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Abstract: Model continuity plays an important role in applications like system identification,
adaptive control, and machine learning. This paper provides sufficient conditions under which
input-output systems represented by locally convergent Chen-Fliess series are jointly continuous
with respect to their generating series and as operators mapping a ball in an Lp-space to a ball
in an Lq-space, where p and q are conjugate exponents. The starting point is to introduce a class
of topological vector spaces known as Silva spaces to frame the problem and then to employ
the concept of a direct limit to describe convergence. The proof of the main continuity result
combines elements of proofs for other forms of continuity appearing in the literature to produce
the desired conclusion.
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1. INTRODUCTION

In applications involving system identification, adaptive
control, and machine learning, a stream of input-output
data is continually processed over time to produce a se-
quence of parameter/weight estimates so that an assumed
model’s behavior matches that of the data source. In the
context of control, for example, this usually means that
the dynamics of the model should asymptotically approach
those of the plant. This can fail to happen when the model
is incompatible with the plant or the data stream contains
insufficient information. A more subtle mode of failure is
one where the model’s dynamics do not depend continu-
ously on the parameters. In which case, it is possible for
the sequence of parameter estimates to converge to some
limit, while the corresponding sequence of approximations
of the model’s dynamics fail to converge in any sense.

The earliest work on the continuity of input-output sys-
tems was that of Hazewinkel (Hazewinkel, 1980). The
focus there was on one parameter families of linear time-
invariant systems and certain degeneration phenomena.
Continuity of the same class of systems was later address
from the behaviorial point of view in Nieuwenhuis and
Willems (1988, 1992). Continuity of one parameter families
of input-output systems with Chen-Fliess series represen-
tations (Fliess, 1981) was first characterized by Wang
(1990). In this same work it was also shown that under
certain growth conditions on the generating series such
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system are continuous as maps from L1[0, T ] into C[0, T ]
with the L∞-norm for T > 0 sufficiently small. More strin-
gent growth conditions can even render an output function
which is well defined and continuous on [0,∞) (Gray and
Wang, 2002). Various improvements and generalizations
of these result have appeared in Duffaut Espinosa (2009);
Winter Arboleda (2019). In parallel with this development,
continuity properties regarding control affine nonlinear
state space models have appeared in Azhmyakov et al.
(2009). The primary aim there was to characterize the
continuity of flows with respect to the input and initial
condition. Continuity with respect to the vector fields of
the realization was not considered. As the coefficients of
the corresponding Chen-Fliess depend explicitly on these
vector fields and the initial condition, that analysis will not
directly apply to the problems considered in this paper.

The main objective of this paper is provide sufficient con-
ditions under which input-output systems represented by
locally convergent Chen-Fliess series are jointly continuous
with respect to their generating series and as operators
mapping a ball in an Lp-space to a ball in an Lq-space,
where p and q are conjugate exponents. Of course, conti-
nuity and convergence are ultimately topological concepts,
so this phenomenon can only be understood precisely in a
topological framework. The starting point is to introduce
a class of topological vector spaces known as Silva spaces
to frame the problem and then to employ the concept of a
direct limit to describe convergence. The proof of the main
continuity result combines elements of proofs for weaker
forms of continuity appearing in Wang (1990), Gray and
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1. INTRODUCTION

In applications involving system identification, adaptive
control, and machine learning, a stream of input-output
data is continually processed over time to produce a se-
quence of parameter/weight estimates so that an assumed
model’s behavior matches that of the data source. In the
context of control, for example, this usually means that
the dynamics of the model should asymptotically approach
those of the plant. This can fail to happen when the model
is incompatible with the plant or the data stream contains
insufficient information. A more subtle mode of failure is
one where the model’s dynamics do not depend continu-
ously on the parameters. In which case, it is possible for
the sequence of parameter estimates to converge to some
limit, while the corresponding sequence of approximations
of the model’s dynamics fail to converge in any sense.

The earliest work on the continuity of input-output sys-
tems was that of Hazewinkel (Hazewinkel, 1980). The
focus there was on one parameter families of linear time-
invariant systems and certain degeneration phenomena.
Continuity of the same class of systems was later address
from the behaviorial point of view in Nieuwenhuis and
Willems (1988, 1992). Continuity of one parameter families
of input-output systems with Chen-Fliess series represen-
tations (Fliess, 1981) was first characterized by Wang
(1990). In this same work it was also shown that under
certain growth conditions on the generating series such

⋆ The second author was supported by the National Science Foun-
dation under grant CMMI-1839378.

system are continuous as maps from L1[0, T ] into C[0, T ]
with the L∞-norm for T > 0 sufficiently small. More strin-
gent growth conditions can even render an output function
which is well defined and continuous on [0,∞) (Gray and
Wang, 2002). Various improvements and generalizations
of these result have appeared in Duffaut Espinosa (2009);
Winter Arboleda (2019). In parallel with this development,
continuity properties regarding control affine nonlinear
state space models have appeared in Azhmyakov et al.
(2009). The primary aim there was to characterize the
continuity of flows with respect to the input and initial
condition. Continuity with respect to the vector fields of
the realization was not considered. As the coefficients of
the corresponding Chen-Fliess depend explicitly on these
vector fields and the initial condition, that analysis will not
directly apply to the problems considered in this paper.

The main objective of this paper is provide sufficient con-
ditions under which input-output systems represented by
locally convergent Chen-Fliess series are jointly continuous
with respect to their generating series and as operators
mapping a ball in an Lp-space to a ball in an Lq-space,
where p and q are conjugate exponents. Of course, conti-
nuity and convergence are ultimately topological concepts,
so this phenomenon can only be understood precisely in a
topological framework. The starting point is to introduce
a class of topological vector spaces known as Silva spaces
to frame the problem and then to employ the concept of a
direct limit to describe convergence. The proof of the main
continuity result combines elements of proofs for weaker
forms of continuity appearing in Wang (1990), Gray and
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Wang (2002), and Duffaut Espinosa (2009) to produce the
desired conclusion.

The paper is organized as follows. The next section gives
a brief summary of the Chen-Fliess series mainly to
establish the notation. The subsequent section describes
the topological concepts used throughout the paper. The
main continuity results appear in Section 4 along with
some examples to illustrate their application. The final
section summarizes the paper’s main conclusions.

