
Applications of infinite-dimensional
geometry and Lie theory

Dr. rer.nat. Alexander Schmeding
ORCID: 0000-0001-9463-3674

Habilitationsschrit
an der Fakultät II

Mathematik und Naturwissenschaften
der Technischen Universität Berlin

Lehrgebiet
Mathematik

Vorsitzende des Habilitationsausschusses: Prof. Dr. Andreas Knorr
Gutacher∗innen:
Prof. Dr. Peter K. Friz
Prof. Dr. Terrence Lyons
Prof. Dr. Karl-Hermann Neeb
Prof. Dr. Sylvie Paycha
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Introduction

The present introduction contains a short summary of the articles submitted for ha-
bilitation. I will briefly recall the basic material on infinite-dimensional Lie theory
and infinite-dimensional geometry needed throughout. Then I will present my contri-
butions to these fields with a view towards applications in numerical and stochastic
analysis.

Infinite-dimensional geometry and Lie theory

Infinite-dimensional manifolds and Lie groups arise from problems related to differen-
tial geometry, fluid dynamics, and the symmetry of evolution equations. Among the
most prominent examples of infinite-dimensional manifolds are manifolds of (differen-
tiable) mappings and the diffeomorphism groups Diff(K), where K is a smooth and
compact manifold. The group Diff(K) is an infinite-dimensional Lie group [Mic80]
which for example arises naturally in fluid dynamics if K is a three-dimensional
torus [Arn66, KW09]. The motion of a particle in the fluid corresponds, under pe-
riodic boundary conditions, to a curve in Diff(K). Due to a result by Omori [Omo78]
the Lie group Diff(K) cannot be a Banach manifold (except in trivial cases). Thus
many interesting examples force one to leave the realm of Banach spaces and Ba-
nach manifolds. Indeed, the reader may wonder what is meant by infinite-dimensional
manifold and infinite-dimensional Lie group.

As a working definition, an infinite-dimensional Lie group will be a group which at
the same time is an infinite-dimensional manifold that turns the group operations into
smooth mappings. An infinite-dimensional manifold will be a topological space which
is locally (in charts) homeomorphic to an open subset of an infinite-dimensional space.
Moreover, we require the change of charts to be smooth. Beyond the realm of Banach
spaces, the usual concept of smoothness is no longer available and we replace it with
the requirement that all directional derivatives exist and induce continuous mappings1.
This approach yields a versatile framework for the study of differential geometry and
Lie theory on very general spaces.

Infinite-dimensional Lie groups and their homogeneous spaces will be the objects of
our main interest. Founded in its modern form by Milnor [Mil84], infinite-dimensional
Lie theory has been developed in the works of Glöckner and Neeb, see [Nee06] and
the upcoming [GN]; nowadays it is a well established and active research area. In the
infinite-dimensional setting, Lie theory exhibits several novel features and pathologies.
For example consider the following well-known statements from Lie theory:

1This is the so-called Bastiani calculus [Bas64]. Note that there are various inequivalent ways to
generalise calculus beyond Banach spaces, cf. e.g. [KM97] for the convenient calculus.
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1. Every Lie algebra is the Lie algebra of a Lie group.

2. Every closed subgroup of a Lie group is a Lie subgroup.

3. Every Lie algebra morphism (up to topological obstructions) is the differential
of a Lie group morphism.

In infinite-dimensional Lie theory all of the above statements are false in general,
[Nee06], and hold at best under some additional assumptions. Hence the Lie theoretic
treatment of infinite-dimensional groups requires additional properties. For example,
one has to establish the regularity property for Lie groups (cf. [Glö15]) which means
that certain ordinary differential equations (ODEs) can be solved on the Lie group.2

This property turns out to be crucial for the applications we have in mind, because it
enables the use of advanced Lie theoretic methods.

In conjunction with Lie theory, we exploit tools from (infinite-dimensional) Rieman-
nian geometry. Recall that a Riemannian metric on a manifold is a choice of inner
product for every tangent space which ”depends smoothly” on the basepoint [Lan01].
On a finite-dimensional (paracompact) manifold, a standard partition of unity argu-
ment allows to construct a Riemannian metric from the Euclidean metric of the am-
bient space. Hence on every such manifold, powerful tools from Riemannian geometry
become available. Generalising Riemannian geometry to infinite-dimensional mani-
folds, one faces in general the problem that there are no (smooth) partitions of unity
(even Banach spaces may not admit smooth partitions of unity, [KM97, Chapter 16]).
Further, the inner products will in general not be compatible with the topology of the
tangent spaces as they are not Hilbert spaces. Thus the finite-dimensional definition of
a Riemannian metric (what we will call a ’strong Riemannian metric’, [Lan01,Kli95])
has to be relaxed to admit relevant examples beyond the Hilbert manifold setting.
This leads to the notion of a ’weak Riemannian metric’, cf. [AMR88, Section 5.2]
and [Bru18b], i.e. a smooth choice of inner products on each tangent space which do
not necessarily induce the topology of the tangent space. An instructive example is
the L2-inner product, which turns the space C([0, 1],R) of continuous functions into a
pre-Hilbert space:

〈f, g〉L2 :=

∫ 1

0

f(x)g(x)dx.

The L2-inner product is simple to compute and has the advantage that geodesics are
explicit. For two given curves, a geodesic is the family of curves which interpolate
pointwise linearly between the curves, cf. [Bru18a, 1.2]. Generalising this to manifold
valued mappings (which then form an infinite-dimensional manifold), one obtains weak
Riemannian metrics studied for example in shape analysis, fluid dynamics and opti-
mal transport (see [Bru18a,EM70,KW09]). While strong Riemannian metrics exhibit
behaviour as expected from the finite-dimensional case, this is no longer true for weak
metrics. For example, the geodesic distance between distinct points vanishes for an

2Up to now, all known Lie groups on suitably complete spaces are regular, cf. [Nee06,KM97]. Note
that beyond Banach spaces there is no general solution theory for ODEs.
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equivariant version of the L2-Riemannian metric, [MM05]. Thus this metric is unsuit-
able for comparing shapes. This problem has motivated the study of more involved
metrics in shape analysis [BBM14]. Instead of general weak Riemannian metrics, we
consider only situations in which the metrics either arise or are compatible with certain
actions by (infinite-dimensional) Lie groups. This will allow us to establish desirable
properties of the Riemannian geometry from the additional structure of the Lie group
action. Vice versa, the additional information of the Riemannian geometry will provide
tools complementing the structures that arise in Lie theory.

We will now give a brief overview on the works comprising this thesis, categorized
under three main topics:

� Connections between infinite-dimensional Lie groups and higher geometry,

� Hopf algebra character groups as Lie groups, and

� Applications of the interplay between Lie theory and Riemannian geometry.

Connections between infinite-dimensional Lie groups and
higher geometry

This section is based on the works [SW15, SW16b, SW16a, AS19, Sch19] in which a
connection between infinite-dimensional Lie theory and finite-dimensional higher dif-
ferential geometry is established. By higher differential geometry, we specifically mean
Lie groupoids (which form a higher category (in this case a 2-category), hence the
term ”higher geometry”).

