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Lipid metabolism in Calanus
finmarchicus is sensitive

to variations in predation risk
and food availability

Elise Skottene'™, Ann M. Tarrant?, Dag Altin*3, Rolf Erik Olsen?, Marvin Choquet* &
Kristina @. Kvile56™

Late developmental stages of the marine copepods in the genus Calanus can spend extended periods
in a dormant stage (diapause) that is preceded by the accumulation of large lipid stores. We assessed
how lipid metabolism during development from the C4 stage to adult is altered in response to
predation risk and varying food availability, to ultimately understand more of the metabolic processes
during development in Calanus copepods. We used RNA sequencing to assess if perceived predation
risk in combination with varied food availability affects expression of genes associated with lipid
metabolism and diapause preparation in C. finmarchicus. The lipid metabolism response to predation
risk differed depending on food availability, time and life stage. Predation risk caused upregulation

of lipid catabolism with high food, and downregulation with low food. Under low food conditions,
predation risk disrupted lipid accumulation. The copepods showed no clear signs of diapause
preparation, supporting earlier observations of the importance of multiple environmental cues in
inducing diapause in C. finmarchicus. This study demonstrates that lipid metabolism is a sensitive
endpoint for the interacting environmental effects of predation pressure and food availability. As
diapause may be controlled by lipid accumulation, our findings may contribute towards understanding
processes that can ultimately influence diapause timing.

Calanoid copepods are important zooplankton species in the North Atlantic and Arctic marine ecosystems.
These calanoid copepods convert carbon from phyto- and microzooplankton to accessible energy in the form
of wax ester (WE) lipids for higher trophic levels, including commercially important fish stocks'?. Calanus
finmarchicus (Gunnerus, 1770) typically dominates in subarctic Atlantic areas, e.g. in the Norwegian Sea and
the southwestern Barents Sea, while the larger and more lipid-rich C. glacialis and C. hyperboreus dominate in
Arctic waters®. In response to the high seasonality in primary production at high latitudes, Calanus spp. conduct
ontogenetic seasonal vertical migrations. The copepods reproduce near the surface, where eggs are hatched,
after which the larvae develop through six naupliar stages (N1-N6) followed by five copepodite (C1-C5) stages.
Typically during the last copepodite stage (C5), C. finmarchicus either molt directly into the adult stage (C6), or
enter a dormant phase, termed diapause, which can last for several months*-. The copepods spend diapause at
depth, presumably without feeding, while slowly developing towards adulthood. They rely solely on endogenous
energy stores, primarily WE lipids retained within a specialized organ called the lipid sac’.

The timing of seasonal vertical migrations likely evolved to maximize fitness of copepods in response to
the seasonality of environmental conditions®. In freshwater zooplankton, external cues like photoperiod, food
availability and predator kairomones have been linked to diapause induction or termination (summarized by
Gyllstrom and Hansson, 2004°). However, previous studies have been unable to define explicit links between
environmental cues and diapause induction in C. finmarchicus, though it has been acknowledged that a combina-
tion of several environmental factors are involved, rather than a single cue®!°. While most studies have focused
on cues like photoperiod and sea surface temperature!®!!, predation pressure might be a critical and underap-
preciated environmental driver behind seasonal migrations of this species®. In general, predation risk is known to
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Figure 1. Treatment combinations and timeline of the experiment. (a) High food (Rhodomonas baltica): 200 pg
C/L. Low food: 90 pg C/L. The tanks with predator cue continuously received water from a tank of lumpfish
(Cyclopterus lumpus) juveniles fed Calanus finmarchicus. No predator cue: filtered sea water. Each treatment had
three replicate tanks, each of which were sampled on each sampling day. (b) Sampling of copepods for RNA-seq
was performed on days 2 (stage C4, one tank per treatment only, see “Methods”), 10 (stage C5) and 14 (stages
C5 and C6, females). Number of copepods per tank (9 on average) are reported in Supplementary Table 7.

influence a range of life history traits in marine copepods, including growth, development and reproduction'*"'4,

but the role of predation risk in shaping zooplankton life history has been much less explored in the ocean than
in freshwater and estuarine environments'>*.

Regardless of external cues, the ability to accumulate sufficient lipids to survive months without feeding is an
important aspect of diapause preparation'’-?2. The Lipid Accumulation Window (LAW) hypothesis postulates
that individual copepods must achieve a certain level of stored lipids in order to initiate diapause**~**. For C.
finmarchicus, 70 pg C of WE has been suggested as the minimum threshold for diapause entry®?. Thus, adequate
food availability during the growth season is a prerequisite for diapause initiation to occur. In order to accumu-
late sufficient lipid levels, lipid biosynthesis must exceed catabolism of lipid stores. Throughout their develop-
ment, Calanus spp. experience dramatic changes in the amount of stored lipids and in the expression of genes
associated with lipid metabolism?*?"-**?’_ In pre-reproductive copepods, lipid catabolism can be expected to be
low when sufficient food is available, but may increase due to stress®® and insufficient food availability*”. How-
ever, downregulation of lipid catabolism by crustaceans in the presence of stressors has also been reported**-32,
illustrating that lipid metabolism is sensitive to external factors. Studying lipid metabolism on a gene expres-
sion level can provide detailed knowledge on how lipid accumulation and catabolism is altered in response to
environmental cues, possibly before these changes become evident on a physiological level. Understanding the
metabolic processes during late development in C. finmarchicus, including those that potentially lead to diapause,
can contribute to a better understanding of the energy flow within the marine ecosystem and, potentially, of
diapause induction in Calanus copepods.

