
ORIGINAL RESEARCH
published: 23 December 2020

doi: 10.3389/fmars.2020.599825

Frontiers in Marine Science | www.frontiersin.org 1 December 2020 | Volume 7 | Article 599825

Edited by:

Ellen Kenchington,

Bedford Institute of Oceanography

(BIO), Canada

Reviewed by:

Bruno Francesco Rodrigues de

Oliveira,

Federal University of Rio de

Janeiro, Brazil

April Hill,

Bates College, United States

*Correspondence:

Kylie Hesp

kylie.hesp@wur.nl

Specialty section:

This article was submitted to

Deep-Sea Environments and Ecology,

a section of the journal

Frontiers in Marine Science

Received: 28 August 2020

Accepted: 01 December 2020

Published: 23 December 2020

Citation:

Hesp K, Flores Alvarez JL,

Alexandru A-M, van der Linden J,

Martens DE, Wijffels RH and

Pomponi SA (2020)

CRISPR/Cas12a-Mediated Gene

Editing in Geodia barretti Sponge Cell

Culture. Front. Mar. Sci. 7:599825.

doi: 10.3389/fmars.2020.599825

CRISPR/Cas12a-Mediated Gene
Editing in Geodia barretti Sponge
Cell Culture
Kylie Hesp 1*, John L. Flores Alvarez 1, Ana-Maria Alexandru 1, Jip van der Linden 1,

Dirk E. Martens 1, Rene H. Wijffels 1,2 and Shirley A. Pomponi 1,3

1 Bioprocess Engineering, Wageningen University & Research, Wageningen, Netherlands, 2 Faculty of Biosciences and

Aquaculture, Nord University, Bodø, Norway, 3 Sponge Biotechnology, Marine Biomedical & Biotechnology Research, Harbor

Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, United States

Sponges and their associated microorganisms are the most prolific source of marine

natural products, and many attempts have been made at creating a marine sponge

cell line to produce these products efficiently. However, limited knowledge on the

nutrients sponge cells require to grow and poor genetic accessibility have hampered

progress toward this goal. Recently, a new sponge-specific nutrient mediumM1 has been

shown to stimulate sponge cells in vitro to divide rapidly. In this study, we demonstrate

for the first time that sponge cells growing in M1 can be genetically modified using

a CRISPR/Cas12a gene editing system. A short sequence of scrambled DNA was

inserted using a single-stranded oligodeoxynucleotide donor template to disrupt the

2′,5′-oligoadenylate synthetase gene of cells from the boreal deep-sea sponge Geodia

barretti. A blue fluorescent marker gene appeared to be inserted in an intron of the same

gene and expressed by a small number of G. barretti cells. Our results represent an

important step toward developing an optimized continuous sponge cell line to produce

bioactive compounds.

Keywords: CRISPR/Cas, marine sponge cell culture, genome editing, CRISPRMAX, homologous recombination

INTRODUCTION

Developing a marine sponge cell line to produce sponge-derived chemicals in vitro has been
the holy grail of sponge biotechnology ever since it was discovered that marine sponges host a
wide variety of bioactive secondary metabolites in marine sponges (Pomponi, 1999; Rinkevich,
2005; Mayer et al., 2010; Schippers et al., 2011; Newman and Cragg, 2016). Many of these
compounds have the potential to be developed into new drugs to combat cancer (Nuijen et al., 2000;
Schwartsmann et al., 2003; Jimenez et al., 2018; Khalifa et al., 2019), inflammatory disease (Alcaraz
and Paya, 2006) and infections in humans (Laport et al., 2009; Abdelmohsen et al., 2017; Liu
et al., 2019a). Others could be used in industrial and commercial applications, for example as anti-
fouling agents (Qi and Ma, 2017), cosmetics and nutraceuticals (Balboa et al., 2015). Each of these
applications potentially represents a multibillion-dollar market (Thoms and Schupp, 2005; Greco
and Cinquegrani, 2016). However, lack of sufficient biomass to produce compounds at the scale
required for clinical trials or industrial application has been a major bottleneck (Nuijen et al., 2000;
Singh and Thakur, 2016). Harvesting of wild sponges is neither economically nor environmentally
sustainable and chemical synthesis of many sponge-derived chemicals is time-consuming and
expensive due to their complex nature (Nuijen et al., 2000; Thoms and Schupp, 2005; Montaser
and Luesch, 2011; Singh and Thakur, 2016). Underlying metabolic pathways are often equally
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complex and poorly understood, making metabolically
engineering yeasts or bacteria to produce compounds difficult
(Thoms and Schupp, 2005; Montaser and Luesch, 2011).
Although mariculture can be suitable in some cases (Brummer
and Nickel, 2003; Duckworth and Battershill, 2003; Page et al.,
2005), it does not allow to precisely control culture conditions
or optimize productivity (Montaser and Luesch, 2011; Santhi
et al., 2017). Culturing sponge cells in vitro has been proposed
as a solution, with sponge cells producing the compound in
a controlled environment that can be adapted and optimized.
Furthermore, harvesting and downstream processing are
simplified compared to mariculture.