Lie groupoids have been used to describe the symmetry of objects with bundle
structure. Generalising Lie groups, Lie groupoids allow to describe regimes which lack
the symmetry characteristic for groups and their applications. Moreover, large classes
of Lie groupoids appear naturally in the study of symplectic or Poisson manifolds. The
(Lie) theory of (finite-dimensional) Lie groupoids is a well developed and active field of
research (cf. [Mac05,MM03]). In a first approximation, a Lie groupoid G = (G⇒M)
is a manifold with a smooth partial multiplication (think of a set of arrows which
may only be composed if source and target of the arrows match). Similar to Lie
groups, these global objects have an associated infinitesimal object, the so-called Lie
algebroid L(G). In comparison to the situation for finite-dimensional Lie algebras and
Lie groups, one may ask whether every Lie algebroid is associated to a Lie groupoid. In
general, this is not the case as there is a topological obstruction which was discovered
in [CF03]; to a certain extend, this mirrors the situation for infinite-dimensional Lie
algebras and Lie groups discussed in the introduction. We claim that this observation
is no coincidence and indeed rooted in a deep connection between infinite-dimensional
groups and Lie groupoids.

It is well known, that to every Lie groupoid G = (G ⇒ M) one can associate an
(infinite-dimensional) Lie group [SW15, Sch19] of generalised elements, the so-called
bisections. A bisection is a map σ : M → G which, if composed with the source s
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or target t projection maps, yields a diffeomorphism. We can represent the group of
bisections as

Bis(G) := {σ ∈ C∞(M,G) | s ◦ σ = idM , t ◦ σ ∈ Diff(M)}.

Recall that if P(M) = (M×M ⇒M) is the pair groupoid of the manifoldM , we obtain
(up to a trivial identification) Bis(P(M)) = Diff(M). Thus bisection groups generalise
diffeomorphism groups. For topological groupoids, the group of (continuous) bisections
and its representations are studied in the context of noncommutative geometry and
geometric quantisation [Bos11]. Moreover, the Lie algebra of a bisection group is a Lie-
Rinehard algebra which is of interest in quantisation and Poisson geometry [Hue04].

In [SW15,Sch19] we developed the Lie theory for bisection groups and certain sub-
groups in the setting of locally convex Lie groups.3 Then in [SW16b, SW16a, AS19]
we were able to uncover a tight connection between infinite-dimensional Lie groups
(namely the bisection groups) and the finite-dimensional Lie groupoids. For example
we were able to show that under certain topological assumptions, Lie groupoids are
completely determined by their bisections and can be recovered from their bisection
groups. Further, these correspondences are even functorial [SW16a]. If one fixes the
base manifold M , denote then by LieGpdsM and LieAlgbdsM the categories of Lie
groupoids or Lie algebroids over M , let L be the Lie functor which under certain
assumptions has an inverse I called integration [Nee06, Mac05, CF03]. Passing from
a groupoid to its bisections corresponds on the inifinitesimal level to the functor −Γ
assigning an algebroid its Lie algebra of sections (with the negative of the usual Lie
bracket) Then our results yield (again under certain assumptions) a reconstruction
functor R which makes the following diagram of functors commute:

LieGpdsM LieAlgbdsM

LieGroups LieAlgebras

L

Bis −Γ

I

L

R

I

R

This suggests a close connection between the Lie theory of certain infinite-dimensional
groups (whose Lie algebra is of Lie-Rinehard type) and finite-dimensional Lie groupoids.
We have studied first consequences of this correspondence to the quantisation of
(pre-)symplectic manifolds in [SW16b]. Moreover, in [AS19] we established a cor-
respondence between smooth representations of Lie groupoids and smooth represen-
tations of the infinite-dimensional bisection groups. This generalises earlier results
of [KSM02] and [Bos11] where similar correspondences were considered (albeit in an
algebraic/topological setting without differentiability). Finally, we developed the Lie
theory for the subgroup of vertical bisections in [Sch19]. These groups are impor-
tant, because they encode certain information about the underlying Lie groupoid of
independent geometric interest (we refer to [CS16] for more information).

3That is Lie groups in the setting of Bastiani differentiability. Note that it depends on the
infinite-dimensional calculus chosen whether the statement that the bisection group is an infinite-
dimensional Lie group is an actual theorem or a triviality. In the Bastiani case it is a theorem.
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Hopf algebra character groups as Lie groups

This section is based on the works [BS17,BDS16,BS18,CS18]. Hopf algebras and their
character groups appear in numerical analysis [BS17], renormalisation of quantum
field theories [CM08, Man08], the theory of rough paths [Lyo98, FH14], and control
theory [Foi15, DEG16]. In all of these contexts the Hopf algebras are connected to
spaces of (formal) series for which (local) convergence is desirable in applications.

To illustrate and explain the framework used, let us consider the so-called Butcher-
Connes-Kreimer-Hopf algebra H [Man08, 6.3.3] which is constructed as follows:

� As an algebra H is the (commutative) polynomial algebra generated by the basis
B of unordered rooted trees including the empty tree which we denote by 1.

� The coproduct on a tree τ is ∆τ :=
∑
σ(τ \ σ) ⊗ σ, where the sum runs over

all subtrees σ of τ with the same root as τ and τ \ σ is the forest obtained by
cutting σ from τ .

� Grading H by the number of nodes in a tree, H becomes a graded and connected
algebra/coalgebra and therefore a Hopf algebra.

Now consider the algebraic dual H∗ and the set of characters

G(H,R) := {φ ∈ H∗|φ(ab) = φ(a)φ(b),∀a, b ∈ H and φ(1) = 1} .
The coproduct induces the so-called convolution product φ ? ψ(τ) := φ ⊗ ψ(∆(τ))
which turns H∗ into an algebra and G(H,R) into a group. Elements in G(H,R) can
then be interpreted as infinite Taylor-like series expansions in trees. Characters of the
Butcher-Connes-Kreimer algebra appear in several applied contexts, for example:

(1) The Taylor expansions mentioned can be identified with expansions of numerical
methods for ordinary differential equations (known as B-series, appearing e.g. in
Runge-Kutta schemes [Bro04]). In this context the group is also known as the
”Butcher-group” [BS17] and the group product corresponds to composition of
numerical methods.

(2) Branched rough paths [Gub10] can be interpreted as paths of a certain regularity
with values in a decorated version of H, cf. [BCFP19, HK15, CEMM18]. If one
associates to a branched rough path its signature, one obtains a group morphism
from the group of rough paths (with concatenation) to the character group of H.

The algebraic and combinatorial properties of character groups of Hopf algebras are
well known and the use of these structures in a broad spectrum of applications is a very
active area of research. However, the topological and differential structure of groups of
characters is often not taken into account. In [BS17,BDS16,BS18] we established the
(infinite-dimensional) Lie and structure theory for character groups of graded Hopf
algebras. Work in a different direction was carried out in [CS18], where the Hopf
algebraic framework was used together with methods from differential geometry to
study the convergence behaviour of Lie group methods, cf. [IMNZ00]. These numerical
methods are widely used in the numerical solution of ordinary differential equations
on Lie groups and homogeneous spaces.
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Applications of the interplay between Lie theory and
Riemannian geometry

In this section we deal with applications of the interplay between (infinite-dimensional)
Lie theory and Riemannian geometry. This common theme connects several applica-
tions from different areas of mathematics. Namely, we will considerr applications from

1. shape analysis on spaces with ambient geometry [CES18,CEES17,CES16] and

2. stochastic fluid dynamics [MMS19]

Shape analysis has developed considerably over the last decade and is nowadays used to
tackle a variety of problems of pattern and object recognition (cf. [BBM14,Mic16] and
the references therein). The use of shapes is natural in applications when one wants
to compare curves independently of their parametrisation. To this end, one computes
distances between shapes using a Riemannian metric on an infinite-dimensional man-
ifold of shapes (i.e. unparametrised curves arising as a quotient of a manifold of map-
pings by the action of an infinite-dimensional group). It has been shown in [MM05]
that one of the simplest such metrics, an equivariant version of the L2-metric, has
vanishing geodesic distance. Hence it can not be used for shape analysis. To avoid
computationally costly metrics, Srivastava et al. introduced in [SKJJ11] the Square
Root Velocity Transform (SRVT) on Euclidean spaces. In [CES18,CEES17,CES16] we
have constructed generalisations of the SRVT for Lie groups and homogeneous spaces.
The resulting Riemannian metrics are computationally advantageous and have non-
vanishing geodesic distance. We have been able to use them tackle problems in motion
capturing and computer vision, among others.

