
Numerical Comparison of Constant and Variable
Fluid Properties for MHD Flow Over a

Nonlinearly Stretching Sheet
M. Asif Farooq, Razia Sharif, Asif Mushtaq

Abstract—In this paper, we contemplate a comparison of
results between constant and variable fluid properties while con-
sidering magnetohydrodynamics (MHD) flow and heat transfer
for steady, two dimensional and laminar viscous fluid over a
nonlinearly stretching sheet. The governing mathematical model
for the underlying problem is drafted in its most general set-
up, i.e. we consider the the representative partial differen-
tial equations(PDEs) for viscous compressible fluid. Similarity
transformation is exercised to transform governing nonlinear
PDEs into a nonlinear ODEs. The set of two coupled ODEs
are solved numerically by shooting technique and bvp4c (built-
in MATLAB solver). Besides, we also present and execute a
new numerical method for solving coupled nonlinear ODEs, the
Simplified Finite Difference Method (SFDM). When comparing
with bvp4c and shooting technique, the efficiency of SFDM
for the above system has also been shown. Various governing
parameters and their effect on temperature and velocity profiles
are studied in detail. We have shown that there is a significant
difference of results when its comparison is drawn between for
constant and varying fluid properties. Skin friction coefficient
shows increment in its values while rate of heat transfer shows
decrement for variable viscosity when compared with constant
viscosity.

Index Terms—Magnetohydrodynamics (MHD), Sakiadis flow,
variable viscosity, similarity transformations, magnetic field,
shooting technique, SFDM, stretching sheet, heat transfer.

I. INTRODUCTION

THE examination of flow over a stretching sheet make
us possible to explore novel applications in industries,

engineering, metallurgy, manufacturing in metal extrusion,
hot rolling, glass fiber production and textiles. It was Crane
[1] who first presented a flow where velocity of the stretch-
ing sheet depends on the distance from slit. Sakiadis [2],
[3], [4] in a series of papers deliberated the values of
the flow analysis for axisymmetric, continuous flat surface
and continuous cylindrical surface. The preceding work of
Sakiadis describe flow and analyze results by using two
methods: one is numerical and another is integral method.
These studies on continuous flat surfaces open-up possiblities
of extensions in different directions. Pantokratoras [5] has
shown the effect of viscosity while taking moving continuous
flate plate. Andersson and Aarsaeth [6] revisited the problem
of Sakiadis flow for variable fluid properties. Almost three
decades ago Lai and Kulacki [7] carried out problem for
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variable viscosity on convective heat transfer, while taking
vertical surface in a porous medium. Afzal [8] considered
non uniform velocity of stretching surface for heat transfer
analysis. The temperature on the surface was non-uniform as
well. The work of Andersson and Aarsath was reflected in
Bachok et.al. [9]. They regarded the viscous fluid investigate
variable viscosity on a fixed or moving flat plate. The MHD
heat transfer analysis in the case of non-isothermal sheet has
been examined by Chiam [10]. Daniel et al. [11] considered
nanofluid with slip effects as well as thermal radiation over a
permeable sheet. The MHD flow due to accelerated plate of
second grade fluid have been discussed in Salah et al. [12].
Exact solution for MHD heat transfer analysis in generalized
Oldroyd-B fluid have been obtained in Liu et al. [13].
Analytical and numerical solutions are acquired in the work
of Chiam [10]. Mukhopadhyay et al. [14] has taken a heated
surface while the flow is MHD in the presence of the varying
viscosity. In a series of papers Pop et al. [15], Ali [16], Prasad
et al. [17] and Seddeek [18] examined the effect of variable
viscosity over a continuous surfaces. MHD viscoelastic flow
past a stretching sheet with transverse magnetic field pre-
sented in Andersson [19]. Analytical solution is obtained for
nonlinear boundary condition. He has shown that both the
magnetic field and viscoelasticity has same effect on flow.
In another paper by Andersson et al. [20] power-law fluid
has been discussed over a stretching sheet. The effect of
magnetic field have been investigated numerically. They have
shown that magnetic field make the boundary layer thinner
which in turn increase the wall friction. The problem of
conducting viscous fluid in a transverse magnetic field over
a plane elastic surface is discussed in Pavlov [21] (see also
Seddeek[22]). In another work of Chiam [23] they have taken
variable hydromagnetic flow with power-law velocity over a
stretching surface. Power-law stretching sheet with suction
or injection is discussed in Ali [29].
Current work is an extension of the work by Andersson and
Aarsaeth [6]. This paper focuses on MHD flow and transfer
of heat due to a nonlinear stretching surface with variable
viscosity. Comparison has been made between constant and
variable viscosity. Three cases i. e. constant viscosity, viscos-
ity dependence on inverse linear temperature and viscosity
dependence on exponential temperature have been studied.
The current work deals with numerical solutions for various
values of governing parameters. The paper is organized as
follows. In section 2 we present mathematical model for flow
and heat transfer analysis. The special cases for the constant
and variable viscosity have been discussed in section 3. The
computational procedure is given in section 4. In section 5
we present the graphs and tables followed by discussion of
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the results.

