PUFA measured in whole body, 
liver and muscles, correlated (r = 0.69 − 0.99) with the contents of 
experimental diets (Fig. 1). A moderate positive correlation was noted 
between dietary and liver PUFA (r = 0.69, p = 0.03), while the other FA 
classes showed very high positive correlations (r>0.99, p < 0.01). 

4. Discussion 

4.1. Growth performance 

Lipid is essential in fish diets to provide energy and essential FAs. The 
diets were formulated to be iso-proteinic and iso-lipidic and the differ
ences noted in weight gain and SGR is therefore explained by changes in 
FA composition. The long-chain PUFAs, EPA and DHA, were remarkably 
reduced with increasing levels of RO in the feed (Table 2). The dietary 
requirement of EPA and DHA for juvenile lumpfish is not known; 
however, the reduced growth for fish fed the RO100 suggest that 
nutrient requirement was not met. Fish fed the CTRL, RO25 and RO50 
showed no differences in growth, suggesting that dietary EPA + DHA 
levels in the range 1.3–2.6%, corresponding to 9–18.5% of total FAs, 
satisfy the nutrient requirement. Full replacement of MO with RO 
resulted in lower final body weight and SGR, suggesting too low a level 
of essential FAs to support growth. Growth arrest is reported in fish fed 
diets deficient in EPA and DHA (Bou et al., 2017b; Tocher et al., 2010) 
and has been reported for a number of species such as silver perch 
(Bidyanus bidyanus) (Smith et al., 2004), yellow tail king fish (Seriola 
lalandi) (Bowyer et al., 2012), Atlantic salmon (Bell et al., 2001) and 
fingerling black carp (Mylopharyngodon piceus) (Sun et al., 2011), sea 
bream (Benedito-Palos et al., 2008) and yellow croaker (Mu et al., 
2020). The optimal replacement of MO with RO was not determined in 
this experiment, but studies with other species have shown that growth 
was unaffected by substituting FO with RO up to 60 % in sea bass 
(Mourente et al., 2005), 75 % in gilthead sea bream (Izquierdo et al., 
2005; Sánchez-Moya et al., 2020), 50 % in Atlantic salmon (Rosenlund 
et al., 2001), and 70 % in red sea bream (Pagrus major) (Huang et al., 
2007). 

4.2. Condition factor and somatic indices 

The condition factor was calculated with both Fulton’s condition 

Table 4 
Chemical composition of the whole body and liver of lumpfish fed diets with 
different inclusion levels of rapeseed oil.  

Parameter Feeding 
trial 
period 

CTRL RO25 RO50 RO100 p - 
value 

Whole fish       
Moisture Start 87.1 ±

0.08 
87.2 ±
0.13 

87.1 
±

0.17 

86.8 ±
0.17 

0.457  

Mid (3 W) 87.1 ±
0.07 

87.0 ±
0.09 

87.1 
±

0.05 

87.3 ±
0.09 

0.226  

End (6 W) 86.5 ±
0.05a 

86.3 ±
0.06a 

86.3 
±

0.09a 

86.7 ±
0.11b 

<

0.001 

In dry 
matter, 
%       

Crude 
protein 

Start 64.6 ±
0.26 

64.7 ±
0.27 

64.5 
±

0.83 

64.9 ±
0.33 

0.896  

Mid (3 W) 63.4 ±
0.47 

63.2 ±
0.48 

63.2 
±

0.41 

62.6 ±
0.20 

0.483  

End (6 W) 62.8 ±
0.35a 

62.2 ±
0.26ab 

61.8 
±

0.22ab 

61.5 ±
0.39b 

0.031 

Crude lipid Start 14.8 ±
0.27 

14.8 ±
0.38 

14.5 
±

0.19 

15.2 ±
0.24 

0.306  

Mid (3 W) 16.2 ±
0.19 

16.8 ±
0.40 

16.4 
±

0.13 

15.8 ±
0.28 

0.095  

End (6 W) 18.6 ±
0.32a 

18.6 ±
0.43a 

19.7 
±

0.38ab 

20.5 ±
0.78b 

0.021 

Ash Start 1.60 ±
0.03 

1.50 ±
0.09 

1.49 
±

0.05 

1.45 ±
0.05 

0.350  

Mid (3 W) 1.63 ±
0.01 

1.60 ±
0.02 

1.64 
±

0.01 

1.64 ±
0.02 

0.558  

End (6 W) 1.52 ±
0.01 ab 

1.54 ±
0.02 ab 

1.44 
±

0.03 b 

1.54 ±
0.01 ab 

0.031 

Energy 
(kJ/g) 