Developing such sponge cell cultures has been challenging
(Pomponi et al., 1997, Rinkevich, 2005; Schippers et al., 2011).
Little was known about the nutrients sponge cells need to
proliferate, resulting in short-lived primary cultures (Schippers
et al., 2011). Cells in such cultures quickly became less viable
and metabolically active, and were often overgrown by bacteria
or fungi (Sipkema et al., 2005). Recently, it was shown that
cells of the Caribbean sponge Dysidea etheria were more
metabolically active in sponge-specific cell culture medium,
namedM1, which contains optimized amino acid concentrations
(Munroe et al., 2019). Furthermore, cells of various other sponge
species divided rapidly in M1. Cells of 3 species from the
genus Geodia responded strongly to M1 with limited variation
between individuals. Cells could be subcultured 3–5 times and
reached a maximum of 7 population doublings (Conkling et al.,
2019). One of these was Geodia barretti, one of the species that
dominates the sponge grounds in the deep waters of the North
Atlantic ocean (Klitgaard and Tendal, 2004; Murillo et al., 2012;
Knudby et al., 2013). G. barretti has been found to produce
multiple bioactive compounds, such as barretins, a group of
6-bromoindole derivatives with anti-inflammatory (Lind et al.,
2013; Di et al., 2018) and anti-fouling (Sjogren et al., 2004;
Hedner et al., 2008) activity, and more recently discovered anti-
fouling peptides called barrettides (Carstens et al., 2015).

Having proliferating cells is an important step toward
producing compounds in large-scale bioreactors. Moreover, it
facilitates developing molecular tools and genetic engineering
in particular, as dividing cells are not only more viable, but
also more genetically accessible (Wang et al., 2014). Until
now, the only molecular technique used successfully in sponge
cell culture is transfecting cells with plasmids to transiently
express the human telomerase reverse transcriptase oncogene
(Pomponi et al., 2007) and green fluorescent protein (Schippers,
2013). No genetic engineering tools that can make permanent
changes in sponge cells to create and optimize production
strains have been reported. One of the most well-known genetic
engineering tools is CRISPR/Cas gene editing. CRISPR (clustered
regularly-interspaced palindromic repeat) arrays were discovered
as adaptive immune systems in prokaryotes. Short sequences of
foreign DNA incorporated into CRISPR arrays in the genome
are transcribed and processed into CRISPR RNAs (crRNA),
that guide endonucleases to cleave the complementary DNA
sequence (Horvath and Barrangou, 2010). These systems use a
protospacer-adjacentmotif (PAM) to distinguish between foreign
DNA and the host genome, since the PAM is present in the

FIGURE 1 | Introduction of a double stranded break (DSB) in DNA by

CRISPR/Cas12a (Cpf1). The guide RNA (gRNA) directs the Cas12a

endonuclease to the homologous target sequence. When the

protospacer-adjacent motif (PAM) is recognized and the crRNA hybridizes with

the target sequence, the nuclease domains of Cas12a introduce breaks in

each strand: 19 nt (target strand) and 23 nt (complementary strand)

downstream from the PAM sequence.

foreign DNA but not in the CRISPR array. By altering the
crRNA sequence, CRISPR/Cas systems can be used to specifically
target any DNA sequence that contains the PAM (Figure 1).
The endonuclease induces a double-stranded break (DSB) that
can be repaired in two ways: the first, non-homologous end
joining (NHEJ), often leads to small insertions/deletions causing
frameshifts, while the second, homology-directed repair (HDR),
can be used to insert DNA sequences by providing a repair
template with homology up- and downstream of the target
site (Song and Stieger, 2017; Liu et al., 2019a; Figure 2A).
CRISPR/Cas9 is the most commonly used CRISPR system for
gene editing but requires 2 RNA molecules to induce a DSB: the
crRNA that matches the target sequence and an additional trans-
encoded small crRNA (tracrRNA). The crRNA and tracrRNA
can be linked together to create a single guide RNA, but this
requires an ∼100 base pair (bp) long RNA molecule for each
target sequence (Jinek et al., 2012). Another endonuclease,
called Cas12a or Cpf1, was discovered more recently and is
an attractive alternative to Cas9, because it does not require a
tracrRNA, and instead uses 1 short (∼42 bp) guide RNA (gRNA)
molecule (Zetsche et al., 2015; Swarts and Jinek, 2018; Figure 1).
CRISPR/Cas12a has been used to edit genomes in various cell
cultures of plants, animals and humans (Safari et al., 2019).