In order to assess this aim, we investigated the effects of perceived predation risk and varying food availability
on molecular indicators of lipid metabolism in C. finmarchicus copepodites during the transitions from the C4
to the C6 stage (Fig. 1 shows treatment combinations and timeline of the experiment). In a recent study by our
group, predation risk led to faster development under high food conditions in C. finmarchicus, and the copepods
molted into the adult stage (C6) without entering diapause®. From these and other previous observations®**3,
we did not expect diapause induction to occur under laboratory conditions. However, as perceived predation risk
may serve as a cue for diapause induction, we here also assessed whether the copepods in any of the treatments
exhibited changes in gene expression consistent with preparation for diapause. If so, we expected to be able to
link this to differences in lipid metabolism. Through RNA sequencing, we assessed expression of genes related to
lipid accumulation and catabolism and diapause in the different treatments (Table 1). In this molecular analysis
we used a subset of the same copepods from our previous study??, from which we re-analyzed lipid content and
stage progression data in order to specifically link these measurements with the gene expression results. This was
done to provide broader physiological context for the molecular results. The experiment was conducted using C.
finmarchicus from the NTNU Sealab culture®®. Calanus spp. copepods collected during diapause in the Trond-
heimsfjord, Norway, were used as a reference group representing a state of diapause and very low metabolism?'.
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Abbreviation Gene name Function References
hsp22 Heat shock protein 22 Diapause marker 2021
Ferritin Ferritin Diapause marker 2021

FABP Fatty acid binding protein Lipid storage/biosynthesis |

ELOV Elongase Lipid storage/biosynthesis | %

Lipid storage genes | Set of lipid storage genes Lipid biosynthesis 2751
B-oxidation genes B-oxidation genes (number of identified transcripts =63) Lipid catabolism 221
Torso-like Torso-like Developmental marker 2026

Table 1. Target genes involved in lipid metabolism/diapause/development selected for differential expression
analyses (GLM) in Calanus finmarchicus exposed to a combination of presence or absence of a predator cue
with high or low food availability.

Results

Lipid accumulation genes. “FABP’, a fatty acid binding protein, and “ELOV”, which catalyzes elongation
of very long chain fatty acids, are known to be upregulated during periods of rapid lipid synthesis/storage in C.
finmarchicus®?¢. Both genes were generally upregulated relative to the reference group (Calanus spp. C5s col-
lected in the field during diapause), and they showed an overall decline throughout the experiment as develop-
ment progressed (Fig. 2). Relative to the reference group, FABP was upregulated in C4s and C5s from day 10
(henceforth called “early C5s”) in all treatments (Fig. 2a, P <0.05, all results from statistical tests are available in
Supplementary Table 1), but it was not significantly different in C5s from day 14 (called “late C5s”) or Cé6s. In
early C5s, FABP was significantly upregulated in the treatment with low food and no predator cue compared
to the treatments with a predator cue and high food [log2 fold change (FC)=0.75, P=0.02, false discovery
rate (FDR) =0.65], and low food (logFC=0.63, P=0.048, FDR =1, details for all comparisons in Supplementary
Table 2). In late C5s, FABP was significantly upregulated in the treatment with low food and no predator cue
compared with those from high food and predator cue (logFC=0.75, P=0.02, FDR=0.30, Fig. 2a).

ELOV was significantly upregulated in all treatment groups on all sampling days compared to the refer-
ence group (P <0.05, Fig. 2b, details in Supplementary Table 1). In C4s, ELOV was almost 6 times more highly
expressed in the group with low food and no predator cue than the group with low food and predator cue, but
the comparison was not significant at the 0.05 alpha level (logFC=2.45, P=0.05, FDR=0.59, Fig. 2b). In late
C5s, ELOV was upregulated in the group with low food and no predator cue compared to the group with high
food and no predator cue (logFC=1.86, P=0.02, FDR =1, Fig. 2b). In C6s, ELOV expression was upregulated in
the group with high food and no predator cue compared to all other treatment groups (P <0.05, Supplementary
Table 2). ELOV was also significantly upregulated in the treatment with high food and a predator cue compared
to those in with low food and a predator cue (logfFC=1.86, P=0.02, FDR=1).

Among the suite of genes involved in lipid synthesis identified by Lenz et al. (2014) and Tarrant et al. (2016),
most desaturases, fatty acid synthetases, elongases and phospholipid acyltransferases were found to be strongly
upregulated in all copepods in the experiment compared to the reference group, regardless of treatment (Sup-
plementary Table 3).

Lipid catabolism genes. Catabolism of fatty acids occurs primarily in mitochondria through the $-oxida-
tion pathway®®, and 63 gene transcripts (henceforth called “genes") encoding the enzymes in this pathway were
recently identified in the C. finmarchicus transcriptome?"?!. We assessed catabolism of lipids by investigating
expression patterns of these genes, an approach previously used in studies on Calanus copepods®*2. To facilitate
interpretation, the 3-oxidation gene expression results are referred to as patterns of either up- or downregulation
based on the number of genes that are differentially expressed between treatments. For example, one downregu-
lated gene and ten upregulated genes in a comparison indicates a pattern of upregulation.

Across treatments, compared to the reference group, there was a general pattern of upregulation of 3-oxi-
dation genes early in the experiment that decreased with time and development [mean number of genes dif-
ferentially expressed (P <0.05) across treatments: C4: 23 up, 10 down; early C5: 22 up, 14 down; late C5: 15 up,
16 down; C6s: 12 up, 15 down; Fig. 3, details presented in Supplementary Table 4]. The number of upregulated
genes significantly declined with time (linear regression: — 6.50+1.74, P=0.005, F¢ o =11.27, adjusted R?=0.80),
but there was no corresponding change in the number of downregulated genes (linear regression: 2.25+1.69,
P=0.22, Fg4=3.08, adjusted R?=0.45).