End (6 W) 22.2 ±
0.24 

22.5 ±
0.12 

22.4 
±

0.13 

22.5 ±
0.15 

0.489 

Liver       
Moisture End (6 W) 63.6 ±

1.1 
64.6 ±
2.62 

60..6 
±

0.67 

62.2 ±
0.81 

0.195 

In dry 
matter, 
%       

Crude 
protein 

End (6 W) 24.8 ±
0.18a 

23.5 ±
0.31ab 

22.4 
±

0.19b 

21.7 ±
0.46b 

0.003 

Crude lipid Start 50.9 ±
2.54 

56.3 ±
0.23 

58.5 
±

0.80 

56.5 ±
1.10 

0.168  

End (6 W) 69.2 ±
0.61a 

69.7 ±
0.47a 

73.8 
±

0.28b 

77.4 ±
0.41c 

<

0.001 

Values represented as means ± SEM (n = 6 / treatment). Significant differences 
between treatment groups at the same time point are indicated by different 
superscript letters (p < .05). 
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Table 5 
Fatty acid composition of the whole body and liver at the start (week 0) and at the end of the feeding trial (week 6). Muscle fatty acid composition shown only for the 
end of the feeding trial.  

Whole body 

Fatty acid Start Week 6 p - Value 

% of total fatty acids  CTRL RO25 RO50 RO100  
Saturates (SFAs)       

