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Abstract
Copepods of the genus Calanus are the key components of zooplankton. 
Understanding their response to a changing climate is crucial to predict the func-
tioning of future warmer high-latitude ecosystems. Although specific Calanus species 
are morphologically very similar, they have different life strategies and roles in eco-
systems. In this study, C. finmarchicus and C. glacialis were thoroughly studied with 
regard to their plasticity in morphology and ecology both in their preferred original 
water mass (Atlantic vs. Arctic side of the Polar Front) and in suboptimal conditions 
(due to, e.g., temperature, turbidity, and competition in Hornsund fjord). Our obser-
vations show that “at the same place and time,” both species can reach different sizes, 
take on different pigmentation, be in different states of population development, 
utilize different reproductive versus lipid accumulation strategies, and thrive on dif-
ferent foods. Size was proven to be a very mutable morphological trait, especially 
with regard to reduced length of C. glacialis. Both species exhibited pronounced red 
pigmentation when inhabiting their preferred water mass. In other domains, C. fin-
marchicus individuals tended to be paler than C. glacialis individuals. Gonad matura-
tion and population development indicated mixed reproductive strategies, although 
a surprisingly similar population age structure of the two co-occurring species in the 
fjord was observed. Lipid accumulation was high and not species-specific, and its 
variability was due to diet differences of the populations. According to the stable 
isotope composition, both species had a more herbivorous diatom-based diet in their 
original water masses. While the diet of C. glacialis was rather consistent among the 
domains studied, C. finmarchicus exhibited much higher variability in its feeding his-
tory (based on lipid composition). Our results show that the plasticity of both Calanus 
species is indeed impressive and may be regulated differently, depending on whether 
they live in their “comfort zone” or beyond it.
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1  | INTRODUC TION

The fundamental way by which organisms cope with climate change 
is through ecological plasticity, which encompasses any type of 
environmentally induced change (e.g., morphological, physiologi-
cal, behavioral, phenological). Zooplankton can respond to global 
environmental changes phenotypically (with alterations in their 
physiology or behavior) or evolutionarily (with a shifting genetic 
composition of populations) (Dam, 2013; Kelly et al., 2017). It is still 
not known whether marine species will have the capacity to adjust 
to ongoing changes through phenotypic plasticity in the short term 
or adapt in the longer term (Byrne et al., 2020). Although ecological 
plasticity refers only to the phenotypic changes that are expressed 
in the lifetime of a single organism, some of these changes can po-
tentially be adaptive (Ghalambor et al., 2007) and evolve over time 
and space (Kelly et al., 2017; Sasaki & Dam, 2019). Therefore, pheno-
typic plasticity plays a key role in adapting to new and changing en-
vironments (Chevin et al., 2010; Pfennig & Ehrenreich, 2014; Pfennig 
et al., 2010).

Copepods of the genus Calanus are the key components of 
zooplankton in the Arctic and northern Atlantic waters (Aarflot 
et al., 2017; Carstensen et al., 2019; Jaschnov, 1970), and they play 
a crucial role in marine food webs as the main mediators between 
the microbial system, phytoplankton, and higher trophic levels. Due 
to their high lipid content (Falk-Petersen et al., 2009; van der Hoop 
et al., 2019; Mayzaud et al., 2016; Scott et al., 2000), they are re-
sponsible for the sustainability of large stocks of fish, seabirds, and 
marine mammals in the Arctic region (Falk-Petersen et al., 2007, 
2014; Stempniewicz et al., 2007). Additionally, due to the various 
centers of distribution of particular species, they are highly valued 
as biological indicators of the hydrographical–ecological regimes and 
consequently of the effects of ongoing climate changes (Choquet 
et al., 2017; Gabrielsen et al., 2012; Kwasniewski et al., 2010; Møller 
& Nielsen, 2019). Although specific Calanus species are morpholog-
ically very similar, they have different life strategies and exhibit dif-
ferent ecological traits, which at the same time are highly adaptable 
to the extremely variable environmental conditions encountered by 
Calanus copepods during their lifespan (Bandara et al., 2019; Falk-
Petersen et al., 2009; Feng et al., 2018; Kvile et al., 2018). Therefore, 
Calanus spp., owing to their high ecological plasticity, can reason-
ably be assumed to be able to cope with some extent with ongo-
ing environmental changes (Byrne et al., 2020), but specific species 
may respond differently to warmer Arctic conditions (Falk-Petersen 
et al., 2009; Kjellerup et al., 2012; Scott et al., 2000). However, due 
to problems with proper Calanus species identification, knowledge 
about their ecological plasticity and functioning in various oceanic 
conditions is still very limited.

In recent decades, the most common method for discriminat-
ing the two species was based on prosome length measurements 
(Arnkværn et al., 2005; Kwasniewski et al., 2003; Weydmann & 
Kwasniewski, 2008). However, this method was criticized recently 
because of an overlap in the size of the two species as an effect of 
their substantial size plasticity in response to food availability, water 

temperature, life cycle length, or even to predation pressure (Leinaas 
et al., 2016; Lindeque et al., 2006; Parent et al., 2011; Renaud 
et al., 2018). Genetic identification of Calanus species using either 
mitochondrial or nuclear markers (Leinaas et al., 2016; Lindeque 
et al., 2006; Parent et al., 2011; Renaud et al., 2018) was success-
ful and offers a very promising, but still labor-intensive, expensive, 
and rather unsuitable approach for large field surveys. The use of 
mitochondrial markers for the molecular separation between the 
two species has been challenged because of questions about pos-
sible hybridization between them in the northwest Atlantic (Parent 
et al., 2012), but subsequently developed nuclear markers for 
Calanus species identification (Smolina et al., 2014) can be used to 
detect events of potential recent hybridization (Nielsen et al., 2014). 
Nonetheless, large-scale genetic surveys throughout the northeast 
Atlantic and Arctic oceans (Choquet et al., 2017, 2018) and novel 
studies of mitochondrial genomes of C. finmarchicus and C. glacia-
lis (Weydmann et al., 2017) suggest that hybridization is unlikely. 
Consequently, all new studies clearly show that if Calanus is to be 
distinguished to the species level, this must be supported by genetic 
analysis (Choquet et al., 2018; Renaud et al., 2018). The proper iden-
tification of Calanus to the species level is definitely not only a mat-
ter of taxonomical curiosity; the knowledge of whether one or the 
other species prevails and what is the extent of its ecological plas-
ticity is a principal ecological factor in understanding and predicting 
the future functionality of north polar marine ecosystems.