II. MATHEMATICAL FORMULATION

Here we investigate a steady 2-D, and laminar MHD flow
of a Newtonion fluid over a nonlinear stretching sheet. B0 is
the strength of a magnetic field which is applied in normal
direction of the sheet. The sheet moves with a non-uniform
velocity U(x) in positive x direction. Velocity of the sheet
is considered as Uw(x) = axm, here a is constant and m
is an exponent. The temperature of ambient fluid is taken
as constant and is denoted by To whereas temperature of
sheet is of the form Tw(x) = To + cxn, where c and n are
positive constants. Both the viscous dissipation and induced
magnetic field are negligible. The governing equations using
above assumptions are given as Andersson and Aarsaeth [6]:

∂x(ρu) + ∂y(ρv) = 0, (1a)

ρ(uux + vuy) = ∂y(µuy)− σB2
0u, (1b)

ρCp(uTx + vTy) = ∂y(kTy), (1c)

and the corresponding boundary conditions read as

u(x, 0) = Uw(x), v(x, 0) = 0, T (x, 0) = Tw(x) (2)
u→ 0, T → T0, as y →∞.

The stretching velocity Uw(x) and temperature Tw(x) are
defined as

Uw(x) = axm

Tw(x) = T0 + cxn

where u is the x-component and v is the y-component of
velocity. The fluid density is represented by ρ, B0 shows the
strength of the applied magnetic field, dynamic viscosity of
the fluid is µ, specific heat is denoted by Cp, temperature of
fluid is T and k denotes thermal conductivity. Uw represents
the sheet’s velocity and wall temperature is denoted by Tw.
Introducing the following similarity variables Ali [26].

η =

√
(1 +m)U(x)

2ν0x

∫
ρ

ρ0
dy,

ψ = ρ0

√
2ν0xU(x)

1 +m
f(η),

θ(η) =
T − T0
Tw − T0

, (3)

stream function is denoted by ψ and its relation with u and
v is given on the same as Andersson and Aarsaeth [6]:

ρu =
∂ψ

∂y
, ρv = −∂ψ

∂x
. (4)

Using the above Eq. (4) the x and y components of velocity
can be written as

u = axmf ′(η),

v = −ρ0
√

2ν0a

1 +m
x

m−1
2 (

m+ 1

2
f(η) + η

m− 1

2
f ′(η)). (5)

Plug in Eqs. (3), (4) and (5) into (1a), (1b) and (1c) we get the
following nonlinear ordinary differential equations (ODEs),

(
ρµ

ρ0µ0
f ′′)′ −Mf ′ − β(f ′)2 + ff ′′ = 0, (6a)

(
ρk

ρ0k0
θ′)′ +

Cp
Cp0

Pr0(θ′f − 2n

1 +m
θf ′) = 0, (6b)

where Pr0, β, M shows Prandtl number, velocity ratio
parameter and magnetic parameter respectively. These
parameters are defined as

Pr0 =
µ0Cp0
k0

, β =
2m

1 +m
, M =

2σβ2
0

ρa(1 +m)xm−1
. (7)

After transformation the boundary conditions (2) take the
form

f(0) = 0, f ′(0) = 1, θ(0) = 1,

f ′(η) = 0, θ(η) = 0 as η →∞ (8)

where f ′ denotes dimensionless velocity and θ denotes
dimensionless temperature.