C14:00 2.77 ± 0.03 3.48 ± 0.02 d 2.79 ± 0.02 c 2.27 ± 0.02 b 1.18 ± 0.01 a < 0.001 
C16:00 14.52 ± 0.40 14.68 ± 0.08 d 12.84 ± 0.05 c 11.61 ± 0.04 b 8.66 ± 0.06 a < 0.001 
C18:0 4.71 ± 0.05 4.45 ± 0.05b 4.09 ± 0.03 bc 3.88 ± 0.02 ac 3.53 ± 0.02 a < 0.001 
∑SFA 1 21.00 ± 0.16 22.61 ± 0.86 b 19.72 ± 0.75ab 17.76 ± 0.67 a 13.37 ± 0.53 a < 0.001 
Monounsturates (MUFAs)       
C16:1 4.07 ± 0.03 4.66 ± 0.04 b 3.66 ± 0.02 bc 2.85 ± 0.02 ac 1.48 ± 0.01 a < 0.001 
C18:1 n-9 (OA) 19.13 ± 0.14 19.14 ± 0.15a 25.58 ± 0.15b 31.62 ± 0.15 c 43.32 ± 0.15 d < 0.001 
C18:1 n-7 4.87 ± 0.03 5.13 ± 0.03 d 4.69 ± 0.02 c 4.39 ± 0.01 b 4.00 ± 0.02 a < 0.001 
C20:1 n-11 1.43 ± 0.01 2.67 ± 0.02 d 2.41 ± 0.01 c 2.21 ± 0.01 b 1.86 ± 0.01 a < 0.001 
C22:1 n-11 0.69 ± 0.01 1.75 ± 0.02 b 1.45 ± 0.01 ab 1.20 ± 0.01 a 0.68 ± 0.01 a < 0.001 
∑MUFA2 30.19 ± 1.15 33.35 ± 1.08 b 37.79 ± 1.54ab 42.27 ± 1.98ab 51.34 ± 2.82 b 0.004 
Polyunsturates (PUFAs)       
C18:2 n-6 (LA) 13.70 ± 0.10 10.05 ± 0.07 a 12.87 ± 0.05 b 15.18 ± 0.09 c 20.34 ± 0.07 d < 0.001 
C20:2 n-6 0.29 ± 0.10 0.26 ± 0.00 b 0.25 ± 0.00 a 0.25 ± 0.01 a 0.27 ± 0.01 b < 0.001 
C18:3 n-3 (ALA) 1.96 ± 0.01 1.82 ± 0.01a 2.80 ± 0.01 ab 3.39 ± 0.30 b 5.30 ± 0.03 b < 0.001 
C18:4 n-3 1.34 ± 0.01 2.05 ± 0.01d 1.55 ± 0.01 c 1.77 ± 0.01 b 0.50 ± 0.01 a < 0.001 
C20:3 n-3 1.31 ± 0.02 0.98 ± 0.01 d 0.78 ± 0.01 c 0.60 ± 0.01 b 0.30 ± 0.01 a < 0.001 
C20:4 n-3 0.59 ± 0.01 0.72 ± 0.01 d 0.57 ± 0.01 c 0.43 ± 0.01 b 0.20 ± 0.01 a < 0.001 
C20:5 n-3 (EPA) 9.95 ± 0.07 10.24 ± 0.07 d 8.06 ± 0.05 c 6.32 ± 0.05 b 3.15 ± 0.04 a < 0.001 
C22:5 n-3 1.37 ± 0.01 1.24 ± 0.02b 1.00 ± 0.01ab 0.76 ± 0.00 a 0.38 ± 0.00a < 0.001 
C22:6 n-3 (DHA) 13.94 ± 0.08 12.00 ± 0.13b 9.88 ± 0.07 ab 7.79 ± 0.05 a 4.11 ± 0.03 a < 0.001 
∑PUFA3 45.32 ± 0.63 39.78 ± 0.42 b 38.1 ± 0.41 ab 36.76 ± 0.43 ab 34.55 ± 0.58 a < 0.001 
∑n-3 4 30.46 ± 0.62 29.05 ± 0.55 b 24.64 ± 0.43b 21.06 ± 0.34b 13.94 ± 0.23a < 0.001 
∑n-6 5 14.86 ± 1.09 10.73 ± 0.80 a 13.46 ± 1.01 a 15.70 ± 1.20 a 20.61 ± 1.73 b 0.009 
n-3/n-6 6 2.05 2.70 1.83 1.34 0.68  
EPA þ DHA 7 23.44 ± 0.20 22.24 ± 0.42 d 17.94 ± 0.43 c 14.11 ± 0.41 b 7.26 ± 0.44 a < 0.001  

Liver 

Fatty acid Start Week 6 p - Value 

% of total fatty acids  CTRL RO25 RO50 RO100  
Saturates (SFAs)       

