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Abstract

In this study we modelled possible causes and consequences of student burnout and

engagement on academic efficacy and dropout intention in university students. Further we

asked, can student engagement protect against the effects of burnout? In total 4,061 univer-

sity students from Portugal, Brazil, Mozambique, the United Kingdom, the United States of

America, Finland, Serbia, and Macao SAR, Taiwan participated in this study. With the data

collected we analyzed the influence of Social Support, Coping Strategies, and school/

course related variables on student engagement and burnout using structural equation

modeling. We also analyzed the effect of student engagement, student burnout, and their

interaction, on Academic Performance and Dropout Intention. We found that both student

engagement and burnout are good predictors of subjective academic performance and

dropout intention. However, student burnout suppresses the effect of student engagement

on these variables. This result has strong implications for practitioners and administrators.

To prevent student dropout, it is not enough to promote student engagement—additionally,

and importantly, levels of student burnout must be kept low. Other variables such as social

support and coping strategies are also relevant predictors of student engagement and burn-

out and should be considered when implementing preventive actions, self-help and guided

intervention programs for college students.

1 Introduction

The term ‘‘Burnout” was first used to describe a Syndrome of exhaustion observed among

mental health professionals [1]. Defined as a response to chronic interpersonal stressors in the

workplace, the Burnout Syndrome comprises three dimensions: Exhaustion (EX), Cynicism

(CY), and Inefficacy (INEF) [2]. Exhaustion is defined as the feeling of being overextended
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and depleted of cognitive, emotional, and physical resources. It is the central dimension of

Burnout and represents individual stress. Cynicism is defined as a negative, callous, and

detached attitude towards others. It is the interpersonal dimension of Burnout. Inefficacy is

defined as feelings of incompetence, low productivity, and low achievement. It is the self-eval-

uative dimension of Burnout.

Several situational and individual factors have been associated with the prevalence of the

Burnout Syndrome in the workplace [2, 3]. Situational factors include quantitative job

demands (workload and time pressure), qualitative job demands (conflicting demands and

lack of information), job resources (social support, information, control, feedback, participa-

tion, and autonomy), occupational characteristics (cognitive and emotional demands) and

organizational characteristics (values implicit in organizational processes). The individual fac-

tors include demographic variables (age, gender, marital status, and level of education), per-

sonality characteristics (consciousness, hardiness, coping strategies, neuroticism, type-A

behavior, and Jungian personality) and job attitudes (expectations).

With the publication of the MBI–General Survey (MBI-GS) it became possible to study the

Burnout Syndrome outside of the human services [4–6]. Psychometric research with the

MBI-GS demonstrated that the three-factor structure is invariant across various occupations

[7, 8]. In recent years, the Burnout Syndrome has been measured in college students using the

Maslach Burnout Inventory–Student Survey (MBI–SSi) [9–11]. Student Burnout (SB) can be

defined as exhaustion due to study demands, a cynical and detached attitude towards the value

of schooling, and feelings of academic inefficacy. Its three-factor conceptualization has been

confirmed in multiple samples from different countries and study areas [9, 12–17] and its con-

current validity assessed against other measures of burnout [18].

In the workplace, burnout is a serious condition that has been linked with multiple physical

and psychological conditions such as heart disease [19], depressive symptoms [20], and

impaired cognitive performance [21]. Several parallels can be drawn from the work context to

the academic context. The workload in the academic context corresponds to study demands

(delivering assignments, preparing presentations, studying for tests, etc.). When high cognitive

demands meet time pressure, a situation that is very likely to occur at the university level, stu-

dents may experience severe chronic stress which, over time, can lead to Burnout [9, 22]. In

student populations, the Burnout Syndrome has been linked with suicidal ideation [23], physi-

cal and psychological distress [14, 24], school dropout [17, 24], and poor academic perfor-

mance [9]. Given the association of this Syndrome with these adverse conditions, the study of

the possible causes and consequences of burnout in the academic context is of great impor-

tance to public health.

Burnout can lower academic engagement levels, such as class attendance, submission of

schoolwork, and following teachers’ instructions [25, 26]. In this study, Student Engagement

(SE) is conceptualized as a three-factor construct that includes behavioral, emotional, and cog-

nitive dimensions [27–29]. Behavioral engagement is defined as students’ participation in

classroom tasks, student conduct, and participation in school-related extracurricular activities.

Cognitive engagement is defined as the students’ investment and willingness to exert the nec-

essary efforts for the comprehension and mastering of complex ideas and difficult skills. Emo-

tional engagement is defined as attention to teachers’ instructions, perception of school

belonging, and beliefs about the value of schooling. Engagement and burnout can be seen as

two poles of an engagement-burnout spectrum, where burnout is seen as the erosion of

engagement [3]. However, this conceptualization ignores the fact that people with low levels of

burnout may not be engaged in their work [9]. If we consider that SE and SB, although nega-

tively correlated, are not conceptual opposites, the interaction between the two variables

becomes possible. In this view, SE and SB can be both a cause and a consequence of each
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other: high levels of burnout can lead to a decrease in engagement; high levels of engagement

can be a protective factor against burnout. Although these two dimensions interact, we expect

student burnout to be negatively correlated with student engagement, academic performance,

and positively correlated with dropout intention. In this research, we also anticipate the poten-

tial effects of coping strategies, social support, course expectations, teacher competence, and

the need for medication as explanatory variables for student engagement and burnout.

Coping strategies can be defined as efforts to avoid or decrease threats and reduce associ-

ated stress [30, 31]. In general, coping strategies can be divided into two categories: active or

positive coping (seeking information, seeking help, seeking social support, planning, and

accepting or reframing problems with humor or faith) and passive or negative coping (dis-

engagement, self-distraction, denial, self-blame, substance abuse, venting, etc.), although other

divisions are possible, such as emotion-focused coping strategies and task-focused coping

strategies [32, 33]. Passive coping is often maladaptive because it employs emotion-oriented

strategies such as rumination or excessive emotional responses [34]. Maladaptive coping has

been previously linked to student burnout [35]. Active and passive coping strategies are associ-

ated with a tendency to have an external or internal locus of control. People who have a ten-

dency for external attributions believe that outcomes are not dependent upon their actions but

rather the result of powerful others or due to chance [36]. People with an internal attribution

style believe that outcomes are the result of their own ability and effort. A passive and avoidant

coping style is often associated with external attributions, while an active confrontative coping

style is often associated with internal attributions. A passive and avoidant coping style is asso-

ciated with low levels of hardiness (involvement in daily activities, sense of control over events

and openness to change), poor self-esteem and external locus of control, which typically con-

stitute the profile of a stress-prone individual [2]. A passive coping style may be detrimental to

students’ attitudes towards academic challenges as it incentivizes students to avoid their prob-

lems. For instance, students may believe that an existing problem is external and that there is

nothing that they can do to improve their situation. This attitude can lead students to fall into

a downward spiral of academic disengagement that leads them further and further away from

meeting their academic demands. Our expectation, to be tested in this study, is that a negative

coping style is positively associated with burnout and negatively associated with student

engagement.

It is important to note that academic demands are not the only stressor that students must

deal with at the university level. Other challenges include peer pressure and competition, lim-

ited socioeconomic power, and distance from home and family, among others [37–39]. One

important predictor of perceived stress among college students is social support [40–43]. Stu-

dent social support can be defined as having good relationships with family members, friends,

colleagues and professors. Students with good social support feel loved, esteemed, and valued

by people around them. Social support is important because, in addition to the emotional sup-

port and instrumental assistance, it reaffirms the validity of the students’ membership in the

academic environment, building on core motivational values. This network of personal rela-

tionships provides students with the emotional, financial, and informational support needed

to prevent and endure the high levels of stress experienced in the academic context [44]. We

expect social support to be negatively associated with student burnout and positively associated

with student engagement.