The second application of the interplay between infinite-dimensional Riemannian ge-
ometry and Lie theory is coming from stochastic analysis: Our aim is to treat stochastic
versions of the Euler equation for an incompressible fluid using geometric methods.
As Arnold pointed out in [Arn66] the Euler equation can be rewritten as an ordinary
differential equation on an infinite-dimensional manifold. This approach was used by
Ebin and Marsden in their seminal paper [EM70]. Therein, the authors establish local
existence and uniqueness of solutions for the Euler equation and the Navier-Stokes
equation. Subsequently, many authors used similar techniques to study local existence
and uniqueness of partial differential equations (PDEs) which are amenable to these
techniques. This class of PDEs, now often called Euler-Arnold PDEs, encompasses
important PDEs from e.g. fluid and magnetohydrodynamics as well as the study of
imaging problems. We refer to [KW09, II.3] for an introduction and overview to the
theory.

Recently, stochastic versions of the Euler equation have been considered in the works
of D. Holm and collaborators [Hol15, CFH19].4 Several authors [GHV14, Bes15] have
also considered stochastic versions of Euler equations with different noise terms. In all

4Stochastic versions of Euler equations have been used to relate Euler and Navier-Stokes equations,
cf. e.g. [Gli11, AC15]. In contrast, the perspective taken in [CFH19] emphasises the stochastic
Euler equation as intrinsically interesting for its importance in certain models.
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of these works, local existence and uniqueness of solutions for the stochastic versions
was established (among other results) using techniques from stochastic analysis and
the theory of partial differential equations. These techniques were often tied to the
geometry of the domain on which the equation is posed. Our approach, in contrast,
employs the geometric techniques of Arnold, Ebin and Marsden [Arn66, EM70] to
study a geometric version of the Euler equation in Lagrangian form. To this end, one
introduces the Lagrangian variable Φ, with Φ̇ = u ◦Φ. The Lagrangian equation then
takes the form

{
∇Φ̇Φ̇ +∇p ◦ Φ = Ẇ ◦ Φ,

div(Φ̇ ◦ Φ−1) = 0, Φ̇ tangent to the boundary.

on a compact manifold K (possibly with boundary). Here p is a fixed pressure function
and W a suitable Brownian motion in time (but not in space) on K.5 The differential
operators in the equation are to be understood in terms of an ambient Riemannian
metric. We interpret the flow Φ as evolving on the infinite-dimensional manifold of
volume preserving diffeomorphisms of Sobolev regularity Hs. Using geometric and
stochastic analysis on infinite-dimensional manifolds we prove the following result. The
stochastic Euler equation and, more general, stochastic versions of Euler-Arnold equa-
tions, can equivalently be formulated as stochastic ordinary differential equations on
infinite-dimensional manifolds. We then obtain in a very general local well-posedness
result for the solutions of the stochastic Euler equation [MMS19]. In some sense, this
result is weaker in that it requires more orders of regularity in the initial data, than
comparable results for stochastic variants of the Euler equation, see [GHV14,CFH19].
However, it has the advantage of being agnostic of the underlying manifold K and it
is expected that similar methods also yield local well-posedness for stochastic versions
of other Euler-Arnold PDEs. Finally, we mention that the idea to use techniques
of Ebin and Marsden [EM70] for stochastic differential equations is not new per se:
In [Elw82, Gli11] a similar approach was used to study stochastic flows and connec-
tions between stochastic versions of Euler and Navier-Stokes equation. Note however,
that in both cases no local well-posedness theory for the stochastic Euler equation was
developed via the Ebin-Marsden approach. To the best of our knowledge, [MMS19]
is the first work to exhibit a complete Ebin-Marsden approach to local well-posedness
of SPDEs. We refer to loc.cit. for more information and a complete overview on the
relevant stochastic literature.

Acknowledgement and thanks Most of the papers comprising this thesis have been
written in collaboration with several collaborators. I thank the respective coauthors
involved. Further, I would also like to thank the members of the research group of
P. Friz at TU Berlin for providing a friendly and productive work environment. In
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5As is usual, we interpret the Euler equation as an integral equation in the Stratonovich sense. Note
that the noise is an additive noise term which does not depend on the solution itself. This differs
from [CFH19].
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(Birkhäuser/Springer, Basel, 2015). doi:10.1007/978-3-0348-0909-2 5

[Bos11] Bos, R. Continuous representations of groupoids. Houston J. Math. 37 (2011)(3):807–844

[Bro04] Brouder, C. Trees, renormalization and differential equations. BIT 44 (2004)(3):425–438.
doi:10.1023/B:BITN.0000046809.66837.cc

[Bru18a] Bruveris, M. The L2-metric on C∞(M,N) 2018. arXiv:1804.00577

[Bru18b] Bruveris, M. Riemannian geometry for shape analysis and computational anatomy 2018.
arXiv:1807.11290

[BS17] Bogfjellmo, G. and Schmeding, A. The Lie group structure of the Butcher group. Found.
Comput. Math. 17 (2017)(1):127–159. doi:10.1007/s10208-015-9285-5

[BS18] Bogfjellmo, G. and Schmeding, A. The geometry of characters of hopf algebras. In
Computation and Combinatorics in Dynamics, Stochastics and Control, pp. 159–185
(Springer International Publishing, 2018). doi:10.1007/978-3-030-01593-0 6

[CEES17] Celledoni, E., Eidnes, S., Eslitzbichler, M. and Schmeding, A. Shape analysis on Lie
groups and homogeneous spaces. In Geometric science of information, Lecture Notes in
Comput. Sci., vol. 10589, pp. 49–56 (Springer, Cham, 2017)

[CEMM18] Curry, C., Ebrahimi-Fard, K., Manchon, D. and Munthe-Kaas, H. Z. Planarly branched
rough paths and rough differential equations on homogeneous spaces (2018). arXiv:

1804.08515v3

[CES16] Celledoni, E., Eslitzbichler, M. and Schmeding, A. Shape analysis on Lie groups with
applications in computer animation. J. Geom. Mech. 8 (2016)(3):273–304. doi:10.3934/
jgm.2016008

8

arXiv:1804.00577
arXiv:1807.11290
arXiv:1804.08515v3
arXiv:1804.08515v3


[CES18] Celledoni, E., Eidnes, S. and Schmeding, A. Shape analysis on homogeneous spaces:
A generalised SRVT framework. In Computation and Combinatorics in Dynamics,
Stochastics and Control, pp. 187–220 (Springer International Publishing, 2018). doi:
10.1007/978-3-030-01593-0 7

[CF03] Crainic, M. and Fernandes, R. L. Integrability of Lie brackets. Ann. of Math. (2) 157
(2003)(2):575–620. doi:10.4007/annals.2003.157.575

[CFH19] Crisan, D., Flandoli, F. and Holm, D. D. Solution Properties of a 3D Stochastic Euler
Fluid Equation. J. Nonlinear Sci. 29 (2019)(3):813–870. doi:10.1007/s00332-018-9506-6

[CM08] Connes, A. and Marcolli, M. Noncommutative geometry, quantum fields and motives,
American Mathematical Society Colloquium Publications, vol. 55 (American Mathemat-
ical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008)

[CS16] Crampin, M. and Saunders, D. Cartan geometries and their symmetries, Atlantis
Studies in Variational Geometry, vol. 4 (Atlantis Press, Paris, 2016). doi:10.2991/
978-94-6239-192-5

[CS18] Curry, C. and Schmeding, A. Convergence of lie group integrators 2018. arXiv:1807.