C14:00 2.03 ± 0.02 2.25 ± 0.02d 1.88 ± 0.02c 1.62 ± 0.03b 0.89 ± 0.03a < 0.001 
C16:00 12.03 ± 0.04 11.74 ± 0.11d 10.70 ± 0.12c 9.82 ± 0.11b 7.19 ± 0.06a < 0.001 
C18:0 5.23 ± 0.03 5.60 ± 0.10b 5.33 ± 0.08b 4.60 ± 0.06ab 3.92 ± 0.03a < 0.001 
∑SFA 1 19.20 ± 0.35 19.59 ± 0.67b 17.91 ± 0.62ab 16.04 ± 0.58ab 12.00 ± 0.44a 0.003 
Monounsturates (MUFAs)       
C16:1 4.33 ± 0.03 11.74 ± 0.12b 10.70 ± 0.12ab 9.82 ± 0.11a 7.19 ± 0.06a < 0.001 
C18:1 n-9 (OA) 27.12 ± 0.20 25.98 ± 0.40a 32.94 ± 0.60a 37.52 ± 0.63ab 46.38 ± 0.83b < 0.001 
C18:1 n-7 7.04 ± 0.33 7.55 ± 0.06d 6.82 ± 0.04c 5.96 ± 0.06b 4.83 ± 0.04a < 0.001 
C20:1 n-11 1.41 ± 0.01 2.40 ± 0.02b 2.09 ± 0.02ab 1.89 ± 0.01a 1.57 ± 0.02a < 0.001 
C22:1 n-11 0.42 ± 0.01 1.07 ± 0.02 b 0.79 ± 0.01 ab 0.68 ± 0.02 a 0.42 ± 0.01 a < 0.001 
∑MUFA 2 40.30 ± 0.72 48.74 ± 1.40a 53.34 ± 1.86ab 55.87 ± 2.15ab 60.39 ± 2.67b 0.025 
Polyunsaturates (PUFAs)       
C18:2 n-6 (LA) 18.37 ± 0.18 13.22 ± 0.11a 16.71 ± 0.11a 19.80 ± 0.18ab 23.72 ± 0.08b < 0.001 
C18:3 n-3 (ALA) 2.48 ± 0.03 2.11 ± 0.01a 3.23 ± 0.02a 4.26 ± 0.05ab 5.81 ± 0.04a < 0.001 
C18:4 n-3 1.50 ± 0.02 2.28 ± 0.03b 1.68 ± 0.02b 1.29 ± 0.03ab 0.55 ± 0.03a < 0.001 
C20:4 n-3 0.91 ± 0.01 1.13 ± 0.01b 0.92 ± 0.01ab 0.66 ± 0.01a 0.35 ± 0.00a < 0.001 
C20:5 n-3 (EPA) 8.03 ± 0.11 8.93 ± 0.09d 6.36 ± 0.06c 4.67 ± 0.07b 1.91 ± 0.13a < 0.001 
C22:6 n-3 (DHA) 6.45 ± 0.11 5.86 ± 0.10b 3.72 ± 0.06ab 2.54 ± 0.03a 1.07 ± 0.07a < 0.001 
∑PUFA3 39.74 ± 0.41 35.35 ± 0.52b 33.92 ± 0.64ab 34.24 ± 0.78ab 33.73 ± 0.99a < 0.001 
∑n-3 4 21.37 ± 0.03 22.13 ± 0.38b 17.21 ± 0.25b 14.44 ± 0.21b 10.01 ± 0.27a < 0.001 
∑n-6 5 18.37 ± 0.11 13.22 ± 0.11a 16.71 ± 0.11b 19.80 ± 0.18ab 23.72 ± 0.08b < 0.001 
n-3/n-6 6 1.05 1.53 1.95 0.67 0.41  
EPA þ DHA 7 14.48 ± 0.09 14.79 ± 0.33b 10.08 ± 0.28bc 7.21 ± 0.23b 2.98 ± 0.11a < 0.001  

Muscles 

Fatty acid Week 6 p - Value 

% of total fatty acids CTRL RO25 RO50 RO100  
Saturates (SFAs)      

C14:00 4.19 ± 0.03d 3.32 ± 0.04 c 2.66 ± 0.04b 1.27 ± 0.03a < 0.001 
C16:00 15.82 ± 0.15d 14.15 ± 0.11c 12.51 ± 0.11b 8.99 ± 0.05a < 0.001 
C18:0 3.71 ± 0.04b 3.69 ± 0.06b 3.42 ± 0.05c 3.08 ± 0.03a < 0.001 
∑SFA 1 23.72 ± 0.96c 21.43 ± 0.86bc 18.59 ± 0.77ab 13.26 ± 0.56a < 0.001 
Monounsturates (MUFAs)      
C16:1 5.20 ± 0.05d 4.01 ± 0.05c 3.06 ± 0.04b 1.45 ± 0.03a < 0.001 
C18:1 n-9 17.87 ± 0.08a 26.22 ± 0.16ab 33.45 ± 0.30bc 45.21 ± 0.27c < 0.001 
C18:1 n-7 4.46 ± 0.04c 4.33 ± 0.03bc 4.10 ± 0.02ab 3.83 ± 0.01a < 0.001 

(continued on next page) 

F.P. Willora et al.                                                                                                                                                                                                                               



Aquaculture Reports 19 (2021) 100560

7

factor (K) and by the alternative B1, taking into consideration the three 
dimensional growth pattern of lumpfish. The K-values were higher than 
the values of 4.3–4.8 reported earlier for lumpfish fed with commercial 
feed containing 50 % crude protein and 10 % lipid (Imsland et al., 2020), 
suggesting that the fish were in a good nutritional condition. However, 
the K values presented in the present study showed the highest value for 
fish fed the RO100 diet, while the lowest value was found for the CTRL. 
The B1 showed significantly lower values for the RO100, coinciding with 
lower growth found for the RO100 group compared to CTRL, suggesting 
that B1 may be a more robust measure than the traditional K value and 
should be considered in future studies of lumpfish. 