Finally, we focus on course expectations, students’ evaluation of teacher competence, and

the need for medication as predictors of student engagement and burnout. Course expecta-

tions are a key motivational factor that promotes engagement [45] and their absence is a risk

factor for student burnout [46]. Teacher competence is another central motivational factor

that promotes student engagement [47]. Lastly, the need for medication for medical reasons
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has substantial prevalence among university students which may have serious effects on stu-

dent engagement [48].

In this research, our first aim is to assess the possible causes and consequences of student

engagement and burnout. We expect that social support, coping strategies, course expecta-

tions, teacher competence, and the need for medication will significantly predict student burn-

out (H1) and engagement (H2). We also expect student burnout (H3) and student

engagement (H4) to be significant predictors of subjective academic performance, and drop-

out intention. Our second aim is to assess the moderation effect that student engagement has

on the relationships between student burnout and each of the criterion variables. We expect

that student engagement will act as a protective factor against the effects of student burnout

(H5). The expected relationships between constructs can be found in the model path diagram

in Fig 1. Our final aim is to test the structural invariance of this model across different genders,

areas of study, and countries/regions (H6).

2 Materials and methods

2.1. Procedures

An online questionnaire was created using the Qualtrics platform. The order of appearance of

the scales were randomized between participants and only fully completed questionnaires were

considered for further analysis. At the end of the questionnaire, participants answered a series

of sociodemographic and academic-related questions. The survey was designed to take 15 min-

utes to complete. The content, objectives, duration, risks, data policy, ethics approval, and con-

tacts were provided at the start of the questionnaire. The study was properly validated by

ISPA-Instituto Universitário Ethics Commission (Process: I/017/02/2019) and by the Northern

Illinois University International Review Board (decision 1504/2014; FWAA00004025).

Informed consent was obtained from all individual participants in the study. All procedures

Fig 1. Student burnout and engagement mediation and moderation model. CE = Course Expectations,

TC = Teacher Competence, NM = Need for Medication, PC = Positive Coping, NC = Negative Coping, SS = Social

Support, SB = Student Burnout, SE = Student Engagement, SB�SE = Interaction between SE and SB, DI = Dropout

Intention, AP = Academic Performance. For clarity, direct effects of the exogenous variables (CE, TC, NM, PC, NC,

SS) on the endogenous variables (DI, AP) are omitted. Plus signs indicate positive expected effect and minus signs

indicate negative expected effect. See further text for hypothesis (H1 to H5).

https://doi.org/10.1371/journal.pone.0239816.g001
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performed in studies involving human participants were in accordance with the ethical stan-

dards of the Institutional Ethics Research Committee and with the 1964 Helsinki declaration

and its later amendments or comparable ethical standards.

2.2. Participants

The minimum sample size required for confirmatory factor analysis for the USEI measure-

ment model (the model with the larger number of parameters to estimate) was determined by

Monte-Carlo simulation as suggested by Brown [49] with criteria defined by Muthén and

Muthén [50]: (a) Bias of parameters estimates smaller than 10%; (b) 95% confidence intervals

coverage larger than 91% and (c) percentage of significant coefficients (power) larger or equal

to 80%. Mplus software (version 8, Muthén & Muthén, Los Angeles: CA) was used for simula-

tions with the second-order confirmatory factor analysis model using factor loadings from the

original USEI study [25]. One thousand samples of size 100, 200 and 300 were simulated. A

minimum sample size of 200 was shown to be enough to attain bias below 1% for both point

estimates and standard errors of the parameters; 99% confidence interval coverage greater

than 95%, and minimum power of 90%. However, to ensure that the study sample, which was

non–probabilistic, would capture a large amount of the normative population variance we set

the sample size at a minimum of 300 students per country/region corresponding to 20 partici-

pants per item of the full SEM model as suggested by Marôco [51]. A non-probabilistic conve-

nience sampling method was chosen to achieve this sample size. Co-authors in each country

distributed the online survey to students and student associations in each country/region,

directly in class, via e-mail and online social media platforms. We estimate that between 16

thousand and 30 thousand university students were contacted to participate in this study

across all countries surveyed. The exact number is difficult to estimate because online link to

the survey were publicly available on different online platforms. However, given that we regis-

tered a total of 15,172 survey visits, which lead to 4,061 completed surveys, we estimate a mini-

mum reach of 50.0% and a completion rate of 26.8%.

The study sample was composed of 4,061 university students (ages ranging from 16 to 70

years; M = 23.2; SD = 5.6; Mdn = 21) from Portugal (1,067), Brazil (424), Mozambique (413),

United Kingdom (314), United States of America (316), Finland (356), Serbia (409), Macao

SAR and Taiwan (762). The typical participant was female (60%), pursuing a bachelor’s degree

(74%) in human and social sciences (51%) in a public (88%) university (80%), living with their

family (54%), which financed their studies (56%). See Table 1 for further characterization of

the study sample.

2.3. Measurement instruments

An online questionnaire was constructed containing the following psychological measures: the

Maslach Burnout Inventory adapted to students, version MBI-Student Survey (MBI-SSi) [51], the

Social Support Satisfaction Scale (ESSS) [41, 44], the University Student Engagement Inventory

(USEI) [25], and the BriefCOPE Inventory adapted to university students [52]. Additionally, par-

ticipants responded to a set of demographics, personal, and academic queries. Five versions of the

questionnaire were used in this study: Portuguese (Portugal, Brazil, and Mozambique), English

(the United Kingdom, the United States of America, and Finland), Serbian (Serbia), and tradi-

tional Chinese (Macao and Taiwan). Measuring instruments were translated by coauthors via

group consensus and translated back into the original language for double-checking.

2.3.1. Maslach Burnout Inventory—Student Survey (MBI-SSi). The Maslach Burnout

Inventory—Student Survey with the efficacy dimension reversed (MBI-SSi) [51] was used to

measure student burnout levels. Student burnout is conceptualized as a second-order
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construct reflected in the first order exhaustion, cynicism, and inefficacy dimensions. The

MBI-SSi consists of 15 self-report items rated along 7 ordered response categories from ‘0—

never’ to ‘6- every day’. In its original formulation [9] the Efficacy dimension of the MBI-SS

has positively worded items while Exhaustion and Cynicism consist of negatively worded

items. Here we use a version of the MBI (MBI-SSi) [51] where the items in the Efficacy dimen-

sion are negatively worded to give rise to the Inefficacy (INEF) dimension. Psychometric anal-

ysis of data collected with both the MBI-SS and MBI-SSi revealed that reliability and construct

validity of the MBI factors were improved in the MBI-SSi [51].

2.3.2. University Student Engagement Inventory (USEI). The University Student

Engagement Inventory (USEI) [25] was used as a measure of student engagement. In the

USEI, student engagement is conceptualized as a second-order factor construct that is reflected

by behavioral, emotional and cognitive dimensions. The USEI consists of 15 self-report items

rated using ordered response categories from ‘1-never’ to ‘5-always’. Each of the three first-

order factors consists of five items. The USEI has been assessed previously for factorial validity

and reliability [25] and measurement invariance across genders and areas of study [53] but

only for Portuguese speaking students.