11829

[DEG16] Duffaut Espinosa, L. A., Ebrahimi-Fard, K. and Gray, W. S. A combinatorial Hopf
algebra for nonlinear output feedback control systems. Journal of Algebra 453 (2016):609–
643

[Elw82] Elworthy, K. D. Stochastic differential equations on manifolds, London Mathematical
Society Lecture Note Series, vol. 70 (Cambridge University Press, Cambridge-New York,
1982)

[EM70] Ebin, D. G. and Marsden, J. Groups of diffeomorphisms and the motion of an incom-
pressible fluid. Ann. of Math. (2) 92 (1970):102–163. doi:10.2307/1970699

[FH14] Friz, P. K. and Hairer, M. A course on rough paths. Universitext (Springer, Cham, 2014).
doi:10.1007/978-3-319-08332-2. With an introduction to regularity structures

[Foi15] Foissy, L. The Hopf algebra of Fliess operators and its dual pre-Lie algebra. Comm.
Algebra 43 (2015)(10):4528–4552. doi:10.1080/00927872.2014.949730

[GHV14] Glatt-Holtz, N. E. and Vicol, V. C. Local and global existence of smooth solutions for the
stochastic Euler equations with multiplicative noise. Ann. Probab. 42 (2014)(1):80–145.
doi:10.1214/12-AOP773

[Gli11] Gliklikh, Y. E. Global and stochastic analysis with applications to mathematical physics.
Theoretical and Mathematical Physics (Springer-Verlag London, Ltd., London, 2011).
doi:10.1007/978-0-85729-163-9
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Abstract: In this note we construct an infinite-dimensional Lie group structure on the group of vertical bisec-
tions of a regular Lie groupoid.We then identify the Lie algebra of this group and discuss regularity properties
(in the sense of Milnor) for these Lie groups. If the groupoid is locally trivial, i.e., a gauge groupoid, the verti-
cal bisections coincide with the gauge group of the underlying bundle. Hence, the construction recovers the
well-known Lie group structure of the gauge groups. To establish the Lie theoretic properties of the vertical
bisections of a Lie groupoid over a non-compact base, we need to generalise the Lie theoretic treatment of
Lie groups of bisections for Lie groupoids over non-compact bases.
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Introduction and statement of results
Lie groupoids have found wide application in differential geometry. In particular, they can be used to for-
mulate the symmetry of objects with bundle structure. They generalise Lie groups, and their Lie theory
exhibits features not present in the theory of (finite-dimensional) Lie groups (e.g., the integrability issue of
Lie algebroids discussed in [8, 9]). To every (finite-dimensional) Lie groupoid, one can construct an (infinite-
dimensional) Lie group, the group of (smooth) bisections of the Lie groupoid [4, 28, 29]. Moreover, one can
show that the geometry and representation theory of this group is closely connected to the underlying Lie
groupoid. If the Lie groupoid is locally trivial (i.e., represents a principal fibre bundle), one can even recover
the Lie groupoid from the infinite-dimensional Lie group [4, 29–31].

In the present note we develop the Lie theory for the group of vertical bisections. A vertical bisection is a
smooth map which is simultaneously a section for the source and the target map of the groupoid. We prove
that for regular Lie groupoids, the vertical bisections form an infinite-dimensional Lie group which is an ini-
tial Lie subgroup of the group of bisections. Before we explain this result, lets motivate the interest in groups
of vertical bisections. Firstly, we restrict to the special case of a gauge groupoid Gauge(P) := (P × P/H 󴁂󴀱 M)
of a principalH-bundle P → M over a compact baseM.¹ Then the Lie group of bisections Bis(Gauge(P)) is iso-
morphic (as an infinite-dimensional Lie group) to the group of (smooth) bundle automorphism Aut(P), see

1 Gauge groupoids are locally trivial Lie groupoids, and every locally trivial Lie groupoid arises as a gauge groupoid of a principal
bundle [19, Section 1.3]. Here M being compact allows us to ignore some technicalities arising in the non-compact case (which
is similar to the compact case if one replaces the results in [34] by [1, 32]).
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2 | A. Schmeding, Vertical bisections of a regular Lie groupoid

[29, Example 2.16]. Translating the vertical bisections to the bundle picture, they are identifiedwith the auto-
morphisms of P descending to the identity on the base. Hence, the group of vertical bisections vBis(Gau(P))
is isomorphic to the gauge group Gau(P) of the principal H-bundle. Thus, [34] shows that we obtain a Lie
group extension

vBis(Gauge(P)) Bis(Gauge(P)) Diff[P](M)

Gau(P) Aut(P) Diff[P](M),

←󳨄 →

←→ ≅

←󴀀󴀤

←→ ≅ ←→ ≅

←󳨄 → ← 󴀀󴀤

(1)

where Diff[P](M) is a certain open subgroup of the group Diff(M) of diffeomorphisms of M. Thus, for locally
trivial Lie groupoids, our results on the vertical bisections are not new as they can be derived from the Lie
theory of gauge groups [32, 34]. In the present paper we seek to generalise these results to a larger class of
Lie groupoids not related to principal bundles.

Secondly, (vertical) bisections are closely connected to the differential geometry of the underlying Lie
groupoid. Thinking of a bisection σ as a generalised element of the Lie groupoid, we obtain an inner automor-
phism [19, Definition 1.4.8] and a surjective morphism onto the, in analogy to the Lie group case so-called,
inner automorphisms of the groupoid

π : Bis(G) → Inn(G) ⊆ Aut(G), σ 󳨃→ Iσ , Iσ(g) := σ(β(g))gσ(α(g))−1.

The vertical bisections are mapped precisely to the subgroup of inner automorphisms which preserve source
and target fibres. Though the global structure of the groups Inn(G), Aut(G) has to our knowledge not yet
been studied, these groups are closely connected to the geometry of the Lie groupoid [10, Section 5].² Apart
from the connection to inner automorphisms, we have shown in [30, 31] that for certain Lie groupoids, the
groupoid can be recovered from their groups of bisections. Namely, in [31, Section 4] certain Lie subgroups of
the bisectionswere crucial to this (re-)constructionprocess. So far this process is restricted to locally trivial Lie
groupoids and a generalisationwould require different ingredients. One candidatewhich could provide addi-
tional structure usable in this (re-)construction could be the group of vertical bisections. Note, however, that
this group alone does not carry enough information to deal with the reconstruction of general Lie groupoids.

In the present article, we work in the so-called Bastiani setting of infinite-dimensional analysis (i.e., a
mapping is smooth if all iterated directional derivatives exist and are continuous, cf. references in Appendix
A). Our main result is the construction of an infinite-dimensional Lie group structure on the group of vertical
bisections of a regular Lie groupoid, cf. Theorem 2.8. Moreover, we establish some Lie theoretic properties
and clarify the relation of this structure to the Lie group structure on the full group of bisections.

While we concentrate in the present paper on finite-dimensional Lie groupoids, one should be able to
extend these results to Lie groupoids with infinite-dimensional space of arrows. If the base of the groupoid is
compact, the theory canbeadaptedusing results from [29]whichdealwith thegeneral case. Fornon-compact
base manifolds, it is conjectured in [16] that similar results can be achieved.

