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Abstract 10 

It is widely accepted that technological innovation reduces energy intensity and carbon emissions 11 

without compromising global economic growth. Although new innovative developments tend to be 12 

concentrated in a few developed countries, transboundary spillover of technological innovation 13 

influences the energy efficiency and sectoral performance of other countries. A more thorough 14 

assessment of international knowledge spillover related to energy intensity reduction can enhance 15 

understanding of mitigation opportunities and costs. This study investigated, therefore, the effects of 16 

technological innovation within certain countries on the energy efficiency performance of  17 

neighboring countries. We used data from the OECD Triadic Patent Families database for 24 18 

innovating countries between the years 1985 and 2013. Accounting for geographical distance, our 19 

results showed a positive, significant relationship between knowledge spillover and country-specific 20 

energy efficiency performance. We observed an upward trend in energy efficiency performance in 21 

Germany, France, the UK, the Netherlands, and Switzerland, whereas Brazil, China, South Africa, 22 

the Republic of Korea, and India showed a decreasing trend. These results have policy implications 23 

for sustainable energy management and environmental sustainability, highlighting the need to 24 

develop domestic research and development capabilities that increase innovation-based 25 

infrastructure. 26 
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1. Introduction 29 

The past century has seen a substantial rise in global warming driven by anthropogenic greenhouse 30 

gas emissions. The increasing pace of global economic development, particularly over the last three 31 

decades, has intensified the energy demand for human activities. Studies have shown that rising  32 

CO2 emissions remain the primary contributor to global climate change, with 70% of these 33 

emissions linked to excessive energy consumption (IEA, 2017). The energy sector is central to 34 

meeting global climate and sustainable development goals and has thus received a great deal of 35 

attention in the extant literature, as well as in the context of international cooperation, and among 36 

governmental and private agencies. 37 

Studies have shown that technological progress can improve energy efficiency (Lin and Moubarak, 38 

2014; Popp, 2012; Wurlod and Noailly, 2018; Sun et al., 2019). Domestic and foreign knowledge1 are 39 

the two fundamental pathways for technological progress (Verdolini and Galeotti, 2011). Domestic 40 

knowledge refers to innovation efforts within a host country while foreign knowledge represents 41 

innovation originating abroad. Two potential ways in which foreign knowledge can influence a 42 

domestic economy are through knowledge transfer and knowledge spillover (Pizer and Popp 2008). 43 

Knowledge transfer occurs when a foreign company sets up a research and development (R&D) 44 

laboratory in another country with the intent to share expertise with local engineers and scientists 45 

(Fallah and Ibrahim, 2004). Knowledge spillover happens when knowledge is unintentionally shared 46 

                                                 
1 Knowledge here also means innovation. 
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among individuals, firms, and countries (Fallah and Ibrahim, 2004; Isaksson et al., 2016; Nicholas et 47 

al., 2013)2. In this study, we focus on knowledge spillover. 48 

Technological progress is crucial for the transition to a low carbon economy. Whether in the form 49 

of foreign investment, imports, exports, or patent data, any form of foreign innovation impacts 50 

energy efficiency through technological spillover. However, the effects of foreign knowledge on 51 

energy intensity lack consensus in the literature. For example, existing studies have found either 52 

positive or weakly positive spillover impacts from foreign knowledge related to energy efficiency (Bu 53 

and Luo, 2014; Elliott et al., 2013; Eskeland and Harrison, 2003; Fisher-Vanden et al., 2004; 54 

Herrerias et al., 2016, 2013; Huang et al., 2018; Jiang et al., 2014, 2015; Mielnik and Goldemberg, 55 

2002; Salim et al., 2017; Sinton and Fridley, 2000; Wang and Han, 2017; Xin-gang et al., 2019). On 56 

the other hand, studies by Hübler and Keller (2010) on 60 developing countries, by Adom and 57 

Amuakwa-Mensah (2016) on East Africa, and by Tang (2009) on Malaysia found either negative or 58 

no impacts from foreign knowledge on host country energy efficiency.  59 

While these differences in results can be partially explained by differences in methods and data, the 60 

effects of technological spillover on energy intensity can also be significantly influenced by the 61 

unique features of host countries, such as domestic innovation, geographic location, institutional 62 

arrangements, and environmental policies. For instance, according to Fu et al. (2011), the 63 

unbalanced nature of development across the world indicates that R&D and absorptive ability – i.e., 64 

innovation – varies across countries (Cohen and Levinthal, 1989; Fisher-Vanden et al., 2006; Griffith 65 

                                                 
2 If a country imports technology from abroad and reverse engineers it, insights gained from the 

technology (even if not put to use) are still considered spillover because the purpose of the 

exporting country was not to pass on knowledge of the product (Fallah and Ibrahim, 2004). 
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et al., 2003). Successful adoption of foreign innovation depends on indigenous innovation efforts 66 

(Fu et al., 2011). The presence of foreign innovation creates positive externalities in the form of 67 

spillover effects (e.g., importation of R&D activities) in domestic countries (Henry et al., 2009). It is 68 

reported that the effect of foreign innovation on energy efficiency is linked to domestic R&D 69 

(Zheng et al. 2011). Similarly, Seyoum et al. (2015) observed a positive impact resulting from 70 

technological spillover for countries with high absorption ability, while a negative effect was 71 

observed for countries with low absorptive ability. Thus, through absorptive capacity and internal 72 

R&D, domestic innovation can amplify the effects of foreign innovation. In the same manner, the 73 

export of foreign R&D can increase the effects of domestic innovation, suggesting that indigenous 74 

and foreign innovation are complementary (Barasa et al., 2019; Fu et al., 2011; Herrerias et al., 2016). 75 

The first objective of this study was to examine the effects of domestic innovation, foreign 76 

innovation, and the interaction between the two, on energy efficiency. Fisher-Vanden et al. (2006) 77 

examined the interaction between domestic innovation and foreign technology on energy intensity. 78 

They concluded that such interaction is essential for technological advancement in China and 79 

therefore supports the absorptive ability theory in which domestic innovation is necessary for 80 

successful absorption of foreign innovation. Herrerias et al. (2016) explored the different roles of 81 

foreign and domestic innovation, as well as their interaction, on the diffusion of energy reducing 82 

innovations. Their findings indicate that both foreign and indigenous innovation contributed 83 

significantly to energy efficiency enhancement in China. The effects of the interaction between 84 

foreign and domestic innovation, however, were modest, suggesting that domestic firms struggle to 85 

assimilate foreign innovation in the production process. To examine the effects of the interaction 86 

between foreign and indigenous innovation on China’s energy efficiency performance, Li and Lin 87 
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(2017) adopted the data envelopment analysis (DEA) method and concluded that imported 88 

technologies, as well as the interaction term, reduce energy consumption. 89 

As opposed to empirical studies that have adopted a single country perspective, we examined the 90 

effect of foreign and domestic innovation, as well as their interaction, on energy efficiency from a 91 

global perspective. Not only has there been insufficient consideration of the interaction between 92 

domestic and foreign innovation in the energy literature but also methodological issues have failed 93 

to account for transboundary characteristics such as geographic location, institutional arrangements, 94 

and environmental policies. 95 

 96 

The results of this study offer four main contributions. First, we extended the energy efficiency–97 

innovation nexus by examining the interaction between foreign and domestic innovation from a 98 

global perspective.  99 

 100 

Second, we dealt with methodological issues in previous studies by adopting a different indicator for 101 

energy efficiency. In the energy efficiency literature, there are numerous indicators for measuring 102 

and comparing energy efficiency levels across countries, regions, and firms (Patterson, 1996). From 103 

an econometrics point of view, energy efficiency estimation is classified into three categories 104 