2.3.3. Social support (ESSS). The Satisfaction with Social Support (ESSS) [41, 44] was

used to measure student social support. Social support is conceptualized as a second-order

construct reflected by four first-order dimensions (social activities, satisfaction with family,

intimacy, and satisfaction with friendships). The ESSS consists of 15 self-report Likert items

with response options ranging from ‘1 –Totally disagree’ to ‘5- Totally agree’.

Table 1. Demographic and academic variables by country.

Country PT BR MZ UK USA FIN SER TW&MO

Sample Size 1,067 424 413 314 316 356 409 762

Age (Mean) 22.9 23.3 26.3 22.6 21.9 26.2 22.0 22.3

Age (Median) 21.0 22.0 25.0 21.0 20.5 24.0 22.0 21.0

Age (S.D.) 6.7 5.3 6.8 5.3 4.3 7.8 2.2 5.4

Women (%) 65.3 43.4 62.2 47.1 34.8 62.1 83.9 66.1

Public School (%) 90.3 85.1 97.3 86.0 81.0 94.4 96.3 79.8

Human and Social Sciences (%) 33.4 39.2 71.9 49.0 37.0 56.5 53.3 66.5

Exact Sciences (%) 29.6 38.7 11.4 36.0 50.0 32.3 20.8 22.0

Biological Sciences (%) 9.7 9.2 12.1 8.9 8.2 6.7 4.6 6.3

Health Sciences (%) 27.4 13.0 4.6 6.1 4.7 4.5 15.9 5.1

Dropout Intention (Mean) 1.2 1.6 0.6 1.1 1.0 0.8 0.6 0.5

Academic Performance (Mean) 2.5 2.5 2.7 2.7 2.8 2.6 2.9 2.4

1st Year (%) 17.7 13.6 39.5 26.3 20.1 15.6 21.3 21.9

2nd Year (%) 18.6 18.1 20.1 20.5 29.4 15.6 21.8 18.4

3rd Year (%) 21.9 20.3 8.7 14.1 36.3 20.8 23.3 28.4

4th Year (%) 15.6 24.1 26.6 22.9 4.3 17.3 28.7 19.1

5th Year (%) 7.0 19.8 3.9 4.7 3.0 28.3 1.3 5.2

6th Year (%) 4.1 1.4 0.0 4.0 1.3 0.9 1.8 3.7

7th Year (%) 7.3 1.7 0.7 2.0 1.7 0.9 0.8 0.9

8th Year (%) 6.8 0.7 0.5 2.4 2.6 0.3 0.0 1.6

9th Year (%) 0.6 0.2 0.0 3.0 1.3 0.3 1.0 0.5

10th Year (%) 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.3

Note: The number of years in this table reports the number of successful transitions from the first year of bachelors up to the doctorate. PT–Portugal; BR–Brazil; MZ–

Mozambique; UK–The United Kingdom; USA–United States of America; FIN–Finland; SER–Serbia; TW&MO–Taiwan and Macao.

https://doi.org/10.1371/journal.pone.0239816.t001
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2.3.4. Coping strategies (BriefCOPE). The BriefCOPE version of the COPE Inventory

[54] was used as a measure of coping strategies. BriefCOPE is a self-completion tool consisting

of 28 self-report items grouped in 14 scales, where each item is rated using ordered response

categories ranging from ‘0—I never did this’ to ‘4 –I always do this’. Based on conceptual simi-

larity and correlation patterns, positive and negative coping second order factors were created.

The positive coping factor consisted of following factors: active coping, positive reframing,

planning, and instrumental support. The negative coping factor consisted of following factors:

self-blame, denial, behavioral disengagement, and substance use.

2.3.5. Socio-demographic and academic-related questions. The demographic variables

assessed were gender, age, region, household, and financial support. The self-reported aca-

demic variables were the area of studies [examples of the different areas of study were provided

for respondents guidance as follows: Human and Social Sciences (e.g., Psychology, Law, Soci-

ology, Economics, Education. . .); Exact Sciences (e.g., Math, Statistics, Physics, Chemistry,. . .);

Biological Sciences (e.g., Biology, Agronomy, Environment,. . .) and Health Sciences (e.g.

Medicine, Nursing,. . .)], type of degree (bachelor, master, doctorate), type of school (public/

private university), course expectations, teacher competence, academic performance, need for

medication, dropout intention, the total number of classes and number of failed classes.

From the socio-demographic and academic-related variables, we selected course expecta-

tions, teacher competence and need for medication as predictor variables, academic perfor-

mance, and dropout intention as criterion variables. Variables were measured using a 4 or

5-point Likert/rating scale. Course expectations were measured with the item "Concerning

your initial expectations this degree is:" with answers ranging from "Much worse" to "Much

better". Teacher competence was measured with the item "In general terms how do you classify

your professors?" with answers ranging from "Very incompetent" to "Very competent". Subjec-

tive academic performance was assessed with the item "How do you classify your performance

in this degree?" with answers ranging from "Bad" to "Excellent". Dropout intention was mea-

sured with the item "Have you thought of dropping out of college?" with answers ranging from

"Never" to "Very frequently". Need for medication was measured with the item "Do you need,

or have you needed any sort of medication because of your college studies?" with answers rang-

ing from "Never" to "Always".

2.4. Data analysis

2.4.1. Measurement models. A series of Confirmatory factor analysis (CFA) were con-

ducted to evaluate the goodness-of-fit of the measuring models of Burnout, Engagement,

Social Support, Positive Coping, and Negative Coping factors with the lavaan package [55] of

the open-source R statistical system [56]. Factors’ reliabilities were estimated with McDonald’s

Omega (for first order factors) and Omega L2 (for second order factors) using the reliability

functions provided by the SemTools package [57] for R. We opted to not impute missing val-

ues because most incomplete questionnaires did not complete 10% of the questions.

2.4.2. Structural equation modeling. After assuring good psychometric properties of the

measurement model, four Structural Equation Models (SEM) were created with the lavaan

package [55] for R. All models featured three exogenous observed predictors (Course Expecta-

tions, Teacher Competence and Need for Medication), three exogenous latent predictors

(Social Support, Positive Coping, and Negative Coping), and two endogenous criterion vari-

ables (Academic Performance and Dropout Intention). The first model featured student burn-

out as a mediating factor between predictor and criterion variables. The second model

featured student engagement as a mediating factor between predictor and criterion variables.

The third model featured both burnout and engagement as mediating factors. Finally, the
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fourth model was built upon the third model adding a moderation effect of burnout and

engagement on the criterion variables. The moderation effect of student burnout and engage-

ment was a latent variable indicated by the paired centered products of the items from the

original factors to reduce multicollinearity effects [58–60].

Because some items had unanswered categories, it was not possible to use WLSMV for cate-

gorical items to test the thresholds’ invariance of the models. However, when items have five

or more points and a distribution that is not severely non-normal (absolute skewness and kur-

tosis values below 7 and 3, respectively), Pearson correlations estimate the associations

between variables reasonably well [58, 61]. Thus, SEM and invariance analyses were carried

out using robust maximum likelihood estimation (MLR) implemented in lavaan [55]. This

method accounts for deviations from the normal distribution of the items on the estimation of

the parameters’ standard-errors and model fit indices. Measurement errors of items belonging

to the same factor were correlated when their modification indices were greater than 11 (p<

.001) [58] and the suggested theoretical association could be justified.