To test whether the highly versatile CRISRP/Cas12a system
could also edit the genome of marine sponge cells in vitro,
we designed a single-stranded oligodeoxynucleotide (ssODN)
construct with short homology arms (HA) (30–40 bp). Donor
templates provided as ssODNmediate HDRmore efficiently than
their double-stranded (dsDNA) counterparts (Yoshimi et al.,
2016; Ferenczi et al., 2017) and shorter ssODN constructs are
more efficient than longer ssODNs (Okamoto et al., 2019). The
HAs matched regions upstream (US) and downstream (DS) of
the target site in the 3rd OAS1Ab exon and flanked a 108 bp
scrambled DNA insert (Figure 2A), containing stop codons in
all 3 reading frames. To test whether the CRISPR/Cas12a system
could be used to overexpress a gene, we designed a construct
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FIGURE 2 | Experimental design. (A) After Cas12a introduces the DSB at the target site, HDR takes place between the US HA and DS HA of the ssODN donor

template and the homologous regions US and DS from the DSB. (B) The insert is incorporated between the US and DS homologous region. Two PCR reactions

determine whether mutation was successful: (1) reverse primer 1 (RV_1) anneals inside of the insert, yielding a product of 910 bp, providing HDR took place. (2)

Reverse primer 2 (RV_2) anneals to the wild type gene sequence, yielding a 1,025 bp (wild type) or 1,127 (mutant) product. Both reactions use the same forward (FW)

primer. (C) As with the ssODN donor, the US and DS HA recombine with their homologous regions US and DS of the DSB made by Cas12a. (D) The TagBFP gene

with 5′ and 3′ UTRs of the S. domuncula actin locus is inserted into the genome in reverse orientation.

containing blue fluorescent marker gene TagBFP (Subach et al.,
2008). Using the promoter and terminators sequences of a
highly expressed gene in the host organism can ensure a
heterologous gene can be efficiently recognized by the host cells’
transcriptionmachinery. However, no full genome is yet available
for G. barretti, and no complete sequences of G. barretti 5′

and 3′ untranslated regions (UTRs), containing promoters, and
terminators, respectively, have been reported. Therefore, we used
the 5′ and 3′ UTRs of the Suberites domuncula actin locus, which
have previously been used to transiently express a fluorescent
marker in S. domuncula explants (Revilla-I-Domingo et al.,
2018; Figure 2C). For the same reason, the 2′,5′-oligoadenylate
synthetase 1 (OAS1Ab) gene (Accession Number HQ644329.1)
was targeted, of which a partial genomic DNA sequence was
reported (Vallmann et al., 2011). While the function of OAS1Ab
in sponges has not been determined, OAS genes in humans, can
induce apoptosis in tumor cells (Mullan et al., 2005). Therefore,
OAS1Ab could also be an interesting future target gene to
immortalize sponge cells. Heterologous genes would ideally
be inserted in non-coding regions between 2 genes, to avoid
interfering with the function of host genes. However, since no
such intergenic sequences were available, the TagBFP gene would

be inserted in the 2nd OAS1Ab intron in reverse orientation
(Figure 2D), to reduce interfering of the marker gene with the
function of the OAS1Ab gene. The ∼2 kilobase (kb) dsDNA
construct required longer HAs of 0.5–1 kb each (Zhang et al.,
2017; Bier et al., 2018) and our design therefore featured a 533
bp US HA and 601 bp DS HA.