The skin friction coeffcient Cf and Nusselt number
Nux are defined as follows Mustafa [23]:

Cf =
τw
ρU2

w

, Nux =
xqw

Tw − T0
, (9)

where τw is shear stress and qw regarded as heat flux, and
are defined as :

τw = µwx
3m−1

2

√
(1 +m)a3

2ν0
f ′′(0),

qw = µwCp∆TPr
−1
w

√
a(1 +m)

2ν0
[−θ′(0)], (10)

using equation (9) and (10) we get

CfRe
1/2 =

√
1 +m

2
f ′′(0),

NuxRe
−1/2 = kw

√
1 +m

2
[−θ′(0)], (11)

where Re denotes local Reynolds number.
It should be noted that all the fluid properties considered
here are constant except the viscosity which is temperature
dependent. Following cases are discussed here as mentioned
in Andersson and Aarsaeth[6] .

III. SPECIAL CASES

A. Case A: Constant Fluid Properties

For this case we assume all the fluid properties as constant.
The dimensionless variables η and stream function ψ take the
following form:

η =

√
a

ν0
y, ψ = ρ0

√
aν0xf(η). (12)

Under above similarity variables, Eqs. (6a) and (6b) take the
form:

f ′′′ + ff ′′ − βf ′2 −Mf ′ = 0, (13a)

θ′′ + Pr0(fθ′ − 2n

1 +m
f ′θ) = 0, (13b)

the boundary conditions in Eq. (8) remains the same.
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B. Case B: Variable Viscosity (Inverse Relation with Tem-
perature)

For this case, we assume only viscosity as a variable that
depends linearly on temperature while treating the remaining
fluid properties constant which is already explored in these
references Andersson and Aarseth [6], Bachok et al [9],
Elbashbeshy and Bazid [24].

For this case the momentum boundary layer Eq. (6a)
becomes

(f ′′
µ

µ0
)′ + ff ′′ − βf ′2 −Mf ′ = 0. (14)

The inverse linear relation between viscosity and temperature
is proposed by Lai and Kulacki [7], Pop et al. [12] and Ling
and Dybbs [25]. The following is the relation

µ(T ) =
µref

[1 + γ(T − Tref )]
, (15)

where γ is the thermal property of the fluid and its value
depends on the reference temperature Tref . If Tref ≈ T0,
the above formula given in Eq. (15) becomes

µ =
µ0

1− T−T0

θref (Tw−T0)

=
µ0

1− θ(η)
θref

, (16)

here θref ≡ −1
(Tw−T0)γ

and ∆T = (Tw − T0).
By inserting Eq. (16) into Eq. (14), the resultant equation
takes the following form

f ′′′ +
θ′

θref − θ
f ′′ + (

θref − θ
θref

)(ff ′′ −Mf ′ − βf ′2) = 0.

(17)

C. Case C: Variable Viscosity (Exponential Relation with
Temperature)

Similar to Case B, viscosity is again taken as variable and
its exponential relation with temperature takes the following
form Andersson and Aarsaeth [6]:

ln(
µ

µref
) = −2.10− 4.45

Tref
T

+ 6.55(
Tref
T

)2. (18)

Substituting the above formula Eq. (18) in Eq. (14) we get
the following equation:

f ′′′ = −f ′′θ′∆T (4.45
Tref
T 2
− 13.1

T 2
ref

T 3
)

+
µ0

µ
(βf ′2 − ff ′′ +Mf ′). (19)

IV. NUMERICAL PROCEDURE

For each Case A, B, and C, we solve numerically the
nonlinear ordinary differential equations (ODEs) with the
boundary conditions given in Eq. (8) in the following two
sections. We apply SFDM for Case A only and compare its
outcomes with the shooting technique and bvp4c. We give
an explanation about the SFDM in the next section followed
by a short depiction of the shooting method and bvp4c.