The following goodness-of-fit indices for both confirmatory factor analysis and structural

equation modeling were used: χ2(df) (Chi-Square Statistic and degrees of freedom), CFI (Con-

firmatory Fit Index), TLI (Tucker-Lewis Index), RMSEA (Root Mean Square Error of Approx-

imation) and SRMR (Standardized Root Mean Square Residual). Because robust maximum

likelihood estimation was used, the robust scaled versions of the indices were used. Model fit

was considered adequate if CFI and TLI values were above .90 and RMSEA and SRMR values

were below .06 and .08 respectively Acceptable reliability was assumed for Omega (ω) and

Omega L2 larger or equal than .7 [58, 62].

2.4.3. Model invariance by gender, area of studies and country/region. Model invari-

ance was tested for gender, area of study, and country/region, following the recommendations

of Millsap and Yun-Tein (2004), and Wu and Estabrook (2016) [63, 64]. A configural model

was created where parameters were freely estimated between groups. This model served as a

baseline for further invariance testing. Six nested models were created where factor loadings

(loadings), items’ intercepts (intercepts), factor intercepts (means), second-order factor loadings

(regressions), structural coefficients (structural) and residual variances (residuals) were sequen-

tially fixed between groups and tested. Fit indices of the nested models were assessed to probe

for invariance. Model invariance is generally assessed using the Cheung and Rensvold ΔCFI cri-

terion (|ΔCFI|< .01) [65]. For large sample sizes (thousands of participants) and large number

of groups, Rutkowski and Svetina [66] suggest that slightly more liberal criteria around .020 and

.030 for |ΔCFI| and |ΔRMSEA| respectively, should be adopted for metric invariance. If less

restrictive models of invariance fail, further sequential testing of more restrictive models is not

recommended [58, 63, 64]. When factor loadings and regression coefficients were invariant

between groups, but not intercepts, weak factorial or metric invariance was assumed. Metric

invariance means that the contribution of each item to the factor remains constant across differ-

ent groups. When factor loadings and intercepts were invariant across groups, strong or scalar

invariance was assumed. Scalar invariance enables comparisons between group means [63].

When factor loadings, intercepts, second-order factor loadings (regressions), and structural

regression coefficients were invariant across groups, full invariance was assumed [63, 64].

3 Results

3.1. Measurement models

The measurement models for the Burnout Scale (MBI-SSi), Engagement Scale (USEI), Social

Support Scale (SS), Positive Coping Scale (BriefCOPE) and the Negative Coping Scale (Brief-

COPE) presented a good fit to the data and all items displayed a distribution sufficiently close
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to normality. The loadings, residuals and reliability (Omega coefficient) of the indicators of

the latent variables can be found in the S1 Appendix. The models’ fit to the data and maximum

skewness and kurtosis for items in the different constructs are displayed in Table 2. Apart

from Negative Coping and the Burnout�Engagement interaction were suboptimal omega coef-

ficients were observed (ω = .61), all other constructs were measured with adequate factorial

validity (CFI� .95; TLI�.92; RMSEA� .06; SRMR� .04) and reliability (ω� .8).

Metric (weak) measurement invariance by country/region were observed according to the

Rutkowski and Svetina [66] ΔCFI and ΔRMSEA criteria (see Table 3).

In face of the weak measurement invariance by country, goodness of fit of the latent constructs

were also assessed per country (S2 Appendix). The measurement models fit to the data from indi-

vidual countries was acceptable for most constructs and participating countries/regions suggesting

factorial validity (CFI� .90; TLI� .89 RMSEA� .10; RMSEA� .08) and reliability (ω� .7).

Exceptions to this overall goodness of fit were observed for Social Support in Serbia and Taiwan

& Macao (ω = .107 and ω = .393 respectively). The Burnout vs. Engagement interaction construct

also displayed sub-optimal reliability for most participants (ω ~.6; See S2 Appendix).

3.2. Student burnout mediation model

The model with six exogenous predictors (Course Expectations, Teacher Competence, Need

for Medication, Social Support, Positive Coping, and Negative Coping), one mediator (Burn-

out) and two endogenous criterion variables (Academic Performance, and Dropout Intention)

Table 2. Global measurement models’ fit (scaled indices), absolute maximum skewness and kurtosis for items in each construct and Omega L2 reliability.

Scale df χ2 CFI TLI RMSEA SRMR Max.|Ku| Max.|Sk| Omega L2

Burnout 78 756.4��� .973 .967 .046 .027 .89 1.40 .938

Engagement 40 356.5��� .975 .965 .044 .033 1.26 1.85 .817

Social Support 61 871.2��� .948 .922 .057 .042 1.03 .94 .911

Positive Coping 16 193.5��� .982 .969 .052 .033 .76 .74 .902

Negative Coping 19 73.9��� .994 .991 .027 .014 1.70 2.13 .613

Burnout�Engagement 15 50��� .982 .965 .038 .024 3.47 1.31 .612

(���p < .001).

https://doi.org/10.1371/journal.pone.0239816.t002

Table 3. Measurement models invariance by country/region.

Scale ΔModel ΔDf Δχ 2 ΔCFI ΔRMSEA

Burnout Loadings-Configural 84 251.5��� -.004 -.002

Intercepts-Loadings 84 1390.2��� -.031 .019

Engagement Loadings-Configural 56 115.7��� -.004 -.001

Intercepts-Loadings 56 661.17��� -.035 .020

Social Support Loadings-Configural 70 526.9��� -.027 .006

Intercepts-Loadings 70 1314.0��� -.062 .016

Positive Coping Loadings-Configural 28 123.5��� -.008 .006

Intercepts-Loadings 28 217.25��� -.013 .010

Negative Coping Loadings-Configural 28 151.45��� -.015 .019

Intercepts-Loadings 28 490.7��� -.033 .026

Burnout�Engagement Loadings-Configural 84 251.2��� -.004 -.001

Intercepts-Loadings 84 1390.2��� -.031 .019

(���p < .001).

https://doi.org/10.1371/journal.pone.0239816.t003
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presented an acceptable fit to the data (χ2(1120) = 7512.0, p< .001, CFI = .925, TLI = .918,

RMSEA = .037, SRMR = .064). The predictor variables explained 58% of the variability of the

burnout factor (R2 = .575, p< .001). The burnout factor explained 37% of the variability of

dropout intention (R2 = .365, p< .001) and 23% of the variability of academic performance

(R2 = .226, p< .001). The standardized regression coefficients and p-values for this model are

illustrated in Fig 2.

Negative Coping was the strongest predictor of student burnout (β = .583, p< .001), which,

in turn, significantly predicted Dropout Intention (β = .523, p< .001) and Academic Perfor-

mance (β = -.356, p< .001). On one hand, the standardized direct effects of Negative Coping

over Dropout intention and Academic Performance was generally weak (β = .028 and β = -.091,

respectively) and non-significant. On the other hand, the standardized indirect effects of Nega-

tive Coping, mediated by Burnout on Dropout Intention (β = .305, p< .001) and Academic

Performance (β = -.208; p< .001) were medium-sized and statistically significant (p< .05).

3.3. Student engagement mediation model

The model with six exogenous predictors (Course Expectations, Teacher Competence, Need

for Medication, Social Support, Positive Coping. and Negative Coping), one mediator

(Engagement) and two endogenous criterion variables (Academic Performance and Dropout

Intention) presented an acceptable fit to the data (χ2(941) = 6347.7, p< .001, CFI = .914, TLI

= .906, RMSEA = .038, SRMR = .060). The predictor variables explained 51% of the variability

of engagement factor (R2 = .511, p< .001). This model (including the predictors’ direct and

indirect effects) explained 25% of the variability of dropout intention (R2 = .25, p< .001), 26%

of the variability of academic performance (R2 = .258, p< .001). The Standardized regression

coefficients and p-values are shown in Fig 3.