An increasing temperature and volume of Atlantic waters flowing 
into the Arctic is causing shifts in hydrographic conditions (Polyakov 
et al., 2005, 2020; Walczowski et al., 2012). Shifts in the positions 
of water masses will result in changes to the distribution of asso-
ciated zooplankton communities (Beaugrand et al., 2002; Chust 
et al., 2014; Hays et al., 2005). Therefore, along with the progressive 
climate warming in the Arctic, a regime shift from larger lipid-rich 
Arctic C. glacialis species toward smaller Atlantic C. finmarchicus spe-
cies is expected (Aarflot et al., 2017; Kjellerup et al., 2012; Møller 
& Nielsen, 2019). Due to the commonly observed difference in the 
size and thus the amount of lipids between C. finmarchicus and C. 
glacialis, the two species were believed to support different arctic 
food webs (Renaud et al., 2018; Weslawski et al., 2009). The de-
creased availability of C. glacialis is expected to affect the breed-
ing success of the most numerous seabirds, little auks (Jakubas 
et al., 2020; Stempniewicz et al., 2007). However, the predicted 
higher abundance of C. finmarchicus in the Arctic (Reygondeau & 
Beaugrand, 2011; Slagstad et al., 2011) is expected to favor fish 
stocks (Falk-Petersen et al., 2007; Renaud et al., 2018; Stempniewicz 
et al., 2007). Additionally, the changes in the timing of Calanus re-
production and development rate have critical significance for their 
availability to predators (Balazy et al., 2019; Bandara et al., 2019; 
Søreide et al., 2008).

The aim of this study was to verify the actual differences be-
tween C. finmarchicus and C. glacialis with regard to their mor-
phology (size, pigmentation), life cycle phenology (according 
to population demography and gonad maturation), and feeding 
strategies (variability in diet composition and differences in lipid 
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accumulation). These differences were studied both in the waters 
where each species originate from (the Atlantic domain of the Polar 
Front in the case of C. finmarchicus and the Arctic domain of the 
Polar Front in the case of C. glacialis) and in the waters in which they 
coexist (Hornsund fjord, Spitsbergen), both in the fjord main basin 
and in its glacial bay. The hypothesis of this study is that the traits 
of the Calanus species (e.g., size, pigmentation, population demogra-
phy, reproductive readiness, lipid accumulation, diet) will differ de-
pending on whether specific species (C. finmarchicus vs. C. glacialis) 
inhabits the preferred original water mass (comfort zone) or exist in 
suboptimal conditions (due to, e.g., temperature, turbidity, compe-
tition). We assume that both species will exhibit high plasticity of 
the traits studied; however, the extent of the plasticity will differ 
between the species, with C. finmarchicus expected to be more of 
a generalist and C. glacialis expected to be more of a specialist (as 
defined by Dam, 2013). This study is the first to incorporate many 
aspects to improve taxonomical and ecological species recognition, 
which is the main prerequisite for predicting future ecosystem shifts 
in the Northern Hemisphere.

2  | MATERIAL S AND METHODS

The study was performed in the Polar Front region in the southern 
part of the West Spitsbergen shelf in July 2018 (Figure 1). It was de-
signed to collect Calanus either from the water mass they originate 
from (C. finmarchicus from the Atlantic Water (AT station) domain, 
from the West Spitsbergen Current that carries warm and saline 
Atlantic Water and C. glacialis from the colder and fresher Arctic-
type Sørkapp Current (AR station)), or from the Hornsund fjord, 
where two species co-occur, both in the main fjord basin (F station) 
and in the glacial bay (G station) (Figure 1a). The station represent-
ing the Atlantic water domain (AT) was characterized by the highest 
water temperature, salinity, and chlorophyll fluorescence (Table 1). 
The lowest water temperature, salinity, and chlorophyll fluorescence 
were observed at the station located in the glacial bay (G). However, 

the glacial bay was characterized by extremely high concentrations 
of particles (Table 1).

At each sampling station, two tows of a WP2 net (180 µm mesh 
size) were performed thorough the water column (70 m at G sta-
tion, 200 m at F station, 170 m at AR station) or through the upper 
200 m at the deep-water AT station. The sample from the first haul 
of the net was immediately fixed in a formaldehyde–borax solution 
for the analysis of Calanus abundance, developmental stage compo-
sition, and gonad maturation stages. The samples from the next net 
hauls were put in buckets filled with seawater close to the in situ 
temperature. Then, the fifth copepodite stages of specific species 
(distinguished as small and large size modes) were photographed and 
preserved for further analyses (Table S1, Figure 1b).

Overall, 1,252 photographs of Calanus were taken and analyzed 
to determine the prosome length, the area of the lipid sac, and the 
pigmentation. Methods for specific morpho-ecological traits were 
as follows:

2.1 | Size and species identification verification

The prosome length of 1,252 photographed Calanus CV copepodites 
was measured in ImageJ/Fiji free software for image analyses from 
the tip of the cephalosome to the distal lateral end of the last tho-
racic somite. The medians and quartiles of prosome length meas-
urements are presented as box plots. Additionally, 991 copepodites 
were measured from the formaldehyde-fixed samples, among which 
372 were CV copepodites, for which kernel density size distribution 
curves were fitted.