1 Preliminaries and the Lie group of bisections
We shall writeℕ = {1, 2, . . .} andℕ0 := ℕ ∪ {0}. Hausdorff locally convex real topological vector spaces will
be referred to as locally convex spaces. Allmanifoldswill be assumed to beHausdorff spaces and if amanifold
is finite-dimensional, we require that it is σ-compact (for infinite-dimensional manifolds no such require-
ments are made). For manifolds M, N, we let C∞(M, N) denote the set of all (Bastiani) smooth mappings
from M to N. Furthermore, we denote by D(M, TN) the smooth mappings s : M → TN such that s = 0 off
some compact set K ⊆ M (i.e., the “space of all smooth mappings with compact support”).

2 Another example along these lines can be found in [27, Appendix], where geometric objects such as torsion free connections
are constructed using the vertical bisections of the jet groupoid.
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A. Schmeding, Vertical bisections of a regular Lie groupoid | 3

1.1. In the following G = (G 󴁂󴀱 M) will be a (finite-dimensional) Lie groupoid with source map α and target
map β. We denote by ι : G → G the inversion and by 1 : M → G the unit map.

1.2. To the Lie groupoid G, we associate a group of smooth mappings, the so-called bisection group. To this
end, let

Bis(G) := {σ ∈ C∞(M, G) | α ∘ σ = idM andβ ∘ σ ∈ Diff(M)},

be the set of bisections of G. The set Bis(G) is a group with respect to the operations

σ ⋆ τ(x) := σ(β ∘ τ(x))τ(x), σ−1(x) = ι ∘ σ, x ∈ M.

Proposition 1.3 (cf. [29, Theorem 3.8] and [4, Proposition 1.3]). Let G be a finite-dimensional Lie groupoid,
then Bis(G) is a submanifold of C∞(M, G)³ and this structure turns the bisections into an infinite-dimensional
Lie group.

Remark 1.4. Note that [28] establishes the Lie group structure of Bis(G) in the inequivalent convenient setting
of global analysis (cf. [17]). In general our results will imply the results from loc. cit. as they entail continuity
of the underlying mappings, which is not automatic in the convenient setting.

In the rest of this section we will prove results and discuss the necessary changes to identify the Lie algebra
of bisection groups for Lie groupoids over a non-compact base.

Lemma 1.5 ([4, Corollary A.6]). Let G = (G 󴁂󴀱 M) be a finite-dimensional Lie groupoid. Then the evaluation
mapping ev: Bis(G) ×M → G, (σ,m) 󳨃→ σ(m) is a smooth submersion.

Lemma 1.6. Let G = (G 󴁂󴀱 M) be a finite-dimensional Lie groupoid. Then the canonical action of the bisection
group γ : Bis(G) × G → G, (σ, g) 󳨃→ σ(β(g)).g is smooth.

Proof. Note that we can write the action as a composition

γ(σ, g) = m(ev(σ, β(g)), g), σ ∈ Bis(G), g ∈ G,

wherem : G ×M G → G denotes themultiplicationmapof the Lie groupoid. Since ev is smooth, by Lemma1.5,
we deduce that γ is smooth.

Remark 1.7. Having established smoothness, similar arguments as in [31, Proposition 2.4] show that the
restricted action γg : Bis(G) → α−1(α(g)), σ 󳨃→ γ(σ, g), is a submersion. However, we do not need this result.

We adapt now the approach in [29, Section 3] using smoothness γ to identify the Lie algebra of the bisection
group Bis(G).

Proposition 1.8. The Lie algebra of Bis(G) is isomorphic to the Lie algebra of smooth compactly supported
sections Γc(L(G)) with the negative of the usual bracket.

For M compact, Proposition 1.8 was established as [29, Theorem 4.4]. If M is non-compact, the function
space topologies are more involved. Though the algebraic calculations carry over verbatim, the proof has to
adapt smoothness arguments.

Proof of Proposition 1.8. We assume that M is not necessarily compact and Bis(G) is endowed with the Lie
group structure from [4, Proposition 1.3]. According to loc. cit., the bisections are a submanifold as the preim-
age of the submersion α∗ (pushforward) via Bis(G) = (α∗|β∗−1(Diff(M))−1(idM). Thus, we identify the Lie algebra
L(Bis(G) ≅ T1 Bis(G) = kerT1α∗. Following [21, Theorem 10.13], the map

ΦM,G : TC∞(M, G) → D(M, TG), [t 󳨃→ η(t)] 󳨃→ (m 󳨃→ (t 󳨃→ [η(t)(m)])),

3 If M is non-compact, the topology on C∞(M, G) is the so-called fine very strong topology, cf. [16] and see [21] for the con-
struction of the manifold structure. If M is compact, the fine very strong topology coincides with the familiar compact-open
C∞-topology.
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4 | A. Schmeding, Vertical bisections of a regular Lie groupoid

is an isomorphism of vector bundles, where tangent vectors are identified with equivalence classes [η] of
smooth curves η : ] − ε, ε[ → C∞(M, G) for some ε > 0. Up to the identification T(α∗) = (Tα)∗, whence the
kernel of Tα∗ is

Γc(L(G)) := {γ ∈ D(M, TG) | for all x ∈ M, γ(x) ∈ T1xα−1(x)},

the space of compactly supported sections of the Lie algebroid L(G). Recall that the Lie bracket is induced by
the bracket of right invariant vector fields on the bisections. We indicate now how to supplement the calcu-
lations in [29, Theorem 4.4] when the arguments involve smoothness. The following list compiles the tools
and changes:
(i) ΦM,G restricts to an isomorphism φG : L(Bis(G)) = T1 Bis(G) → Γc(L(G)).
(ii) ToX ∈ T1 Bis(G) associate the vector field

󳨀󳨀󳨀󳨀󳨀→
φG(X)onG, definedvia

󳨀󳨀󳨀󳨀󳨀→
φG(X)(g) := T(Rg)(φG(X)(β(g))) (where

Rg is the right-translation in the Lie groupoid).
(iii) Note that the natural action γ : Bis(G) × G → G is smooth by replacing [29, Proposition 3.11] with

Lemma 1.6. Thus, in the proof of [29, Proposition 4.2], we replace [29, Theorem 7.8 (d)] with [21,
Lemma 10.15] to prove that.

(iv) For a right invariant vector field Xρ associated to X ∈ T1 Bis(G), the vector field Xρ × 0 is related to
󳨀󳨀󳨀󳨀󳨀→
φG(X)

via γ.
Now, as in [29, Theorem 4.4], one calculates the Lie bracket and shows that φG is an anti-isomorphism of Lie
algebras.

2 The vertical bisections of a regular Lie groupoid
In this section we will discuss the Lie group structure of the group of vertical bisections of a Lie groupoid
G = (G 󴁂󴀱 M).

Definition 2.1. A vertical bisection ofG is a bisection σ ∈ Bis(G) such that β ∘ σ = idM.Wedenote the subgroup
of Bis(G) of all vertical bisections by

vBis(G) = {σ ∈ Bis(G) | β ∘ σ = idM }

Example 2.2. Let G be a Lie groupoid.
(i) IfG is totally intransitive, i.e., source and targetmapping coincide andG is a Lie groupbundle, the vertical

bisections coincide with the group of bisections.
(ii) If G is a transitive Lie groupoid, i.e., a gauge groupoid of a principal H-bundle P → M, the vertical bisec-

tions coincide with the gauge group of the principal bundle, cf. [29, Example 2.16].