Positive coping strategies and fulfillment of course expectations, were the strongest predic-

tors of student engagement (β = .481, p< .001; β = .387, p< .001, respectively), which signifi-

cantly predicted Academic Performance (β = .428, p< .001) and Dropout Intention (β = -.133,

Fig 2. Student burnout mediation model. Standardized Regression coefficients (β), R2 and significance values for the

burnout mediation model. CE = Course Expectations, TC = Teacher Competence, NM = Need for Medication,

PC = Positive Coping, NC = Negative Coping, SS = Social Support, SB = Student Burnout, DI = Dropout Intention,

AP = Academic Performance (���p< .001, ��p< .01, �p�.05, ns p>.05). For clarity, direct paths from the exogenous

variables (SS, PC, NC, CE, TC, NM) to endogenous variables (DI, AP) were omitted. These standardized direct effects

ranged from .012 (AP regressed on TC) to .119 (AP regressed on PC).

https://doi.org/10.1371/journal.pone.0239816.g002
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p< .001). The strongest standardized direct effect was the path from Negative Coping (β =

.286, p< .001) and realization of Course Expectations (β = -.159; p< .001) to dropout inten-

tion. The strongest indirect effect, mediated by student engagement, on Academic Performance

was observed for Positive Coping (β = .206; p< .001).

3.4. Burnout and engagement mediation model

A conjoint model with Burnout and Engagement as mediators of Course Expectations,

Teacher Competence, Need for Medication, Social Support, Positive Coping, and Negative

Coping on Dropout Intention and Academic Performance showed an acceptable fit to the data

(χ2(2189) = 11824.4, p< .001, CFI = .909, TLI = .903, RMSEA = .033, SRMR = .063). The pre-

dictor variables explained 61% of the variability of the burnout factor (R2 = .606, p< .001) and

47% of the variability of the engagement factor (R2 = .466, p< .001). As before, the strongest

predictor of student burnout were negative coping strategies (β = .640; p< .001) and fulfill-

ment of course expectations (β = -.297; p< .001), while for student engagement the strongest

predictors were positive coping strategies and course expectations (β = .402; p< .001 and β =

.398; p< .001 respectively). The mediation model of burnout and engagement (including the

predictors’ direct and indirect effects) explained 37% of the variability of Dropout Intentions

(R2 = .368, p< .001), and 27% of Academic Performance (R2 = .273, p< .001). As expected,

there was a moderate negative correlation between Burnout and Engagement (r = -.419; p<

.001). Fig 4 shows the standardized regression coefficients.

The strongest indirect effects were the ones between negative coping and dropout intention

mediated by burnout (β = .334; p< .001) and positive coping strategies on subjective academic

performance mediated by engagement (β = .132; p< .001). It is worthwhile to note that in the

presence of the burnout construct the protective effect of student engagement over dropout

intention is lost (compare Figs 3 and 4). The two constructs are significantly correlated and

thus an interaction of engagement and burnout is both theoretically and empirically justifiable.

This model is assessed next.

Fig 3. Student engagement mediation model. Standardized regression coefficients (β), significance and R2 values for

the student engagement mediation model. CE = Course Expectations, TC = Teacher Competence, NM = Need for

Medication, PC = Positive Coping, NC = Negative Coping, SS = Social Support, SE = Student Engagement,

DI = Dropout Intention, AP = Academic Performance (���p< .001, ��p< .01, �p�.05, ns p>.05). For clarity, direct

paths from the exogenous variables (SS, PC, NC, CE, TC, NM) to endogenous variables (DI and AP) were omitted.

These standardized direct effects ranged from .000 to .286 (the path from Negative Coping to Dropout intention).

https://doi.org/10.1371/journal.pone.0239816.g003
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3.5. Burnout and engagement interaction model

A latent interaction between student burnout and engagement was added to the model

described in Fig 4 to test for the possible interaction effects illustrated in Fig 1. This model

showed an acceptable fit to the total data gathered in eight different countries and regions

(χ2(2126) = 11723.1, p < .001, CFI = .910, TLI = .903, RMSEA = .033, SRMR = .062). The

predictor variables explained 60% of the variability of the burnout factor (R2 = .601, p <

.001) and 47% of the variability of the engagement (R2 = .466, p < .001). The model (includ-

ing the predictors’ direct and indirect effects) explained 38% of the variability of the dropout

intention (R2 = .378, p < .001) and 28% of the variability of academic performance (R2 =

.278, p < .001). The regression coefficients and p-values for this model are provided in

Fig 4.

The strongest burnout and engagement interaction effect was observed on the dropout

intention (β = -.142; p < .001). The negative sign of the interaction means that when student

burnout increases, the effect of student engagement on dropout intention is attenuated (or

vice-versa) and, in the presence of high burnout, the protective effect of engagement is sup-

pressed when predicting dropout (β = .055; p = .086). To test this hypothesis and quantify

the size of this suppression effect, the regressions weights associated with engagement

from model in Fig 3 [Dropout Intention = a×Engagement + (. . .)] and Fig 5 [Dropout

Intention = Burnout + b×Engagement + Burnout�Engagement + (. . .)] were evaluated. The

estimated suppression effects (a − b) were tested with a Z-test for large samples. The suppres-

sion effect was significantly different from 0 when predicting students dropout intentions (|

a–b| = 0.188, p < .001) and academic performance (|a–b| = 0.103, p = .044). The interaction

effect of student burnout and student engagement also had a negative but relatively small

impact on academic performance (β = -.04, p = .036) suggesting that the effect of Burnout on

self-reported academic performance was reduced when the Engagement is high (and vice-

versa).

Fig 4. Student burnout and engagement mediation model. Standardized regression coefficients (β), significance and

R2 values for the student engagement mediation model. CE = Course Expectations, TC = Teacher Competence,

NM = Need for Medication, PC = Positive Coping, NC = Negative Coping, SS = Social Support, SE = Student

Engagement, DI = Dropout Intention, AP = Academic Performance (���p< .001, ��p< .01, �p�.05, ns p>.05). For

clarity, direct paths from the exogenous variables (SS, PC, NC, CE, TC, NM) to endogenous variables (DI, AP) were

omitted. These standardized direct effects ranged from .016 to .075 (the path from Negative Coping to Dropout

intention).

https://doi.org/10.1371/journal.pone.0239816.g004
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3.6. Invariance of the burnout and engagement interaction model

Using the Cheung and Rensvold (2002) ΔCFI criterion [65] and the Rutkowski and Svetina

(2014) ΔRMSEA criterion [66], strict invariance of the Burnout and Engagement Interaction

Model was found between genders and areas of study (Table 4). However, only weak country/

region invariance was observed (Table 4), once only configural and metric invariance was

observed. Since the equality of intercepts assumption was not met, no further invariance analy-

sis was pursued [58, 63]. The Burnout and Engagement interaction model was thereafter indi-

vidually fitted for each participating country/region.