In C4s, there was no clear effect of the treatments on the expression of 3-oxidation genes, except for a pat-
tern of upregulation in the C4s with high food and a predator cue relative to those with low food and a preda-
tor cue (Fig. 4, details presented in Supplementary Table 5). However, in early and late C5s, there was a clear
pattern of differentially expressed f3-oxidation genes (Fig. 4). The first step of the {3-oxidation pathway is of
particular interest because it is rate-liming®, which means the overall rate of the pathway is determined by the
rate of that specific reaction. The reaction product is fatty acyl-CoA, and it is catalyzed by a long-chain fatty
acid CoA ligase (EC number 6.2.1.3, “FA ligase” hereafter), for which several transcripts have been identified
in the C. finmarchicus transcriptome®'. In both early and late C5s, there was a pattern of downregulation of
B-oxidation genes with high food availability relative to low food, both with and without a predator cue (Figs. 4
and 5, details presented in Supplementary Table 5). In low food conditions, the presence of a predator cue
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Figure 2. Gene expression of (a) fatty acid binding protein (FABP) and (b) fatty acid elongase (ELOV) in
Calanus finmarchicus copepods exposed to a combination of presence or absence of a predator cue with high

or low food availability, compared to the reference group (Calanus spp. C5 copepodites in diapause). Bar at the
top indicates the number of days between experimental initiation and sampling. Within each day and stage,
green symbols denote significant (P <0.05) upregulation from blue symbols between treatments. Shapes indicate
developmental stages (see legend). X-axis shows treatments: Hi-P High food and no predator cue, Hi+ P High
food and predator cue, Lo-P Low food and no predator cue, Lo + P Low food and predator cue. Y-axis shows
log2 fold change (FC) relative to the reference group. Not marked in figure: in C6, ELOV was significantly
upregulated in Hi + P relative to Lo+ P (details in text).

resulted in downregulation of 3-oxidation genes relative to the group with no predator cue. In high food condi-
tions, presence of a predator cue caused upregulation of 3-oxidation genes in early C5s relative to no predator
cue (three genes, all encoding FA ligases), but downregulation in late C5s (two genes).

In C6s with a predator cue, there was a pattern of downregulation of f3-oxidation genes with high food rela-
tive to low food (Fig. 4, details presented in Supplementary Table 5). With no predator cue, there were more
upregulated {3-oxidation genes with high food relative to low food. With low food availability and a predator cue
there was no clear pattern in C6s, while a predator cue in combination with high food caused downregulation in
C6s relative to the treatment with no predator cue present (six genes, two FA ligase genes included).

Opverall lipid metabolism patterns in all treatments are summarized in Fig. 5. Our results indicate that lipid
accumulation declined with predation risk, and that this decline was most prominent with low food availability.
With high food availability, predation risk caused increased lipid catabolism in early C5s (based on upregulation
of 3-oxidation genes). With low food availability, the predator cue caused downregulation of lipid catabolism. In
late C5s, predation risk caused reduced lipid catabolism also under high food availability. In C6s, predation risk
resulted in decreased lipid catabolism with high food availability, but not with low food availability.

Diapause preparation assessment. Expression of hsp22 (Fig. 6a) and ferritin (Fig. 6b), two molecular
markers showing high expression during diapause in C. finmarchicus®>*"*, was significantly (P<0.01, details
in Supplementary Table 2) downregulated in C4, C5 and C6 copepodites in all treatment groups on all days
compared to the reference group. Ferritin was significantly upregulated in late C5s with low food and no preda-
tor compared to those with low food and a predator cue (logFC=0.49, P=0.049, FDR=1), and in C6s with
high food and no predator cue compared to C6s with a predator cue and high food (logFC=0.680, P <0.01,
FDR=0.57) and low food (logFC =0.56, P=0.03, FDR = 0.64, all results from statistical tests are available in Sup-
plementary Table 2). hsp22 was significantly upregulated in C6 with high food and a predator cue compared to
those with low food and a predator cue (logFC=0.97, P=0.049, FDR=1).

Torso-like has shown strong differentiation between early and late development within the C5 stage (i.e.,
expression increases as the C5s approach molting into the C6 adult stage)?. To our knowledge, the expression
profile of this gene has not been assessed in other stages previously. There was a general pattern of low (logFC<1)
torso-like expression in C4s and C6s, and high (1ogFC > 3) expression in C5s (Fig. 6¢). In C4s in the treatment
with low food availability and a predator cue, torso-like was strongly upregulated from the reference group
(logFC=5.81, P=0.003, FDR=0.01, Fig. 6¢, and details in Supplementary Table 1) and from the other treatments
(P=0.022 for all comparisons, details in Supplementary Table 2). Torso-like expression was not significantly
different from the reference group in the other treatments in C4s (P >0.05). In C5s, torso-like was upregu-
lated compared to the reference group in all treatments (P <0.05, details in Supplementary Table 1). logFC was
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Figure 3. Number of significant (P <0.05) differentially expressed 83-oxidation genes (x-axis) in Calanus
finmarchicus in the experimental treatments (y-axis, left) each sampling day (y-axis, right) compared with
the reference group (Calanus spp. C5 copepodites in diapause). Number of upregulated genes declined
with time (linear regression, P=0.005, Fgo=11.27, adjusted R2=0.80). Stages (C4, C5 and C6) were
assessed separately. Grey bars indicate upregulated genes and black bars indicate downregulated genes
relative to the reference group. One gene upregulated in e.g. Lo + P also implies that the same one gene is
correspondingly downregulated in the reference group.

comparable to that in the C4s low food availability and a predator cue. In C5 with high food and a predator cue,
torso-like was upregulated relative to C5s with low food and no predator cue (logfC=3.47, P=0.01, FDR=0.58).
In C6, torso-like was neither differentially expressed from the reference group, or between treatments (P> 0.05).
A principal component analysis (PCA) was performed on the matrix of expression of all transcripts for all
samples. There was a clear separation along the principal component 1 (PC1, see Supplementary Fig. 1, 35.1%
variance explained), with the reference group (Calanus spp. C5s collected during diapause) samples grouped
together to the right, followed by C4, then C5 and the C6 samples from the experiment furthest to the left. Along
PC2 (23.5% variance explained), the reference group was also clearly separated from the experimental samples.
There was no clear grouping of experimental treatment groups in this analysis (see Supplementary Fig. 1).