Third order ODE in f

Reduce order by f
′

= F

Linearize 2nd order ODEs

Apply Finite differences

Get a system AF = s

Thomas algorithm

Obtain F

The solution f from f
′

= F

Fig. 1: Flow chart to explain steps in SFDM.

A. The Simplified Finite Difference Method (SFDM)

In this segment, we demonstrate the Simplified Finite
Difference (SFDM) newly developed numerical approach.
We define f

′
= F in Eq. (13a) then it is recasted as

d2F

dη2
= −f dF

dη
+ βF 2 +MF, (20)

for the right side of the above equation, we specify the
variable φ1 as

φ1(η, F, F
′
) = −f dF

dη
+ βF 2 +MF, (21)

let us now estimate dF
dη in the above equation (21) by

approximating the derivative with the forward difference
formula

φ1(η, F, F
′
) = −fi(

Fi+1 − Fi
h

) + +βF 2 +MF (22)

The coefficients of second order ODE read as

An = −∂φ1
∂F ′

= −(−f) = f = fi (23)

Bn = −∂φ1
∂F

= −2βF −M (24)

Bn = −2βFi −M (25)

Dn = f(η, F, F
′
) +BnFi +An

Fi+1 − Fi
h

(26)

After some manipulation Eq. (20) becomes

aiFi−1 + biFi+ ciFi+1 = ri, i = 1, 2, 3...., N (27)

where

ai = 2− hAn, bi = 2h2Bn − 4, ci = 2 + hAn, ri = 2h2Dn

(28)
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B. Thomas Algorithm

The obtained tridiagonal algebraic system (27) is solved by
the commonly known Tridiagonal Matrix Algorithm (TDMA
or Thomas Algorithm). In matrix-vector form it is written as

AF = s (29)

where

A =


b1 c1
a2 b2 c2

....
aN−2 bN−2 cN−2

aN−1 bN−1


(30)

F =


F1

F2

.

.
FN−1

 s =


s1
s2
.
.

sN−1

 (31)

The matrix A is tridiagonal matrix and is written in LU-
Factorization by

A = LU (32)

where

L =


β1
a2 β2

....
aN−2 βN−2

aN−1 βN−1


(33)

and

U =


1 γ1

1 γ2
....

1 γN−2
1

 (34)

where L and U are the lower and upper triangular matrices,
respectively. Here the unknowns (βi, γi), i = 1, 2, ..., N−1
are to be related as

β1 = −1, γ1 = 0 (35)

βi = bi − aiγi−1, i = 2, 3, ..., N − 1 (36)

βiγi = ci, i = 2, 3, ...., N − 2 (37)

After defining these relations Eq. (29) becomes

LUF = s, UF = z, and Lz = s (38)

we have


β1
a2 β2

....
aN−2 βN−2

aN−1





z1
z2
z3
.
.
.

zN−2
zN−1


=



s1
s2
s3
.
.
.

sN−2
sN−1


(39)

The unknown elements of z can be found by

z1 = s1/β1, zi =
si − aizi−1

βi
, i = 2, 3, ..., N − 1 (40)

and


1 γ1

1 γ2
....

1 γN−2
1





F1

F2

.

.

.
FN−2
FN−1


=



z1
z2
.
.
.

zN−2
zN−1


(41)

We then get

Fi−1 = zi−1, Fi = zi − γiFi+1, i = N − 2, N − 3, ..., 3, 2, 1
(42)

which is a solution of Eq. (20). We can easily find f for Eq.
(13a) from f

′
= F which in discretization form is written

as
fi+1 − fi

h
= Fi (43)

gives a required solution of Eqs. (13a) with BCs (8).