Expressing heterologous genes on plasmids in sponge cells has
been a challenge in the past (Schippers, 2013). Therefore, pre-
assembled ribonucleoprotein complexes (RNPs) of recombinant
Cas12a protein and the guide RNA (gRNA) were used, rather
than a plasmid encoding Cas12a and the gRNA. This method has
been used to edit genes in mammalian cells (Hur et al., 2016; Liu
et al., 2019a), zebrafish (Liu et al., 2019b), mouse embryos (Hur
et al., 2016), and plants (Kim et al., 2017). Lipofection was used
to deliver the Cas12a-gRNA complexes and donor construct,
since this method has been used successfully to transfect sponge
cells in vitro (Pomponi et al., 2007; Schippers, 2013). We
confirmed that the scrambled DNA sequence was inserted by
amplifying the region with polymerase chain reaction (PCR)
(Figure 2B) and Sanger sequencing. Fluorescence microscopy
was then used to verify that the TagBFP gene was inserted
and expressed.
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MATERIALS AND METHODS

Sampling, Dissociation, and
Cryopreservation
The G. barretti individual used in this study was collected with
a triangular dredge at 500 meter depth in the Norwegian fjords
(59◦58.8′′N 5◦22.4′′E) and selected based on size (>15 cm3) to
ensure sufficient cells could be obtained. The sponge was placed
in a bucket filled with sea water as swiftly as possible to minimize
exposure to air and ice packs were added to the bucket to keep
the sponge at low temperature during transport to the laboratory.
Sponge cells were dissociated by squeezing small pieces of tissue
through a sterile gauze into artificial sea water (ASW) (23.30 g/L
NaCl, 10.20 g/L MgCl2, 4.02 g/L Trizma HCl, 2.97 g/L Trizma
Base, 1.1 g/L CaCl2, and 1 g/L KCl in dH2O, sterilized by filtering
through a 0.22µm mesh (Munroe et al., 2018, 2019). The cells
were passed through a Falcon R© 40µm cell strainer (Corning,
NY, USA), then centrifuged (300 × g, 5min) and resuspended
in ASW twice. The cells were diluted 100x in ASW and
counted microscopically using a C-chipTM, Neubauer improved
disposable hemocytometer (INCYTO, Cheonan, Republic of
Korea). Cells were centrifuged once more (300 × g, 5min)
and resuspended in a cryoprotectant solution composed of 10%
fetal bovine serum (FBS) and 10% dimethyl sulfoxide (DMSO)
in ASW (Pomponi et al., 1997; Mussino et al., 2013; Munroe
et al., 2018) at ∼1.00E+08 cells/mL. Aliquots (1mL) of this cell
suspension in cryoprotectant, in FisherbrandTM 1mL cryogenic
vials (Thermo Fisher Scientific, MA, USA) were cooled at 1◦C
per min to−80◦C in a Mr. Frosty freezing container (Nalgene R©,
NY, USA).

Medium Preparation
M1 medium was prepared following the original protocol
(Munroe et al., 2019). Medium 199 powder (Sigma Aldrich,
MO, USA) was dissolved in dH2O, then salts were added at
concentrations like those in seawater, leading to a salinity of
33.5 ppt in M1, which is approximately the salinity of 35 ppt
in seawater. The pH of the M1 medium (7.9) was also like that
of seawater (8.1). Amino acids were added and the medium was
sterilized by filtering through a 0.22µmmesh. Finally, 30µg/mL
rifampicin (Sigma Aldrich) and 2.50µg/mL amphotericin B
(Sigma Aldrich) were added to control contamination by bacteria
and fungi, respectively.

Cell Culture
Before cultures were inoculated, cryopreserved cells were thawed
quickly in a water bath set at 50◦C to prevent that cells would be
damaged by ice crystals. The cells were washed twice with ASW
by centrifuging at 300 × g for 5min, removing the supernatant
and resuspending them in 1mL ASW. Next, cells were counted
microscopically using disposable hemocytometers (C-chipTM,
Neubauer improved) to determine their concentration. M1
medium was inoculated at 3.00E+06 cells/mL in 12-well plates
with 1mL cell suspension per well. To passage the cells, cell
concentrations were determined, and the cell suspension was
diluted back to 3.00E+06 cells/mL with fresh M1 medium.