Stage development and lipid content. Here, we present basic physiological parameters (stage devel-
opment, lipid fullness and estimated WE content) of the copepods sampled for RNA seq on days 2, 10 and 14.
Data on stage development and lipid fullness from a larger pool of copepods from the same experiment are
examined in more detail in our recent study®. At the termination of the experiment (day 24) 99% of the remain-
ing copepods had reached the C6 stage. We calculated the mean development stage of the copepods sampled
for RNAseq per sampling day (days 2, 10 and 14) by setting C4=4, C5=5 and C6 =6. The mean developmental
stage across treatments was 4.1 on day 2, 5.1 on day 10 and 5.5 on day 14. There were no significant differences
in developmental stage distribution between treatments on days 2 or 10, while on day 14, the development stage
distribution was higher (i.e. more advanced development) with high food and predator cue compared to the
other treatments (Fig. 7a, P-values from Wilcoxon rank sum tests of differences between treatments < 0.05, all
results from statistical test are available in Supplementary Table 6).

In general across treatments, lipid fullness increased from C4 to C5 and was highest in late C5s
(Fig. 7b, P <0.05 in all comparisons, all results from statistical test are available in Supplementary Table 6). Lipid
fullness was lower in C6s (females only included in analysis) than in C5s, but generally higher in C6s than in C4s
(P<0.05). Comparing treatments, lipid fullness in C4s was significantly higher with high food and no predator
cue (P-values from Wilcoxon rank sum tests of differences to other treatments=0.02 for all comparisons). In
early C5s (day 10), lipid fullness was also highest in those with high food and no predator cue (P <0.05 in all
comparisons), intermediate and statistically indistinguishable from each other with high food and predator cue/
low food and no predator cue (P=0.15), and lowest with low food and predator cue (P <0.05 in all comparisons).
Patterns of lipid fullness for late C5s (day 14) and C6s resembled early C5s, except that for the late C5s, differences
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Figure 4. Number of significant (P <0.05) differentially expressed 83-oxidation genes (x-axis) between
experimental treatments (y-axis, left) in Calanus finmarchicus copepods exposed to a combination of presence
or absence of a predator cue with high or low food availability. Numbers next to bars indicate numbers of genes
encoding FA ligases (rate-limiting step). Comparisons of treatments were done separately per sampling day

(2, 10 and 14) and stage (C4, C5 and C6, y-axis, right). The first treatment within each comparison is set as
reference to the second treatment, e.g. 4 genes upregulated in “Predator cue: high vs. low food” =4 genes up in
predator cue +high food and the same 4 genes down in predator cue +low food.

were only statistically significant (P <0.05) between high food without predator cue and the low-food treatments
(for the other combinations, P={0.11-0.17]).

Estimated wax ester (WE) content (Fig. 7c) was always found to be below the suggested threshold for diapause
entry of 70 pg C** (maximum value =58.3 in C5 day 14 with high food and no predator cue). WE content was not
significantly different between treatments for C4 (P >0.05), while for C5 (early and late) and C6 the significant
differences were similar to the pattern for lipid fullness described above for C6 and early C5s (all results from
statistical test are available in Supplementary Table 6).

Species identification. The species identity in both the maternal generation (n=121) of the copepods used
for the experimental treatments included in the present study, as well as a subsample of other offspring from this
generation (n=74), were confirmed by genetic markers to be exclusively C. finmarchicus. The species identifica-
tion analyses were performed to rule out the possibility of having other Calanus species present in the culture
together with C. finmarchicus. It was indeed recently reported that both C. finmarchicus and C. glacialis occur in
the Trondheimsfjord?, from where the NTNU Sealab culture was originally collected (in 2004).

Discussion

We have demonstrated that predator cues and food availability interactively influence lipid metabolism in C.
finmarchicus copepodites developing from the C4 copepodite stage via C5 to the adult female stage. Lipid metabo-
lism varied between treatments, life stages and sampling day. Interestingly, lipid catabolism was upregulated in
response to perceived predation risk in early C5s with high food conditions but downregulated in late C5s. With
low food conditions, lipid catabolism was downregulated in both early and late C5s in the presence of a preda-
tor cue. This suggest that food availability modulates the lipid metabolism response to predator presence, and
that the response changed with time. In addition, our results indicate that lipid accumulation was disrupted by
predator presence, particularly in low food conditions. This illustrates that lipid metabolism in C. finmarchicus
is a dynamic process which is in part influenced by the interacting environmental effects of predation pressure
and food availability. The copepods did not enter diapause in this experiment. However, as lipid accumulation
is important in controlling diapause in C. finmarchicus™, our findings can contribute to understanding more of
the metabolic processes preceding or leading to diapause in Calanus copepods.
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Figure 5. Illustration of overall lipid metabolism patterns (accumulation C4&C5: black, catabolism C5: dark
grey, catabolism C6: light grey) in Calanus finmarchicus exposed to presence or absence of a predator cue in
combination with high or low food availability while developing from C4 to C5 and further to C6. We assume
that the treatment with no predator cue and high food availability represent the lowest level of percieved stress,
and that the stress level increases with predator presence and low food availability. The placement of each box
relative to the others are derived from the lipid fullness results and/or gene expression results. For example, lipid
catabolism in C6s in the treatment with high food and no predation has more upregulated genes than the other
treatments, and this box is therefore placed higher than the other treatments.

Independently of treatment, lipid fullness increased during the development from C4 to early C5 and late C5,
before it declined in C6. These results are consistent with previous observations®>*® and illustrates that the C4s
and C5s store lipids in preparation for either diapause or for the final molting into the reproductive C6 stage. In
both early and late C5s, there was a pattern of downregulation of f3-oxidation genes with high food availability
relative to low food, both with and without a predator cue. These results imply that high food availability results
in lower lipid catabolism than low food availability, which can be expected in favorable conditions. C4s and C5s
with high food availability and no predator cue, and presumably the lowest level of stress, accumulated more
lipids from early on in the experiment (day 2) compared to other treatments. The observed downregulation of
several f3-oxidation genes in the copepodites in this treatment indicates a lower lipid catabolism rate, and illus-
trates that these copepodites had a minimal need to utilize lipids for energy. This may be explained by a lower
need to physiologically compensate for stress compared to copepods in the other treatments.