A similar procedure can also be opted for solutions θ. For
the sake of brevity, we only present coefficients for this ODE
(13b) and leave the details which follows on the same line
as presented above. For example we have energy equation

d2θ

dη2
= Pro(

2n

1 +m
θF − f dθ

dη
)

φ2(η, θ, θ
′
) = Pr0(

2n

1 +m
θF − f dθ

dη
)

Ann =
∂φ2
∂θ′

= Pr0f (44)

Ann = −∂φ2
∂θ′

= Pr0fi (45)

Bnn = −∂φ2
∂θ

= − 2n

1 +m
Pr0F (46)

Bnn = −∂φ2
∂θ

= − 2n

1 +m
Pr0Fi (47)

Once these coefficients have been obtained, Thomas algo-
rithm can be used again to achieve solution for θ. To save
space we skip all the details.

C. Shooting Technique and bvp4c

To solve the Eqs. (6a) and (6b), bvp4c and shooting tech-
niques are also used in Cases A, B and C. The fundamental
objective behind the shooting method is to convert the BVP
(boundary value problem) into an IVP (initial value problem).
A fifth order Runge-Kutta method and root finding algorithm
Newton-Raphson method are used to obtain solution of the
transformed problem. We verify the results obtained from
shooting technique with bvp4c [30], which is a built-in solver
in MATLAB. For both numerical techniques, we define the
variables

y1 = f (48a)
y2 = f ′ (48b)
y3 = f ′′ (48c)
y4 = θ (48d)
y5 = θ′ (48e)
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(a) Case A: The system of first order momentum and energy
equations for this case becomes

y′1 = y2, y′2 = y3

y′3 = f ′′′ = −y1y3 + βy22 +My2 (49)

y′4 = y5

y′5 = θ′′ = Pr0

(
2n

m+ 1
y2y4 − y1y5

)
. (50)

(b) Case B: For this Case the y′3 takes the form,

y′3 =
y3y5

0.25 + y4
+

0.25 + y4
0.25

(βy22 +My2 − y1y3), (51)

(c) Case C: For this Case the y′3 takes the form ,

y′3 = −y3y5∆T (4.45
Tref
T 2
− 13.1

T 2
ref

T3
)

+
µ0

µ
(βy22 − y1y3 +My2), (52)

µ

µ0
=
µref
µ0

exp(−2.10− 4.45(
Tref
T

) + 6.65(
Tref
T

)2). (53)

We use these values in our calculations i.e. µref =
0.001792kg/ms, µ0 = 0.001520kg/ms, Tref = 273K
and T0 = 278K Andersson and Aarseth [6]. The energy
equations for Cases B and C unaltered as Eq. (50).

V. RESULTS AND DISCUSSION

Numerical results for profiles of velocity and temperature
are discussed in this part. Results are displayed in tabular
and graphical form. Numerical solutions for skin friction
−f ′′(0) and temperature gradient −θ′(0) for different physi-
cal parameters which includes velocity exponent m, magnetic
parameter M, temperature index parameter n, Prandtl number
Pr and stretching parameter β are presented in different
Tables. In Tables II and III, Nusselt number is calculated and
compared with previously obtained results by Mustafa [26]
and Ali [29]. Table I and V contain results for different values
of Prandtl number Pr0. Table I reveals the calculated SFDM
outcomes. The excellent precision of this and other numerical
methods can be observed. SFDM efficiency was measured
using CPU time. Although SFDM was less effective than
bvp4c, we must bear in mind that bvp4c is an integrated
solver, but SFDM is not. SFDM yields relatively excellent
performance. From Tables I-VI, one can observe that skin
friction enhances whereas there is reduction in wall temper-
ature as we raise magnetic parameter. The effect of Prandtl
number and temperature index parameter is to enhance wall
temperature while skin friction changes slightly. Wall tem-
perature reduces while skin friction enhances with increase
in stretching parameter. In Table VI, numerical results are
computed for skin friction and Nusselt number for all cases
by increasing the Prandtl number. Coefficient of skin friction
increases for Case B while it changes slightly for both Case
A and Case C but wall temperature enhances for all cases.
The effect of viscosity for all the three cases have been
studied. Temperature of ambient fluid is T0 = 278K while