2. CHEN-FLIESS SERIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty and
finite set of noncommuting symbols referred to as letters.
A word η = xi1 · · ·xik is a finite sequence of letters fromX.
The number of letters in a word η, written as |η|, is called
its length. The empty word, ∅, is taken to have length zero.
The collection of all words having length k is denoted by

Xk. Define X∗ =
⋃

k≥0 X
k and X≤J =

⋃J
k=0 X

k. The
former is a monoid under the concatenation product. Any
mapping c : X∗ → R

ℓ is called a formal power series.
Often c is written as the formal sum c =

∑

η∈X∗(c, η)η,

where the coefficient (c, η) is the image of η ∈ X∗ under
c. The support of c, supp(c), is the set of all words having
nonzero coefficients. The set of all noncommutative formal
power series over the alphabet X is denoted by R

ℓ��X��.
The subset of series with finite support, i.e., polynomials, is
represented by R

ℓ�X�. Each set is an associative R-algebra
under the concatenation product and an associative and
commutative R-algebra under the shuffle product, that
is, the bilinear product uniquely specified by the shuffle
product of two words

(xiη) ⊔⊔ (xjξ) = xi(η ⊔⊔ (xjξ)) + xj((xiη) ⊔⊔ ξ),

where xi, xj ∈ X, η, ξ ∈ X∗ and with η ⊔⊔ ∅ = ∅ ⊔⊔ η = η
(Fliess, 1981).

Given any c ∈ R
ℓ��X�� one can associate a causalm-input,

ℓ-output operator, Fc, in the following manner. Let p ≥ 1
and t0 < t1 be given. For a Lebesgue measurable function
u : [t0, t1] → R

m, define �u�p = max{�ui�p : 1 ≤ i ≤ m},
where �ui�p is the usual Lp-norm for a measurable real-
valued function, ui, defined on [t0, t1]. Let L

m
p [t0, t1] denote

the set of all measurable functions defined on [t0, t1] having
a finite � · �p norm and Bm

p (Ru)[t0, t1] := {u ∈ Lm
p [t0, t1] :

�u�p ≤ Ru}. Assume C[t0, t1] is the subset of continuous
functions in Lm

1 [t0, t1]. Define inductively for each η ∈ X∗

the map Eη : Lm
1 [t0, t1] → C[t0, t1] by setting E∅[u] = 1

and letting

Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X, η̄ ∈ X∗, and u0 = 1. The Chen-Fliess series
corresponding to c is

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0) (1)

(Fliess, 1981, 1983). It can be shown that if there exists
real numbers K,M ≥ 0 such that

|(c, η)| ≤ KM |η| |η|!, ∀η ∈ X∗ (2)

(|z| := maxi |zi| when z ∈ R
ℓ) then the series (1) converges

absolutely and uniformly for sufficiently small R, T > 0
and constitutes a well defined mapping from Bm

p (R)[t0,

t0 + T ] into Bℓ
q(S)[t0, t0 + T ], where the numbers p, q ∈

[1,+∞] are conjugate exponents, i.e., 1/p+1/q = 1 (Gray
and Wang, 2002). Any such mapping is called a locally
convergent Fliess operator.

A more refined convergence analysis of Chen-Fliess series
appears in Winter Arboleda (2019) utilizing the notion of
Gevrey order. A series c ∈ R

ℓ��X�� is said to have Gevrey
order s ∈ [0,∞) if there exists constants K,M > 0 such
that

|(c, η)| ≤ KM |η|(|η|!)s, ∀η ∈ X∗. (3)
Clearly, if c has Gevrey order s then it is also has Gevrey
order s′, where s′ > s. Define for a given c the real
number γc = min{s ∈ [0,∞) : s satisfies (3)} and the
set of all generating series with minimum Gevrey order γ
as Rℓ

γ��X��. In this context, the set of all generating series
for locally convergent Fliess operators as described above
is

R
ℓ
LC��X�� :=

⋃

0≤γ≤1

R
ℓ
γ��X��,

while a subset of series (note the upper bound on γ)

R
ℓ
GC��X�� :=

⋃

0≤γ<1

R
ℓ
γ��X��

can be shown to yield a type of global convergence on the
extended space Lm

p,e(t0) into C[t0,∞), where

Lm
p,e(t0) :=

⋃

T>0

Lm
p [t0, t0 + T ]

(Winter Arboleda et al., 2015). Interestingly, this latter
set of generating series does not constitute all of those
that provide a globally defined Fliess operator as shown
by example in Winter Arboleda (2019).

Finally, a Fliess operator Fc defined on Bm
p (R)[t0, t0+T ] is

said to be realizable when there exists a state space model

ż(t) = g0(z(t)) +

m∑

i=1

gi(z(t))ui(t), z(t0) = z0 (4a)

yj(t) = hj(z(t)), j = 1, 2, . . . , ℓ, (4b)

where each gi is an analytic vector field expressed in local
coordinates on some neighborhood W of z0, and each
output function hj is an analytic function on W such that
(4a) has a well defined solution z(t), t ∈ [t0, t0+T ] for any
given input u ∈ Bm

p (R)[t0, t0+T ], and yj(t) = Fcj [u](t) =
hj(z(t)), t ∈ [t0, t0 + T ], j = 1, 2, . . . , ℓ. It can be shown
that for any word η = xik · · ·xi1 ∈ X∗

(cj , η) = Lgηhj(z0) := Lgi1
· · ·Lgik

hj(z0), (5)

where Lgihj is the Lie derivative of hj with respect to gi.

3. TOPOLOGICAL SUBSPACES OF R
ℓ��X��

Suppose a sequence of generating series {cj}j≥1 is pro-
duced in real-time by processing a stream of input-output
data in some manner. The corresponding sequence of
Chen-Fliess series is taken to be {Fcj}j≥1. If the estimation
or learning algorithm producing these generating series
ensures that cj → c in some sense, then it is desirable
that Fcj → Fc in some fashion as well. Perhaps the most
obvious way in which one series can approach another is
in the ultrametric sense. Specifically, for any fixed real
number σ such that 0 < σ < 1, consider the mapping

dist : R��X�� × R��X�� → R,

(c, d) �→ σord(c−d),

where ord(c) is the length of the shortest word in the
support of c (ord(0) := ∞). The R-vector space R

ℓ��X��
with mapping dist is known to be a complete ultrametric
space (Berstel and Reutenauer, 1988). If each series cj ∈
RLC��X��, the following simple example illustrates that
in the limit there is not always a well defined operator
to which a given sequence of locally convergent Fliess
operators is converging.

Example 1. Let X = {x1} and consider the sequence of
polynomials

cj = x1 + (2!)2 x2
1 + (3!)2 x3

1 + · · ·+ (j!)2 xj
1, j ≥ 1.

Clearly, each polynomial cj is locally convergent. Thus,
each Fliess operator Fcj is well defined on some ball of
input functions in Lm

p [t0, t1]. Furthermore, the sequence

(cj)j converges to c =
∑

k≥1(k!)
2xk

1 in the ultrametric
topology. But the limiting Chen-Fliess series Fc is not well
defined in any obvious sense.