The response to predation risk differed within the food availability treatments. When a predator cue was
present in the treatment with high food, we observed increased lipid catabolism in early C5s, which changed
to downregulation in late C5s. In the natural environment of copepods, predators are omnipresent, though the
degree of predation risk varies depending on e.g. depth, season and time of the day. Copepods are known to
respond to chemical cues from predators by altering their life history strategies, e.g. growth or reproductive
rates'!*. In our controlled experiment, high concentrations of chemical cues from a predator preying upon C.
finmarchicus may be perceived as a stressor, at least when compared to the copepods in filtered seawater. Com-
parable upregulated lipid catabolism responses to (chemical) stressors have been observed in other crustaceans
such as Machrobrachium borellii***® and Homarus americanus®. Alternatively to the response being stress-related,
the upregulation of 3-oxidation genes in early C5s in the treatment with high food and a predation cue may be
due to a higher energy demand in these copepodites while preparing to molt to the adult stage, as corroborated
by the accelerated developmental progression in this treatment (day 14). On day 14, close to the terminal molt,
we observed downregulation of f3-oxidation genes as a response to predation risk, with both low and high food
availability. This illustrates that lipid metabolism is a dynamic process that changes during development. Our
observations of general 3-oxidation gene expression pattern across treatments, relative to the reference group,
further supports a higher lipid catabolism rate in C4s and early C5s, and a decline in late C5s and Cé6s. In a recent
study by Skottene et al. (2019), where Calanus C5s terminated diapause without available food, lipid catabolism
was also higher early in the C5 stage and declined close to the terminal molt to C6?'. Thus, a similar pattern in
lipid catabolism seems to occur in the late life stages in Calanus copepods, perhaps regardless of activity level, but
modulated by both food availability and predation risk. Exposure to oil pollution has been observed to disrupt
lipid catabolism®?, indicating additional sensitivity to anthropogenic disturbances. In Neocalanus flemingeri
lipid catabolism genes were in contrast upregulated towards the end of diapause (which occurs in adults), and
did not become reduced*'. This underlines species differences and the complexity of energetic metabolism in
diapausing zooplankton species.
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Figure 6. Gene expression of (a) hsp22 and (b) ferritin, two molecular markers of diapause, and (c) Torso-like, a
developmental marker, in Calanus finmarchicus copepods exposed to a combination of absence or presence of a
predator cue with high or low food availability, compared to the reference group (Calanus spp. C5s in diapause).
Within each day and stage, green symbols denote significant upregulation from blue symbols between
treatments. Hi-P High food and no predator cue, Hi + P High food and predator cue, Lo-P Low food and no
predator cue, Lo+ P Low food and predator cue.

With low food availability, predator presence resulted in downregulation of 8-oxidation genes in both early
and late C5s. This downregulation of lipid catabolism genes in the presence of a predator cue could indicate that
the copepods may cope with stress by reducing their overall metabolism. Downregulated lipid metabolism in
response to petroleum oil components was recently reported in C. finmarchicus®, and predation risk has been
linked to lower resting metabolic rates in the amphipod Gammarus minus*, and to decreased swimming speed
in the marine copepod Temora longicornis®*. Reduced activity, causing a reduced energy demand, is a common
response to predation risk in aquatic and terrestrial prey*!, and may explain the decreased lipid utilization in the
copepods exposed to a predator cue. Specifically, diel vertical migration to deeper waters with lower food avail-
ability, where metabolism is generally reduced**¢, is a common predator avoidance behavior in zooplankton*’~#.
Though not feasible to assess in the relatively small experimental tanks in this study, it is possible that the lower
lipid metabolism rate that we observed resulted from a general reduction in activity in response to predation risk.

The copepods with low food availability and a predator cue accumulated lower amounts of storage lipids than
copepods in the other treatments. This was reflected by the downregulation of the lipid storage-associated gene
FABP in this treatment in early C5s (and Cé6s). Interestingly, FABP and ELOV showed consistently upregulated
expression (despite high FDRs: 0.65-1) in the early and/or late C5s with no predator cue and low food availabil-
ity. This suggests that these copepodites had the highest lipid biosynthesis of the treatments, or at least that the
copepodites were metabolically primed to synthesize lipid from dietary substrates as they became available. Our
results imply that under low food conditions, copepodites will prioritize accumulating lipid stores over other
metabolic demands, but the presence of a predator cue seems to disrupt lipid accumulation. As discussed in the
previous paragraph, the copepods may respond to predator presence as a stressor, and reduce their overall lipid
metabolism, i.e. both catabolism and accumulation.

When adulthood is reached, female C. finmarchicus use a combination of endogenously stored lipids and
feeding to fuel egg production®”*". This is reflected in the general reduction in lipid fullness in C6 compared to
C5s. As in C4s and C5s, lipid fullness in C6s was highest in copepods with high food conditions and no preda-
tor cue, and lowest in those with low food and a predator cue. However, the gene expression patterns in the Cés
differed, to some extent, from those in the C5s. Under high food conditions, lipid catabolism in C6s was reduced
in the presence of the predator cue, like in late C5s. This could be linked to reduced energy demands caused by
e.g. reduced movement, but this was not quantified. Under low food conditions, the presence of a predator cue
had no clear effect on lipid catabolism (no DEGs). This contrasts with the clear downregulation of lipid catabo-
lism observed in the C5s with low food conditions. Differences in lipid catabolism responses between life stages
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Figure 7. Development stage (a), lipid fullness (%) (b) and estimated wax ester (WE) content (ug C) (c) in
Calanus finmarchicus copepods exposed to a combination of presence or absence of a predator cue and high or
low food availability. Each treatment (see icons in legend) had three replicate tanks, each of which were sampled
on each sampling day. Development stage was calculated by setting C4=4, C5=5 and C6=6. Symbols and
vertical lines: mean values + standard deviation (SD) per day and stage (for panels b, ¢). Within each day and
stage (for panels b, ¢), green symbols denote significantly higher estimates (P < 0.05) relative to blue symbols
between treatments. Hi-P High food and no predator cue, Hi + P High food and predator cue, Lo-P Low food
and no predator cue, Lo + P Low food and predator cue.