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

η

f
′(

η
)

 

 

Case A

Case B

Case CCase B

Case C

Case A

Fig. 2: Variation in dimensionless velocity profiles f ′(η) for each Case
A, B and C with n=1 and M=0.1.

temperature of surface is taken as Tw = 358K. In Figs 2 and
3 profiles for velocity and temperature are presented for all
Cases A, B and C. In comparison with Case A and C velocity
profile for Case B have been reduced adjacent to moving
surface as shown in Fig 2. The viscosity of fluid adjacent
to the surface reduces because of heat transfer. Comparing
with the Case B temperature profile for both Cases A and C
decreases close to moving surface as shown in Fig 3. Impact
of magnetic parameter M, on profiles of temperature and
velocity has been shown in Figs (4-9). Temperature profile
increases as we increase M and there is decreasing effect on
momentum boundary layer for all three Cases A, B and C.

From Figs (10-15), the influence of β (stretching parame-
ter) on velocity profile have been depicted. It can be seen that
increment in β parameter causes momentum boundary layer
to reduce, while there is an increment in thermal boundary
layer for all cases. Physically, β > 0 shows that the surface
is accelerating. The effect of temperature index parameter
have been shown in Figs (16-21). For both Cases B and C,
the momentum boundary layer thickens while for Case A it
is devoid of any effect. The thermal boundary layer shows
a decreasing behaviour for all cases. Figs (22-27) shows
the effect of Prandtl number on momentum and thermal
boundary layer. For Case B and Case C, rise in Prandtl
number causes increment in the momentum boundary layer
whereas thermal boundary layer reduces for all cases by
increasing Prandtl number but in Case A the velocity profile
is not affected by Prandtl number.
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TABLE I: Results for −f ′′(0) and −θ′(0) for various values of parameters (Case A).

bvp4c shooting method SFDM CPU Time (sec)
Pr0 M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0) −f ′′(0) −θ′(0) bvp4c SFDM
0.7 0.5 1 1 1 1.2247449 0.73595707 1.2247449 0.73683412 1.223096 0.7344862 2.023469 2.599066
1 - - - - 1.2247449 0.94089967 1.2247449 0.94099339 1.2239 0.9429653 1.355994 2.596358
3 - - - - 1.2247449 1.8655031 1.2247449 1.865517 1.228887 1.857851 0.902247 2.768858
7 - - - - 1.2247449 3.0156599 1.2247449 3.0156921 1.228887 3.001792 0.910613 2.867179
10 - - - - 1.2247449 3.6645662 1.2247449 3.6646523 1.228887 3.64622 0.927072 2.894318
0.7 0.1 - - - 1.0488089 0.78093708 1.0488089 0.78096049 1.049641 0.788154 0.670467 4.505192
- 0.2 - - - 1.0954451 0.76886566 1.0954451 0.76886391 1.095056 0.7683521 0.692361 4.557601
- 0.3 - - - 1.1401754 0.75737841 1.1401754 0.75737874 1.13904 0.7526887 0.681108 3.855351
- 0.4 - - - 1.183216 0.74642739 1.183216 0.7464299 1.181602 0.7418342 0.690873 4.059979
10 0.5 0 0 - 0.9294730 4.8059057 0.92947343 4.8060571 0.9279735 4.75504 0.803780 2.652847
- - 1 1 - 1.2247449 3.6645669 1.2247449 3.6646523 1.228887 3.64622 0.743336 2.989321
- - 1.33 2 - 1.3090637 3.2282285 1.3090635 3.2282143 1.308382 3.207939 0.748961 2.686516
- - 1.6 4 - 1.3745053 2.8494207 1.3745033 2.8493841 1.373946 2.835114 0.763796 2.676637
- - 1.75 7 - 1.4096676 2.6226409 1.4096386 2.6223442 1.409147 2.611411 0.747469 2.646439

TABLE II: Comparison of CfRex 1/2 and Rex
−1/2Nux for Pr0 = 1 and M=0.