(Filippini and Hunt, 2015). The first category employs energy intensity (which is what the above 105 

studies primarily employed) followed by an econometric method to investigate the internal influence 106 

mechanism (Elliott et al., 2017; Herrerias et al., 2016; Huang et al., 2018). Though energy intensity is 107 

commonly used in the literature, it is considered unfit for assessing energy efficiency. According to 108 

the International Energy Agency, “energy intensity is often taken as a proxy for energy efficiency, although this is 109 

not entirely accurate” (IEA, 2009). Energy intensity regards energy as the single input that produces 110 
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gross domestic product (GDP), disregarding other key inputs such as labor and capital. This 111 

approach is therefore often criticized in the literature (Ang, 2006; Filippini and Hunt, 2015, 2011; 112 

Stern, 2012; Miao et al., 2019), as it can result in a misleading representation of actual energy 113 

efficiency. The second category uses non-parametric DEA techniques to measure energy efficiency 114 

(Chang, 2015; Gökgöz and Erkul, 2019; Guo et al., 2017; Honma and Hu, 2014; Jebali et al., 2017; 115 

Makridou et al., 2016; San, 2011). The DEA method is deterministic in its approach and does not 116 

impose distributional assumptions (Adom et al., 2018). It calculates stochastic disturbance as part of 117 

the inefficiency factors, which may affect the accuracy of the efficiency estimate (Filippini and Hunt, 118 

2015). Li and Lin (2017) adopted the DEA method to investigate the effect of foreign and domestic 119 

innovation, as well as their interaction, on China’s energy efficiency performance. The third category 120 

is the parametric stochastic frontier analysis (SFA) technique, which assumes a given functional form 121 

and distribution. Unlike the DEA method, SFA controls for unobserved heterogeneity in the data, 122 

which is an important part of a panel efficiency measure and helps to reduce bias in efficiency 123 

estimates (Greene 2005). In dealing with several countries in this study, we controlled for stochastic 124 

noise and unobserved heterogeneity by adopting the SFA technique using the energy demand 125 

function proposed by Filippini and Hunt (2011)3. 126 

      127 

Third, in accounting for country specific characteristics, we examined the role of geographic location 128 

in knowledge diffusion and energy efficiency performance. New economic geography (Grossman 129 

and Helpman, 1991; Krugman, 1991) and new trade theory (Krugman, 1987) emphasize the 130 
                                                 
3 Filippini and Hunt (2015) categorized SFA frontier functions under three specifications: 1) the 

energy requirement function proposed by Boyd (2015) and Lin and Wang (2014), 2) the Shepherd 

energy distance function proposed by Zhou et al. (2012), and 3) the energy demand function 

proposed by Filippini and Hunt (2011).  
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relevance of geographic proximity in promoting spillover. Both propose that knowledge flows easily 131 

among innovative firms or countries as they cluster in specific geographical areas to cut transaction 132 

costs and exploit Marshallian externalities4 (Marshall,1920). As a result, knowledge spillover may be 133 

geographically bounded (Jaffe, 1989; Acs et al., 1994; Feldman, 1994) and decay with distance due to 134 

the degree of tacitness of new knowledge (Krugman, 1991). If countries are close to one another 135 

and have similar industries or operate within the same level of absorptive capacity, then knowledge 136 

spillover is greater. Consequently, when studying the mechanism of knowledge spillover related to 137 

foreign innovation, geographic location should be carefully considered. We therefore incorporated 138 

the role of geographic proximity when examining the impact of knowledge spillover on energy 139 

efficiency. 140 

 141 

Fourth, we examine the role of environmental policy instruments in increasing energy efficiency. 142 

The inducement hypothesis states that stringent energy or environmental policy tools can promote 143 

domestic innovation that can lead to improved energy efficiency (Noailly, 2012; Yang et al., 2012; 144 

Shao et al., 2019). This could compel countries to innovate and disincentivize free-riding 145 

(Grafström, 2018). Though the effect of policy instruments on energy efficiency was explored by 146 

Filippini et al. (2014), their focus was on European countries and the residential sector. In this study, 147 

we focused on innovating countries around the world with a specific emphasis on economy-wide 148 

aggregate energy demand. Since successful implementation of national environmental policy 149 

depends on institutional enforcement of such policies (Sun et al., 2019 & 2020), we assessed the 150 

relevancy of institutional quality in the presence of knowledge spillover4. 151 

 152 

                                                 
4 See Sun et al. (2019) on the impacts of institutional quality on energy efficiency.  
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To address these issues, we asked three questions. First, what is the distinct role played by foreign 153 

and domestic innovation, as well as the interaction between the two, in diffusing innovation that 154 

increases energy efficiency? Second, does energy efficiency vary significantly across countries given 155 

the vital role geographical proximity plays in knowledge accumulation and spillover? Third, are 156 

environmental policy instruments and institutions valid factors to consider when accounting for 157 

changes in energy efficiency? To answer these questions, we investigated the energy efficiency 158 

performance of 24 innovating countries in the world between 1994 and 2013. 159 

 160 

There were three primary motivations for this research.  First, knowledge (or technological) spillover 161 

is important for improving energy efficiency on a global level. Second, accurate country-level 162 

estimations of energy efficiency performance are extremely important for governments and 163 

academia. Third, environmental policies and government institutions play important roles in 164 

promoting sustainability. 165 

 166 

The remainder of this paper is organized as follows. Section 2 outlines the data and methodology 167 

used to specify the energy demand function and solve econometric issues. Section 3 discusses the 168 

empirical results of the energy efficiency-based models and analyzes the effects of domestic and 169 

foreign innovation, along with their interaction, on energy efficiency. The last section discusses 170 

findings and policy implications. 171 

 172 
 173 
2. Methodology 174 

2.1 Data description 175 

The definitions and sources of data used in this study are presented in Table 1. 176 

2.1.1 Patent data 177 
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We examined the energy efficiency performance of 24 innovating countries between 1994 and 20135. 178 

We were interested in how domestic and foreign innovation influenced a given country’s energy 179 

efficiency. We measured technological innovation based on patent counts, which are both a useful 180 

measure and easily accessible (Jaffe et al., 2000, 1993; Noailly and Shestalova, 2017; Popp, 2005; 181 

Wurlod and Noailly, 2018). We extracted patent data from OECD statistics (oecd-ilibrary.org) that 182 

contained climate change mitigation technologies related to energy generation, transmission, or 183 

distribution. Triadic patent families are subsets of patents filed at the European Patent Office 184 

(EPO), the Japan Patent Office (JPO), and the US Patent and Trademark Office (USPTO) to 185 

safeguard inventions. Patents within this category are usually of great economic value because only 186 

inventors who consider their inventions to have high commercial value are prepared to incur the 187 

additional costs of extending protection through patent offices in other countries (Nesta et al., 188 

2014). Using triadic patents as a dataset has two primary advantages. First, it eliminates the low-value 189 

inventions (Johnstone et al., 2010) that are recognized as one of the methodological impediments of 190 

using simple patent counts (Popp, 2001). Second, it decreases the home advantage and effect of 191 

geographical location on patent statistics since applicants more often apply for patent protection in 192 

their home country than in other countries (Wurlod and Noailly, 2018). 193 

 194 

2.1.2 Definition of other data 195 

We investigated the impact of environmental and energy policies on energy efficiency using the 196 