This example motivates the following fundamental prob-
lem: On what topological subspaces of Rℓ��X�� does cj →
c imply that Fcj → Fc in some sense with the limit point
Fc being a well defined operator? The following subsec-
tions lay the foundation for addressing this problem by
presenting what subspaces are available for consideration.

3.1 Fixed M > 0 (Banach Spaces)

As a first step, consider the following interpretation of
condition (2). Fix M > 0 and define

�c�ℓ∞,M
:= sup

{ |(c, η)|
M |η| |η|! : η ∈ X∗

}

∈ [0,∞]

for each c ∈ R
ℓ��X��. The set of all c with �c�ℓ∞,M

< ∞
is denoted by ℓ∞,M (X∗,Rℓ). It is straightforward to check
that ℓ∞,M (X∗,Rℓ) is a vector subspace of Rℓ��X��. The
function �·�ℓ∞,M

is a norm on ℓ∞,M (X∗,Rℓ). The following
assignment is an isometry of normed spaces:

ℓ∞,M (X∗,Rℓ) −→ ℓ∞(X∗,Rℓ) : c �→ c

M |η| |η|! ,

where ℓ∞(X∗,Rℓ) :=
{
c : X∗ → R

ℓ : supη |(c, η)| < ∞
}
is

the Banach space of all bounded functions from X∗ to
R

ℓ. This shows that for each fixed M > 0 the space
(ℓ∞,M (X∗,Rℓ), � · �ℓ∞,M

) is a Banach space. A series

c ∈ R
ℓ��X�� belongs to ℓ∞,M (X∗,Rℓ) if and only if the

bound (2) holds for some K ≥ 0 and the fixed number M .
In fact, the norm �c�ℓ∞,M

is the smallest number K ≥ 0
such that (2) is satisfied.

As ℓ∞,M (X∗,Rℓ) is a Banach space, and, in particular,
a metric space, the topology of ℓ∞,M (X∗,Rℓ) can be
recovered from convergent sequences, where a sequence
(cj)j in ℓ∞,M (X∗,Rℓ) converges to c ∈ ℓ∞,M (X∗,Rℓ) if
and only if

lim
j→∞

�cj − c�ℓ∞,M
= 0.

Given that ℓ∞,M (X∗,Rℓ) is an infinite dimensional Banach
space, the Bolzano-Weierstrass theorem fails to hold, i.e.,
not every � · �ℓ∞,M

-bounded sequence has a � · �ℓ∞,M
-

convergent subsequence (Werner, 2000, Satz I.2.7). Fur-
thermore, the space is not separable, i.e., there is no count-
able dense subset. Given M1 and M2 such that M1 ≤ M2,

it is clear that �·�ℓ∞,M1
≥ �·�ℓ∞,M2

, and thus the inclusion

(as vector spaces)

ℓ∞,M1
(X∗,Rℓ) ⊆ ℓ∞,M2

(X∗,Rℓ)

holds. This inclusion is not a topological embedding as the
topology induced by ℓ∞,M2

(X∗,Rℓ) is coarser than the one
induced by ℓ∞,M1

(X∗,Rℓ). It turns out for M1 < M2 that
the inclusion map

ℓ∞,M1
(X∗,Rℓ) → ℓ∞,M2

(X∗,Rℓ)

is a compact operator (Dahmen and Schmeding, 2018,
Lemma B.6), i.e., it maps bounded sets to relatively
compact sets. In particular, this shows for M1 < M2 that
every sequence which is bounded in the �·�ℓ∞,M1

-norm has

a subsequence which converges in the coarser � · �ℓ∞,M2
-

topology.

3.2 The projective limit M → 0 (Fréchet–Schwartz
Spaces)

Consider next those c ∈ R
ℓ��X�� for which �c�ℓ∞,M

is
finite for all M > 0. This means that for each M > 0
there is a K = �c�ℓ∞,M

≥ 0 satisfying (2). Algebraically,
this corresponds to the intersection of all vector spaces
ℓ∞,M (X∗,Rℓ), namely,

ℓ∞,←(X∗,Rℓ) :=
⋂

M>0

ℓ∞,M (X∗,Rℓ).

On spaces like these, there is a natural topology which
turns this space into a locally convex topological vector
space. In the functional analysis literature, this object is
called the projective limit (or inverse limit or categorical
limit) of the system

(
ℓ∞,M (X∗,Rℓ)

)

M>0
and denoted also

by

ℓ∞,←(X∗,Rℓ) := lim
←−

M→0

ℓ∞,M (X∗,Rℓ)

=
⋂

M>0

ℓ∞,M (X∗,Rℓ).

For a given c ∈ R
ℓ��X��, one can check whether it belongs

to this space in the following way:

c ∈ ℓ∞,←(X∗,Rℓ) ⇐⇒ �c�ℓ∞,M
< ∞, ∀M > 0. (6)

The sequence Mk = 1/k, k ∈ N is cofinal, hence it suffices
to check (6) only for M of the form Mk.

Now ℓ∞,←(X∗,Rℓ) is the projective limit of countably
many Banach spaces. Thus it becomes a Fréchet space, i.e.,
a complete metrisable space. Fréchet spaces share many
nice properties with Banach spaces. For example, their
topology is determined by sequences, where a sequence
(cj)j in ℓ∞,←(X∗,Rℓ) converges to c ∈ ℓ∞,←(X∗,Rℓ) if
and only if

lim
j→∞

�cj − c�ℓ∞,M
= 0, ∀M > 0.

(Again it suffices to check this only for all M = 1/k,
k ∈ N.) Since the inclusion maps are all compact op-
erators, ℓ∞,←(X∗,Rℓ) is even a Fréchet–Schwartz space,
(Pérez Carreras and Bonet, 1987, Definition 8.5.2). Hence,
it behaves much nicer than the Banach spaces from which
it was built. In particular, the space ℓ∞,←(X∗,Rℓ) satisfies
a version of the Bolzano-Weierstrass theorem, namely,
every ℓ∞,←-bounded sequence has a ℓ∞,←-convergent sub-
sequence. Here, a sequence (cj)j is called ℓ∞,←-bounded
if supj �cj�ℓ∞,M

< ∞ for all M > 0. This follows from
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(c, d) �→ σord(c−d),

where ord(c) is the length of the shortest word in the
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p [t0, t1]. Furthermore, the sequence

(cj)j converges to c =
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k≥1(k!)
2xk
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topology. But the limiting Chen-Fliess series Fc is not well
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c imply that Fcj → Fc in some sense with the limit point
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As a first step, consider the following interpretation of
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M |η| |η|! : η ∈ X∗
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for each c ∈ R
ℓ��X��. The set of all c with �c�ℓ∞,M
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is denoted by ℓ∞,M (X∗,Rℓ). It is straightforward to check
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-

topology.