.
m Mustafa [26] Present results Absolute Error of

Re
1/2
x Cf Re

−1/2
x Nux Re

1/2
x Cf Re

−1/2
x Nux Re

1/2
x Cf Re

−1/2
x Nux

0 -0.44375 0.44375 -0.443749 0.443749 1× 10−6 1× 10−6

1 -1.00000 1.00000 -1.00000 1.00000 0 0
2 -1.34845 1.34845 -1.34727 1.34866 0.12× 10−2 2.1× 10−4

TABLE III: Comparison of Re−1/2x Nux when n=0, m=0, M=0 but for different values of Prandtl number.
..

Pr0 Jacobi [27] Tsou et al. [28] Ali [29] Present results Absolute Error
0.7 0.3492 0.3492 0.3476 0.3492 0 0 0.1× 10−2

1 0.4438 0.44378 0.4416 0.4437 1× 10−4 8× 10−5 2.1× 10−3

10 1.6790 1.6804 1.6713 1.6803 1.3× 10−3 1× 10−4 9× 10−3

TABLE IV: Results for skin friction −f ′′(0) and temperature gradient −θ′(0) with different values of M (Case B).

bvp4c shooting method CPU Time (bvp4c)
M Pr0 β n m −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)
0.1 1 1 1 1 2.4530235 0.72122229 2.4530188 0.72122789 0.749931 sec
0.2 - - - - 2.5560358 0.69757654 2.5560372 0.69761235 0.702601 sec
0.3 - - - - 2.6543977 0.67648866 2.6545432 0.67718638 0.716121 sec
0.4 - - - - 2.7488177 0.6574893 2.7492952 0.65959234 0.757713 sec
0.5 - - - - 2.8397797 0.63998507 2.8406015 0.64360739 0.718994 sec

TABLE V: Results for skin friction −f ′′(0) and temperature gradient −θ′(0) (Case C).

bvp4c shooting method CPU Time(bvp4c)
Pr0 M β m n −f ′′(0) −θ′(0) −f ′′(0) −θ′(0)
0.7 0.5 1 1 1 2.7086855 0.48648367 2.71058 0.493869 0.707701 sec
1 - - - - 2.7457538 0.66567042 2.74649 0.668392 0.693101 sec
3 - - - - 2.9504369 1.5479812 2.95042 1.54797 0.703286 sec
7 - - - - 3.2162104 2.6638754 3.21623 2.66385 0.705536 sec

10 - - - - 3.3541575 3.294594 3.35427 3.29451 0.689818 sec
0.7 0 - - - 2.2358724 0.57909873 2.23586 0.579088 0.713269 sec
- 0.2 - - - 2.4376711 0.53485144 2.43782 0.535475 0.683791 sec
- 0.4 - - - 2.6217411 0.500965 2.62341 0.507445 0.729590 sec
- 0.5 - - - 2.7086796 0.48648475 2.71058 0.493869 0.908213 sec
- 1 - - - 3.1053418 0.42979585 3.1211 0.490544 0.729468 sec
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TABLE VI: Results for skin friction −f ′′(0) and temperature gradient −θ′(0) with different values of Pr0 for n=1 and
M=0.1 (Cases A, B and C).

bvp4c shooting method
Cases M Pr0 −f

′′
(0) −θ

′
(0) −f

′′
(0) −θ

′
(0)

0.1 0.7
CaseA 1.0488089 0.78093708 1.0488089 0.78093637
CaseB 2.4220867 0.53201823 2.4220857 0.532034
CaseC 2.3394334 0.55518512 2.33943 0..555191

0.1 1
CaseA 1.0488089 0.98710811 1.0488089 0.98710798
CaseB 2.4530225 0.72122065 2.4530162 0.72121671
CaseC 2.3782471 0.7485637 2.37824 0.748559