OECD environmental policy stringency index. This index, ranging between zero (not stringent) and 197 

six (highest stringency), measures the extent to which a country’s environmental policies put a price 198 

                                                 
5 Due to data unavailability, only countries with enough data for patent were considered. Because the 

included countries span all continents, a global perspective is still represented. 
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on harmful activities related to climate and air pollution. We also collated data from the World 199 

Economic Freedom (EFW) index, used widely as an indicator for institutional quality, to assess the 200 

impact of institutional quality on energy efficiency (Manca, 2010; Sun et al., 2019; Young and 201 

Sheehan, 2014)6. We expected environmental policies and government institutions to have a positive 202 

influence on increased energy efficiency given their crucial roles in promoting it. This would be 203 

affirmed by a negative regression parameter. Due to a lack of data on energy prices for the sample 204 

countries, we followed Mahadevan and Asafu-Adjaye (2007), Sadorsky (2010, 2011), Nasreen and 205 

Anwar (2014), and Doytch and Narayan (2016) to construct the energy price data for each country 206 

by deflating the price of crude oil (measured in US dollars) to the country's consumer price index 207 

(measured relative to US prices using purchasing power parity). We extracted the consumer price 208 

index from the Penn World Tables (PWT) version 9.0 (Feenstra et al. 2015). 209 

 210 

According to UN guidelines for sustainable development (DiSano, 2002), foreign direct investment 211 

(FDI) is a broad, comprehensive indicator for assessing external financing. It can assess the effects 212 

of global economic partnership on human capital and knowledge transfer. Several studies have used 213 

FDI to examine the pollution-haven and pollution-halo hypothesis (Sarkodie et al., 2020). Thus, 214 

contrary to the extant literature that utilized the interaction between domestic innovation and 215 

foreign direct investment, the interaction between domestic innovation and FDI lacks specificity for 216 

assessing the effects of imitation innovation compared to the interaction between domestic and 217 

foreign innovation. As explained by Dalgic (2015), imitation innovation in a recipient country is 218 

open to foreign technology and markets due to comparative advantage, technological, and 219 

knowledge spillover. A significant interaction term suggests that foreign technology adoption, in 220 

                                                 
6 See details on institutional quality data in Sun et al. (2019). 
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combination with indigenous innovation efforts, amplifies energy efficiency improvements. In other 221 

words, foreign innovation increases the effects of domestic innovation and domestic innovation 222 

increases the effects of foreign innovation. Furthermore, this would suggest that combining foreign 223 

technology with internal R&D and human capital yields improvements in energy efficiency. 224 

Hence, a statistically significant interactive effect between domestic and foreign innovation with a 225 

parameter greater than zero implies that additional foreign innovation based on ceteris paribus has an 226 

escalating effect on energy demand — a situation that highlights energy intensity with limited green 227 

growth and efficiency. This would imply that the type of foreign innovation in a host country lacks 228 

input for sustainable energy management. 229 

 230 
Table 1. Variables, definitions, and expected signs. 231 

 232 

Variable Abbrev. Definition Source 

Energy demand lnED Natural logarithm of energy consumption  World Development 
Indicator 

Energy price lnP Natural logarithm of the real price of crude 
oil measured in US dollars/barrel 

BP Statistical Review 
of World Energy  

Gross Domestic 
Product 

lnY Natural logarithm of GDP measured in 
constant US dollars  

World Development 
Indicator 

Population density lnPD Natural logarithm of population density 
computed as people per sq. km of land 
area 

World Development 
Indicator 

Urbanization Urb Urban population measured as % of total 
population 

World Development 
Indicator 

Share of value from 
the industry 

SS Value added by industry computed as % of 
GDP 

World Development 
Indicator 

Share of value from 
the service sector 

IS Value added by services computed as % of 
GDP 

World Development 
Indicator 

Underlying energy 
Demand trend 

T Underlying Energy Demand Trend 
(UEDT) 

- 

Domestic 
knowledge 

lnDK Number of patents granted OECD statistics 

Foreign knowledge lnFK Accumulated patent counts granted to all 
sample countries minus country’s own 
patents 

- 

Spatially weighted 
foreign knowledge 

lnSFK Inverse distance of foreign knowledge - 
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Interaction 1 Inter 1 Domestic innovation × foreign innovation - 

Interaction 2 Inter 2 Domestic innovation × spatially weighted 
foreign innovation 

- 

Environmental 
policy 

EP Measure of environmental policy 
stringency 

OECD stats 

Institutional quality Insti Measure of institutional quality World Economic 
Freedom Index 

 233 
 234 
 235 
 236 
2.2 Model Estimation 237 

We adopted Aigner et al.'s (1977) SFA to estimate an aggregate frontier energy demand function. 238 

Using this approach, we estimated country specific levels of energy efficiency for the whole 239 

economy. Following the energy demand literature, we related a standard energy demand for 240 

economic activity and the actual price of energy7. The energy demand function we adopted is an 241 

input demand function derived from the aggregate production function through a cost minimizing 242 

process. As in the energy demand literature, we specified our equation in a fairly ad hoc manner with 243 

an indirect reference to production theory. The energy demand function can therefore be specified 244 

within the context of the Marshallian demand function (Friedman, 1949) by assuming the market 245 

clearing condition, where energy demand equals energy consumption, expressed as: 246 

𝑬𝑫𝒕
𝒄 = 𝒇( 𝑷𝒕

𝒄,  𝒀𝒕
𝒄 )                                  (𝟏) 247 

where 𝑬𝑫𝒕
𝒄 is the minimum energy needed for energy service production in a host country (c) at 248 

time (t), and 𝒇(...) is the deterministic portion of the model that relies on energy price (P) and 249 

                                                 
7 Theoretically, energy demand can also depend on the prices of other inputs. But according to 

previous energy demand studies (Filippini and Hunt, 2011; Marin and Palma, 2017), data constraints 

make it impossible to include such variables. 
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income (Y).  250 

To account for additional factors that vary from one country to another and may influence a 251 

country's energy demand, we introduced variables related to population, size, economic structure, 252 

and the Underlying Energy Demand Trend (UEDT), which captures relevant exogenous factors 253 

such as technical, social, and climatic factors. Controlling for the effects of additional variables 254 

facilitates the calculation of “underlying energy efficiency” for each country. We further accounted 255 

for changes in the energy efficiency performance of each country and the differences in energy 256 

efficiency across countries. Thus, equation (1) can be rewritten as: 257 

𝑬𝑫𝒕
𝒄 = 𝒇( 𝑷𝒕

𝒄,  𝒀𝒕
𝒄 , 𝑷𝑫𝒕

𝒄, 𝑼𝑹𝒕
𝒄, 𝑺𝑺𝒕

𝒄, 𝑰𝑺𝒕
𝒄, 𝑼𝑬𝑫𝑻𝒕

𝒄, 𝑬𝑭𝒕
𝒄)                                (𝟐) 258 

where variables 𝑬𝑫, P, and Y have the same meaning as in equation (1). The effect of demography 259 

on energy consumption is captured by population density and urbanization, denoted by PD and 260 