3.2 The projective limit M → 0 (Fréchet–Schwartz
Spaces)

Consider next those c ∈ R
ℓ��X�� for which �c�ℓ∞,M

is
finite for all M > 0. This means that for each M > 0
there is a K = �c�ℓ∞,M

≥ 0 satisfying (2). Algebraically,
this corresponds to the intersection of all vector spaces
ℓ∞,M (X∗,Rℓ), namely,

ℓ∞,←(X∗,Rℓ) :=
⋂

M>0

ℓ∞,M (X∗,Rℓ).

On spaces like these, there is a natural topology which
turns this space into a locally convex topological vector
space. In the functional analysis literature, this object is
called the projective limit (or inverse limit or categorical
limit) of the system

(
ℓ∞,M (X∗,Rℓ)

)

M>0
and denoted also

by

ℓ∞,←(X∗,Rℓ) := lim
←−

M→0

ℓ∞,M (X∗,Rℓ)

=
⋂

M>0

ℓ∞,M (X∗,Rℓ).

For a given c ∈ R
ℓ��X��, one can check whether it belongs

to this space in the following way:

c ∈ ℓ∞,←(X∗,Rℓ) ⇐⇒ �c�ℓ∞,M
< ∞, ∀M > 0. (6)

The sequence Mk = 1/k, k ∈ N is cofinal, hence it suffices
to check (6) only for M of the form Mk.

Now ℓ∞,←(X∗,Rℓ) is the projective limit of countably
many Banach spaces. Thus it becomes a Fréchet space, i.e.,
a complete metrisable space. Fréchet spaces share many
nice properties with Banach spaces. For example, their
topology is determined by sequences, where a sequence
(cj)j in ℓ∞,←(X∗,Rℓ) converges to c ∈ ℓ∞,←(X∗,Rℓ) if
and only if

lim
j→∞

�cj − c�ℓ∞,M
= 0, ∀M > 0.

(Again it suffices to check this only for all M = 1/k,
k ∈ N.) Since the inclusion maps are all compact op-
erators, ℓ∞,←(X∗,Rℓ) is even a Fréchet–Schwartz space,
(Pérez Carreras and Bonet, 1987, Definition 8.5.2). Hence,
it behaves much nicer than the Banach spaces from which
it was built. In particular, the space ℓ∞,←(X∗,Rℓ) satisfies
a version of the Bolzano-Weierstrass theorem, namely,
every ℓ∞,←-bounded sequence has a ℓ∞,←-convergent sub-
sequence. Here, a sequence (cj)j is called ℓ∞,←-bounded
if supj �cj�ℓ∞,M

< ∞ for all M > 0. This follows from
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(Pérez Carreras and Bonet, 1987, Proposition 8.5.9), which
furthermore implies that ℓ∞,←(X∗,Rℓ) is separable, i.e.,
there is countable dense subset. In (Winter Arboleda,
2019, Theorem 3.4.5) it is shown that

ℓ∞,←(X∗,Rℓ) = Rℓ
GC��X��,

where the closure on the right is taken with respect to the
ℓ∞,←-topology (called the semi-norm topology in loc. cit.).
In other words, there are some generating series with
minimum Gevrey order γ = 1 that yield globally defined
Fliess operators.

3.3 The direct limit M → ∞ (Silva Spaces)

Consider next a series c ∈ R
ℓ��X�� where there exists at

least one number M > 0 such that K = �c�ℓ∞,M
≥ 0

satisfies (2). Algebraically, this case corresponds to the
union of all vector spaces ℓ∞,M (X∗,Rℓ), that is,

ℓ∞,→(X∗,Rℓ) :=
⋃

M>0

ℓ∞,M (X∗,Rℓ).

As with the intersection, there is also a natural topol-
ogy turning this space into a locally convex topologi-
cal vector space. This object is called the direct limit
(or inductive limit or categorical colimit) of the system(
ℓ∞,M (X∗,Rℓ)

)

M>0
and denoted by

ℓ∞,→(X∗,Rℓ) = lim
−→

M→∞

ℓ∞,M (X∗,Rℓ)

=
⋃

M>0

ℓ∞,M (X∗,Rℓ).

This construction can also be found in Bogfjellmo and
Schmeding (2016); Dahmen and Schmeding (2018). For
a given c ∈ R

ℓ��X��, one can check whether it belongs to
this space in the following way:

c ∈ ℓ∞,←(X∗,Rℓ) ⇐⇒ ∃M > 0 such that �c�ℓ∞,M
< ∞.

Since the sequence Mk = k, k ∈ N is cofinal, there exists
an M ∈ N for which �c�ℓ∞,M

< ∞. Thus, one could
equivalently work only with M ∈ N. In general, direct
limits are more difficult to work with than projective lim-
its. Fortunately, this particular direct limit is a countable
direct limit of Banach spaces with compact operators as
inclusion maps. Direct limit spaces like these are called
Silva spaces.

Although Silva spaces are not metrizable, they are always
sequential (Yoshinaga, 1957, Proposition 6). This means
that as in the Banach space case, the topology is deter-
mined by sequences, i.e., sets are closed if and only if they
are sequentially closed. A sequence (cj)j in ℓ∞,→(X∗,Rℓ)
converges to c ∈ ℓ∞,→(X∗,Rℓ) if and only if

lim
j→∞

�cj − c�ℓ∞,M
= 0 for one fixed M > 0.

In other words, a sequence in a Silva space converges if
there exists one fixed M > 0 for the whole sequence such
that (cj)j converges in the Banach space ℓ∞,M (X∗,Rℓ)
(Yoshinaga, 1957, Theorem 1). In particular, note that
for a sequence to converge, all terms must lie in one of
the spaces ℓ∞,M (X∗,Rℓ), i.e., one M > 0 has to work
for the whole sequence. The sequence in Example 1 fails
to converge in the Silva topology since there is no M for
which the sequence is Cauchy.

Using again the compactness of the inclusion maps, it
follows that a sequence which is bounded in one � ·�ℓ∞,M1

-

norm (for a given M1 > 0) has a subsequence which con-
verges in the coarser � · �ℓ∞,M2

-topology for all M2 > M1.
As earlier, there is a version of the Bolzano-Weierstrass
theorem, namely, every ℓ∞,→-bounded sequence has a
ℓ∞,→-convergent subsequence. In this case, a sequence
(cj)j is called ℓ∞,→-bounded if there is at least one M > 0
with supj �cj�ℓ∞,M

< ∞. Therefore, a Silva space has
better topological properties than the Banach spaces from
which it is constructed. Furthermore, every Silva space is
separable. Finally, it is shown in (Winter Arboleda, 2019,
Theorem 3.2.7) that

ℓ∞,→(X∗,Rℓ) = R
ℓ
LC��X��.