The present study showed a significantly higher HSI for fish fed 
RO100 diet, which agrees with former studies reporting a trend of 
increasing HSI when FO was totally replaced by RO in diets in aqua
culture species (Bowyer et al., 2012; Fountoulaki et al., 2009; Mu et al., 
2020; Sun et al., 2011). HSI value correlates with fat deposition (Gao 
et al., 2012). Increasing fat deposition is associated with decreasing n-3 : 
n-6 ratios reported in other studies (Kjær et al., 2008a; Reis et al., 2014) 
and may have adverse effects on both liver morphology and function 
(Boonanuntanasarn et al., 2019; Peng et al., 2014; Torrecillas et al., 
2017). Viserosomatic index value is an important indicator directly 
affecting the fish yield (Wang et al., 2005). Increased VSI is associated 
with lipid content in the diet (Bendiksen et al., 2003; Han et al., 2014; 
Jobling et al., 1998) or energy intake (Hatlen et al., 2007). Lumpfish in 
the present study were fed nearly iso-lipidic diets (15 %) and no dif
ferences were noted for VSI among the diets. The VSI was slightly 
reduced at the end of the experiment, while the body weight increased 
from an average of 6.8 g–37.9 g. Willora et al. (2020) observed a similar 
reduction in VSI over time when feeding juvenile lumpfish plant protein 
incorporated diets. 

4.3. Fatty acid and chemical composition of whole body, liver and 
muscles 

Tissue FA composition is known to be affected by diet in fish at all 
stages of their life cycle (Olsen and Skjervold, 1995). The SFA and PUFA 

in all analyzed tissues showed a linear decrease with RO incorporation 
(CTRL > RO25 > RO50 > RO100). The relatively low deposition of SFAs 
C16:00 and C14:00 is because these FAs are the preferred substrate for 
β-oxidation over MUFA and PUFA, respectively, depending on FA 
availability (Tocher et al., 2003; Turchini et al., 2009). 

It is well known that some organs have the ability to retain EPA or 
DHA to a greater extent (Thomassen et al., 2017). In this study, muscle 
and whole body seemed to have a selectively higher deposition of DHA 
than EPA. High retention of DHA in lumpfish muscles corroborates with 
other studies on salmonids (Bell et al., 2001, 2003a; Caballero et al., 
2002; Torstensen et al., 2004), Senegalese sole (Pereira et al., 2019), sea 
bream and sea bass (Fountoulaki et al., 2009; Montero et al., 2005). The 
effect of different dietary levels of EPA and DHA on salmon tissue 
composition was explained by Bou et al. (2017a); fish fed with EPA as 
the main source of n-3 led to retention values of DHA above 100 %, 
indicating net synthesis of this FA in the body. However, DHA as the 
main source of dietary n-3, regardless of level, increased the cellular 
DHA level only about 70 %. This suggests that EPA is less conserved than 
DHA due its different biological functions; such as conversion to DHA, 
and metabolization into eicosanoid compounds and/or energy produc
tion through β-oxidation, whereas dietary DHA is more resistant to 
β-oxidation (Bou et al., 2017a, b, c; Rosenlund et al., 2016; Thomassen 
et al., 2012). 

The higher lipid level in whole body and liver in the present study are 
in line with fish fed RO either as a single source or in combination with 
other PO in Seneglase sole (Pereira et al., 2019), large yellow croaker 
(Mu et al., 2020), black carp (Sun et al., 2011) and Atlantic salmon (Bell 
et al., 2003b; Kjær et al., 2008a; Todorčević et al., 2008). Liver is the key 
organ in FA metabolism, facilitating the FA entrance, synthesis and 
disposal (Hodson and Frayn, 2011). Deposition of SFA in liver followed a 
similar pattern as muscles and whole body. The OA, LA and ALA in feeds 
and deposition in liver showed a linear increase with incorporation of 
RO (CTRL < RO25 < RO50 < RO100). At the end of the experimental 
period, these FAs in liver of fish fed RO100 diet was higher compared to 
those in whole body and muscles. The relatively higher retention of OA, 
LA and ALA in liver is in agreement with previous reports of fingerling 