UR, respectively. The share of value-added from the service and industrial sectors captures any 261 

changes in each country’s economic structure. The share of value from the service sector is 262 

represented by SS and the share of value from the industry is represented by IS. UEDT represents 263 

the underlying energy demand trend, which captures the common impact of relevant exogenous 264 

variables that concurrently influence countries (i.e., technical, social, and climatic factors). Finally, 265 

𝑬𝑭𝒕
𝒄 is the unobserved level of ‘underlying energy efficiency’ of an economy. The SFA method 266 

proposed by Aigner et al. (1977) was used to estimate this value and define the best practice for 267 

energy use.  268 

In production theory, SFA is commonly used to calculate the economic efficiency of production 269 

processes from an econometric point of view. Generally, the primary benefit of the frontier method 270 

is that the function provides an economic agent with the maximum or minimum level of an 271 
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economic indicator. For a cost function, the frontier establishes a firm's minimum cost level for a 272 

particular production level. For the aggregate energy (input) demand function used here, the frontier 273 

defines the minimum amount of energy needed to produce a certain amount of energy services. In 274 

general, the goal is to use frontier functions as an evaluation of the basic energy demand, which 275 

reflects the energy demand of countries using energy efficient tools and production processes 276 

(Filippini and Hunt, 2015). Thus, the frontier approach can assess whether a country lies on the 277 

frontier. The distance from the frontier indicates energy usage over and above the basic requirement 278 

(in other words, energy inefficiency – unless a country is at the border) (Filippini and Hunt, 2011). 279 

The methodology is thus grounded on the assumption that the degree of economy-wide energy 280 

efficiency can be approximated by a one-sided, non-negative term, such that a panel log-log 281 

functional form of equation (2), adopting the SFA approach proposed by Aigner et al. (1977), can be 282 

stated as follows: 283 

𝒍𝒏𝑬𝑫𝒕
𝒄 = 𝜶 + 𝜷𝒑𝒍𝒏𝑷𝒕

𝒄 + 𝜷𝒀𝒍𝒏𝒀𝒕
𝒄 + 𝜷𝑷𝑫𝒍𝒏𝑷𝑫𝒕

𝒄 + 𝜷𝑼𝑹𝑼𝑹𝒕
𝒄 + 𝜷𝑺𝑺𝑺𝑺𝒕

𝒄 + 𝜷𝑰𝑺𝑰𝑺𝒕
𝒄 + 𝜷𝒕𝑻 +  𝑽𝒕

𝒄284 

+  𝑼𝒕
𝒄                                                                      (𝟑) 285 

where, 𝑬𝑫𝒕
𝒄, 𝑷𝒕

𝒄, 𝒀𝒕
𝒄, 𝑷𝑫𝒕

𝒄, 𝑼𝑹𝒕
𝒄 , 𝑺𝑺𝒕

𝒄, and 𝑰𝑺𝒕
𝒄 have the same meaning as in equation (2), except for 286 

UEDT, which is denoted as T. Following Filippini et al. (2014), we used the time trend, T, to 287 

capture UEDT, thereby capturing the impact of social and climatic variations on energy use. The 288 

error term is comprised of two independent components, 𝑽𝒕
𝒄 and 𝑼𝒕

𝒄, which do not relate to the 289 

explanatory variables. The first component, 𝑽𝒕
𝒄, is a symmetric disturbance that captures the noise 290 

effect and is supposed to be normally distributed with a mean of zero and variance of 291 

𝑽𝒕
𝒄 ~𝑵(𝟎, 𝝈𝒗

𝟐). The second component, 𝑼𝒕
𝒄, denotes the underlying energy efficiency level 𝑬𝑭𝒕

𝒄 in 292 

equation (2) and is an indication of energy inefficiency. It is a one-sided, non-negative random 293 

disturbance that is considered in this study to be half-normal in distribution, as in Aigner et al. 294 
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(1977).  295 

In SFA estimation, the underlying energy inefficiency level 𝑼𝒕
𝒄 is likely to be expressed as a particular 296 

function of explanatory variables. Here, the emphasis is on the effects of energy efficiency 297 

innovation. Thus, SFA models for panel data that allow the level of energy inefficiency to vary over 298 

time and rely on covariates, such as the presence of varying innovation, are selected.  299 

Instead of the two-stage approach, in which the inefficiency indices are first predicted and then 300 

regress on environmental factors to account for efficiency variations among countries (Adom et al., 301 

2018; Pitt and Lee, 1981), we adopted a one-stage approach in which inefficiency effects 𝑼𝒕
𝒄 can be 302 

explained concurrently by a set of environmental factors8, as suggested by Battese and Coelli (1995). 303 

Following suit, we set the inefficiency element 𝑼𝒕
𝒄 as a function of a set of explanatory variables. We 304 

fully analyzed the effects of our three key variables (domestic innovation, foreign innovation, and 305 

their interaction) along with other control energy efficiency variables. Thus, we specified the 306 

inefficiency function 𝑼𝒕
𝒄   as: 307 

𝑼𝒕
𝒄 = 𝝑𝒐 + 𝝓𝑲𝒄𝒕

𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 + 𝝓𝑲𝒄𝒕
𝑭𝒐𝒓𝒆𝒊𝒈𝒏

+ 𝝓𝑲𝒄𝒕
𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 + 𝝓𝑪𝒐𝒏𝒄

𝒕 + 𝜺𝒄
𝒕                         (𝟒)  308 

 309 

where 𝐾𝑐𝑡
𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 is domestic technology; 𝐾𝑐𝑡

𝐹𝑜𝑟𝑒𝑖𝑔𝑛
 denotes foreign technology (any possible foreign 310 

knowledge); 𝐾𝑐𝑡
𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏  represents the interaction between domestic and foreign innovation 311 

(𝐾𝑐𝑡
𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 = 𝐾𝑐𝑡

𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 × 𝐾𝑐𝑡
𝐹𝑜𝑟𝑒𝑖𝑔𝑛

) ; 𝐶𝑜𝑛𝑐
𝑡  represents control variables; 𝜀𝑐

𝑡  is the white-noise 312 

error term; and 𝝓 is estimated parameters. Given that the variables in equation (4) are inefficiency 313 

factors, a negative covariation value indicates a reduction in energy inefficiency. For example, if 314 

                                                 
8 Kumbhakar et al. (2011) suggest that the one-step approach prevents problems associated with the 

two-stage technique. See Huang and Liu (1994) and Kumbhakar et al. (2011) for details. 
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domestic innovation (𝐾𝑐𝑡
𝐷𝑜𝑚𝑒𝑠𝑡𝑖𝑐 )  improves energy efficiency, then we would expect a negative 315 

coefficient, which would imply that domestic innovation reduces the distance from the frontier – 316 

signifying a reduction in energy inefficiency. Alternatively, a positive coefficient sign would indicate 317 

that domestic innovation increases the distance from the frontier, signifying an increase in energy 318 

inefficiency. 319 

 320 

Regarding the estimation of panel SFA econometric models, prior studies adopted the time-invariant 321 

SFA model, which considered individual country effects as part of inefficiency (Battese and Coelli, 322 

1992; Kumbhakar, 1990; Pitt and Lee, 1981). With this approach, inefficiency may be overestimated, 323 

and the estimated model may be biased. Ideally, unobservable individual effects are important 324 

factors that must be accounted for when estimating SFA panel models (Chen et al., 2014; Greene, 325 

2005). Therefore, the commonly used approach in some empirical analyses is to use the fixed effect 326 

SFA model, which captures unobserved heterogeneity (e.g., Chen et al., 2014; Du et al., 2018; 327 