It is not hard to see that the subgroup vBis(G) is a normal subgroup of Bis(G), see [10, Proposition 1.1.2].
As the pushforward β∗ : C∞(M, G) → C∞(M,M), f 󳨃→ β ∘ f , is smooth (whence, in particular, continuous),
vBis(G) is a closed subgroup of Bis(G). Unfortunately, this does not entail that vBis(G) is a Lie subgroup of
Bis(G), as Bis(G) is an infinite-dimensional Lie group.

The vertical bisections are exactly the bisections which take their values in the isotropy subgroupoid IG
(cf. Appendix A) of G, i.e.,

vBis(G) = {σ ∈ Bis(G) | σ(M) ⊆ IG}.

If IG is a Lie subgroupoid (which in general is not, cf. Example A.10), we could identify the vertical bisec-
tions as the group of (smooth) bisections of the isotropy subgroupoid. However, there is a large class of
Lie groupoids for which at least the connected identity subgroupoid IG∘ of the isotropy groupoid IG (cf.
Appendix A) is an embedded Lie subgroupoid.

Definition 2.3. A Lie groupoid G = (G 󴁂󴀱 M) is called regular Lie groupoid if the Lie groupoid anchor

(α, β) : G → M ×M, g 󳨃→ (α(g), β(g)),

is a mapping of constant rank.
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A. Schmeding, Vertical bisections of a regular Lie groupoid | 5

Remark 2.4. Many important classes of Lie groupoids, such as foliation groupoids of regular foliations, tran-
sitive groupoids and locally trivial groupoids are regular groupoids, cf. [23, 33] formore information. The reg-
ularity condition on the anchor (α, β) : G → M ×M is equivalent to requiring that the anchor ρ : L(G) → TM
of the associated Lie algebroid is of constant rank, cf. [33].

Lemma 2.5 ([23, Proposition 2.5]). Let G be a regular Lie groupoid. Then the connected identity subgroupoid
IG∘ is an embeddednormal Lie subgroupoid ofG. Its associated Lie algebroidL(IG∘) is the isotropy subalgebroid
IL(G) of L(G).⁴

Let us remark here that even for regular Lie groupoids, the subgroupoid IG is in general not an embedded Lie
subgroupoid, as the following example shows:

Example 2.6. Let𝕋 := ℝ2/ℤ2 be the two-dimensional torus. Consider the action of (ℝ, +) on𝕋 × ] − 1, 1[ via

λ([x, y], ε) := ([x + λ, y + λε], ε), λ ∈ ℝ, [x, y] ∈ 𝕋 and ε ∈ ] − 1, 1[.

The associated action groupoid A is regular as all orbits are diffeomorphic either to circles or lines. Further-
more, the isotropy at a given point ([x, y], ε) ∈ A is either a copy of ℤ in ℝ × {([x, y], ε)} if ε is rational or a
singleton for ε irrational. As all the points in the same orbit have isotropy of the same type, this implies that
the isotropy subgroupoid would have to be at least a one-dimensional submanifold if it were an embedded
submanifold. However, this implies that IA cannot be an embedded Lie groupoid as, for example, there is no
neighborhood of the point (1, [x, y], 0) ∈ IA which is diffeomorphic to a non-trivial euclidean space (due to
the trivial isotropy groups of the points ([x, y], ε) for ε ∈ ℝ \ ℚ.

Thus, we cannot leverage in the following constructions a smooth structure on the isotropy groupoid. Note
that, by restricting ourselves to the smaller class of locally trivial Lie groupoids, such a structure would
be available, as then IG is indeed an embedded submanifold [18, Proposition 1.17]. Instead we will now
describe a construction of a Lie group structure on vBis(G) which works for every regular Lie groupoid. To
this end, we leverage that IG∘ is an embedded submanifold and consider an auxiliary group

vBis∘(G) := {σ ∈ Bis(G) | σ(M) ⊆ IG∘}.

Since IG∘ is an embedded Lie subgroupoid, we can test smoothness of a bisection taking its values in IG∘

with respect to the submanifold structure A.3. Hence, we obtain the following.

Proposition 2.7. LetG be a regular Lie groupoid. Then vBis∘(G) ⊆ C∞(M, G) is a submanifold and this structure
turns vBis∘(G) into an infinite-dimensional Lie group which is isomorphic to Bis(IG∘). Moreover, this Lie group
satisfies the following:
(i) The Lie algebra L(vBis∘(G)) is isomorphic to the Lie algebra Γ(IL(G)) of smooth sections of the isotropy

algebroid with the negative of the usual bracket.
(ii) The inclusion ιBis : vBis∘(G) → Bis(G) turns vBis(G) into an initial Lie subgroup of Bis(G).

Proof. Due to Lemma 2.5, we can consider the embedded subgroupoid IG∘ ⊆ G. Denoting by I : IG∘ → G the
associated embedding, themapping I∗ : C∞(M, IG∘) → C∞(M, G), f 󳨃→ I ∘ f is a smooth embedding, realising
C∞(M, IG∘) as a split submanifold of C∞(M, G), cf. [21, Proposition 10.8]. We recall from 1.2 that Bis(IG∘)
is a submanifold of C∞(M, IG∘) and this structure turns it into a Lie group. Now the canonical identification
I∗(Bis(IG∘)) = vBis∘(G) shows that the Lie group vBis∘(G) ≅ Bis(IG∘) can be identified as a submanifold of
C∞(M, G) (cf. [13, Lemma 1.4]). We establish now the properties claimed in the proposition:
(i) The isomorphism Bis(IG∘) ≅ vBis∘(G) identifies the Lie algebra of vBis∘(G) with L(Bis(IG∘). Since the

isotropy algebroid is the Lie algebroid of IG∘, Proposition 1.8 shows that we obtain the Lie algebra
claimed in the statement of the proposition.

4 Recall that the isotropy subalgebroid IL(G) is given fibre-wise as the kernel ker(ρx), or, equivalently, as the Lie algebra
L(α−1(x) ∩ β−1(x)) of the isotropy subgroup at x, cf. [9, 2.2].
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6 | A. Schmeding, Vertical bisections of a regular Lie groupoid

(ii) To see that vBis∘(G) is an initial subgroup of Bis(G), note first that vBis∘(G) and Bis(G) are both sub-
manifolds of C∞(M, G). Thus, a mapping f : M → C∞(M, G) from a Ck-manifold which takes its image
in H ∈ {vBis∘(G), Bis(G)} is of class Ck if and only if it is a Ck-mapping into H. Now the inclusion ιBis
is an injective group morphism. Composing ιBis with the inclusion Bis(G) ⊆ C∞(M, G), we obtain the
(smooth) inclusion vBis∘(G) ⊆ C∞(M, G), whence ιBis is an injective Lie group morphism. It is easy to
see that L(ιBis) : L(vBis∘(G)) → L(Bis(G)) is injective, as it is, up to an identification, just the inclusion
of subspaces. Hence, we consider a Ck-map f : N → Bis(G) taking its image in vBis∘(G). Then ι−1Bis ∘ f is a
Ck-map into vBis∘(G), as we can identify it with the Ck-map f : M → Bis(G) ⊆ C∞(M, G).

Note that the above proof gives no information about vBis∘(G) being a Lie subgroup of Bis(G) in the traditional
sense (i.e., being an embedded submanifold). However, we will now leverage the structure on vBis∘(G) to
construct a Lie group structure on vBis(G) via the construction principle Proposition A.6.