gRNA Design and in vitro Assay
The online tool CRISPOR R© (CRISPOR v4.97,
RRID:SCR_015935) (Concordet and Haeussler, 2018) was used
to design 3 gRNAs targeting the 3rd exon and 2 gRNAs targeting
the 2nd intron (Supplementary Table 1) in the genomic
G. barretti OAS1Ab sequence (Accession Number HQ644329.1)
and ordered as synthetic Cas12a gRNA oligonucleotides
at Integrated DNA Technologies (Leuven, Belgium). The
recombinant Cas12a enzyme (EnGen R© Lba Cas12a, derived
from Lachnospiraceae bacterium ND2006, New England Biolabs,
MA, USA) contains a poly-histidine tag and was overexpressed
in Escherichia coli and purified using immobilized metal affinity
chromatography (IMAC) (Loughran and Walls, 2011). All 3
crRNAs were reconstituted with nuclease free water (NFW)
to a concentration of 300 nM and then tested in vitro for
their efficiency in cleaving a 1,025 bp PCR product amplified
from G. barretti genomic DNA (gDNA) [see “Genomic DNA
extraction and PCR” section for DNA extraction, PCR conditions
and primers (RV-WT)] in complex with the Cas12a enzyme
following the manufacturer’s instructions. For each crRNA, 3 µL
of 300 nM stock solution (final concentration 30 nM) was mixed
with 1 µL of 1µM stock of Cas12a enzyme (final concentration
33.3 nM) to allow the ribonucleoprotein (RNP) complexes to
form. The mixture was incubated for 10min at 37◦C in 3 µL
10x NEBuffer 2.1 Reaction Buffer (New England Biolabs) diluted
with 20 µL NFW. Subsequently, 3 µL of 30 nM DNA fragment
stock solution (final concentration 3 nM) was added to the
reaction mixture and incubated with the RNPs for 10min at
37◦C. The final reaction volume after adding the PCR product
was 30 µL. Samples were incubated for 10min with 20 ng/µL
proteinase K (Thermo Fisher Scientific) to stop the reaction.
Finally, 10 µL of the reaction mixture was run on a 2% agarose
gel at 135V for 50 min.

ssODN and dsDNA Donor Template Design
Homology-directed repair of DSBs requires a donor template
with homology arms up- and downstream of the target
site. Synthetic single-stranded oligodeoxynucleotides (ssODNs)
were ordered from Integrated DNA Technologies, designed
featuring 30–40 bp homology arms flanking a 108 bp scrambled
DNA insert containing stop codons in all 3 reading frames
(Supplementary Table 1). A plasmid containing the dsDNA
donor template, consisting of the TagBFP gene with S. domuncula
actin 5′ and 3′ UTRs in reverse orientation, flanked by the US
(533 bp) and DS (601 bp) HA, was ordered from Integrated DNA
Technologies (Supplementary Figure 1).

Lipofection
Cells of 1 individual of G. barretti were cultured in 12-well
plates with 1mL cell suspension/well, starting at a density
of 3.00E+06 cells/mL in M1 medium and a temperature of
4◦C (Conkling et al., 2019). The ssODNs were transfected
together with the RNPs using LipofectamineTM CRISPRMAXTM

(Thermo Fisher Scientific). The TagBFP repair construct
plasmid was introduced using LipofectamineTM 3000 (Thermo
Fisher Scientific), 10min before the RNPs were added using
LipofectamineTM CRISPRMAXTM. For each sample, 0.5 µg of
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plasmid DNA and 5 µL of P3000TM reagent were added to
50 µL Opti-MEMTM I Reduced Serum Medium (GibcoTM,
Thermo Fisher Scientific) in a 1.5mL Eppendorf tube, and 3 µL
LipofectamineTM 3000 in 50 µL Opti-MEMTM in a second tube.
The contents of both tubes were mixed and incubated for 15min
at room temperature before the mixture was added dropwise to
the sponge cells. RNPs were formed in vitro by preparing the
following for each sample: 0.5 µg of gRNA E32 or I22, 2.5 µg of
Cas12a, and 5µL of Cas9 PlusTM Reagent in 50µLOpti-MEMTM

in 1 Eppendorf tube, and in another tube 3µL of Lipofectamine R©

CRISPRMAXTM transfection reagent in 50 µL Opti-MEMTM.
The contents of both tubes were combined and incubated for
10min at room temperature. For transfection with the 108 bp
scrambled DNA construct, 0.5 µg ssODN was mixed in at this
point, and the solution was then added dropwise to the cells. For
TagBFP plasmid transfection, no DNA was added at this stage.