Greene, 2005; Kumbhakar and Wang, 2005; Marin and Palma, 2017; Wang and Ho, 2010). The 328 

popular method is Greene's (2005) true fixed effect (TFE) model, which estimates an inefficiency 329 

component that varies over time using the maximum likelihood approach. However, the incidental 330 

parameters problem, which produces inconsistences in variance parameter estimation (Belotti and 331 

Ilardi, 2018; Chen et al., 2014), commonly arises in the TFE model (Greene, 2005). Accordingly, we 332 

used the marginal maximum simulated likelihood estimator for fixed effects, as suggested by Belotti 333 

and Ilardi (2018). 334 

 335 

Knowledge spillover was derived by first constructing domestic knowledge stocks. To do this, we 336 

adopted the perpetual inventory method (PIM), as in Hall et al. (2010), which is typically used in the 337 

innovation literature (Bloom and Reenen, 2002; Dechezleprêtre et al., 2015; Grafström, 2018; 338 
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Morales-Lage and Morancho, 2019; Peri, 2005; Verdolini and Galeotti, 2011). Calculating the 339 

knowledge stock offers several advantages that are clearly explained by Quatraro and Scandura 340 

(2019). We constructed domestic knowledge stocks as follows:  341 

 342 

                             𝑲𝒄
𝒕 = 𝑷𝒄

𝒕 + (𝟏 − 𝜹)𝑲𝒄,
𝒕−𝟏                                                  (𝟓) 343 

 344 

where 𝑲𝒄
𝒕  is the knowledge stock in the host country (c) at time (t), and 𝑷𝒄

𝒕  represents the annually 345 

granted patent count. Following the innovation literature (Verdolini and Galeotti, 2011; Wurlod and 346 

Noailly, 2018), we assumed a depreciation of δ = 0.10 . The initial value of the stocks were 347 

calculated as follows: 348 

                        𝑲𝒄
𝒕𝟎 =

𝑷𝒄
𝒕𝟎

𝒈 + 𝜹
                                                                              (𝟔) 349 

where 𝑷𝒄
𝒕𝟎  is the sum of patent counts available in the initial year (1985) and 𝒈  is the average 350 

geometric growth rate in technology patenting between 𝒕𝟎 and 𝒕𝟎 − 𝟓. As in Verdolini and Galeotti 351 

(2011), we use t0 = 1985 as the first year to calculate the domestic knowledge stock but started the 352 

analyses in 1994. 353 

 354 

Following Grafström (2018), the foreign knowledge stock accessible to country c is built entirely on 355 

the accumulated patent counts granted to all sample countries, minus the host country’s patents. 356 

This variable represents foreign knowledge because it reflects patents accumulated in other 357 

countries. We used this variable to assess the role of foreign innovation in knowledge diffusion with 358 

an energy-reducing effect. As mentioned earlier, new economic geography (Grossman and Helpman, 359 

1991; Krugman, 1991) and new trade theory (Krugman, 1987) emphasize the role of geographic 360 

proximity in promoting spillover. Knowledge flows easily among innovative countries clustered in 361 
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specific geographical areas because transaction costs are cut and Marshallian externalities are 362 

exploited9 (Marshall,1920). Thus, knowledge spillover is most likely to occur among nearby countries 363 

or regions  (Jaffe, 1989; Acs et al., 1994; Feldman, 1994; Bosetti et al., 2008; Branstetter, 2001; Eaton 364 

and Kortum, 1994; Jaffe et al., 1993; Keller, 2002) and to decline with distance (Krugman, 1991). 365 

Thus, we applied distance weighing to foreign knowledge stocks to test for the existence of country 366 

border effects.  367 

 368 

Following Bode (2004), Costantini et al. (2013), and Grafström (2018), we modeled the diminishing 369 

distance effect as an inverse distance where spatial transaction costs are assumed to apply to the 370 

intensity of cross-country knowledge spillovers. In this instance, the smaller the distance c from 371 

another country f (∀ f≠c), the greater the weight assigned to f in terms of its impact on c. The weight 372 

assigned to country f  is therefore proportional to the inverse distance between f and c (Costantini et 373 

al., 2013). Accordingly, we weighed patent stocks as the inverse exponential relationship between 374 

countries: 375 

𝑫𝟏𝑲𝑺𝒓 =  ∑ (𝑲𝑺𝒓𝒔𝑾𝒓𝒔)   𝒘𝒊𝒕𝒉 𝑾𝒓𝒔 = 𝑫𝒓𝒔
−𝟏                        (𝟕)

𝒏

𝒔=𝟏,   𝒔≠𝒓

 376 

 377 

where, 𝑫𝟏  is the distance weight, 𝑲𝑺𝒓  is the weighted knowledge stock, and 𝑾𝒓𝒔  is the weight 378 

assigned to the knowledge stock.  379 

 380 

3. Results and Discussion 381 

                                                 
9  Marshall (1920) emphasized that the clustering of production at a specific location provides 

external benefits to firms, such as knowledge spillover and easy access to labor and suppliers. 
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3.1 Descriptive statistics of patent stocks 382 

The descriptive statistics for constructed domestic knowledge (patent) stocks, international 383 

knowledge stocks, and weighted international knowledge stocks are presented in Table 2. The stock 384 

of domestic knowledge has a mean of 425.54 and a standard deviation of 883.56, showing a high 385 

right skewness. Eighty-three percent of countries have a stock of less than 5%. Japan and the US 386 

have more than 60% of the total patent stocks, followed by Germany and France. Countries such as 387 

China, Belgium, Finland, Austria, Norway, Spain, Russia, India, South Africa, Ireland, and Brazil 388 

have very low patent stock values compared to other countries. As shown in Figure 1, there are clear 389 

positive trends in patent stock growth in only in few developed countries, such as the US, Japan, the 390 

Republic of Korea, and the UK, whereas in the other countries there is a mix of increasing, 391 

decreasing, and stagnating patent stocks over time. This indicates that innovation is concentrated in 392 

a few countries, namely Japan, the US, and Germany (Bosetti et al., 2008).  393 

 394 

Weighted international knowledge stocks had a mean of 4,325.45 and a standard deviation of 3,010, 395 

which is not highly skewed. As shown in Table 2, the results suggest that spillover is more prevalent 396 

among European countries. Of the total foreign stock, 87% spilled over to European countries. This 397 

makes sense given that knowledge spillover is more likely to occur in nearby geographical areas. 398 

Moreover, most of the innovative countries in this study are European. This result indicates that 399 

greater geographical distance is linked to a decreased likelihood of knowledge spillover (Verdolini 400 

and Galeotti, 2011). 401 

 402 

Given that over 60% of the knowledge stock was concentrated in two countries — the US and 403 

Japan – the distribution of patent stocks was highly skewed and may have affected the results. Thus, 404 

we conducted sensitivity analysis by omitting these two countries from the analysis to assess how 405 
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much the omission affected the initial results. (Consistency between the initial results and results 406 

from the sensitivity analysis can improve credibility). 407 

 408 

Table 2. Descriptive statistics of innovating country patent stocks from 1994 to 2013. 409 
 410 

Country Patent 
Stock 

Percent 
(%) 

Country Weighted 
Patent stock 

Percent 
(%) 