Genetic species identification was used to test the accuracy 
of the applied morphological method of species discrimination for 
further analyses. Genetic identification was performed for each 
individual using its antennae and a set of six nuclear insertion–de-
letion markers (InDels) in a multiplex polymerase chain reaction 
(PCR) following the protocol described in Choquet et al. (2017). 
Accuracy of the morphological identification was calculated as the 

F I G U R E  1   Sampling design. (a) Map of southern Spitsbergen showing the sampling stations located on both sides of the Polar Front and 
inside the Hornsund fjord. The arrows show the dominating ocean currents with their schematic path of advection to the fjord indicated by 
the narrower lines. (b) Scheme of the procedures with the collected material and splitting into sample categories
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percent between the number of correct assessments in relation to 
the number of all assessments. Overall, the accuracy was 93%, but 
the accuracy was also calculated separately for each species and 
sampling location (Table 2). The species discrimination was 100% 
accurate at the fjord station (F) and almost fully accurate at the 
AR and AT stations. In the Atlantic domain, 93% accuracy was ob-
tained. In the Arctic domain, one individual with a size of 2.93 mm 
initially identified as C. glacialis, turned out to be C. finmarchicus. A 
high percent of the species misidentification (22%) occurred only 
in the glacial bay G station. All the C. glacialis were properly iden-
tified, but many of the small copepodites, assumed to represent C. 
finmarchicus, turned out to be small C. glacialis, with individuals as 
small as 2.39 mm.

2.2 | Red pigmentation

The quantification of astaxanthin content was based on high-
performance chromatography (HPLC) according to the methods 
described in Stoń-Egiert & Kosakowska, 2005. Astaxanthin was 
isolated from previously lyophilized and weighed Calanus individu-
als by mechanical grinding in 90% acetone and sonication (2 min, 
20 kHz, Cole Parmer, 4710 Series) for 2 hr in darkness. Then, 
after clarification, the extract was subjected to chromatographic 
analysis. The HP1200 system (Agilent, Perlan Technologies) was 
equipped with a C18 LichroCART™LiChrospher™ 100 RP18e 
(Merck) analytical column (dimensions 250 × 4 mm, particle size 
5 μm, and pore size 100 Å). Pigments were separated in a gradi-
ent mixture of methanol, 1 M ammonium acetate, and acetone. 
Calibration was conducted with commercially available standards 
(The International Agency for 14C Determination DHI Institute 
for Water and Environment in Denmark), which allowed for the 
qualitative assessment of astaxanthin (based on retention time 
and similarity with the absorbance spectrum of the standards) 
and quantitative assessment (based on response factor values ob-
tained during the calibration procedure).

Moreover, the pigmentation was analyzed by the visual exam-
ination of photographs taken of live individuals by a color coding 
scheme, depending on whether there was a full (>50%, red), mid 
(10%–50%, zebra), slight (<10%, piece), or no (0%, transparent) col-
oration of antennae and prosome. The photographs were also used 
to calculate the average pigmentation, where the rate of pigmenta-
tion was scored for each part of the body from 0 to 3 (e.g., antennae, 
prosome) and 0 to 1 (swimming legs, urosome) and summed, consid-
ering that approximately 10% of the pigmentation may be contrib-
uted by the urosome, 10% from the legs, 20% from the prosome, and 
60% from the antennas.

2.3 | Population development

The relative abundances of each of the Calanus copepodite stages 
were used to describe the population age structure. The ab-
breviations (CI-AF) refer to six successive copepodite stages of 
Calanus, that is, CI, CII, CIII, CIV, and CV refer to the first five 
copepodite stages, and AF to adult females. The species identifi-
cation of particular developmental stages was based on the size 
discrimination assessed for the populations in the Hornsund fjord 
(Weydmann & Kwasniewski, 2008). The age structure of specific 
species in the water domains studied was tested by Fisher's exact 
test in R (fisher.test(data)), an independence test to determine 
whether there is a significant relationship between two categori-
cal variables.

The gonad maturation stages of Calanus females were deter-
mined as described by Niehoff (2007) and Niehoff and Runge (2003). 
In our case, we distinguished stage G3, characterizing females that 
are preparing for spawning (multiple layers of oocytes in both an-
terior and posterior diverticula); stage G3.5, indicating females that 
are ready to spawn (ventral layer of oocytes is already colored, but 
not yet fully brown); and G4, representing females that would spawn 
within hours (oocytes undergoing final maturation in the most ven-
tral layer in the gonads). The spent stage (S) characterizes females 
that had already finished reproduction.

2.4 | Lipid content

Lipid content was determined as the mass of lipids that was ex-
tracted for the fatty acid composition analyses and estimated by the 
measurements of the lipid sac area. The lipid sac area was manu-
ally measured by contouring the sac perimeter by hand in all the 

Region/ parameter AT AR F G

Temperature 7.4(±0.3) 3.7(±0.6) 3.1(±0.2) 2.2(±0.2)

Salinity 34.9(±0.01) 34.3(±0.26) 34.0(±0.56) 33.4(±1.24)

Chlorophyll fluorescence 0.53(±0.2) 0.32(±0.1) 0.35(±0.3) 0.11(±0.1)

Turbidity (particle 
concentration * 105)

1.2(±0.03) 3.1(±0.3) 2.9(±0.2) 8.4(±0.3)

TA B L E  1   Mean and standard 
deviations (in upper right brackets) of 
environmental parameters averaged 
over upper 50-m layer column at studied 
domains, AT (Atlantic), AR (Arctic), F 
(Fjord), and G (Glacial bay)

TA B L E  2   Accuracy of morphological species identification 
confirmed by genetics

Location C. finmarchicus C. glacialis N

AT 0.93 – 30

AR 1 0.97 60

F 1 1 58

G 0.57 1 59
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photographed copepods. Furthermore, the specific equations de-
rived from the reliable calibration of the individual lipid contents of 
Arctic copepods (Vogedes et al., 2010) were applied to calculate the 
total lipid content. Then, the percentage of the lipid sac area (fulfill-
ment) was calculated as a function of the total area of the prosome. 
To verify whether the lipid content differed between the two spe-
cies, the unpaired two-sample Mann–Whitney test was performed, 
and to verify whether the lipid content differed among study loca-
tions and species, the nonparametric Kruskal–Wallis test was per-
formed in R (Package “stats”). The output of the Kruskal–Wallis test 

indicated whether there is a significant difference between groups, 
but to know which pairs of groups are different, the function pair-
wise.wilcox.test was used to calculate pairwise comparisons be-
tween groups.