Genomic DNA Extraction and PCR
After 4 days of incubation, gDNA was obtained from transfected
and non-transfected cells using the High Pure PCR Template
Preparation Kit (Roche Life Science, Penzberg, Germany).
Successfully mutated cells were detected using 2 PCR reactions
(Figure 2C). Both reactions used the same forward primer (FW
5′-ATGGCTAGCCCAGGACTTAGG), while the reverse primer
bound either downstream of the target site (RV-wild-type 5′-
AACAATGTGGTGCACTCGAA) or inside the scrambled DNA
insert (RV-mutant 5′-CTATCCCCACCCCCACATTC). The 1st
reaction should always yield a product, either of 1,025 bp in the
wild-type, or 1,127 bp in case of mutated cells. The 2nd reaction
would only amplify a 910 bp product if some cells in the culture
were successfully mutated. The PCR mixture consisted of 25 µL
Q5 R© High-Fidelity 2X Master Mix (New England Biolabs), 2.5
µL of working solution (10µM) of both primers and ∼20 ng of
gDNA brought to a total reaction volume of 50 µL with MilliQ
(MQ) water. PCR conditions were as follows: initial denaturation
at 98◦C for 15 s, followed by 35 cycles of denaturation at 98◦C for
10 s, primer annealing at 59◦C for 30 s, and extension at 72◦C for
45 s, and final extension at 72◦C for 10min. Amplified products
were purified using the DNA Clean and Concentrator-5 (capped)
kit (Zymo Research, CA, USA) and eluted in a final volume of 10
µLMQwater. Product concentration in the purified samples was
measured using NanoDropTM One (Thermo Fisher Scientific).
Approximately 1 µg of purified PCR product per sample was run
on a 1% agarose gel at 70V for 35min, with 500 ng GeneRuler
1 kb DNA Ladder (Thermo Fisher Scientific) as a marker on
both sides.

Mutation Analysis
To verify that the 108 bp scrambled DNA sequence was
successfully inserted into the 3rd exon of the OAS1Ab gene, 15
ng purified PCR product per 100 bp length (∼140 ng for WT,
∼155 ng for M products) for each sample was sent to BaseClear
for Sanger sequencing as Long run (up to 1,100 nt) Quick Shot
Premix samples with 25 pmol primer in a total volume of 20
µL. Sequences were aligned using SnapGene R© 4.3 (SnapGene,
RRID:SCR_015052) and to compare sequences obtained through
Sanger sequencing to the genomic DNA sequence of the

G. barretti OAS1Ab gene (Accession Number HQ644329.1). The
4′,6-diamidino-2-phenylindole (DAPI) filter on an EVOSTM FL
Auto Cell Imaging System (Thermo Fisher Scientific), was used
to determine whether TagBFP was successfully inserted into the
2nd intron of the OAS1Ab gene and expressed by the cells.

RESULTS

gRNA Design and in vitro Assay
Synthetic gRNAs were designed for both target sites in the
G. barretti OAS1Ab gene, 3 gRNAs targeted the 3rd exon and 2
gRNAs targeted the 2nd intron, as only 2 suitable target sequences
for Cas12a were present in the intron that would leave space
for >0.5 kb US and DS HAs (Figure 3A). An in vitro assay in
which RNPs of Cas12a with each of the 5 gRNAs were added to
a PCR product of the wild-type OAS1Ab gene was used to test
how efficiently each gRNA could induce a DSB (Figure 2B, FW
+ RV primers). The same PCR product incubated with Cas12a
but without a gRNA was used as a negative control (C). All 5
tested gRNAs induced cuts at their target sites (Figure 3B), but
only exon 3 gRNA 2 (gRNA E32), and intron 2 gRNA 2 (gRNA
I22) degraded all DNA present. We selected gRNA E32 and I22
to edit the G. barretti genome.

Knock-Out OAS1Ab
Geodia barretti cells were transfected with RNPs of Cas12a and
gRNA E32 accompanied by the ssODN donor template to insert
the 108 bp scrambled DNA sequence and disrupt the OAS1Ab
gene. Whether transfected cells were successfully mutated was
checked using 2 PCR reactions (Figure 2B). The 1st reaction
should always yield an either 1,025 bp (wild-type) or 1,127 bp
(mutant) product or both, while the 2nd reaction only amplified
a 910 bp product if mutated cells were present in the culture.
Both the mutant and wild-type PCR reactions amplified their
respective products in 2 out of 3 (T1 + T2) transfected cell
populations (Figure 4A), suggesting the 108 bp scrambled DNA
sequence was inserted into the OAS1Ab gene. Only the 1,025
bp wild-type product was detected in PCR 1 of T1 and T2,
suggesting that mutated genes were present in small numbers and
therefore not amplified due to the majority of wild-type genes in
the extracted gDNA. The 3rd transfection (T3) yielded the same
results as the negative control of cells transfected with Cas12a and
ssODN donor, but without the gRNA (C), where only the wild-
type PCR amplified its 1,025 bp product (Figure 4A). Sanger
sequencing results of the mutant PCR product aligned with the
expected sequence (Figure 4B), confirming the OAS1Ab gene
was successfully edited.