Japan 3406.228 33.352 Belgium 9591.644 9.240 

United States 2903.017 28.425 Netherlands 9534.707 9.185 

Germany 1226.637 12.011 Germany 8418.950 8.110 

France 611.095 5.984 Switzerland 7945.456 7.654 

Republic of Korea 341.276 3.342 France 7120.210 6.859 

United Kingdom 334.420 3.275 Denmark 6866.756 6.615 

Switzerland 186.999 1.831 Austria 6572.234 6.331 

Sweden 170.378 1.668 Italy 6013.125 5.792 

Netherlands 158.008 1.547 Sweden 5698.699 5.490 

Canada 140.393 1.375 United Kingdom 5698.060 5.489 

Italy 121.576 1.190 Norway 5583.951 5.379 

Australia 109.830 1.075 Ireland 4559.843 4.392 

Denmark 106.454 1.042 Spain 4272.711 4.116 

China 64.822 0.635 Finland 3476.567 3.349 

Belgium 59.308 0.581 China 1528.512 1.472 

Finland 55.671 0.545 India 1525.036 1.469 

Austria 49.203 0.482 Japan 1472.807 1.419 

Norway 46.801 0.458 Russia 1415.408 1.363 

Spain 34.414 0.337 Republic of Korea 1356.645 1.307 

Russia 30.407 0.298 South Africa 1196.498 1.153 

India 21.822 0.214 Brazil 1100.023 1.060 

South Africa 16.013 0.157 United States 1027.983 0.990 

Ireland 11.504 0.113 Canada 974.506 0.939 

Brazil 6.574 0.064 Australia 860.445 0.829 

Sum 10212.853 100  103810.776 100 

Mean 425.536   4325.449  

Std. Dev. 883.561   3010.233  

Min 6.574   860.445  

Max 3406.228   9591.644  

 411 
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 412 
 413 

Figure 1. Patent stocks of the 24 innovating countries. 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
3.2 Energy demand frontier estimation 422 

The frontier parameters of the energy demand function and energy efficiency determinants, with six 423 

different specifications, are presented in Table 3. Starting with the energy demand frontier 424 

parameters, price had a positive yet insignificant influence on energy demand, which is inconsistent 425 

with the results of Filippini and Hunt (2011), Filippini et al., (2014), and Marin and Palma (2017). 426 

The effect of income on the frontier of energy use was positive and statistically significant in all 427 

models. A 1% increase in a country's average income correlated with an increase in energy service 428 

demand by around 0.5%, ceteris paribus. This is in line with previous literature results (Filippini et al., 429 

2014; Filippini and Hunt, 2011; Filippini and Zhang, 2016; Marin and Palma, 2017; and Sineviciene 430 
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et al., 2017). Population density had a negative and significant effect on energy demand in all model 431 

specifications, suggesting that an increase in population density decreases energy consumption. The 432 

most densely populated areas have reduced commuting times, which saves energy (Adom et al., 433 

2018). In the most developed countries, the use of less energy intensive production tools has been 434 

on the rise for over a decade (Wurlod and Noailly 2018). This corroborates the findings of Filippini 435 

and Zhang (2016), Otsuka and Goto (2017), and Adom et al. (2018). Urbanization was positive and 436 

statistically significant, indicating a growing demand for energy services as a result of increased 437 

urbanization. Likewise, larger shares of the industrial and service sectors increase energy 438 

consumption, which is in line with the results of Filippini and Hunt (2011). Finally, the negative and 439 

significant value of the time trend indicates that improving technical innovation reduces energy 440 

consumption. This confirms the findings of Filippini and Hunt (2011), Filippini et al. (2014), and 441 

Filippini and Zhang (2016).  442 

 443 

Moving to the factors accounting for inefficiency variations, Model 1 considers only one of the key 444 

variables, national patent stock, in the inefficiency function (while controlling for the environmental 445 

policy) to assess the influence of domestic innovation on energy efficiency. From the model, it is 446 

clear that domestic innovation in energy technology improves energy efficiency. That is to say, a 447 

country's inventive capacity goes a long way toward minimizing energy intensity. This is in line with 448 

theory and is consistent with the energy innovation literature (Bosetti et al., 2008; Kepplinger et al., 449 

2013). The environmental policy variable, which measures the potential role of demand-pull policies 450 

as a driver of energy efficiency enhancement, also yielded a negative and statistically significant 451 

result. This implies that environmental policies contribute significantly to improving energy 452 

efficiency, confirming the results of Filippini et al. (2014). 453 

 454 
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In Model 2, we added another key variable, international patent stocks, to denote foreign innovation. 455 

Here, we accounted for the effects of transboundary innovation on a country’s energy efficiency. As 456 

shown in Table 3, the result was negative and statistically significant. This implies that accumulated 457 

transboundary knowledge has a positive influence on the energy efficiency of a host country. The 458 

national patent stock variable in the model was still negative and statistically significant, which means 459 

that both domestic and foreign knowledge have a positive influence on energy efficiency. This result 460 

is similar to other studies (Fisher-Vanden et al., 2004; Herrerias et al., 2016, 2013; Sinton and 461 

Fridley, 2000; Verdolini and Galeotti, 2011). However, the international patent stock coefficient 462 

(0.691) was twice as high as the domestic patent stock coefficient (0.316), which was to be expected. 463 

 464 

To test the theory that knowledge spillover is more prevalent among geographically proximal 465 

countries (Acs et al., 1994; Feldman, 1994; Jaffe, 1989; Krugman, 1991), we imposed the inverse 466 

distance on the international patent stock. In Model 3, this produced a negative and significant 467 

result, which indicates that accumulated knowledge that can spillover from other countries positively 468 

affects the energy efficiency performance of the recipient country. The results for the national patent 469 

stock are the same in both Models 1 and 2. We assumed that the inversely weighted knowledge 470 

stock variable presents a better and more realistic picture of possible knowledge spillover, in Model 471 

3 than in Model 2. Therefore, we can confirm that a spillover of innovation across border may play a 472 

crucial role in enhancing global energy efficiency. Similar to Model 2, the international patent stock 473 

coefficient in Model 3 is higher than the domestic patent stock coefficient. 474 

 475 

In Models 4 and 5, we accounted for the interactive effects of foreign and domestic innovation on 476 

energy efficiency. Li and Lin (2017) concluded that interactive effects improve China's energy 477 

efficiency. In Model 4, we considered the interaction between national and international patent 478 
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stocks. In Model 5, we considered the interaction between national patent stocks and the inversely 479 

weighted international stock from Model 3.  As Li and Lin (2017) concluded, the interaction term 480 

had a positive effect on energy efficiency in Models 4 and 5. This means that foreign innovation has 481 

the potential to increase or complement domestic innovation. On the other hand, this result 482 

contradicts that of Herrerias et al. (2016), who observed modest results for the interaction term. 483 

Interestingly, in both Models 4 and 5, national patent stock variables were negatively correlated with 484 

energy efficiency. This indicates that the positive effect of the national patent stock may be reflected 485 

in the interaction term. 486 

 487 

Finally, in Model 6, we accounted for the impact of institutional quality on energy efficiency 488 

performance. Our results were consistent with Bhattacharya et al., (2017), Chang et al., (2018), 489 