2.5 | Diet

To verify the source of stored lipids in of the two species occurring 
at the same time in diverse water masses and in fjord waters, where 

F I G U R E  2   (a) Box plots of the mean size (prosome length measured from the photographs of alive individuals) of the Calanus CV that 
were selected for further analyses, basing on the two size modes representing the two species: smaller C. finmarchicus and larger C. glacialis. 
(b) Box plots of the mean size, with Calanus CV species tested genetically. C) Density plots of the prosome length of Calanus CV from the 
preserved samples
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they coexist, a combination of stable isotope (δ13C, δ15N) and fatty 
acid composition analyses was performed.

Stable isotope analysis was performed following the protocol of 
Lebreton et al., (2012). Samples were analyzed using an elemental 
analyzer (Flash EA 1112, Thermo Scientific, Milan, Italy) coupled 
to an isotope ratio mass spectrometer (Delta V Advantage with a 
ConFLo IV interface, Thermo Scientific, Bremen, Germany). The re-
sults are expressed in the δ unit notation as deviations from stan-
dards (Vienna Pee Dee Belemnite for δ13C and N2 in air for δ15N) 
following the formula: δ13C or δ15N = [(Rsample/Rstandard) − 1] × 103, 
where R is 13C/12C or 15N/14N, respectively. Calibration was per-
formed using reference materials (USGS-24, IAEA-CH6, IAEA-600, 
USGS-61, and USGS-62 for carbon; IAEA-N2, IAEA-NO-3, IAEA-
600, USGS-61, and USGS-62 for nitrogen). Analytical precision 
based on the analyses of acetanilide (Thermo Scientific) used as 
laboratory internal standard was \0.1 and \0.15 ‰ for carbon and 
nitrogen, respectively.

The identification and quantification of fatty acid methyl esters 
(FAMEs) were determined by gas chromatography/mass spectrom-
etry (GC/MS) according to the method of Brown et al. (2011). An 
internal standard (10 μl; 1 mg/ml nonadecanoic acid) was added to 
lyophilized and weighed Calanus samples. Samples were then sa-
ponified (20% KOH; 70°C; 60 min). Fatty acids were obtained by 
the addition of concentrated HCl (0.5 ml) to the saponified solutions 
followed by extraction into hexane (3 × 1 ml). Fatty acids were then 
methylated (1 ml; 1:9 HCl:MeOH; 80°C; 60 min) and re-extracted 
in hexane (3 × 1 ml) prior to analysis (Shimadzu QP2010 gas chro-
matograph coupled to a QP2020 quadrupole EI mass spectrometer; 
HP5ms). FAMEs were identified by comparison to authenticated 
standards (Supelco 37 Component FAME Mix), retention times, 
and mass spectral library matches (>95% confidence). Instrumental 
abundances were normalized to the internal standard and sample 
mass for quantification. The interpretation of the lipid tracers is 
based on the review by Lee et al. (2006). The differences in the com-
position of fatty acids were tested by the PermANOVA statistics, 
with fixed factors of species and water domain. A nonparametric 
multivariate, permutational ANOVA was used to compare groups of 
objects and test the null hypothesis that the centroids and disper-
sion of the groups as defined by the measured space are equivalent 
for all groups. The calculations were performed in PRIMER v7 and 
PERMANOVA software.

3  | RESULTS

3.1 | Size

A clear unimodal size distribution of Calanus copepods from the 
AT domain (Figure 2c), with an average prosome length of 2.6 mm, 
enabled the easy selection of C. finmarchicus for further analyses 
(Figure 2a). At the AT station, all copepods were assumed to be C. 

F I G U R E  3   Calanus pigmentation in relation to sample 
origin. The violin plots present the mean (dot) and median 
(diamonds) concentrations of the astaxanthin pigment in the 
Calanus copepods sampled in various water domains (AT—
Atlantic, AR—Arctic, F—fjord, G—glacial bay). Bar plots present 
the different types of antenna pigmentation. Dots present the 
estimated percentage of the red pigmentation of the Calanus 
body, calculated based on antenna, prosome, swimming leg, and 
urosome coloration)
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finmarchicus, but two large (2.79, 2.96 mm) individuals turned out to 
be C. glacialis (Figure 2b). Three size modes of Calanus were distin-
guished in the AR domain (Figure 2c). For further data analyses, two 
clear size modes of Calanus were selected at the AR station as rep-
resentative of the two species, that is, the smallest (approximately 
2.47 mm), assigned as C. finmarchicus, and the largest, albeit least 
dominating (app. 3.16 mm), size mode was assigned as C. glacialis 
(Figure 2a). At station F, two distinct size modes (2.6 and 3.1 mm) 
clearly represented specific species (Figure 2aBC). In the glacial bay, 
C. glacialis was found to be either large (3.1 mm) or much smaller than 
the assumed size limit (2.4–2.9, on average 2.7 mm), so the samples 
assigned as C. finmarchicus at station G (Figure 2a) were substantially 
(approximately 40%) contaminated by the smaller sized C. glacialis 
(Table 1).