0.1 10
CaseA 1.0488088 3.7084043 1.0488088 3.7085551
CaseB 2.9649588 3.3619367 2.9649931 3.3619032
CaseC 2.9378748 3.3920765 2.93794 3.39204
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Fig. 3: Variation in dimensionless temperature profiles θ(η) for each Case
A, B and C with n=1 and M=0.1.
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Fig. 4: Variation in M and its impact on the dimensionless velocity profiles
f ′(η) at β = 1, Pr=0.7 and n=1.
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Fig. 5: Variation in M and its impact on the dimensionless temperature
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Fig. 8: Variation in M and its impact on the dimensionless velocity profiles
f ′(η) at n=1 and β=1.
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Fig. 9: Variation in M and its impact on the dimensionless temperature
profiles θ(η) at n=1 and β=1.
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Fig. 10: Variation in β and its impact on the dimensionless velocity
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Fig. 11: Variation in β and its impact on the dimensionless temperature
profiles θ(η) at Pr=10.
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profiles f ′(η) at Pr=10, n=1 and M=0.5.

IAENG International Journal of Applied Mathematics, 50:2, IJAM_50_2_18

Volume 50, Issue 2: June 2020

 
______________________________________________________________________________________ 



0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

η

θ
(η

)
Case B

β=1.75, m=7

β=0, m=0

β=1, m=1

β=1.33, m=2

β=1.6, m=4

Fig. 13: Variation in β and its impact on the dimensionless temperature
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Fig. 14: Variation in β and its impact on the dimensionless velocity
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Fig. 15: Variation in β and its impact on the dimensionless temperature
profiles θ(η) at Pr=0.7, n=1 and M=0.5.
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Fig. 16: Variation in n and its impact on the dimensionless velocity profiles
f ′(η) at m=1 and Pr=1.
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Fig. 17: Variation in n and its impact on the dimensionless temperature
profiles θ(η) at m=1 and Pr=1.
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Fig. 18: Variation in n and its impact on the dimensionless velocity profiles
f ′(η) at m=1 and Pr=10.
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Fig. 19: Variation in n and its impact on the dimensionless temperature
profiles θ(η) at m=1 and Pr=10.
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Fig. 20: Variation in n and its impact on the dimensionless velocity profiles
f ′(η) at m=1 and Pr=0.7.
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Fig. 21: Variation in n and its impact on the dimensionless temperature
profiles θ(η) at m=1 and Pr=0.7.
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Fig. 22: Variation in Pr and its impact on the dimensionless velocity
profiles f ′(η) at M=0.1.
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Fig. 23: Variation in Pr and its impact on the dimensionless temperature
profiles θ(η) at M=0.1.
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Fig. 24: Variation in Pr and its impact on the dimensionless velocity
profiles f ′(η) at M=0.1.
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Fig. 25: Variation in Pr and its impact on the dimensionless temperature
profiles θ(η) at M=0.5.
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Fig. 26: Variation in Pr and its impact on the dimensionless velocity
profiles f ′(η) at M=0.5.
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Fig. 27: Variation in Pr and its impact on the dimensionless temperature
profiles θ(η) at M=0.5.

VI. CONCLUSIONS

The present paper examines numerical investigation for
MHD flow and rate of heat transfer for viscous fluid with
changeable fluid properties over nonlinear stretching surface.
Governing parameters such as velocity exponent m, Prandtl
number Pr, temperature index parameter n, stretching param-
eter β and magnetic parameter M and their effect on MHD
flow has been examined. Main focus of our study was to
compare viscosity as temperature dependent and treatment
of viscosity as a constant. The nonlinear PDEs together with
the boundary conditions are converted to nonlinear ODEs by
using suitable similarity parameters. Shooting technique and
bvp4c are used to find numerical solution of resulting ODEs.
The results are summarized as:

• Skin friction coefficient and thermal boundary layer
both increases with increment in magnetic parameter
while velocity profile declines.

• Parameter m reduces momentum boundary layer for all
cases whereas thermal boundary layer thickens.

• Prandtl number causes thermal boundary layer to reduce
whereas enhances momentum boundary layer. While it
causes a slight change in skin friction and enhances wall
temperature.
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