3.7. Student burnout and engagement interaction model per country/

region

Since only weak (metric) measurement invariance was found for the overall Burnout and

Engagement interaction model per country/region, this interaction model was fitted to the

samples from each of the countries/regions separately. Configural invariance (that is the same

model configuration between countries/regions) was found previously (see Table 4) suggesting

that all variables in the model presented in Fig 5 may play a similar role for the different coun-

tries/regions. On the other hand, metric but not scalar invariance (equal loadings but different

intercepts for the measurement model) was found assuring the validity of structural weights

comparisons between countries [58, 63]. Table 5 resumes the standardized structural paths for

each variable in the model, variability of dropout intention and academic performance (R2)

and model fit indices.

Overall model fit for individual countries/regions were acceptable (although CFI and TLI

had lower than acceptable values, RMSEA, SRMR and χ2/df were indicative of very good fit).

Variance of dropout intention explained by the model ranged from 22% (in Mozambique) to

Fig 5. Burnout and engagement interaction model. Standardized regression coefficients (β), significance and R2

values for the student burnout and engagement interaction model. CE = Course Expectations, TC = Teacher

Competence, NM = Need for Medication, PC = Positive Coping, NC = Negative Coping, SS = Social Support,

SB = Student Burnout, SE = Student Engagement, SB�SE = Student Burnout, and Student Engagement Interaction,

DI = Dropout Intention, AP = Academic Performance (���p< .001, ��p< .01, �p�.05, ns p>.05). For clarity, direct

paths from the exogenous variables (SS, PC, NC, CE, TC, NM) to endogenous variables (DI, AP) were omitted.

Standardized direct effects ranged from -.001 to -.106 (AP regressed on NC).

https://doi.org/10.1371/journal.pone.0239816.g005
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48% (in Brazil). Explained variability for subjective academic performance ranged from 29%

(in Finland) to 37% (in the UK).

Negative coping strategies were the strongest and most statistically significant predictors of

student burnout (standardized beta weights ranging from around .4-.7 in the United King-

dom, Portugal, Brazil, Finland, Serbia, to .8-.9 in the USA, and Taiwan & Macao). For Student

Engagement, no consistent predictors were found among countries/regions. Positive coping

strategies were strongest predictors of Engagement in Portugal, the United Kingdom, Finland,

and Mozambique with standardized effects around .5 to .7, followed closely by the fulfillment

of course expectations with standardized effects of .2-.4 (see Table 5). This variable was the

strongest positive predictor of the United Kingdom and the USA students’ engagement (β =

.30). Overall, positive coping strategies and fulfillment of course expectations, accounted for

most of the explained variance of student engagement among countries/regions participating

in this study. Further, negative coping and non-fulfillment of course expectations were the

strongest predictors for student burnout. Student burnout was the most consistent predictor

of dropout intention for all countries/regions with effect sizes (standardized beta) ranging

from .3 for Mozambique to .9 in the United Kingdom. Surprisingly, the effect of student burn-

out on dropout intention was not significant in the USA, after accounting for the direct effect

of negative coping strategies on drop out intention (β = .42) and the correlation between burn-

out and engagement (r = -.51). Student engagement per se had no significant effect for most

participants but displayed a protective effect (negative interaction) over the student burnout

effect on intention to dropout. Student engagement strongest effects were observed on the

self-related academic performance with average standardized effects between .2 and .4 for

most participants.

4 Discussion

The academic and social demands of university life exert pressure on students’ cognitive and

emotional resources, often leading to exhaustion. This exhaustion, combined with self-

Table 4. Gender, area of study and country/regions analysis of invariance for the SE�SB interaction model.

Model df χ2 CFI TLI RMSEA SRMR Δdf Δχ2 ΔCFI ΔRMSEA

Gender

Configural 4244 16881 .905 .897 .037 .064

Loadings 4288 16987 .905 .898 .037 .064 44 106��� .000 .000

Intercepts 4332 17388 .905 .896 .038 .064 44 401��� .000 .000

Means 4351 17431 .902 .896 .037 .064 19 43�� -.003 .000

Regressions 4364 17630 .900 .895 .038 .064 13 199��� -.002 .001

Structural 4400 17682 .900 .896 .038 .064 45 52��� .000 .000

Area of Study

Configural 8488 22465 .897 .888 .039 .066

Loadings 8620 22751 .896 .889 .039 .067 132 286��� -.001 .000

Intercepts 8752 23256 .893 .888 .039 .067 132 505��� -.003 .000

Means 8809 23413 .892 .887 .039 .068 57 157��� -.001 .000

Regressions 8848 23683 .891 .886 .039 .068 39 270��� -.001 .000

Structural 8956 23889 .890 .887 .039 .068 108 206��� -.002 .000

County/region

Configural 16976 35141 .874 .865 .044 .073

Loadings 17284 36776 .865 .858 .045 .078 308 1635��� -.009 .001

Intercepts 17592 41127 .835 .829 .050 .081 308 4351��� -.030 .005

https://doi.org/10.1371/journal.pone.0239816.t004
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Table 5. Standardized structural paths, R2 and fit indices for the SE�SB interaction model per country/region.

Sample Standardized Structural Paths R2 Fit Indices

Portugal PC − -.014 ns ! SB

NC − .659 ��� !

SS − -.111 ns ! − .426 ��� ! DI

CE − -.278 ��� ! − -.120 ns ! AP

TC − -.014 ns !

NM − .098 ��� !

PC − .398 ��� ! SE

NC − -.256 �� !

SS − .036 ns ! − -.021 ns ! DI

CE − .363 ��� ! − .420 ��� ! AP

TC − .010 ns !

NM − .017 ns !

PC − -.052 ns ! SB�SE

NC − -.210 � ! CFI = .889

SS − -.026 ns ! − -.127 �� ! DI .394 TLI = .881

CE − .164 ns ! − -.014 ns ! AP .307 RMSEA = .039

TC − .056 ns ! SRMR = .072

NM − -.050 ns ! χ2/df = 2.6

PC − .016 ns ! DI

NC − .092 ns !

SS − -.041 ns !

CE − -.124 ��� !

TC − -.013 ns !

NM − .088 �� !

PC − -.030 ns ! AP

NC − -.167 � !

SS − -.161 ns !

CE − .026 ns !

TC − .034 ns !

NM − .008 ns !

Brazil PC − .086 ns ! SB

NC − .681 ��� !

SS − -.172 � ! − .622 ��� ! DI

CE − -.308 ��� ! − .012 ns ! AP

TC − .005 ns !

NM − .120 �� !

PC − .156 ns ! SE

NC − -.368 � !

SS − .120 ns ! − -.017 ns ! DI

CE − .508 ��� ! − .403 �� ! AP

TC − .034 ns !

NM − .029 ns !

PC − -.076 ns ! SB�SE

NC − -.450 � ! CFI = .877

SS − .007 ns ! − -.200 �� ! DI .477 TLI = .868

CE − .301 ns ! − -.111 � ! AP .349 RMSEA = .043

TC − .051 ns ! SRMR = .074

NM − .067 ns ! χ2/df = 1.8

(Continued)
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Table 5. (Continued)

Sample Standardized Structural Paths R2 Fit Indices

PC − .029 ns ! DI

NC − -.112 ns !

SS − -.082 ns !

CE − .012 ns !

TC − .010 ns !

NM − .032 ns !

PC − -.109 ns ! AP

NC − -.430 � !

SS − -.072 ns !

CE − -.015 ns !

TC − .045 ns !

NM − -.035 ns !

Mozambique PC − -.352 � ! SB

NC − .856 � !

SS − -.057 ns ! − .317 � ! DI

CE − -.248 ��� ! − -.853 ��� ! AP

TC − .087 ns !

NM − .082 ns !