Expression TagBFP Marker Gene
To insert and overexpress the blue fluorescent TagBFP gene,
G. barretti cells were first transfected with the plasmid
containing the TagBFP repair construct (Figure 2C), then after
10min transfected again with the RNPs of Cas12a and gRNA
I22. Whether cells were expressing TagBFP was determined
by fluorescence microscopy. Sporadic blue fluorescence was
observed in cells transfected with RNPs and the TagBFP
repair construct (Figure 5). No fluorescent sponge cells were
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FIGURE 3 | gRNA design & in vitro assay. (A) Sequence map showing locations of gRNAs on the OAS1Ab wild-type PCR product of 1,025 bp. (B) Gel

electrophoresis results of the in vitro assay to determine how efficiently 5 gRNAs can direct Cas12a to cleave their respective target sites in the 1,025 bp wild-type

PCR product. Most gRNAs partially degraded the target DNA, resulting in 3 visible bands (the full-length PCR product and the 2 cleavage products). gRNA E32 and

I22 fully degraded the DNA, leaving only their 2 cleavage products as visible bands, and these gRNAs were selected to edit the G. barretti OAS1Ab gene.

observed in controls transfected with the repair construct and
Cas12a but without the gRNA. No clear PCR results were
obtained, likely due to the low number of mutant compared to
wild-type genes.

DISCUSSION

We previously reported that cells from several species of
marine sponges divided rapidly in M1 medium and could
be subcultured for several weeks (Conkling et al., 2019).
Considering that proliferating cells are currently available
for multiple species, the next step is to improve various
characteristics of the cells usingmolecular tools, to create efficient
production strains for sponge-derived biopharmaceuticals. For
example, by increasing how many population doublings cells
can reach to produce more biomass, activating or optimizing
pathways that synthesize potential drug candidates, or improving
energy efficiency and other traits. CRISPR/Cas systems are
currently the most prominent and promising tools, with new
applications being reported in rapid succession (Zhang et al.,

2018, 2020; Moon et al., 2019; Li et al., 2020). In this study,
we report the first successful use of a CRISPR/Cas system in
marine sponges.

We demonstrated that CRISPR/Cas12a (Cpf1) can be used
to target and edit sites in the G. barretti genome, and that
sequences can be inserted at these sites through HDR. We
disrupted the OAS1Ab gene in G. barretti cells by inserting a 108
bp scrambled DNA sequence with stop codons in all 3 reading
frames, ensuring no functional protein could be synthesized. As
more genome sequence data from sponges become available, the
method presented here could be used to disrupt other targets, like
well-known tumor-suppressor genes, but also metabolic genes to
direct energy and carbon sources toward producing compounds
of interest, or unknown genes to dissect their functions. The role
of OAS1Ab in sponges has not yet been determined (Vallmann
et al., 2011), but examining how knocking out this gene affects
sponge cells in culture would shed light on this question. If
OAS1Ab acts as a tumor suppressor in sponges, as OAS1 does in
humans, disrupting it could help immortalize sponge cells. In this
study, we did not observe increased lifespan in transfected cells.
However, cell lines of G. barretti in M1 medium have a limited
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FIGURE 4 | PCR and sequencing results confirm that the scrambled DNA sequence was inserted in populations of transfected cells. (A) Results of 2 PCR reactions

amplifying part of the OAS1Ab gene in DNA extracted from 3 transfected G. barretti cell populations (T1, 2 and 3). Both reactions used the same FW primer. PCR 1

used the wildtype RV primer and should always amplify a 1,025 bp (W) or 1,127 bp (M) product. PCR 2 contained the mutant RV (RV_M) primer and only yields a 910

bp product (M) if the gene was successfully edited. The control (C) contained DNA extracted from cells that were treated the same as T1–3, except that no gRNA was

provided in the transfection. T1 and T2 both yielded the M product, indicating the 108 bp scrambled DNA sequence was inserted at the target site in some cells. (B)

Alignment of the sequencing results of the 910 bp mutant product with the sequence expected if the OAS1Ab gene was successfully edited. Red indicates matching

sequences, while yellow indicates gaps. Since the sequenced PCR product was obtained using PCR 2, the sequence between RV_M and RV was not present in the

sequence read.

lifespan of maximum 7 population doublings with little variation
between individuals (Conkling et al., 2019). As it is unlikely
that cells from different individuals are approximately the same
number of doublings away from senescence, it seems that M1
medium is not able to support more than 7 doublings, regardless
of whether the cells are immortalized. The number of doublings
reached by G. barretti cells in the further optimized successor
of M1 medium (OpM1) that was developed in our group far
exceeded 7 doublings (Hesp et al., unpublished). Knocking out
OAS1Ab or other potential tumor-suppressor genes inG. barretti
cells cultured in OpM1 medium could therefore still result
in immortalization.