3.2 | Pigmentation

The amount of astaxanthin pigment was the highest in the Calanus 
copepods inhabiting their original water mass (C. finmarchicus at 
the AT station and C. glacialis at the AR station) (Figure 3). In both 
species, the amount of this red pigment decreased progressively 
from the open water station toward the inner fjord waters, with 
the intermediate concentrations of astaxanthin in the fjord (F sta-
tion) and the lowest concentrations observed in the glacial bay (G 
station).

The majority of the C. finmarchicus specimens had very red an-
tennae in their original water mass (AT), and antennae were rather 
pale/transparent for individuals on the shelf (AR) and in the fjord (F) 

(Figure 3).C. glacialis had red antennae not only in their original water 
mass (AR) but also in the fjord (F) main basin, and they had striped, 
“zebra style” antennae, in the glacial bay (G). A similar trend of red 
coloration was also observed for all body parts, which were highly 
pigmented (>80%) in C. finmarchicus at the AT station and in C. gla-
cialis at the AR and F stations (Figure 3).

3.3 | Population development

The age structure of C. finmarchicus at the AT station did not differ 
significantly from the demographic structure found on the shelf (AR) 
and in the fjord (F) (Fisher's exact test, p < .001). However, approxi-
mately half of the population was represented by the CV life stage 
at the AR and F stations, while a high proportion of females and 
the first copepodite stages was found at the AT station (Figure 4). 
Additionally, the relative proportions of the three youngest life 
stages of C. glacialis were similar between the shelf (AR) and the fjord 
(F); however, the proportion of CV relative to CIV was higher in the 
fjord. The demographic structure of C. glacialis was advanced in the 
glacial bay (G) but was not significantly different from the structure 
in the fjord (Fisher's exact test, p < .001). Surprisingly, the greatest 
degree of synchronization in population development between the 
two species was observed in the fjord (Fisher's exact test, p = .36).

The analysis of the gonad maturation stages indicated that the 
females were either almost ready to spawn (G3 and G3.5), actively 
spawning (G4), or they had finished reproduction (S). All females ac-
tively produced eggs at the AT station (Figure 5), half of them on the 
shelf (AR station) and only a quarter in the fjord (F station). In the 
glacial bay (G station), there were only a few females, and none of 
them reproduced (Figure 5).

3.4 | Lipid content

Because of the larger body size of C. glacialis, the total amount of li-
pids per individual, either extracted or measured from photographs, 
was higher in C. glacialis than in C. finmarchicus in each of the oceano-
graphic domains (Mann–Whitney U tests, p < .001) (Figure 6). The lipid 
content and the percentage of lipids in total body area were lower at 

F I G U R E  4   The relative proportions of various life stages (CI—CVIF) of specific Calanus species in specific water domains (“?” is used 
when the species identification by size is uncertain)

F I G U R E  5   The relative proportions of various maturation stages 
of female gonads in specific water domains
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F station than at AR and G stations in the case of C. glacialis (Kruskal–
Wallis test with pairwise comparisons using Wilcoxon tests, p < .001). 
The lipid content of C. finmarchicus was lower at G station than at the 
other stations (Kruskal–Wallis test with pairwise comparisons using 
Wilcoxon tests, p < .001). The fulfillment of copepods (calculated as 
the percentage volume area of the lipid sack in comparison with the 
total body volume) differed for C. finmarchicus among stations, with 
the highest lipid fulfillment at the AR station, a lower fulfillment ob-
served in an important group of individuals at the AT and F stations, 
and the lowest lipid fulfillment at the G station (Kruskal–Wallis test 
with pairwise comparisons using Wilcoxon tests, p < .001).

3.5 | Diet

The fatty acid composition of lipids was similar in C. glacialis individu-
als (Figure 7a), regardless of the water domain (PermANOVA, p > .05). 
The composition of fatty acids was different between the two species 
(PermANOVA, p < .001). C. finmarchicus had a similar composition of 
fatty acids on the shelf (AR) and in the fjord (F) (PermANOVA, p > .05), 

but compositions were different in the core of the Atlantic water do-
main (AT) and in the glacial bay (G) (PermANOVAs, p < .05) (Figure 7a). 
The long-chain highly energetic C20-22 monounsaturated fatty acids 
(MUFAs) dominated in both species, constituting 43% (38%–48%) in 
C. glacialis and 41% (36%–45%) in C. finmarchicus (Tables S1, S2). The 
highest percentage of the diatom fatty acid marker 20:5(n-3) (eicosa-
pentaenoic acid; EPA) was observed in C. finmarchicus at AT station 
and in C. glacialis at AR and G stations (13%). A high percentage of the 
dinoflagellate marker 22:6(n3) (docosahexaenoic acid; DHA) was ob-
served in C. finmarchicus at AT station (10%), while the lowest percent-
age was observed at F station (7%). In C. glacialis, DHA contributed 
approximately 7% to the total lipid composition, with only a slightly 
higher contribution at F station (8%). The DHA/EPA ratio was lower 
than 1 in both species, suggesting that diet was more diatom-based 
than flagellate-based, especially in C. glacialis at the G and AR stations 
and in C. finmarchicus at the AT station (0.6). In all domains studied, C. 
glacialis was also rich in C18 PUFAs (18%), especially 18:4(n-3), which is 
also important in the haptophyceae Phaeocystis pouchetii, whereas the 
amount of this acid was elevated in C. finmarchicus only on the shelf 
(AR) (16%). The fatty acid related to an omnivorous diet (18:1n9) was 

F I G U R E  6   The lipid content for Calanus in various water domains (AT—Atlantic, AR—Arctic, F—fjord, G—glacial bay). (a) Violin plot of 
the amount of lipids extracted. (b) Box plots of the lipid content estimated from the lipid sack measurements from photographs. (c) The 
percentage of lipids in the body area. Speciefic species marked with colours: C. finmarchicus (yellow) and C. glacilias (blue)

F I G U R E  7   (a) The multidimensional 
scaling of the Calanus lipid composition 
based on the 20 classes of the fatty acids. 
(b) The isotopic composition is presented 
on the trace plot, as an output of stable 
isotope mixing model (“simmr” library 
in R). Colors refer to specific species in 
specific studied domains (AT—Atlantic, 
AR—Arctic, F—fjord, G—glacial bay)
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especially high in C. glacialis at the F station (12%) and the lowest in C. 
finmarchicus at the AT and F stations. The amount of 18:2n6, regarded 
as a tracer of freshwater/terrestrial input, was generally very low (less 
than 0.5%) (Tables S1, S2).