PC − .732 ��� ! SE

NC − -.405 � !

SS − .078 ns ! − -.056 ns ! DI

CE − .259 ��� ! − .325 �� ! AP

TC − .046 ns !

NM − .005 ns !

PC − -.484 � ! SB�SE

NC − .776 �� ! CFI = .815

SS − -.003 ns ! − -.114 � ! DI .220 TLI = .802

CE − -.196 � ! − .017 ns ! AP .339 RMSEA = .038

TC − .012 ns ! SRMR = .065

NM − .011 ns ! χ2/df = 1.6

PC − -.027 ns ! DI

NC − .089 ns !

SS − -.033 ns !

CE − -.220 � !

TC − .040 ns !

NM − .044 ns !

PC − .391 � ! AP

NC − -.642 � !

SS − .086 ns !

CE − -.049 ns !

TC − -.010 ns !

NM − .085 ns !

UK PC − -.016 ns ! SB

NC − .404 ��� !

SS − -.277 ns ! − .859 ��� ! DI

CE − -.443 ��� ! − -.563 �� ! AP

TC − .070 ns !

NM − .077 ns !

(Continued)
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Table 5. (Continued)

Sample Standardized Structural Paths R2 Fit Indices

PC − .419 �� ! SE

NC − -.106 ns !

SS − .256 � ! − .353 �� ! DI

CE − .381 ��� ! − .048 ns ! AP

TC − .052 ns !

NM − .015 ns !

PC − -.027 ns ! SB�SE

NC − -.164 ns ! CFI = .874

SS − .054 ns ! − -.191 � ! DI .419 TLI = .865

CE − .130 ns ! − .033 ns ! AP .372 RMSEA = .043

TC − -.028 ns ! SRMR = .079

NM − .099 ns ! χ2/df = 1.6

PC − -.189 ns ! DI

NC − -.134 ns !

SS − -.010 ns !

CE − -.004 ns !

TC − -.109 ns !

NM − .002 ns !

PC − .259 � ! AP

NC − .082 ns !

SS − -.101 ns !

CE − -.008 ns !

TC − .101 � !

NM − -.002 ns !

USA PC − -.059 ns ! SB

NC − .772 ��� !

SS − .077 ns ! − .023 ns ! DI

CE − -.441 ��� ! − -.197 �� ! AP

TC − -.028 ns !

NM − .098 � !

PC − .325 � ! SE

NC − -.419 �� !

SS − -.049 ns ! − .018 ns ! DI

CE − .343 ��� ! − .379 �� ! AP

TC − .115 ns !

NM − .073 ns !

PC − .084 ns ! SB�SE

NC − -.366 ns ! CFI = .893

SS − -.160 ns ! − -.198 � ! DI .342 TLI = .886

CE − .258 � ! − -.085 ns ! AP .332 RMSEA = .041

TC − .028 ns ! SRMR = .073

NM − .045 ns ! χ2/df = 1.5

PC − -.073 ns ! DI

NC − .420 �� !

SS − -.012 ns !

CE − -.099 ns !

TC − .096 ns !

NM − .107 ns !

(Continued)
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Table 5. (Continued)

Sample Standardized Structural Paths R2 Fit Indices

PC − -.041 ns ! AP

NC − -.116 ns !

SS − -.102 ns !

CE − .062 ns !

TC − -.042 ns !

NM − -.051 ns !

Finland PC − -.115 ns ! SB

NC − .678 ��� !

SS − .074 ns ! − .131 � ! DI

CE − -.387 ��� ! − -.235 �� ! AP

TC − .006 ns !

NM − .137 � !

PC − .549 �� ! SE

NC − -.123 ns !

SS − .102 ns ! − -.258 �� ! DI

CE − .379 ��� ! − .336 ��� ! AP

TC − -.038 ns !

NM − -.085 ns !

PC − .002 ns ! SB�SE

NC − -.368 � ! CFI = .863

SS − -.076 ns ! − -.092 ns ! DI .380 TLI = .853

CE − .084 ns ! − -.063 ns ! AP .290 RMSEA = .046

TC − -.044 ns ! SRMR = .088

NM − .051 ns ! χ2/df = 1.8

PC − .007 ns ! DI

NC − .236 ns !

SS − .079 ns !

CE − -.207 �� !

TC − -.027 ns !

NM − .106 ns !

PC − -.042 ns ! AP

NC − -.192 � !

SS − -.174 ns !

CE − -.002 ns !

TC − .020 ns !

NM − -.039 ns !

Serbia PC − -.047 ns ! SB

NC − .401 �� !

SS − .062 ns ! − .485 ��� ! DI

CE − -.435 ��� ! − -.218 � ! AP

TC − -.119 � !

NM − .245 ��� !

PC − .264 � ! SE

NC − -.216 ns !

SS − -.023 ns ! − .119 � ! DI

CE − .389 ��� ! − .097 ns ! AP

TC − .108 ns !

NM − -.079 ns !

(Continued)
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Table 5. (Continued)

Sample Standardized Structural Paths R2 Fit Indices

PC − -.063 ns ! SB�SE

NC − -.344 � ! CFI = .839

SS − -.089 ns ! − -.149 � ! DI .357 TLI = .828

CE − .149 ns ! − .047 ns ! AP .326 RMSEA = .050

TC − .025 ns ! SRMR = .089

NM − .051 ns ! χ2/df = 1.8

PC − .018 ns ! DI

NC − .169 ns !

SS − .050 ns !

CE − -.117 ns !

TC − -.031 ns !

NM − -.041 ns !

PC − .104 ns ! AP

NC − -.117 ns !

SS − .032 ns !

CE − .256 ��� !

TC − -.146 �� !

NM − -.026 ns !

Taiwan & Macao PC − -.047 ns ! SB

NC − 1.248 ��� !

SS − .484 ns ! − .524 ��� ! DI

CE − -.240 ��� ! − -.341 �� ! AP

TC − .018 ns !

NM − .007 ns !

PC − .669 ��� ! SE

NC − .111 ns ! CFI = .881

SS − .245 � ! − .085 ns ! DI .252 TLI = .873

CE − .233 ��� ! − .277 � ! AP .331 RMSEA = .040

TC − -.039 ns ! SRMR = .073

NM − -.014 ns ! χ2/df = 2.2

PC − -.154 ns ! SB�SE

NC − -.838 �� !

SS − -.554 ns ! − -.097 ns ! DI

CE − .022 ns ! − -.030 ns ! AP

TC − .004 ns !

NM − -.113 ns !

PC − -.061 ns ! DI

NC − -.152 ns !

SS − -.153 ns !

CE − -.029 ns !

TC − -.032 ns !

NM − .075 ns !

(Continued)
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inefficacy, and cynicism towards studies form the Burnout Syndrome triad. Burnout has been

identified as one of the leading causes of poor student performance and intention of dropout

[17, 24]. Conversely, student engagement is seen as a protective variable that prevents the

aggravating effects of burnout on students’ well-being [9]. In this study, we analyze some of

the causes and consequences of student engagement and burnout. Social support, coping strat-

egies, teacher competency (as rated by students), fulfillment course expectations and need for

medication were used as predictors of student engagement and burnout, which in turn were

used as predictors of subjective academic performance, and dropout intention.