Example 2. LetX = {x1}. The sequence cj := j!xj
1, j ∈ N

has norm �cj�ℓ∞,1
= 1. Therefore, (cj)j does not converge

to zero in ℓ∞,1(X
∗,R). However, since �cj�ℓ∞,2

= 1/2j ,

it follows that cj
j→∞−−−→ 0 in ℓ∞,2(X

∗,R) and also in the
Silva topology.

Example 3. Let X = {x1}. Define for n, j ∈ N the se-
quence dn,j := n(5j−2)/2jCn, where Cn := (2n)!/((n +
1)!n!) is the nth Catalan number. 1 Recall that the
asymptotic growth of the Catalan numbers is Cn ∼
4n/(n3/2

√
π). Thus, for dj :=

∑∞
n=1 dn,jx

n
1 , it is clear

that d1 ∈ ℓ∞,4(X
∗,R), but dj �∈ ℓ∞,4(X

∗,R) for j >
1. However, since �dj�ℓ∞,5

< ∞, it does hold that
(dj)j ⊆ ℓ∞,→(X∗,R). Furthermore, it is easily checked

that limj→∞�dj −d�ℓ∞,5
= 0, where d =

∑∞
n=1 n

5/2Cnx
n
1 .

Thus, dj , j ∈ N converges to zero in the Silva topology.

In the continuity theorems presented in the next section,
every sequences (cj)j will be assumed a priori to be
entirely contained in some Banach space ℓ∞,M (X∗,R),
M > 0, thus avoiding the phenomenon shown in the
previous example. Therefore, only a Banach topology
is really needed. However, for applications such as the
interconnection of Chen-Fliess series, the Silva topology is
more applicable in the corresponding continuity analysis.
For example, one can define for generating series c, d ∈
ℓ∞,M (X∗,Rℓ) a product c ◦ d such that the composition
satisfies Fc ◦ Fd = Fc◦d. It is known that in general c ◦ d
will not be contained in ℓ∞,M (X∗,Rℓ) (Thitsa and Gray,
2012). However, there does exist a K(M,N,R) < ∞ for
all M,N,R ∈ [0,∞[ such that for B∞,N (R) := {c ∈
ℓ∞,N (X∗,Rℓ) : �c�ℓ∞,N < R} the map

◦ : ℓ∞,M (X∗,Rℓ)×B∞,N (R) → ℓ∞,K(M,N,R)(X
∗,Rℓ)

is well defined (Gray et al., 2021, Lemma 3.4). Using
these estimates, the interconnection of Chen-Fliess se-
ries induces a continuous product on the Silva space
ℓ∞,→(X∗,Rℓ). Hence, the Silva topology is the natural
topology for describing the continuity of such intercon-
nections. This is investigated further in Gray et al. (2021).

4. MAIN CONTINUITY THEOREMS

The continuity problem for a Chen-Fliess series Fc[u] is
approached incrementally. It is first assumed that the
input u is fixed and the generating series c is variable
(series to output continuity). Then the case where c is

1 Sequence A000108 in OEIS (2021).

fixed and u is variable is presented (input-output operator
continuity). Finally, the two cases are combined. For nota-
tional convenience, define the space of Lp-germs Lm

p (t0) :=
{[u] | u ∈ Lm

p [t0, t1] for some t1 > t0}, where the class [u]
contains all functions equal to u in some neighborhood
of t0. Note that this space can not be endowed with any
useful topology making the inclusion Lm

p [t0, t1] continuous
(as this would automatically be non-Hausdorff).

Theorem 4. (series to output continuity). The map

Lm
p (0)× R

ℓ
LC��X�� → Lℓ

q(0), (u, c) �→ y = Fc[u]

is well defined. Moreover, for every M > 0 and fixed
u ∈ Lm

p (0), there exists a T > 0 such that

ℓ∞,M (X∗,Rℓ) → Lℓ
q[0, T ], c �→ y = Fc[u]

is continuous.

The following two lemmas are needed for the proof (Duf-
faut Espinosa, 2009).

Lemma 5. Let X = {x0, x1, . . . , xm}. For any k ∈ N0, the
characteristic polynomial char(Xk) of Xk, i.e. the sum of
all words of length k, satisfies

char(Xk) =
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

xr0
0 ⊔⊔ xr1

1 ⊔⊔ · · · ⊔⊔ xrm
m ,

where ⊔⊔ denotes the shuffle product.

Lemma 6. Let X = {x0, x1, . . . , xm}. For any u ∈
Lm
1 [0, T ] and η ∈ X∗

|Eη[u](t)| ≤ Eη[ū](t), 0 ≤ t ≤ T,

where ū ∈ Lm
1 [0, T ] has components ūj := |uj |, j =

1, 2, . . . ,m. Furthermore, for any integers rj ≥ 0 it follows
that
∣
∣
∣Ex

r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[u](t)
∣
∣
∣ ≤

m∏

j=0

U
rj
j (t)

rj !
, 0 ≤ t ≤ T,

where Uj(t) :=
∫ t

0
|uj(τ)| dτ . 2 In particular, if on [0, T ] it

is assumed that max{�u�1, T} ≤ R then
∣
∣
∣Ex

r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[u](t)
∣
∣
∣ ≤ Rk

r0! r1! · · · rm!
, 0 ≤ t ≤ T,

where k =
∑

j rj .

Now the proof of Theorem 4.

Proof: If c ∈ R
ℓ
LC��X��, then there exists K,M ≥ 0

satisfying (2). Fix u ∈ Lm
1 (0) (without loss of generality

p = 1 and t0 = 0) so that for some T > 0, u ∈ Lm
1 [0, T ].

Define R = max{�u�1, T}. Applying Lemmas 5 and 6 it
then follows that:

|y(t)| ≤
∑

η∈X∗

|(c, η)Eη[u](t)|

≤
∞∑

k=0

∑

η∈Xk

|(c, η)|Eη[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

Ex
r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

Rk

r0!r1! · · · rm!

2 For notational convenience, occasionally Fp will denoted by Ep

when p ∈ R�X�.
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Fig. 1. Convergence of yj to y in Example 7 when Ma = 1,
Mb = 7, and u(t) = cos(10t) with t ∈ [0, 0.2π].

=

∞∑

k=0

K(MR)k
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

k!

r0!r1! · · · rm!