According to the ratios of stable isotopes, the lowest δ15N values 
were recorded in both Calanus species in their original water masses 
(in C. finmarchicus at the AT station and in C. glacialis at the AR station) 
(Figure 7b). The median and most variable values of δ15N were found 
in C. finmarchicus in the Arctic domain (AR) and inside the fjord (F). The 
highest δ15N, associated with the lowest δ13C, was recorded in C. gla-
cialis in the fjord, both in the main basin (F) and in the glacial bay (G), 
which was very similar in the small Calanus size fraction at the G station.

4  | DISCUSSION

Many organismal traits exhibit phenotypic plasticity in response to 
environmental variation. Therefore, it is crucial to provide ground 
truth data on possible plasticity in the basic morphological and eco-
logical traits of the key high-latitude zooplankton species expected 
to make up a new Arctic regime in different ways. Such knowledge 
would be of great importance to verify and extend many existing 
models aimed at predicting the future of the Arctic ecosystem based 
on Calanus ecology (Banas et al., 2016; Bandara et al., 2019; Feng 
et al., 2018; Ji et al., 2012; Melle et al., 2014; Renaud et al., 2018).

To be able to pinpoint differences in ecological plasticity, it is 
important to know whether individuals from studied locations rep-
resent a panmictic unit or genetically distant units (then observed 
differences could rather be due to local adaptation). Despite exten-
sive research effort, population genetic differentiation in Calanus 
finmarchicus and C. glacialis is still under debate with conclusions 
ranging from a lack of population genetic structure in the North 
Atlantic for C. finmarchicus (Provan et al., 2009) and in the Arctic 
for C. glacialis (Weydmann et al., 2016) to a large-scale structure in 
the North Atlantic for C. finmarchicus (Unal & Bucklin, 2010) and 
between the Pacific and the Arctic Oceans for C. glacialis (Nelson 
et al., 2009). Preliminary results from recent advances in Calanus 
genomics using a capture enrichment-based approach in three pop-
ulation along the Norwegian coast showed weak or lack of genetic 
structure in C. finmarchicus and stronger genetic structure in C. gla-
cialis (Choquet et al., 2019). Although more populations need to be 
examined using such genome-wide approach for a conclusion on 
Calanus population genetic structure, it is reasonable to assume that 
the small-scale sampling locations in this study belong to a panmictic 
population for both species, while the term “population” in further 
discussion refers to a group of individuals that developed at same 
location, and therefore, same conditions.

4.1 | Size

For decades the species identification between C. finmarchicus and 
C. glacialis based on size separation was a convenient simplification, 

and according to this study, it is still a reliable method in the stud-
ied fjord, where two distinct size modes agreed well with pre-
viously recognized size ranges of both species (Weydmann & 
Kwasniewski, 2008). However, such size-based identification has 
been shown to be unreliable in some areas (Choquet et al., 2018; 
Gabrielsen et al., 2012; Lindeque et al., 2006; Renaud et al., 2018), 
which was also the case in our study of shelf and glacial regimes. 
C. glacialis individuals were occasionally observed to be smaller 
than assumed. Size reduction in C. glacialis has frequently been re-
corded and mostly explained by the considerable plasticity of this 
species in relation to temperature differences (Choquet et al., 2018; 
Leinaas et al., 2016), the shorter length of its life cycle (Gabrielsen 
et al., 2012), or even by predator pressure (Bandara et al., 2019; 
Berge et al., 2012). However, assuming that in turbid glacial waters, 
their visual susceptibility to predation is already greatly reduced, the 
size reduction in C. glacialis should rather be considered as an effect 
of suboptimal living conditions, including extreme hydrographic dy-
namics and worsened food quality.

Unfortunately, the most intriguing, trimodal size distribution 
of Calanus observed on the Arctic side of the Polar Front (AR sta-
tion) was not tested thoroughly, and only the two ends of the size 
spectrum were investigated further. Therefore, it remains an open 
question whether the numerically dominating medium-size mode 
(2.75 mm) was represented by small C. glacialis or by large C. finmar-
chicus. The prevailing abundance of the smaller size mode of Calanus 
at this station could suggest that advection of the Atlantic water 
across the Polar Front is higher than we assumed and thus leads to 
the predomination of C. finmarchicus. However, high size variability 
of genetically proven C. glacialis was observed at this station, so in-
stead, we suggest that this mid-size fraction could represent a popu-
lation of C. glacialis coming from the northern Barents Sea.

Interestingly, a few large individuals, proved genetically to be C. 
glacialis, were also found in the Atlantic sector of the Polar Front 
(AT station). Additionally, Basedow et al. (2019) observed singular 
individuals of C. glacialis offshore from the northern Norwegian 
coast, which implies that the fjord and shelf populations of C. glacia-
lis can be transported far offshore over the shelf edge and thus can 
be mixed with C. finmarchicus even within the core of its northward 
flowing Atlantic water current.