have been observed in Calanus copepods exposed to petrogenic oil components®. It is likely that egg production
rates differed between the treatments, as both food availability and predation risk can affect reproduction in
copepods'***->4, As reproduction and lipid metabolism rates are likely closely linked, egg production should be
quantified and included in future studies evaluating lipid metabolism rates in adult copepods.

Regarding lipid metabolism in general, our findings show that food availability influences the lipid metabo-
lism response to predation risk in C. finmarchicus (Fig. 5), evident by the response to predation being different
depending on food availability. During their life cycle, Calanus spp. experience periods when food availability is
too low to meet metabolic demands®>*°. The length and intensity of these periods are likely to change with global
warming, which can impact the Calanus spp. life cycle by causing spatial and temporal mismatches between
copepod populations and phytoplankton blooms*”*. Changes in predation pressure are also likely*®. Our results
indicate that lipid metabolism is a sensitive endpoint for changes in food availability and predation pressure. As
lipid content and/or composition likely is closely linked to the initiation and termination of diapause?**, anthro-
pogenic and environmental factors that change lipid metabolism can indirectly alter the timing of diapause. A
change in diapause timing could further exacerbate trophic mismatches caused by changes in ocean temperature.

Our assessments of physiological, developmental and transcriptomic parameters strongly imply that none of
the experimental copepods began diapause preparation. No C5s from any treatments achieved a lipid level close
to the proposed threshold C. finmarchicus C5s need to support the energetic costs related to diapause (70 pg
C wax esters??). Interestingly, there were indications of slightly higher expression of the diapause-associated
gene ferritin in late C5s and C6s without a predator cue. Though the upregulation of diapause-associated genes
in C6 is difficult to interpret, the upregulation in late C5s without a predator cue and low food availability is
consistent with diapause preparation. However, due to the large difference in differential expression from the
reference group of copepods in diapause (> logFC -2.5), and the small difference in gene expression between the
two treatments (>1ogFC 0.7), it is more likely that this upregulation of ferritin is related to other activities than
diapause preparation. The protein ferritin is for instance known to have roles in iron binding in the copepod
Artemia fransiscana®'.

At the end of the experiment, almost all of the copepodites had molted into adults, and molting occurred
faster in tanks with high food and predator cue compared to other treatments (see also Kvile et al. for more details
regarding stage progression®?). The upregulation of forso-like in early C5s in this treatment further supports this.
Meanwhile, the strong upregulation of forso-like in C4s with a predator cue but with low food availability, may
indicate faster development on a molecular level, though sufficient food may be essential for actual molting to
occur. Similar faster developmental rates under predation risk have been reported in T. longicornis, of which late
nauplii stages showed increased molting probability in the presence of fish kairomones®2.

Perceived predation risk may be an important environmental cue that determine diapause initiation in the
field, but our results supports previous observations®!” that other cues are likely required either in addition, or
instead of, predation risk. Additional potential explanations why the copepods did not exhibit clear signs of
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diapause preparation in this study include: (i) predation risk does not induce diapause either alone or in combi-
nation with other cues; (ii) the predator cue triggering diapause is not chemical (but rather e.g. hydrodynamic or
visual); or (iii) the lab conditions are too far from the natural environment, and that these conditions over several
generations have favored continuous development. Although the 3rd point is difficult to overcome, it would be
of interest to run experiments including other potential diapause cues such as temperature, or increased pressure
to simulate a deep-water environment, or to assess the response to chemical predator cues in field-collected C.
finmarchicus.

In conclusion, our results demonstrate that lipid metabolism is sensitive to variations in food availability and
perceived predation risk. Interestingly, the lipid metabolism response to predator presence in C. finmarchicus
differed depending on the food availability, and with time and between life stages. Our molecular analyses showed
no evidence of diapause preparation in our experiment, though there were some indications of altered gene
expression of diapause and developmental markers depending on food availability and the presence of preda-
tion. Because diapause induction, duration and termination may be directly related to lipid content®>-*, and
our observations show that both food availability and predation risk affects lipid metabolism, both factors can
indirectly influence diapause timing. A change in diapause timing can alter entire ecosystem dynamics, which
are already under threat by anthropogenic disturbances like climate change and pollution.