=

∞∑

k=0

K(MR(m+ 1))k. (7)

Therefore, if R < 1/(M(m+ 1)), i.e., if

max{�u�1, T} <
1

M(m+ 1)
, (8)

then the series (1) converges absolutely and uniformly on
[0, T ] so that y is well defined as an L∞-germ, specifi-
cally, y ∈ Lm

∞[0, T ]. Now since the mapping c �→ y =
Fc[u] is linear, it is sufficient for proving continuity to
show that it is bounded as a mapping from the Banach
space ℓ∞,M (X∗,Rℓ) into the Banach space Lℓ

∞[0, T ], i.e.,
�y�∞/�c�ℓ∞,M

< ∞. Observe that K = �c�ℓ∞,M
> 0 is a

valid choice, and therefore, �y�∞/K ≤ 1/(1 − MR(m +
1)) < ∞ as claimed.

Example 7. Let X = {x1} and consider the sequence
cj =

∑

k≥0 M
k
j k!x

k
1 , j ≥ 1 in RLC��X��, where

Mj = Mbθj +Ma(1− θj)

and θj = (j − 1)/j. In which case, c1 =
∑

k≥0 M
k
a k!x

k
1

and define c =
∑

k≥0 M
k
b k!x

k
1 . To see that cj

j→∞−−−→ c as a

direct limit, set M = max{Ma,Mb} and observe that

�cj − c�ℓ∞
M

= sup
k≥0

∣
∣
∣
∣
∣

Mk
j −Mk

b

Mk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

Mj −Mb

M

∣
∣
∣
∣
.

Thus, the conclusion follows directly. Now for the given M
pick T and u to satisfy (8). Therefore,

yj(t) =

∞∑

k=0

Mk
j k!Exk

1
[u](t) =

∞∑

k=0

Mk
j k!

Ek
x1
[u](t)

k!

=
1

1−MjEx1
[u](t)

,

and likewise

y(t) =
1

1−MbEx1
[u](t)

,

are both well defined on [0, T ]. In addition,
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fixed and u is variable is presented (input-output operator
continuity). Finally, the two cases are combined. For nota-
tional convenience, define the space of Lp-germs Lm

p (t0) :=
{[u] | u ∈ Lm

p [t0, t1] for some t1 > t0}, where the class [u]
contains all functions equal to u in some neighborhood
of t0. Note that this space can not be endowed with any
useful topology making the inclusion Lm

p [t0, t1] continuous
(as this would automatically be non-Hausdorff).

Theorem 4. (series to output continuity). The map

Lm
p (0)× R

ℓ
LC��X�� → Lℓ

q(0), (u, c) �→ y = Fc[u]

is well defined. Moreover, for every M > 0 and fixed
u ∈ Lm

p (0), there exists a T > 0 such that

ℓ∞,M (X∗,Rℓ) → Lℓ
q[0, T ], c �→ y = Fc[u]

is continuous.

The following two lemmas are needed for the proof (Duf-
faut Espinosa, 2009).

Lemma 5. Let X = {x0, x1, . . . , xm}. For any k ∈ N0, the
characteristic polynomial char(Xk) of Xk, i.e. the sum of
all words of length k, satisfies

char(Xk) =
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

xr0
0 ⊔⊔ xr1

1 ⊔⊔ · · · ⊔⊔ xrm
m ,

where ⊔⊔ denotes the shuffle product.

Lemma 6. Let X = {x0, x1, . . . , xm}. For any u ∈
Lm
1 [0, T ] and η ∈ X∗

|Eη[u](t)| ≤ Eη[ū](t), 0 ≤ t ≤ T,

where ū ∈ Lm
1 [0, T ] has components ūj := |uj |, j =

1, 2, . . . ,m. Furthermore, for any integers rj ≥ 0 it follows
that
∣
∣
∣Ex

r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[u](t)
∣
∣
∣ ≤

m∏

j=0

U
rj
j (t)

rj !
, 0 ≤ t ≤ T,

where Uj(t) :=
∫ t

0
|uj(τ)| dτ . 2 In particular, if on [0, T ] it

is assumed that max{�u�1, T} ≤ R then
∣
∣
∣Ex

r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[u](t)
∣
∣
∣ ≤ Rk

r0! r1! · · · rm!
, 0 ≤ t ≤ T,

where k =
∑

j rj .

Now the proof of Theorem 4.

Proof: If c ∈ R
ℓ
LC��X��, then there exists K,M ≥ 0

satisfying (2). Fix u ∈ Lm
1 (0) (without loss of generality

p = 1 and t0 = 0) so that for some T > 0, u ∈ Lm
1 [0, T ].

Define R = max{�u�1, T}. Applying Lemmas 5 and 6 it
then follows that:

|y(t)| ≤
∑

η∈X∗

|(c, η)Eη[u](t)|

≤
∞∑

k=0

∑

η∈Xk

|(c, η)|Eη[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

Ex
r0
0

⊔⊔ x
r1
1

⊔⊔ ··· ⊔⊔ xrm
m

[ū](t)

≤
∞∑

k=0

KMkk!
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

Rk

r0!r1! · · · rm!

2 For notational convenience, occasionally Fp will denoted by Ep

when p ∈ R�X�.
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Fig. 1. Convergence of yj to y in Example 7 when Ma = 1,
Mb = 7, and u(t) = cos(10t) with t ∈ [0, 0.2π].

=

∞∑

k=0

K(MR)k
∑

r0,r1,...,rm≥0

r0+r1+···+rm=k

k!

r0!r1! · · · rm!

=

∞∑

k=0

K(MR(m+ 1))k. (7)

Therefore, if R < 1/(M(m+ 1)), i.e., if

max{�u�1, T} <
1

M(m+ 1)
, (8)

then the series (1) converges absolutely and uniformly on
[0, T ] so that y is well defined as an L∞-germ, specifi-
cally, y ∈ Lm

∞[0, T ]. Now since the mapping c �→ y =
Fc[u] is linear, it is sufficient for proving continuity to
show that it is bounded as a mapping from the Banach
space ℓ∞,M (X∗,Rℓ) into the Banach space Lℓ

∞[0, T ], i.e.,
�y�∞/�c�ℓ∞,M

< ∞. Observe that K = �c�ℓ∞,M
> 0 is a

valid choice, and therefore, �y�∞/K ≤ 1/(1 − MR(m +
1)) < ∞ as claimed.