4.2 | Pigmentation

In line with our expectations, both species exhibited pronounced 
red pigmentation when inhabiting their preferred water mass (the 
Atlantic domain of the Polar Front in the case of C. finmarchicus 
and the Arctic domain of the Polar Front in the case of C. glacialis). 
This observation, supported by the recent test of various morpho-
logical traits of Calanus species identification methods (Choquet 
et al., 2018), suggests that the red pigmentation of the antenna is not 
a species-specific feature, as was proposed by Nielsen et al. (2014). 
The red pigmentation of Calanus appears to instead be location-
specific. Following our hypothesis about the “comfort zone,” the red 
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pigmentation of C. glacialis in Hornsund suggests that the environ-
mental conditions in the fjord are more similar to the Arctic and pref-
erable for C. glacialis, which agrees with its general dominance in the 
Hornsund fjord (Gluchowska et al., 2016; Trudnowska et al., 2014; 
Weydmann & Kwasniewski, 2008). In the Arctic, C. finmarchicus indi-
viduals tend to be paler compared with C. glacialis, either in Svalbard 
(Choquet et al., 2018) or in Greenland (Nielsen et al., 2014).

However, which species synthesizes this carotenoid pigment and 
at what intensity to protect the accumulated lipids from oxygen-
ation are also strongly dependent on many factors other than water 
mass, including the depth of their occurrence and their diet (Mojib 
et al., 2014; Sommer et al., 2006). In this case, the vertical position of 
copepods could indeed play a role, as C. finmarchicus most likely per-
sists in intermediate water layers in the fjord, where Atlantic water 
is advected to the Hornsund (Promińska et al., 2018). This deeper 
occurrence may explain their reduced need for protection against 
UVR irradiance in the fjord in contrast to the increased photoprotec-
tion needed in the offshore Atlantic waters, where C. finmarchicus 
tends to concentrate in the upper few meters (Basedow et al., 2019; 
Trudnowska et al., 2015).

Copepods can adjust their level of red pigmentation quickly, even 
within a season, depending on the prevailing threat, UVR, predators 
(Hansson, 2000), or parasites. According to our observations, they 
can switch from red to pale within hour (e.g., when in a bucket in 
the fridge without any light), but they can become again red almost 
immediately when exposed to a light source. However, not all of in-
dividuals could return red pigmentation, even after long exposure to 
light. The fact that some individuals stayed pale may be explained 
by their need to have special precursors of carotenoids in their diet 
(Mojib et al., 2014; Sommer et al., 2006). Indeed, both species had 
similar stable isotope compositions in their “comfort zones” (both ex-
hibiting high levels of red pigmentation) and variable stable isotope 
and lipid compositions, where their redness was variable.

4.3 | Population development

The observed synchronization in the population age structure be-
tween the two species in the fjord was surprising in light of the docu-
mented differences in reproductive timing and strategies of specific 
Calanus species (Falk-Petersen et al., 2009; Søreide et al., 2010), 
which is observed even when they co-occur in the same region 
(Arnkværn et al., 2005; Niehoff et al., 2002; Swalethorp et al., 2011). 
The similar age structures of both species may indicate that favora-
ble feeding conditions occurred in the fjord prior to our sampling, 
which enabled both species to simultaneously develop and to adopt 
a similar strategy. Additionally, the transport of copepodites from the 
shelf could play a role, as the Calanus age structure in fjords is fre-
quently found to be related to various advection rates (Kwasniewski 
et al., 2003; Trudnowska et al., 2020; Willis et al., 2006). This could 
be especially the case for C. finmarchicus, whose demography was 
very similar between the fjord and shelf and which is probably mostly 
advected to the fjord. The small-scale difference between fjord and 

shelf populations in demographic structure of C. glacialis, especially 
regarding the relative proportions between younger life stages and 
the most lipid-rich fifth stage (CV), could be of great importance 
for CV-selective predators such as little auks (Balazy et al., 2019; 
Jakubas et al., 2020; Welcker et al., 2009) and may explain why birds 
tend to forage on the shelf rather than in the fjord in the time win-
dow of their main feeding requirements (Jakubas et al., 2013).

Actively reproducing C. finmarchicus in Atlantic waters, in con-
trast to less active reproduction in the Hornsund fjord and shelf 
populations, which seemed to adopt the lipid accumulation strategy 
more, is possibly the other indication that the reproductive strate-
gies of Calanus are very plastic (Daase et al., 2013; Kvile et al., 2018). 
Most likely mixed reproductive strategies will enable Calanus to ac-
tively and flexibly optimize their growth and development to adapt 
to the expected variability in the timing and quality of the pulses of 
primary production (Ejsmond et al., 2018; Ji et al., 2013).

4.4 | Lipids

One of the key and most spectacular features of Calanus is its abil-
ity to accumulate large lipid reserves during a short grazing sea-
son in late spring and summer (Daase et al., 2013; Falk-Petersen, 
et al., 2007; Søreide et al., 2010; Wassmann, 2011). In our study, in 
most cases copepods were very full of lipids (approximately 60% of 
the body area was filled by the lipid sack), which means that they 
were well into the lipid accumulation process for a winter diapause 
phase. The lipid content and lipid fulfillment were highly variable, 
indicating strong interindividual differences. Moreover, lipid accu-
mulation was not species-specific, which agrees perfectly with the 
recent study by Renaud et al. (2018). Interestingly, no correlation 
was found between red pigmentation and the lipid content or the 
percentage of lipids in the total body area (Pearson correlation, 
p > .005).

In the glacial bay, individuals of the large Calanus size mode were 
extremely full of lipids in contrast to ones from the small size mode, 
in which very small lipid sacks were observed. Whereas, in the fjord, 
C. glacialis exhibited decreased lipid accumulation perhaps as an ef-
fect of the competitive regime with C. finmarchicus or because of the 
different niche partitioning, which is in line with the different lipid 
and stable isotope compositions of both species in the fjord.

4.5 | Diet

Traditionally, Calanus copepods have been regarded as herbivores; 
however, their omnivore preferences (Cleary et al., 2017; Levinsen 
et al., 2000; Søreide et al., 2008; Yeh et al., 2020) and their abil-
ity to adjust to shifts in the timing and availability of their prey 
(Banas et al., 2016; Forest et al., 2011; Freese et al., 2016) can 
vary greatly. In addition, the complex hydrography (i.e., mixing of 
Atlantic, Arctic, and coastal water masses) around Svalbard sig-
nificantly expands the pool of resources and niche diversity in 
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terms of their habitat and diet (Kortsch et al., 2019). According to 
the δ15N stable isotope and lipid composition, both species had 
a mostly herbivorous, diatom-based diet in their original water 
masses (C. finmarchicus at the AT station and C. glacialis at the AR 
station).