Methods

Copepod collection and species determination of the culture. The reference group, consisting of
Calanus spp. copepodites of stage C5, was collected from sea bed depth (400 m) up to 200 m in the Trondheims-
fjord, Norway (N63° 29', E10° 18) in August 2017 using methods described in Skottene et al.*’. The copepod
samples (n=3, 10 individuals per tube) were placed in microcentrifuge tubes with 1.5 mL of RNAlater (Ther-
moFisher, USA) as soon as possible after collection, while onboard the research vessel. All disturbance was mini-
mized as far as possible, for details see the Methods section in Skottene et al. (2019). For the experiment, copep-
ods from the continuous C. finmarchicus culture at the NTNU Sealab facility in Trondheim, Norway, were used.
The culture was started with individuals collected by vertical net-hauls at a station in the Trondheimsfjord in
the autumn of 2004. At the time, it was assumed that C. finmarchicus was the only species of Calanus in the area,
and confirmation of species were based solely on morphological criteria. However, it was recently documented
that C. glacialis is present together with C. finmarchicus in the Trondheimsfjord®, and that the two species can
only be reliably distinguished using molecular tools®. Therefore, we used genetic markers to verify the actual
species composition of the Calanus culture. For this purpose, 200 females were sampled randomly from the
culture, representing two generations: (1) the maternal generation of the copepods used in the experiment, and
(2) a subsample of offspring from this maternal generation, i.e. the same generation as the copepods used in the
experiment. The females were anesthetized with MS-222 (Finquel, 1.5 g L™! seawater, Argent Labs, USA), imaged
for reference by a ccd camera (DS Fil/U2, Nikon Inc., Japan) attached to a dissecting microscope (MZAPO,
Leica Microsystems, Germany). After imaging, the individuals were preserved separately in 70% ethanol at room
temperature, transferred to storage at +4 °C until transport to the laboratory and final storage at — 20 °C. Later,
species identification of each specimen was performed following the protocol described in Choquet et al. (2017).
In short, DNA was extracted from the two antennules of each individual using a HotShot-based protocol. This
DNA was then used as a template for the amplification of six molecular markers type InDel®, multiplexed in
one PCR reaction per individual. The resulting amplified fragments were sized using a 3500xL Genetic Analyzer
(Applied Biosystems, USA) to establish the genotype of each individual (n=194 with successful amplification)
and determine the species.

Species identification analysis of the reference group samples was not performed. The RNA extraction for
RNA seq analysis of the copepods in the reference group samples was done before the new data about Calanus
species composition in the Trondheimsfjord® was available. However, as C. finmarchicus is the dominant species
in the Trondheimsfjord?, and because the two species show close similarity in diapause behavior®, we can assume
that the reference group is representative of C. finmarchicus C5 copepodites in a state of early diapause and very
low metabolism. Gene expression analyses of several of the same target genes did not show any clear influence
of the species composition in a previous study?'.

Experimental setup. On day 0 of the experiment, in total 3600 C4 copepodites were transferred from the
culture to 12 experimental tanks (300 copepodites per 45 L white polyethlene containers with lid, three replicates
per treatment, Fig. 1). We used a 2x2 factorial design with three replicates in each treatment: high food and
no predator cue (Hi-P), high food and predator cue (Hi+P), low food and no predator cue (Lo-P), low food
and predator cue (Lo+P) (Fig. 1). Aliquots of 50 copepods were sorted and assigned randomly to tank until
reaching 300 per tank. Specifically, copepods were picked up with plastic spoons and kept submerged while
quickly determining stage from visual inspection of size. The tanks received daily natural filtered (10 um mesh)
seawater collected at 70 m depth in the Trondheimsfjord at an exchange rate of 1.5 times the tanks” volume. The
temperature was kept constant within 10+ 2 °C and a light-dark cycle 16:8 h, corresponding to the conditions of
the culture. Photoperiod is not considered a trigger for diapause induction®>%¢, and was therefore not an assessed
parameter in the present study. From day 1, the water was enriched with the unicellular algae Rhodomonas bal-
tica at concentrations resulting in 200 (high food) or 90 (low food) pg C/L. These levels are above (high food) and
below (low food) the threshold at which the response of C. finmarchicus development rate to food level flattens
out (see Fig. 6B in Campbell et al.””). Additionally, the tanks received water with predator cue (+ P) or regular fil-
tered water (—P) at a rate replacing 10% of the tanks’ volume daily. The filtered seawater is unlikely to contain sig-
nificant concentrations of predator cues as these are quickly degraded®®. Water with predator cues was obtained
by continuously pumping seawater through a 20 pm filter from a separate 37 L tank with lumpfish (Cyclopterus
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lumpus) juveniles. Lumpfish are opportunistic feeders on a range of zooplankton species in the wild, including C.

finmarchicus®’°, and the lumpfish juveniles in our experiment readily preyed upon the offered copepods. Since
Daphnia respond more strongly to chemical signals from a predator preying on conspecifics than to the predator
of crushed conspecifics alone”!, we fed the lumpfish live C. finmarchicus from the main culture (20-50 stage C5
or C6 per fish daily, spread out in at least four meals) to ensure a continuous predation signal. The predator cue
in this study is therefore potentially a combination of kairomones from the fish and alarm signals from copepods
eaten by the fish. We started with 114 fish with a mean weight of 0.34 g. This was reduced to 54 on day 12 to
account for an assumed doubling of the fish weight (O. A. Kjorsvik, personal communication; mean weight of
removed fish 0.73 g). The experiment was terminated on day 24, at which point the remaining fish had a mean
weight of 1.22 g and were euthanized using an overdose of tricaine methanesulfonate solution (Finquel, Argent
Laboratories, Redmond, WA, US).

We sampled copepods for RNA seq from all tanks in random order on days 2, 10 and 14. We randomly col-
lected 12 (day 2) or 15 (days 10 and 14) copepods per tank using a ladle, keeping the samples (copepods + tank
water in a plastic cup) cooled on ice. Copepods were then anesthetized with tricaine methanesulfonate (1.5 g L™
seawater), identified to stage and photographed laterally with using a CCD camera (model DS-Fil/U2) mounted
on a Leica MZAPO stereo microscope (Leica Microsystems, Wetzlar, Germany). After this, copepods were trans-
ferred to 2 mL Eppendorf tubes with RNAlater (ThermoFisher, Waltham, USA) and kept at 4 °C for 24 h and then
at — 20 °C until analyses. To minimize handling time, we anesthetized and photographed ~ 5 copepods at a time.

We used the photographs to determine lipid fullness, i.e. the percentage of the prosome area comprised by
the lipid sac area’. We quantified prosome and lipid sac area by manually outlining these features using the free
software Image]73 and a drawing tablet (Wacom Cintiq 12wx, Wacom Co., Ltd., Saitama, Japan), calibrating the
pixel-to-mm ratio using an image of a calibration stage micrometer. To avoid the additional uncertainties in
converting from area to volume’?, we defined lipid fullness as the percentage of the body area comprised by the
lipid sac area (100 x lipid area/body area).