Example 7. Let X = {x1} and consider the sequence
cj =

∑

k≥0 M
k
j k!x

k
1 , j ≥ 1 in RLC��X��, where

Mj = Mbθj +Ma(1− θj)

and θj = (j − 1)/j. In which case, c1 =
∑

k≥0 M
k
a k!x

k
1

and define c =
∑

k≥0 M
k
b k!x

k
1 . To see that cj

j→∞−−−→ c as a

direct limit, set M = max{Ma,Mb} and observe that

�cj − c�ℓ∞
M

= sup
k≥0

∣
∣
∣
∣
∣

Mk
j −Mk

b

Mk

∣
∣
∣
∣
∣
=

∣
∣
∣
∣

Mj −Mb

M

∣
∣
∣
∣
.

Thus, the conclusion follows directly. Now for the given M
pick T and u to satisfy (8). Therefore,

yj(t) =

∞∑

k=0

Mk
j k!Exk

1
[u](t) =

∞∑

k=0

Mk
j k!

Ek
x1
[u](t)

k!

=
1

1−MjEx1
[u](t)

,

and likewise

y(t) =
1

1−MbEx1
[u](t)

,

are both well defined on [0, T ]. In addition,
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�yj − y�∞= sup
t∈[0,T ]

∥
∥
∥
∥

(Mj −Mb)Ex1
[u](t)

(1−MjEx1
[u](t))(1−MbEx1

[u](t))

∥
∥
∥
∥

so that yj
j→∞−−−→ y in the L∞[0, T ] norm sense. The specific

example where Ma = 1, Mb = 7, and u(t) = cos(10t)
with t ∈ [0, 0.2π] is shown in Figure 1. Here T = 0.6283,
�u�1 = 0.4 and 1/max(Ma,Mb) = 0.1429 (note m+1 = 1
as X has only one letter), which shows that condition (8)
is conservative in this instance.

Input-output operator continuity is addressed in the next
theorem. The proof is inspired by results appearing in
Wang (1990) except that certain details have to be handled
differently in order to use the result in the proof of the final
continuity theorem.

Theorem 8. (input-output operator continuity) Suppose
c ∈ R

ℓ
LC��X�� and select any pair of conjugate exponents

p, q ∈ [1,∞]. If 0 < T ≤ R < 1/(M(m + 1)) such that
c ∈ ℓ∞,M (X∗,Rℓ), then the operator

Fc : B
m
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ]

for some S > 0 is continuous with respect to the Lp and
Lq norms.

Proof: It needs to be shown for any ǫ > 0 that there
exists a δ > 0 such that if v, u ∈ Bm

p (R)[t0, t0 + T ] satisfy
�v − u�p < δ, then �Fc[v] − Fc[u]�q < ǫ. It is first proved
by induction on the length of the word η ∈ X∗ that the
mapping

Eη : Bm
p (R)[t0, t0 + T ] → Bℓ

q(S)[t0, t0 + T ]

has the desired continuity property. The focus is on the
case where p, q ∈ (1,∞) (the remaining case is handled
similarly). Without loss of generality, assume t0 = 0. The
claim is trivial when η is the empty word. If η = xi, then

�Exi
[v]− Exi

[u]�q =

(
∫ T

0

|Exi
[v](t)− Exi

[u](t)|q dt
) 1

q

≤
(
∫ T

0

(
∫ T

0

|vi(τ)− ui(τ)| dτ
)q

dt

) 1
q

=

∫ T

0

|vi(τ)− ui(τ)| dτ T 1/q

≤ �vi − ui�p T 2/q

≤ �v − u�p T 2/q,

where Hölder’s inequality has been used in the second to
the last step above. Thus, if �v − u�p < δxi

:= ǫ/T 2/q,
then clearly

�Exi
[v]− Exi

[u]�q < ǫ.
Now suppose the claim holds for all words up to some fixed
length k ≥ 0. Then for any xi ∈ X and η ∈ Xk observe

�Exiη[v]− Exiη[u]�q

=

∥
∥
∥
∥

(

Exiη[v]−
∫ ·

0

ui(τ)Eη[v](τ) dτ

)

+

(∫ ·

0

ui(τ)Eη[v](τ) dτ − Exiη[u]

)∥
∥
∥
∥
q

≤
∥
∥
∥
∥
Exiη[v]−

∫ ·

0

ui(τ)Eη[v](τ) dτ

∥
∥
∥
∥
q

+

∥
∥
∥
∥

∫ ·

0

ui(τ)Eη[v](τ) dτ − Exiη[u]

∥
∥
∥
∥
q

≤
(
∫ T

0

(
∫ T

0

|vi(τ)− ui(τ)| |Eη[v](τ)| dτ
)q

dt

) 1
q

+

(
∫ T

0

(
∫ T

0

|ui(τ)| |Eη[v](τ)− Eη[u](τ)| dτ
)q

dt

) 1
q

≤
∫ T

0

|vi(τ)− ui(τ)| |Eη[v](τ)| dτ T 1/q+

∫ T

0

|ui(τ)| |Eη[v](τ)− Eη[u](τ)| dτ T 1/q

≤ �v − u�p�Eη[v]�qT 1/q + �u�p�Eη[v]− Eη[u]�q T 1/q.

From the induction hypothesis, Eη is continuous in the
desired sense. Thus, it follows that for any ǫ > 0, there
exists a δ′η > 0 such that

�Eη[v]�q ≤ �Eη[u]�q + 1

and
�u�p�Eη[v]− Eη[u]�qT 1/q < ǫ/2

for all v in a ball centered at u of radius δ′η > 0. 3 In which
case, choose

δxiη = min

{

δ′η,
ǫ/2

(�Eη[u]�q + 1)T 1/q

}

so that if �u− v�p < δxiη, then

�Exiη[v]− Exiη[u]�q < ǫ.

Hence, by induction, Eη is continuous with respect to the
Lp and Lq norms for every η ∈ X∗.

To show that Fc is also continuous in the desired sense,
observe that for any integer N > 0

�Fc[v]− Fc[u]�q =

∥
∥
∥
∥
∥
∥

∞∑

k=0

∑

η∈Xk

(c, η)(Eη[v]− Eη[u])

∥
∥
∥
∥
∥
∥
q

≤

∥
∥
∥
∥
∥
∥

N−1∑

k=0

∑

η∈Xk

(c, η)(Eη[v]− Eη[u])

∥
∥
∥
∥
∥
∥
q

+

∥
∥
∥
∥
∥
∥

∞∑

k=N

∑

η∈Xk

(c, η)(Eη[v]− Eη[u])

∥
∥
∥
∥
∥
∥
q

≤

∥
∥
∥
∥
∥
∥

N−1∑

k=0

∑

η∈Xk

(c, η)(Eη[v]− Eη[u])

∥
∥
∥
∥
∥
∥
q

+

2
∞∑

k=N

K(MR(m+ 1))k,

where c ∈ ℓ∞,M (X∗,Rℓ) and K = �c�ℓ∞,M
> 0. Clearly

the second term above can be bounded by ǫ/2 by selecting
N to be sufficiently large. Having done this, take δ :=
min|η|≤N δη, where the δη have been chosen as above to
bound the first term by ǫ/2. This establishes the continuity
of the map to Lℓ

q[t0, t0 + T ]. Moreover, in light of (7),
it follows that �Fc[u]�q ≤ �c�ℓ∞,M

∑

n≥0(MR(m + 1))n,
where the series is a convergent geometric series. Hence,

3 Of course, δ′
η
must be selected so that this ball is contained inside

Bm
p (R)[0, T ]. It is also being tacitly assumed that u is not on the

boundary of Bm
p (R)[0, T ]. Otherwise, this argument needs a few

minor adjustments.

there exists a constant S > 0 depending only on �c�ℓ∞,M

bounding the Lq-norm of Fc[u].