Theorem 2.8. Let G be a regular Lie groupoid. Then the group of vertical bisections vBis(G) is an infinite-
dimensional Lie group with L(vBis(G)) = L(vBis∘(G)). With respect to this structure, the vertical bisections form
an initial Lie subgroup of Bis(G). Moreover, vBis∘(G) becomes an open subgroup of vBis(G).

Proof. Apply the construction principle Proposition A.6: Set U = V = vBis∘(G) and observe that part (a) just
yields the Lie group structure on vBis∘(G) from Proposition 2.7. We wish now to apply part (b) of Proposi-
tion A.6 to obtain a Lie group structure on vBis(G).

To this end, we observe that IG∘ forms a normal Lie subgroupoid of G, see 2.5. Let now σ, τ ∈ vBis(G).
Then one directly verifies from the formula for multiplication and inversion in the bisection group that

cτ(σ)(x) := τ ⋆ σ ⋆ τ−1(x) = τ(x)σ(x)(τ(x))−1,

where (τ(x))−1 denotes the inverse of τ(x) in the Lie group α−1(x) ∩ β−1(x). If σ ∈ vBis∘(G), we deduce that
cτ(σ)(x) stays in the normal subgroup α−1(x) ∩ β−1(x) ∩ IG∘, whence vBis∘(G) is a normal subgroup of vBis(G).
Hence, we set W := vBis∘(G) and have to prove that cτ : W → W is smooth for every τ ∈ vBis(G). As Bis(G)
is a Lie group, Cτ : Bis(G) → Bis(G), δ 󳨃→ τ ⋆ δ ⋆ τ−1, is smooth. In Proposition 2.7 we have seen that the
inclusion ιBis : vBis∘(G) → Bis(G) turns vBis∘(G) into an initial Lie subgroup of Bis(G). Combining these obser-
vations, we conclude from Proposition A.6 (b) that vBis(G) is a Lie group, as cτ = ι−1Bis ∘ Cτ ∘ ιBis is smooth for
every τ ∈ vBis(G).

Since vBis∘(G) is an open Lie subgroup of vBis(G), it is clear that the Lie algebras of both groups coincide.
To see that vBis(G) is an initial Lie subgroup of Bis(G), we observe that the inclusion IBis : vBis(G) → Bis(G) is
an injectivemorphismof Lie groupswithL(IBis) injective, since ιBis is suchamorphism. Let now f : N → Bis(G)
be a Ck-mapwith image in vBis(G). It suffices to check the Ck-property on every (open) connected component
of vBis(G). Without loss of generality, we may thus assume that f takes its image in a component C ⊆ vBis(G)
such that for some g ∈ vBis(G), we have g−1 ⋆ C ⊆ vBis∘(G). Denoting left translation by an element ℓ of a Lie
group L by λℓ, we see that

I−1Bis ∘ f = λ
vBis(G)
g ∘ ι−1Bis ∘ λ

Bis
g−1 f,

whence I−1Bis ∘ f is a Ck-map.

We are now in a position to establish regularity (in the sense of Milnor) for the group of vertical bisections.
Recall that a Lie group H is Cr-regular if for every Cr-curve γ : [0, 1] → L(H)), the initial value problem

{
{
{

η󸀠(t) = T1ρη(t)(γ(t)), ρg(h) := hg,
η(0) = 1,

has a unique Cr+1-solution Evol(γ) := η : [0, 1] → H and the evolution map evol : Cr([0, 1], L(H))) → H,
γ 󳨃→ Evol(γ)(1), is smooth. To employ advanced techniques in infinite-dimensional Lie theory, one needs to
require regularity of the Lie groups involved, cf. [12].

Proposition 2.9. The Lie group vBis(G) is Cr-regular for every r ∈ ℕ0 ∪ {∞}, whenever M is compact or G is a
transitive Lie groupoid.
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Proof. We distinguish two cases:

Case 1: M is compact. Since vBis∘(G) ≅ Bis(IG∘) is an open subgroup of vBis(G), we see that vBis(G) is Cr-
regular if and only if Bis(IG∘) is Cr-regular. However, the Cr-regularity of Bis(IG∘) was established in [29,
Theorem 5.5].

Case 2: G is transitive. In this case G can be identified as a gauge groupoid of a principal H-bundle P → M.
As explained in the introduction, see (1), we can identify the compactly supported vertical bisections vBis(G)
with the group of compactly supported gauge transformations Gauc(P). However, Gauc(P) (and thus also
vBis(G)) is Cr-regular for every r ∈ ℕ0 ∪ {∞} by a combination of [11, Theorem A and Corollary 8.3].

WeexpectProposition2.9 tohold for all vertical bisectiongroups, as all bisectiongroupsof finite-dimensional
Lie groupoids are expected to be regular. For groupoids over a non-compact base, these results require mild
generalisations of the results obtained in [29, 31]. The main issue is that the function space topologies are
much more involved in this case, see [16, 21]. Working around this would require extensive localisation
arguments (on a cover of compact sets), which poses no conceptual problem, but would lead quite far away
from the main line of reasoning. Thus, we have not established the result in full generality.

Note that from the construction, it is not clear whether vBis(G) is a Lie subgroup of Bis(G) and not even if
vBis(G) is a submanifold of C∞(M, G). Up to this point we can only obtain the following:

Lemma 2.10. The Lie group topology of vBis(G) from Theorem 2.8 is the subspace topology induced by
C∞(M, G). Moreover, a mapping f : M → C∞(M, G) whose image is contained in vBis(G) is of class Ck if and
only if it is Ck as a mapping into vBis(G).

Proof. The statement about f : N → C∞(M, G) follows from vBis(G) being an initial Lie subgroup of Bis(G),
Theorem 2.8, and the fact that Bis(G) is a submanifold of C∞(M, G).

To see that the topology on vBis(G) coincides with the subspace topology induced by the inclusion
vBis(G) ⊆ C∞(M, G), recall that the Lie group topology on Bis(G) is the subspace topology induced by
C∞(M, G) (cf. [4, Proposition 1.3]). Further vBis∘(G) carries the subspace topology of C∞(M, G), Propo-
sition 2.7, whence the subspace topology is induced by Bis(G). Now for τ ∈ vBis(G), the left translations
λτ : Bis(G) → Bis(G), σ 󳨃→ τ ⋆ σ, is a homeomorphism mapping vBis(G) to vBis(G). We conclude that every
component of vBis(G) carries the subspace topology induced by the inclusion vBis(G) ⊆ Bis(G) ⊆ C∞(M, G).
The proof is complete.

The vertical bisections encode isotropy information of the underlying Lie groupoid. If the Lie groupoid con-
tains only ‘small’ isotropy groups, the subgroup of vertical bisections is a very small subgroup as the next
example shows.

Example 2.11. Consider a proper étale Lie groupoid G,⁵ i.e., a Lie groupoid with proper anchor map such
that α, β are local diffeomorphisms. Then the isotropy subgroup Gx := α−1(x) ∩ β−1(x) is discrete. Hence,
IG∘ = 1(M) ⊆ G andwehave vBis∘(G) = {1}. From the construction of the Lie group vBis(G) via PropositionA.6
in Theorem 2.8, it is clear that vBis(G) is a discrete Lie group.

Remark 2.12. Albeit the smooth structure on vBis(G) is constructed by translating the smooth structure of
vBis∘(G) along the diffeomorphisms λτ, it is still not clear whether vBis(G) is a submanifold of C∞(M, G), as
it is not clear that the connected components of vBis∘(G) can be separated from each other in the topology
of C∞(M, G).

However, if the isotropy subgroupoid is an embedded Lie subgroupoid, we can indeed obtain vBis(G) as
a submanifold of C∞(M, G).