We transfected cells with reporter constructs encoding
TagBFP flanked by the promoter and terminator regions of
the S. domuncula actin locus (Revilla-I-Domingo et al., 2018).
TagBFP-transfected cells did sporadically display bright blue
fluorescence that was not observed in controls that were
transfected with Cas12a and the TagBFP repair construct, but
without the gRNA. This excludes the possibility that cells were
expressing TagBFP from the donor plasmid and suggests that
edited cells could express TagBFP at high levels, but the editing
efficiency was extremely low. We attempted to quantify the

FIGURE 5 | Blue fluorescing cells in images taken with DAPI (Left) and

transmitted light (Right) filters at 80x magnification. Arrow indicates the cells

that fluoresce blue in the DAPI filter image.

number of blue fluorescent cells with flow cytometry. However,
the number of fluorescent cells was too low, and although
the number was higher in transfected cells than controls, the
difference was not large enough to draw any conclusions (data
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not shown). It is possible that other marker genes would be
expressed more efficiently, such as green fluorescent protein
(Chalfie et al., 1994) or the deep-red fluorescent mCherry
(Merzlyak et al., 2007). Another well-documented method to
increase heterologous gene expression is optimizing the use
of codons in the gene to match the codon usage bias in the
host organism’s genome (Angov, 2011). Such bias has been
observed in the sponges S. domuncula (Perina et al., 2009)
and Geodia cydonium (Gamulin et al., 2001), and could affect
TagBFP expression in G. barretti. More efficient gene editing
in G. barretti could be achieved by optimizing the lipofection
protocol or increasing how efficiently cells can perform HDR
with the donor template. Varying the length of the homology
arms can greatly influence HDR efficiency (Shin et al., 2014;
Song and Stieger, 2017), and recently a new promising method
was developed, where the dsDNA template is provided on a
plasmid, flanked by target sites for the same gRNA as will be
used to edit the genome (Zhang et al., 2017; Kanca et al., 2019).
Another option would be to select for cells expressing a marker
gene that protects them from an otherwise lethal chemical, such
as geneticin (G418) or hygromycin B (Santerre et al., 1984).
Once larger constructs can be inserted more efficiently, this
technique could be used to permanently overexpress oncogenes
or genes in pathways synthesizing potential biopharmaceuticals
to increase productivity.

Our results represent the first venture into genetically
modifying marine sponge cells. We used a CRISPR/Cas12a
system to target and accurately disrupt a specific gene in cultured
G. barretti cells. CRISPR/Cas systems are versatile and have
been used in many types of organisms, now including G.
barretti, which bodes well for using the methods developed in
this study in other sponge species. However, because sponge
species and individuals often respond differently to certain
treatments (Conkling et al., 2019), it is likely that methods will
need to be optimized on a case-by-case basis. More research is
needed to improve HDR efficiency in sponge cells, in particular
for inserting longer constructs needed to express heterologous
genes. Nevertheless, we have shown that CRISPR/Cas12a holds
promise as a powerful tool in sponge cell culture and that it
should be pursued further. Once the method has been fully
established and optimized in G. barretti and other sponges,
it can be used to study gene functions to better understand
fundamental aspects of sponge biology, as well as change or
improve how genes work in sponge cells for biotechnological
applications. for example, to develop promising sponge-derived
drug candidates that are either very complex and therefore
expensive to chemically synthesize, or present in sponges
at concentrations too low for wild harvest or aquaculture
(Duckworth and Battershill, 2003; Sipkema et al., 2005;
Duckworth, 2009), such as anti-tumor compounds halichondrin
B (Hirata and Uemura, 1986) and peloruside A (West et al.,
2000). However, since in vitro cell cultures are optimizable and
scalable, they are an attractive alternative production platform
for any sponge-derived compound, even ones produced by

symbiotic bacteria, which could be cultured together with sponge
cell strains optimized using CRISPR-Cas12a. By demonstrating
that CRISPR/Cas12a can be used to edit the genome of G.
barretti cells in vitro, we have taken another important step
toward creating and improving sponge cell strains to produce
sponge-derived pharmaceuticals in quantities that allow clinical
trials and ultimately, treat disease in patients with novel,
sponge-derived drugs.
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