Now the stronger property of joint continuity is derived
using some of concepts developed for the previous two
theorems. First recall that for Banach spaces V,W and
U ⊆ V open, the following spaces are Banach spaces:

• BC(U,W ) the space of bounded continuous functions
with the supremum norm �·�∞.

• L(V,W ) the space of bounded linear functions with
the operator norm �·�op.

Theorem 9. (joint continuity) Let M ∈ R
+, p, q be con-

jugate exponents, and 0 < T ≤ R < 1/(M(m + 1)). The
maps

Φ: ℓ∞,M (X∗,Rℓ) → BC(Bm
p (R)[t0, t0 + T ], Lℓ

q[t0, t0 + T ]),

c �→ Fc

Ψ: Bm
p (R)[t0, t0 + T ] → L(ℓ∞,M (X∗,Rℓ), Lℓ

q[t0, t0 + T ]),

u �→ (c �→ Fc[u])

are well defined and continuous. Therefore, the joint map

ℓ∞,M (X∗,Rℓ)×Bm
p (R)[t0, t0 + T ] → Lℓ

q[t0, t0 + T ],

(c, u) �→ Fc[u] (9)

is also continuous.

Proof: First observe from Theorem 8 that for every
c ∈ ℓ∞,M (X∗,Rℓ), Fc is bounded and continuous on
Bm

p (R)[t0, t0 + T ]. Hence, Φ is well defined and clearly
linear. Furthermore, from (7),

�Φ(c)�∞ = sup
u∈Bm

p (R)[t0, t0+T ]

�Fc[u]�q

≤
∞∑

k=0

�c�ℓ∞,M
(MR(m+ 1))k.

Suitably choosing R, the right-hand side will be bounded
by a finite constant times the factor �c�ℓ∞,M

. Hence,
�Φ�op < ∞, and Φ is continuous.

In light of Theorem 4, Ψ is also well defined. To see that
Ψ is continuous, let ǫ > 0 and fix u, v ∈ Bm

p (R)[t0, t0+T ].
Then the estimate in the proof of Theorem 8 yields

�Ψ(u)−Ψ(v)�op = sup
�c�ℓ∞,M

=1

�Fc[u]− Fc[v]�q

≤
N−1∑

k=0

∑

η∈Xk

|(c, η)|
︸ ︷︷ ︸

≤Mkk!

�Eη[v]− Eη[u]�q+

2

∞∑

k=N

(MR(m+ 1))k.

Choosing N sufficiently large, the second term is smaller
than ǫ/2. It is known from the proof of Theorem 8 that
every Eη is continuous, hence one can choose δ > 0 such
that the first term is less than ǫ/2 if v is in the δ-ball
around u. Therefore, Ψ is continuous.

The continuity of the joint map (9) follows directly from
the continuity of Ψ by (Lang, 1999, I. §3 Proposition 3.10).
However, it can also be easily derived from the continuity
of Φ as shown next. Select c1, c2 ∈ ℓ∞,M (X∗,Rℓ) and
u, v ∈ Bm

p (R)[t0, t0+T ]. Applying the triangle inequality,
observe that �Fc1 [u]− Fc2 [v]�q is dominated by

�Fc1 [u1]− Fc2 [v]
︸ ︷︷ ︸

=Φ(c1−c2)(u)

�q + �Fc1 [u]− Fc2 [v]�q

≤ �Φ�op�c1 − c2�ℓ∞,M
+ �Fc2 [u]− Fc2 [v]�q.

(10)

Finally, Theorem 8 shows that (10) converges to 0 as c1
tends to c2 and u to v, hence (9) is continuous.

Example 10. A nonlinear system identification problem is
solved in Gray et al. (2020) by truncating (1) up to words
of length J and then applying a recursive least-squares
algorithm to identify the coefficients of the generating
polynomial p :=

∑

η∈X≤J (c, η)η. In this case, Theorem 9

applies directly to the sequence of estimates (p̂j)j with, for
example, M = 1.

Example 11. Cuchiero et al. (2019) describe a model for
deep neural networks using (4) with parameter dependent
vector fields gi(z, θ). Here θ is assumed to be the set of fixed
parameters of the network, while the inputs ui correspond
to the trainable parameters. In light of (5), if these vector
fields are analytic in the state, such networks constitute a
family of Chen-Fliess series C = {cθ ∈ R

ℓ
LC��X�� : θ ∈ Θ}.

In which case, each generating series would have a θ
dependent growth parameter M(θ). For a fixed θ ∈ Θ,
Theorem 8 ensures that the output of the network is a
continuous function of the trainable parameters. In addi-
tion, if supθ∈Θ M(θ) is finite, then Theorem 9 guarantees
joint continuity in both the trainable parameters and over
the set of design parameters Θ.

5. CONCLUSIONS

Sufficient conditions were given under which input-output
systems represented by locally convergent Chen-Fliess se-
ries are jointly continuous with respect to their generating
series and as operators mapping a ball in an Lp-space
to a ball in an Lq-space, where p and q are conjugate
exponents. Continuity with respect to the generating series
was characterized using Banach topologies on subsets of
R

ℓ��X��. These results were then combined with elements
of proofs for other forms of continuity appearing in the
literature to produce the desired joint continuity result.
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there exists a constant S > 0 depending only on �c�ℓ∞,M

bounding the Lq-norm of Fc[u].

Now the stronger property of joint continuity is derived
using some of concepts developed for the previous two
theorems. First recall that for Banach spaces V,W and
U ⊆ V open, the following spaces are Banach spaces:

• BC(U,W ) the space of bounded continuous functions
with the supremum norm �·�∞.

• L(V,W ) the space of bounded linear functions with
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Theorem 9. (joint continuity) Let M ∈ R
+, p, q be con-
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ℓ
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dependent growth parameter M(θ). For a fixed θ ∈ Θ,
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