Sarkodie and Adams (2018), and Sun et al., (2019), who found a positive correlation between 490 

institutional quality and energy efficiency. As in Models 2 and 3, both domestic and foreign 491 

knowledge positively influenced energy efficiency.  492 

Table 3. Results of energy demand SFA and determinants estimation. 493 
 494 
Energy demand frontier determinants 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

       
lnP 0.00318 0.0105 0.00568 0.00769 0.00389 0.00678 
 (0.00870) (0.00884) (0.00861) (0.00912) (0.00821) (0.00825) 
lnY 0.501*** 0.490*** 0.508*** 0.480*** 0.500*** 0.487*** 
 (0.0342) (0.0335) (0.0320) (0.0351) (0.0331) (0.0314) 
lnPD -0.982*** -1.111*** -1.045*** -1.057*** -1.066*** -0.983*** 
 (0.139) (0.128) (0.118) (0.175) (0.115) (0.116) 
Urb 0.00523*** 0.00500*** 0.00454*** 0.00449** 0.00471*** 0.00402** 
 (0.00177) (0.00175) (0.00159) (0.00191) (0.00159) (0.00157) 
SS 0.00919*** 0.0137*** 0.0102*** 0.0125** 0.00901*** 0.00978*** 
 (0.00310) (0.00295) (0.00301) (0.00507) (0.00269) (0.00262) 
ID 0.0211*** 0.0241*** 0.0202*** 0.0232*** 0.0202*** 0.0195*** 
 (0.00298) (0.00295) (0.00273) (0.00398) (0.00261) (0.00260) 
T -0.00657*** -0.0086*** -0.00716*** -0.00788*** -0.00697*** -0.00703*** 
 (0.00158) (0.00162) (0.00148) (0.00169) (0.00147) (0.00142) 
       
Energy efficiency determinants 
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EP -0.339** -0.299* 0.216 -0.290* 0.0719 0.277* 
 (0.169) (0.165) (0.168) (0.160) (0.192) (0.160) 
lnDK -0.394*** -0.316*** -0.326*** 0.931*** 1.405*** -0.297*** 
 (0.0424) (0.0368) (0.0482) (0.308) (0.292) (0.0579) 
lnFK  -0.691***     
  (0.143)     
lnSFK   -0.956***   -0.973*** 
   (0.148)   (0.147) 
Inter 1    -0.159***   
    (0.0375)   
Inter 2     -0.265***  
     (0.0456)  
Insti      -0.207** 
      (0.0850) 
       
       
Constant -1.070*** 4.559*** 4.706*** -1.051*** -1.267*** 6.105*** 
 (0.133) (1.164) (0.880) (0.142) (0.131) (0.825) 
       
sigma_v 0.0521806 0.0505102 0.0509585 0.0512449 0.0500865 0.0507276 
       
Log 
Likelihood 

582.9420 592.8356 604.4157 589.4878 600.4857 606.3085 

Obs 475 475 475 475 475 475 
Num of ID 24 24 24 24 24 24 

Notes: EP = environmental policies, lnDK = domestic innovation, lnFK = foreign knowledge, 495 

lnSFK = spatially weighted foreign knowledge, Inter 1 = interaction term (without geographic 496 

factor), and Inter 2 = interaction term (with geographic factor). Numbers in parentheses (the 497 

standard error) show statistical significance at 1% (***), 5% (**), and 10% (*).  498 

 499 

3.3 Energy efficiency estimates 500 

The energy efficiency scores for each country were estimated based on the results of Model 6, as 501 

shown in Table 3. The energy efficiency scores for each country were relatively high, with estimates 502 

ranging between 0.84 and 0.99 and an average value of 0.96.  These high values are consistent with 503 

previous literature and indicate that we estimated transient energy efficiency (Adom et al., 2018; Du 504 

et al., 2018; Filippini and Hunt, 2011; Marin and Palma, 2017; Stern, 2012; Sun et al., 2019; Zhou et 505 

al., 2012). High energy efficiency values suggest that, on average, innovating countries make 506 
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significant progress in the short period  in terms of catching up to benchmark technology (Adom et 507 

al., 2018; Sun et al., 2019).  508 

 509 

Figure 2 shows the average energy efficiency changes of the 24 innovating countries. Values 510 

increased year by year, from 0.90 in 1994 to 0.99 in 2013, with a growth rate of 9.34%. Of the 24 511 

innovating countries, five are developing (or emerging) countries whose energy efficiency increased 512 

during the sample period. When we compared the energy efficiency scores of these five major 513 

emerging economies with the other 19 developed economies, the efficiency estimates converged, as 514 

illustrated in Figure 3. This is consistent with Sun et al. (2019). Between 1994 and 2013, while the 515 

efficiency values of developed countries grew by 5.77%, developing countries grew exponentially at 516 

a rate of 25.84%. Studies that focus on causes of convergence have shown that technological 517 

progress is one of the factors that contributes to improvements in the utilization of energy resources 518 

across countries. Technology may have played a major role in energy efficiency improvements in 519 

these innovating, yet emerging, countries. 520 

 521 
 522 

Figure 2. Changes in energy efficiency between 1994 and 2013. 523 
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 524 

 525 
 526 

Figure 3. Changes in energy efficiency for developing and developed countries between 1994 and 527 
2013. 528 

 529 

We examined the changes in energy efficiency in each country from 1994 to 2013 and grouped 530 

countries as either developed or emerging economies, as illustrated in Figure 4. For the developed 531 

economies, energy efficiency in Germany, France, the Netherlands, Switzerland, Sweden, and the 532 

UK almost exceeded 0.98. Germany, in particular, had the highest energy efficiency over the selected 533 

time period, with a value of nearly 1.0. All countries showed a sustainable growth trend, which 534 

indicates a steady increase in energy efficiency. Filippini and Hunt (2011) also concluded that energy 535 

efficiency in Germany, Denmark, Finland, Ireland, Luxemburg, the UK, and the US increased from 536 

1978 to 2006. We conclude that, because of a strong economic base and expansion in technological 537 

innovation, energy efficiency in developed countries has improved continuously over the selected 538 

time period. 539 

 540 
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542 

543 

 544 

545 

 546 
 547 

Figure 4.  Energy efficiencies of developed countries. 548 
 549 

Developing countries had values ranging from 0.62 to 0.99 (see Figure 5), indicating an upward 550 

trend in energy efficiency during the sample period. This could be attributed to the significant steps 551 

taken by these countries to reduce energy intensity. For example, China reduced its total energy 552 
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intensity by 19.1% by the end of 2010 (Jiang et al., 2018), in which knowledge spillover played a 553 

significant role  (Fisher-Vanden et al., 2004; Herrerias et al., 2016, 2013; Sinton and Fridley, 2000). 554 

 555 

 556 

 557 
 558 

 559 
 560 
 561 

Figure 5. Energy efficiencies of developing (emerging) countries. 562 
 563 

Changes in energy efficiency over the sample period are shown for developed countries in Figure 6 564 

and developing countries in Figure 7. The efficiency path converged at the top for most developed 565 

countries, except for the Republic of Korea, Spain, and Australia, which, at the beginning, were far 566 

below the others. In general, all developed countries converged at the top. The efficiency paths of 567 

the five developing countries also increased steadily, and evidence of convergence in energy 568 

efficiency seems to be stronger as the means to efficiency becomes more accessible over time. 569 

Figure 8 shows the energy efficiency performance rankings of all countries. Germany, France, the 570 

UK, the Netherlands, and Switzerland are the most energy efficient countries, while Brazil, China, 571 
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South Africa, the Republic of Korea, and India are the least energy efficient. The efficiency scores of 572 

each country, by developed and developing economy grouping, are shown in Table 5. 573 