To assess the WE content in relation to the proposed threshold by Rey-Rassat et al. (2002), WE content (ug
C ind.™!) was calculated as:

WE = (1000 x lipid volume (mm?) x 0.86 x 0.78)/1.44 (1)

We calculated lipid sac volume using the equation’"*:

V = (wA?)/4L )

where A =area and L=1length of major axis (lipid or prosome length). To quantify effects of treatments on
development, we compared the distribution in developmental stages per sampling day and tank (setting C4 =4,
C5=5, C6F/C6M =6). Preliminary analyses using parametric statistical tests indicated that the assumption of
normality of the residuals was not always met (Shapiro Wilk test, P <0.05). Therefore, significant differences
between treatments in development stage per day were tested using the nonparametric Kruskal-Wallis one-way
ANOVA and, subsequently, the two-sided Wilcoxon rank sum test to compare pairs of treatments. Similarly,
we tested for significant differences in lipid fullness and WE content between treatments per day and stage. All
details from the tests are available in Supplementary Table 6.

RNA isolation, library preparation and RNA seq. On day 2, 80% of sampled individuals were at stage
C4 (with 3% C3 and 17% C5), while on day 10, 92% of sampled individuals were at stage C5 (with 1% C4, 6% C6
females and 2% C6 males). We therefore focused the RNA seq analyses exclusively on stage C4 for day 2, and on
C5 for day 10. On day 14, 51% of sampled individuals were stage C5, 40% C6F and 9% C6M. Thus, we analyzed
samples of both stage C5 and C6F from each tank on day 14 (see Supplementary Table 7 for details).

We pooled copepods of the same stage from the same tank and day (n=3-15 individuals, mean: 9, see Sup-
plementary Table 7 for n in each sample) in order to incorporate biological material from a larger number of indi-
viduals into a limited number of RNA-seq libraries’®. This is common in gene expression studies with copepods””.
On day 2, one sample per treatment was analyzed as we did not expect one day of differential treatment to affect
transcription. On days 10 and 14, three samples per treatment were analyzed. RNA extraction from copepod
samples was performed using the Qiagen RNeasy Plus Universal Mini Kit (Qiagen Inc., Valencia, CA, USA) with
the additional use of a QiaShredder column, following the manufacturer’s protocol. RNA quality assessment was
performed using a Model 2100 Bioanalyzer instrument (Agilent, Santa Clara, USA) using methods described in
previous studies?*. All the analyzed samples were of high quality, containing a strong 18S band and little or no
evidence of genomic DNA contamination (large bands) or degradation (smear of smaller bands).

For RNA sequencing, cDNA libraries were synthesized from total RNA (80 ng/mL RNA input) using the
[lumina TruSeq Stranded mRNA sample preparation kit (Illumina, San Diego, USA). Final volume of cDNA
libraries was 22 pL. Prior to RNA sequencing, the cDNA libraries were pooled and normalized, and a quality
control was performed on a Bioanalyzer instrument by the sequencing facility.

Illumina sequencing and bioinformatic analyses. The 43 samples were sequenced at the Genomic
Core Facility (GCF) at NTNU, Trondheim, The libraries were clustered on a Nextseq500 high output flowcell,
and 75 bp paired-end sequencing was performed on a NextSeq500 instrument (Illumina inc., San Diego, CA,
USA) according to the manufacturer’s instructions. One library (C6, day 14, low food, no predation) failed
sequencing, leaving 42 samples. Generated sequences were demultiplexed and adapter trimmed at the GCF. All
samples passed standard fastq (FastQC software, version 0.11.8) quality checks, with ~ 500 million reads retained
in total, and ~ 12 million reads per sample (Supplementary Table 7).
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Read mapping and estimation of abundance were performed using scripts bundled within Trinity
(version 2.8.4)7%. Reads were mapped to the a previously assembled*® and newly annotated®” transcrip-
tome (PRNJA231164,) using Bowtie (version 2.3.4.2)”°. Read counts were normalized to trimmed mean of
M-values (TMM) to account for differences in library size, and FPKM-normalized (fragments per feature kilo-
base per million reads mapped) when producing the PCA-plot, using scripts bundled within Trinity. Transcript
abundances were estimated using the RSEM package® (version 1.3.2).

Differentially expressed genes (DEGs, P <0.05) were determined using edgeR (version 3.28.0) and limma
(version 3.42.0) within Bioconductor® in R (version 3.6.0). DEGs were identified using a generalized linear model
(GLM) fitted with quasi-likelihood F-tests. We compared (i) the reference group with the different treatments
each sampling day, and (ii) the treatments with each other within each sampling day (stages analyzed separately:
C4 on day 2, C5 on day 10 and C5 and C6F on day 14). Stage (C4, C5 and C6), sampling day (2, 10 and 14) and
treatment (high or low food, predator cue or no predator cue) were included as factors in the design matrix in
the GLM. Expected gene counts from RSEM were used as input, and genes with very low counts per million
(CPM < 1) were filtered out. Tagwise dispersion was calculated using the Cox-Reid profile-adjusted likelihood
method, which allows for multiple factors in the GLM®"#2, Gene expression results are given on log2 scale, alpha
level was set to 0.05.

We selected specific target genes (Table 1) for assessing differential expression, primarily based on their bio-
logical functions in Calanus copepods, and on their expression patterns in previous studies. The effect of time
(days since start of experiment) on the total number of up and downregulated {3-oxidation DEGs, was assessed
using two separate linear models in R (version 3.6.2). The residuals of both models showed a normalized distri-
bution, and Shapiro tests on residuals of both models confirmed this distribution (P > 0.05).

Data availability

Sequence data have been submitted to the National Center of Biotechnology Information (NCBI; www.ncbi.
nlm.nih.gov) under the Bioproject PRINA593934. Genotypes of InDels are submitted to DRYAD, https://doi.
org/10.5061/dryad.1rn8pk0qp®’.
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