Table 5 (continued ) 

Muscles 

Fatty acid Week 6 p - Value 

% of total fatty acids CTRL RO25 RO50 RO100  
Saturates (SFAs)      

C20:1 n-11 3.13 ± 0.03c 2.9 ± 0.02bc 2.54 ± 0.02ab 2.04 ± 0.01a < 0.001 
C22:1 n-9 0.43 ± 0.01c 0.40 ± 0.00bc 0.37 ± 0.00ab 0.28 ± 0.00a < 0.001 
C22:1 n-11 2.32 ± 0.03d 1.89 ± 0.02c 1.48 ± 0.02b 0.77 ± 0.02a < 0.001 
C24:1 n-9 0.40 ± 0.00d 0.37 ± 0.00c 0.31 ± 0.01b 0.25 ± 0.00a < 0.001 
∑MUFA 2 33.81 ± 0.62a 40.12 ± 0.96ab 45.31 ± 1.24ab 53.83 ± 1.83b 0.025 
Polyunsaturates (PUFAs)      
C18:2 n-6 (LA) 9.07 ± 0.04 a 12.05 ± 0.10 d 14.70 ± 0.09 c 19.40 ± 0.12 b < 0.001 
C18:3 n-3 (ALA) 1.83 ± 0.01a 2.88 ± 0.03 ab 3.91 ± 0.04 b 5.54 ± 0.04 c < 0.001 
C18:4 n-3 2.15 ± 0.01c 1.58 ± 0.03 bc 1.16 ± 0.02 b 0.49 ± 0.02 a < 0.001 
C20:5 n-3 (EPA) 9.66 ± 0.05c 7.57 ± 0.08 bc 5.73 ± 0.15 ab 3.06 ± 0.07 a < 0.001 
C22:5 n-3 1.27 ± 0.01d 1.02 ± 0.01c 0.74 ± 0.01 b 0.37 ± 0.01 a < 0.001 
C22:6 n-3 (DHA) 13.53 ± 0.12c 11.00 ± 0.24 bc 8.24 ± 0.28 b 4.58 ± 0.12 a < 0.001 
∑PUFA3 39.24 ± 0.46 b 37.46 ± 0.44 ab 35.48 ± 0.46 ab 33.44 ± 0.65 a < 0.001 
∑n-3 4 29.75 ± 0.49 b 25.07 ± 0.39 ab 20.53 ± 0.30 ab 14.04 ± 0.21 a 0.028 
∑n-6 5 9.49 ± 0.92 a 12.39 ± 1.21 ac 14.95 ± 0.82 c 19.40 ± 0.12 b < 0.001 
n-3/n-6 6 2.94 1.79 1.11 0.44  
EPA þ DHA 7 23.19 ± 0.41c 18.57 ± 0.38 c 13.97 ± 0.31 b 7.64 ± 0.17 a < 0.001 

Values are presented as mean ± standard error. (n = 6 / diet group). Values with different superscript letters in the same row indicate significant differences between 
dietary treatments (P < .05). 
Σ SFA is the sum of saturated fatty acids. 
Σ MUFA is the sum of monounsaturated fatty acids. 
Σ PUFA is the sum of polyunsaturated fatty acids. 
Σ n-3 is the sum of n-3 polyunsaturated fatty acids, includes C20:3 and, C20:4 only for the muscles. 
Σ n-6 is the sum of n-6 polyunsaturated fatty acids, also includes C22:4 for the whole body and muscles. 
n-3/n-6 is the ratio of Σ n-3 and Σ n-6. 
Sum of EPA and DHA. 
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black carp (Sun et al., 2011) and Senegalese sole (Pereira et al., 2019) 
fed diets containing RO. Both whole body and muscle seemed to have a 
selective retention of DHA in the present study, while EPA seemed to be 
retained in the liver. This suggests selective retention of the essential n-3 
PUFA differs in various tissues. 