 574 

 575 
 576 

Figure 6. Energy efficiency changes in developed countries from 1990 to 2014. 577 
 578 

 579 
 580 

Figure 7. Energy efficiency changes in developing countries from 1990 to 2014. 581 
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 583 
 584 

 585 

Figure 8. Energy efficiency performance rankings for all countries. 586 
 587 
 588 

Table 4. Energy efficiency scores for all countries, by grouping. 589 
  590 

Developed Country Energy Efficiency Emerging Country Energy Efficiency 
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Norway 0.9837   

United States 0.9833   
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Australia 0.9457   

 591 
3.4 Sensitivity analysis  592 

Domestic patent stock accumulation in each country varied significantly. The country with the 593 

largest domestic patent stock was Japan (3,406), followed by the US (2,903). Some countries had less 594 

than 10. To improve the strength and credibility of our results, we omitted Japan and the US from 595 

the analysis. Table 5 shows the sensitivity analysis for previous estimates to assess the validity of the 596 

analysis without these two outliers. Unlike the initial analysis, we considered five models instead of 597 

six in the sensitivity analysis 10.  598 

Determinants of energy efficiency and the energy demand frontier showed no significant changes 599 

from the initial results (see Table 3), therefore the original conclusions remain valid. The coefficients 600 

of all variables were close to those in the initial results. Aside from population density and time 601 

trend, all variables showed a positive and significant relationship with energy demand (except for 602 

price, which is statistically insignificant). 603 

 604 
 605 

Table 5. Results of the sensitivity analysis based on energy demand SFA and determinants 606 
estimation. 607 

 608 

Energy Demand Frontier Determinants 

 Model 1 Model 2 Model 3 Model 4 Model 5 

      
lnP 0.00435 0.00816 0.00812 0.00465 0.00919 
 (0.00940) (0.00894) (0.00958) (0.00846) (0.00884) 
lnY 0.487*** 0.499*** 0.470*** 0.505*** 0.496*** 
 (0.0370) (0.0355) (0.0379) (0.0324) (0.0348) 

                                                 
10 In the sensitivity analysis, we omitted Model 2, which contained national patent stocks and 

unweighted international knowledge stocks. We did this for two reasons. First, for the sake of 

brevity in presentation of the sensitivity analysis. Second, we assumed that weighted international 

stocks present an ideal picture of knowledge spillover compared to unweighted stocks.  



33 
 

lnPD -0.967*** -1.137*** -0.969*** -1.160*** -1.159*** 
 (0.143) (0.140) (0.153) (0.126) (0.134) 
Urb 0.00698*** 0.00714*** 0.00697*** 0.00816*** 0.00645*** 
 (0.00221) (0.00201) (0.00223) (0.00189) (0.00200) 
SS 0.00867*** 0.0137*** 0.0103** 0.0111*** 0.0148*** 
 (0.00326) (0.00354) (0.00432) (0.00287) (0.00323) 
IS 0.0202*** 0.0211*** 0.0209*** 0.0201*** 0.0220*** 
 (0.00315) (0.00307) (0.00343) (0.00291) (0.00308) 
T -0.00651*** -0.00772*** -0.00831*** -0.00828*** -0.00779*** 
 (0.00165) (0.00155) (0.00175) (0.00155) (0.00153) 
      

Energy Efficiency Determinants 

 

EP -0.320* 0.253 -0.358* 0.307** 0.200 
 (0.193) (0.172) (0.187) (0.147) (0.158) 
lnDK -0.399*** -0.233*** 0.820** 1.727*** -0.156** 
 (0.0466) (0.0587) (0.330) (0.200) (0.0779) 
lnSFK  -1.043***   -0.984*** 
  (0.183)   (0.159) 
      
Inter 1   -0.164***   
   (0.0450)   
Inter 2    -0.346***  
    (0.0389)  
Insti     -0.136 
     (0.0949) 
      
Constant -1.126*** 3.771*** -1.063*** -1.267*** 4.306*** 
 (0.162) (0.831) (0.157) (0.131) (0.837) 
      
sigma_v 0.0546015 0.0527262 0.0535979 0.0485275 0.0520408 
      
Log 
Likelihood 

515.6055 541.0315 521.3476 545.5908 541.8589 

Observations 435 435 435 435 435 
Num of ID 22 22 22 22 22 

Notes: EP = environmental policies, lnDK = domestic innovation, lnFK = foreign knowledge, 609 

lnSFK = spatially weighted foreign knowledge, Inter 1 = interaction term (without geographic 610 

factor), Inter 2 = interaction term (with geographic factor). Numbers in parentheses (the standard 611 

error) show statistical significance at 1% (***), 5% (**), and 10% (*). 612 

 613 

 614 

 615 
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4. Conclusion and Policy Implications 616 

The global nature of energy and environmental problems necessitates developing new energy-617 

efficient technologies to reduce the positive relationship between economic growth and carbon 618 

emissions. Since the production of these new technologies is concentrated in just a few regions or 619 

countries (Bosetti et al., 2008), international knowledge spillover may play an important role in the 620 

broader dissemination of innovative technologies (Grafström, 2018), which can make energy 621 

efficiency improvements easier and cheaper. 622 

We conducted new evaluations of the role of domestic knowledge stocks and international 623 

knowledge spillover, as well as the interaction between the two, in determining energy efficiency. 624 

First, we built measures of national and international knowledge stocks, considering the role of 625 

geographic distance in the latter. The results indicate that increased physical distance is accompanied 626 

by a smaller probability of knowledge spillover. Next, we modelled national patent stocks, 627 

international knowledge spillover, and the interaction between the two, as determinants of energy 628 

efficiency in an energy demand stochastic frontier model. These results confirmed that knowledge 629 

spillover between countries improves energy efficiency. For example, energy efficiency 630 

improvements in the Netherlands benefit from strong patent development in the US and Germany. 631 

Our results also showed that the interaction between domestic and foreign knowledge improves 632 

energy efficiency, as do government environmental policies. 633 

 634 

Our estimated energy efficiency performance for each country exhibited an upward trend over the 635 

sample period. Germany, France, the UK, the Netherlands, and Switzerland were the most energy 636 

efficient countries, while Brazil, China, South Africa, the Republic of Korea, and India are the least 637 

energy efficient. Development of energy technologies increased over the sample period and proved 638 

invaluable for improving energy efficiency. However, the technological gap between countries is still 639 
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significant, with the US and Japan alone accounting for about 60% of these technologies. When we 640 

performed a sensitivity analysis by omitting the US and Japan, the results validated the outcome of 641 

the initial model.  642 

 643 

It is clear that technological innovation (both domestic and foreign) has the potential to increase 644 

global energy efficiency. Given that the impact of foreign innovation is greater than domestic 645 

innovation, national policymakers should be encouraged to promote domestic innovative capabilities 646 

and technologies. Similarly, the development of human capital is essential for utilizing foreign 647 

knowledge spillover. 648 

 649 

Finally, this study has certain limitations. First, it is important to note that international knowledge 650 

spillover does not necessarily indicate that spillover occurs in all nearby countries with energy 651 

technologies. Patent citations may be required to pinpoint the exact spillover rate (Verdolini and 652 

Galeotti, 2011), and other channels through which spillover occurs would need to be considered. 653 

Second, of the two types of energy efficiency, transient and persistent (Filippini and Hunt 2016), we 654 

estimated only transient energy efficiency. Future studies could consider the distinction between the 655 

two. 656 

 657 
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