We found that negative coping strategies (such as disengagement, self-distraction, denial,

self-blame and substance abuse) were the strongest predictors of student burnout among most

countries/regions, a result that follow previous findings [32, 35]. Student burnout, in turn, was

highly predictive of students’ dropout intention, and poor academic performance, a result that

has been also observed in other studies [17, 24]. Its effects are however not consistent in all coun-

tries/regions. Strongest effects were observed in western participants (e.g. Portugal and the UK)

with the lowest effects observed in African (Mozambique) and North Europe (Finland) partici-

pants. These differences may be attributable to cultural factors and differential valuing of higher

education and coping mechanisms among western countries versus other regions. The greatest

predictors of student engagement were positive coping strategies, positive course expectations,

and positive perceptions of teacher competence, with standardized effect consistent among par-

ticipants. Student engagement, in turn, was a good predictor of subjective academic performance

and dropout intention, a result that has been observed in previous studies [67]. Except for the

prediction of student engagement by the need for medication and social support, all hypothe-

sized causes (H1 and H2) and consequences (H3 and H4) of student engagement and burnout

were statistically significant, and the models representing the relationships among these variables

presented an acceptable/good fit to the data, thus confirming our hypotheses H1 to H4.

Because the burnout syndrome has substantial overlap with depression symptoms [68], the

need for medication was a significant, but weak, predictor of student burnout in most coun-

try/regions, but not of student engagement. However, highly engaged students may use medi-

cation for cognitive enhancement purposes [69], therefore nullifying the expected negative

relationship between these variables. By specifying the type and purpose of the medication stu-

dents need, stronger correlations with student engagement and burnout might be observed.

Social support was not a predictor of student engagement in most participants, with the UK

being the only exception, a result that was not in line with previous findings [70]. One possible

interpretation of this result is that, due to covariation, the social support effect loses impor-

tance when considered simultaneously with other factors (e.g. coping strategies).

Table 5. (Continued)

Sample Standardized Structural Paths R2 Fit Indices

PC − .070 ns ! AP

NC − .079 ns !

SS − -.006 ns !

CE − .126 � !

TC − -.010 ns !

NM − -.033 ns !

CE = Course Expectations, TC = Teacher Competence, NM = Need for Medication, PC = Positive Coping, NC = Negative Coping, SS = Social Support, SB = Student

Burnout, SE = Student Engagement, SB�SE = Student Burnout and Student Engagement Interaction, DI = Dropout Intention, AP = Academic Performance (���p <

.001, ��p < .01, �p�.1, ns p>.1).

https://doi.org/10.1371/journal.pone.0239816.t005
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After performing the analysis of separate models of student burnout and student engage-

ment, we tested the interaction effect of student engagement and burnout on dropout intention

and self-reported academic performance. We found that student engagement and burnout

show a significant interaction effect, albeit with small effect size, when explaining dropout

intention but not academic performance. The data suggest that student engagement can attenu-

ate the effect of burnout on dropout intention, validating our fifth hypothesis (H5). However,

this effect was not consistent in all countries/regions. The constructs used in the engagement/

burnout interaction model and their relationships were invariant across gender and different

areas of this study. However, the model was not fully invariant across countries, partially vali-

dating our fourth hypothesis (H6). This result suggests a need for local specific analysis consid-

ering the cultural and societal contexts and the different cultures’ valuing of higher education.

It is possible that the statistical significance of small observed effect of student burnout

interaction with engagement on the criterion variables was due to the overall large sample size

used in this study and its associated high level of statistical power. To the best of our knowl-

edge, there are no other studies that have probed the interaction effect of student engagement

and student burnout on these outcomes. Thus, further replication is necessary before a moder-

ation effect of the two constructs can be introduced in models examining the effects of burnout

and engagement on student’s academic life and well-being. Our models do show that in the

presence of burnout, the effect of student engagement on dropout intentions and academic

performance is attenuated. That is, engagement in one’s studies may not have expected effects

on academic performance and degree completion if high levels of burnout related to studies

develop. The first interpretation of this result is that when student engagement is associated

with perfectionism, this can lead to burnout which in turn can affect academic performance,

an interpretation supported by recent research [35]. The second interpretation is that it may

have occurred merely because of a suppression effect due to the relationship between student

engagement and burnout. A suppression effect can happen in multiple structural equation

models when two or more predictor variables are strongly associated [71, 72]. For instance,

after removing the common variance between student burnout and engagement, which are

negatively correlated, student engagement loses its predictive power over dropout intention.

This suppression effect may result from the fact that, when we take into consideration the

prevalence of burnout in university students, engagement levels become less relevant when

predicting important academic outcomes.

The results of this study have strong implications for practitioners and administrators. Data

gathered from a large sample of university students from eight countries and regions around

the world show that, while promoting student engagement is important to prevent dropout,

major efforts (e.g., reducing course-work load or increased coordination between teachers

teaching different subjects) must be pursued to prevent student burnout. Student engagement

alone cannot prevent dropout intentions and promote good academic performance if student

burnout is high. Our results suggest that culture features and school valuing may play a signifi-

cant role in the comprehension of burnout syndrome and its relationship with other relevant

variables. Therefore, it would be important to conceptualize future interventions taking into

account specific cultural contexts.

5 Limitations

Because of the cross-sectional nature of the current study causation inferred from the data

must be cautioned. Causation implies a correlation, but the reverse may not necessarily be

true. It is important to avoid causal interpretations of the results, as that would require that

longitudinal and experimental methods be used. Therefore, although causal relationships
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between these variables are implied by structural equation models, caution needs to be taken

concerning the causal nature of their relationships. This is a strong limitation common to cor-

relational studies.

A second limitation of this study is the self-reported nature of the data collected, namely on

the criterion variables, which may create a negativity bias. However, “in reference to variables

such as burnout and engagement, self-reports may be the most accurate form of assessment, as

the individual is the best person to report one’s own affective state.” [32, p. 224]. Also, given

that data collection was carried out via an online survey, a self-selection bias also may be pres-

ent. Unfortunately, most psychology studies will suffer from a self-selection bias as participants

with certain characteristics may refuse to participate in such studies.

Finally, a third limitation regards the poor fit of some measurement models in some of the

countries/regions. Face value of higher education, multicultural, educational, and social diver-

sity and norms in such diverse countries as Portugal, Finland, Serbia, Mozambique, The

United States of America or Taiwan & Macao may hinder the generalizability of a full model

of student burnout and engagement effects on college dropout and academic efficacy, even

that a set of consistent predictors emerged from this study.

6 Conclusions

Coping strategies, course expectations, need for medication and social support significantly pre-

dicted student burnout. Student engagement was significantly predicted by coping strategies

and course expectations. Both student engagement and student burnout significantly predicted

subjective academic performance, but only Burnout predicted dropout intentions. Negative

coping was the strongest predictor of burnout which in turn was the strongest predictor of

dropout intention. Student engagement was predicted by positive coping strategies, as well as

course expectations, to a lesser extent by negative coping strategies, but not social support.

Most surprisingly, burnout levels suppressed the effect of student engagement on dropout

intention when an interaction between the two constructs is present. A negative and signifi-

cant interaction of burnout and engagement on dropout intentions revealed that effect of

burnout on dropout is attenuated by engagement. Given that this study solicited the participa-

tion of over four thousand participants from different countries/regions and areas of study, we

believe that this is a noteworthy result that has important implications for educational psychol-

ogists, practitioners, and administrators.

To prevent student dropout and promote academic performance it is not enough to pro-

mote student engagement—student burnout also must be kept as low as possible. Other vari-

ables such as coping strategies and social support also are relevant predictors of student

engagement and burnout and should be considered when implementing preventive actions,

self-help, and guided intervention programs for college students.
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