Excess dietary FAs are exported from the liver in the form of lipo
proteins, accumulated and stored in the form of triacylglycerol (TAG) in 
target lipid storage sites (Tocher et al., 2003). Studies with Atlantic 
salmon has shown an increase in neutral lipids such as TAG (Bou et al., 
2017b; Ruyter et al., 2006; Todorčević et al., 2008) and glycerolipids 

(Kjær et al., 2008a; Vegusdal et al., 2005) in the liver with decreasing 
levels of EPA and DHA in salmon diets. In contrast, increasing levels of 
n-3 FAs may reduce TAG synthesis, and three possible mechanisms 
involved in the lowering effect were discussed by Kjær et al. (2008b). 
Moreover, diets deficient in EPA and DHA stimulate the n-6 pathway by 
increasing the levels of 20:3n-6 and 20:4n-6 in the polar lipid (phos
pholipid) fraction of hepatocytes (Bou et al., 2017c). Increased lipid 
deposition in fish fed the RO100 diet in the present study is most likely 
explained by too low EPA and DHA levels in the RO100. Increased lipid 
deposition may also be explained by increasing levels of OA and LA in 

Fig. 1. Relationship between dietary FA level 
(black, dashed) and their respective FA levels in 
the liver (blue) whole body (red) and muscle 
(green) of palmitic (C16:0), oleic (C18:1 n-9), 
linoleic (18:2n-6), alpha-linolenic (18:3n-3), 
EPA (20:5n-3) and DHA (22:6n-3), as well as 
total amounts of SFA, MUFA and PUFA in ju
venile lumpfish fed with CTRL, OR25, OR 50 
and OR100. TFA = Total Fatty Acids, r =
Pearson’s correlation coefficient, p = signifi
cant relationship between tissue FA and their 
respective dietary FA in the correlation (P >
0.05). Data are represented as mean ± SEM. 
Standard error bars are plotted but some are 
within the boundaries of the data points. r* and 
p* values for PUFA are only valid for whole 
body and muscle while values for liver are 
presented in the text body.   
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the experimental diets when MO was replaced with RO. Fish fed 100 % 
RO diet received 3 and 2 fold higher OA and LA respectively, compared 
to those fed the CTRL. A study with large yellow croaker showed that 
increased dietary LA induced hepatic lipid accumulation (Mu et al., 
2018). Increasing ratio of OA : n-3 HUFA may also give increased lipid 
deposition in salmon hepatocytes and more OA were deposited in TAGs 
than EPA and DHA in all differentiated stages of adipocytes (Todorčević 
et al., 2008). These findings indicate reduced levels of n-3 HUFA in fish 
diets, when the traditional FO is replaced by n-6 and n-9 FA rich PO. 

Following termination of the experiment, crude protein in whole 
body and liver for fish fed the RO100 group was significantly lower, 
compared to CTRL; as these fish also had a significantly higher crude 
lipid. The lower protein content can just as well be a result of the 
composition changes and not the dietary oil effect. In general, variations 
in chemical composition of body and tissues in aquatic species depend 
on internal factors such as age, gender and size (Shearer, 1994). At the 
end of the experiment, fish fed RO100 was significantly smaller 
compared to the other dietary groups. Small fish tend to have a higher 
moisture content than bigger fish as water is replaced with lipid in 
growing salmon (Bjerkeng et al., 1997; Shearer, 1994). More note
worthy was the higher lipid content in fish fed RO100 concurrent with 
the higher water content. Increased lipid content is also previously re
ported in fish with high inclusion level of plant oils (Bell et al., 2003b; 
Kjær et al., 2008a; Sun et al., 2011; Todorčević et al., 2008). 

5. Conclusion 

Total substitution of MO with RO significantly reduced growth per
formance and condition factor concurrent with an increase in whole 
body and liver fat. The FA composition of the whole body, muscle and 
liver also reflected changes in the feed as MO was replaced with RO. In 
conclusion, the results of the present study suggest that dietary inclusion 
of 50 % RO in diets where the protein content was derived from marine / 
plant origin (50/50), did not have adverse effect on growth. A signifi
cant increased deposition of fat in the liver may suggest that the optimal 
RO level is lower. 
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