However, the overall lipid composition differed significantly be-
tween the two species, regardless of the region. The differences 
in the feeding patterns of Calanus were found not only to be spe-
cies-specific (Scott, Kwasniewski, Falk-Petersen, & Sargent, 2000, 
2002), but also to be related to seasonal and environmental changes 
(Forest et al., 2011; Mayzaud et al., 2016; Melle et al., 2014; Yeh 
et al., 2020). Such striking differences in the diets of the co-occur-
ring species is a question to consider whenever we deal with the 
advected versus local populations or if they are occupying differ-
ent water layers and thus are exposed to various food sources. Such 
water column partitioning in utilizing different available resources 
by grazing at different depths was recently explained as a way to 
minimize the competition between the two Calanus species (Schmid 
& Fortier, 2019). Additionally, Trudnowska et al. (2015) observed the 
bimodal vertical separation of Calanus spp. on the west Spitsbergen 
shelf, both between the species and individuals at different life 
stages.

While the diet of C. glacialis was rather similar among the studied 
domains, just with a more herbivorous tendency on the shelf and 
a slightly more omnivorous tendency in the fjord, C. finmarchicus 
exhibited much higher variability and differences in its feeding his-
tory. The populations found in the fjord and on the shelf showed 
elevated concentrations of the marker of Phaeocystis flagellates (Leu 
et al., 2006), which is indeed often dominant in the Svalbard fjords 
during summer (Kubiszyn et al., 2017; Piwosz et al., 2009).

As expected, the copepods in the glacial bay were depleted in 13C, 
which is a signature of the terrestrial input to their diet (Dalsgaard 
et al., 2003) or starvation (Mayor et al., 2011). Additionally, in the 
photographs, we could see that they were loaded with mineral parti-
cles. The more omnivorous diet of both Calanus species in the glacial 
bay (highest δ15N) was probably caused by the decreased availabil-
ity of phytoplankton due to diminished light conditions and the 
higher importance of microzooplankton in turbid waters (Halbach 
et al., 2019; Piwosz et al., 2009).

All these differences signify that information about variation in 
diet flexibility and feeding histories is another interesting trait to fol-
low in the species-specific ecology of Calanus and is worth consider-
ing to understand how they individually utilize resources.

4.6 | Ecological consequences

Rapid biogeographical shifts in plankton have already occurred in 
the North Atlantic Ocean (Beaugrand et al., 2009), and now, analo-
gous processes are occurring in the Arctic (Wassmann, 2011). The 
central Arctic Ocean has the highest variability in climate and, there-
fore, the lowest predictability in food availability, both between 
years and seasons (Lewis et al., 2020; Polyakov et al., 2020), so it 

is an area with a high level of competition. Most likely, the crucial 
determinant, which would be the winner in the future Arctic eco-
system, is ecological plasticity, which is known to be remarkable in 
Calanus (Falk-Petersen et al., 2009) but is not necessarily the same 
across species and environments.

An experimental study of the effects of temperature and food on 
C. finmarchicus and C. glacialis implies that the adaptation of C. glacia-
lis to future warmer ocean conditions in the Arctic by spawning early 
will no longer be beneficial when C. finmarchicus matches the timing 
of gonad maturation with blooms (Kjellerup et al., 2012). Moreover, 
C. glacialis is probably not capable of exploiting longer periods of 
food availability in contrast to C. finmarchicus (Freese et al., 2016; 
Swalethorp et al., 2011). At the same time, the northward expan-
sion of C. glacialis and its greater developmental rate are predicted to 
be an effect of increased primary production and decreased extent 
of ice in the central Arctic (Feng et al., 2018). While C. finmarchi-
cus biomass and production may prevail in the future in northern 
regions due to its increased movement via advection, higher growth 
rate and shorter life cycle (Renaud et al., 2018; Scott et al., 2000; 
Weydmann, 2018), C. glacialis may also exhibit large spatial variabil-
ity in its phenology, energy allocation, reproduction, and adaption 
to a wide range of environmental conditions (Banas et al., 2016; 
Bandara et al., 2019; Daase et al., 2013; Feng et al., 2018).

Our results show that the plasticity of both Calanus species is 
indeed impressive and may be differently applied, depending on the 
conditions in the water mass in which they reside, namely if they 
live in their “comfort zone” or beyond it. Our observations imply 
that when present at the same place and time, they can reach dif-
ferent sizes, take on different pigmentation, accomplish different 
states of population development, utilize different reproductive ver-
sus lipid accumulation strategies, and thrive on different foods. C. 
finmarchicus was mostly “the guest” in the studied subregimes and 
it showed much more flexibility in most of the studied ecological 
traits, which suggests that it has strong potential to colonize newly 
available Arctic habitats under progressing climate change. In agree-
ment with our hypothesis, the extent of plasticity was higher in C. 
finmarchicus, which seems to be more of a generalist than C. glacialis. 
Nevertheless, models are optimistic not only for the future of C. gla-
cialis (Feng et al., 2018) but also for C. hyperboreus, which is expected 
to survive, albeit by becoming more “boreal-like” (Kvile et al., 2018). 
Looking at the uncertainties raised in our study, we suggest that the 
role of ecological plasticity is probably not only a matter related to 
the species but also to the population. Additionally, the question 
whether Calanus will ever reach a tipping point with regard to its 
high ecological plasticity, regardless of the species, remains unan-
swered, hopefully forever. It is also possible that Calanus will be able 
to adjust to climate change through adaptive responses, provided 
that evolutionary changes occur at a rate similar to climate change 
(Dam, 2013).
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