5 Proper étale Lie groupoid are also known as “orbifold groupoids” as they represent orbifolds. See [24] for more information.
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8 | A. Schmeding, Vertical bisections of a regular Lie groupoid

Proposition 2.13. Let G = (G 󴁂󴀱 M) be a regular Lie groupoid such that the isotropy subgroupoid IG is an
embedded Lie subgroupoid, e.g., if G is a locally transitive Lie groupoid. Then the Lie group vBis(G) from Theo-
rem 2.8 is a submanifold of C∞(M, G).

Proof. Since IG is an embedded submanifold of G, we can argue as in the proof of Proposition 2.7 to see
that vBis(G) ≅ Bis(IG) ⊆ C∞(M, G) is a submanifold. Moreover, the manifold structure turns vBis(G) into a
Lie group. To distinguish the new Lie group structure from the one inherited from Theorem 2.8, we write
ṽBis(G) for this Lie group. As ṽBis(G) is an embedded submanifold of C∞(M, G), we can argue as in the proof
of (in particular part (b)) of Proposition 2.7 to see that ṽBis(G) is an initial Lie subgroup of Bis(G). As any
subgroup of a given Lie subgroup carries at most one structure as an initial Lie subgroup [26, Lemma II.6.2],
we have vBis(G) = ṽBis(G) as infinite-dimensional Lie groups.

Finally, assume that G is locally transitive, i.e., its anchor (α, β) : G → M ×M is a submersion. Then
IG = (α, β)−1(∆M) is an embedded submanifold of G, where ∆M is the diagonal embedded in M ×M.

Toprovide adifferent geometric interpretationof the vertical bisections,wedeviate fromourusual convention
and consider an infinite-dimensional Lie groupoid. In [31, Definition 2.1] we have constructed an (infinite-
dimensional) action groupoid from the natural action of Bis(G) on M:

2.14. The group Bis(G) acts on M, via the natural action of Diff(M) on M composed with the morphism
β∗ : Bis(G) → Diff(M), σ 󳨃→ β ∘ σ. We can thus define an action Lie groupoidB(G) := Bis(G) ⋉M, with source
and target projections defined by αB(σ,m) = m and βB(σ,m) = β(σ(m)), respectively. The multiplication on
B(G) is defined by

(σ, βG(τ(m))) ⋅ (τ,m) := (σ ⋆ τ,m).
The Lie groupoid B(G) plays a crucial rôle in the reconstruction of the Lie groupoid G from its group of
bisections (see [29, Section 2] for more information on this process). From the definition of the action Lie
groupoid, one immediately obtains that the vertical bisections determine the isotropy subgroupoid, i.e.,
IB(G) = vBis(G) ⋉M.

2.15. As a final remark, the group vBis(G) can be generalised (as observed by H. Amiri) by considering
{f ∈ C∞(G, G) | α ∘ f = α = β ∘ f, x 󳨃→ xf(x) ∈ Diff(G)}. This set turns out to be a subgroup of the group SG(α)
from [3] (which generalises Bis(G)). Similar techniques to the ones in the present paper can be used to turn
the generalised group into a Lie group.

A Infinite-dimensional calculus, Lie groups and Lie groupoids
In this appendix we recall some basic facts on the infinite-dimensional analysis used throughout the text. For
more information,we refer the reader to [5], and thegeneralizations thereof (see [14] and [2], also [15, 21, 25],
and [22]). As already remarked, we are working in the Bastiani calculus, where f is Ck-map if all iterated
directional derivatives up to order k exist and are continuous.

Definition A.1. For a smooth map f : M → N between manifolds, we say (see [13, 15]) that f is
(i) a submersion if for each x ∈ M, we can choose a chart ψ of M around x and a chart ϕ of N around f(x)

such that ϕ ∘ f ∘ ψ−1 is the restriction of a continuous linear map with continuous linear right inverse,
(ii) an immersion if for every x ∈ M, there are charts such that we can always achieve that ϕ ∘ f ∘ ψ−1 is the

restriction of a continuous linear map admitting a continuous linear left inverse,
(iii) an embedding if f is an immersion and a topological embedding.

Note that the above definitions (of submersions etc.) are adapted to the infinite-dimensional setting we
are working in. In general, they are not equivalent to the usual characterisations known from the finite-
dimensional setting. See, e.g., [13].

A.2 (Submanifolds). Let M be a Ck-manifold. A subset N ⊆ M is called a submanifold if, for each x ∈ N,
there exists a chart ϕ : Uϕ → Vϕ ⊆ Eϕ of M with x ∈ Uϕ, and a closed vector subspace F ⊆ Eϕ such that
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A. Schmeding, Vertical bisections of a regular Lie groupoid | 9

ϕ(Uϕ ∩ N) = Vϕ ∩ F. Then N is a Ck-manifold in the induced topology, using the charts ϕ|Uϕ∩N : Uϕ ∩ N →
Vϕ ∩ F.

A.3. If N is a submanifold of a smooth manifold M and f : L → M a map on a smooth manifold L such
that f(L) ⊆ N, then f is smooth if and only if its corestriction f |N : L → N is smooth for the smooth manifold
structure induced on N.

Lie groups and Lie groupoids

We follow here [14, 22, 26] for the basic theory concerning infinite-dimensional Lie groups (modeled on
locally convex spaces) and [19, 20] for (finite-dimensional) Lie groupoids and Lie algebroids.⁶

Remark A.4. For a Lie group G, we write 1 for the unit element. As in the finite-dimensional setting, one can
associate to G a Lie algebra L(G) ≅ T1G whose Lie bracket is constructed from the Lie bracket of left invariant
vector fields on G.

Definition A.5. Let G, H be (infinite-dimensional) Lie groups and let φ : H → G be an injective morphism of
Lie groups. We call H an initial Lie subgroup if the induced Lie algebra morphism L(φ) : L(H) → L(G) is injec-
tive, and for each Ck-map f : N → G (k ∈ ℕ ∪ {∞}) from a Ck-manifold N to Gwhose image im(f) is contained
in H, the corresponding map φ−1 ∘ f : N → H is Ck.

We furthermore need the following construction principle for Lie groups, whose proof formanifoldsmodeled
on Banach spaces (which generalises verbatim to our more general setting) can be found in [7, Chapter III,
Section 1.9, Proposition 18].

Proposition A.6. Let G be a group and let U, V be subsets of G such that 1 ∈ V = V−1 and VV ⊆ U. Sup-
pose that U is equipped with a smooth manifold structure such that V is open in U, which turns the inversion
ι : V → V ⊆ U and the multiplication μ : V × V → U – induced by the group – into smooth maps. Then the
following hold:
(i) There is a unique smooth manifold structure on the subgroup G0 := ⟨V⟩ of G generated by V such that G0

becomes a Lie group, V is open in G0, and such that U and G0 induce the same smooth manifold structure
on V.

(ii) Assume that for each g in a generating set of G, there is an open identity neighborhood W ⊆ U such that
gWg−1 ⊆ U and cg : W → U, h 󳨃→ ghg−1 is smooth. Then there is a unique smooth manifold structure on G
turning G into a Lie group such that V is open in G and both G and U induce the same smooth manifold
structure on the open subset V.

A.7. A groupoid G = (G 󴁂󴀱 M), with source map α : G → M and target map β : G → M, is a Lie groupoid if the
following holds: G and M are smooth manifolds, α and β are C∞-submersions and the multiplication map
G(2) → G, the inversion map G → G and the identity-assigning mapM → G, x 󳨃→ 1x, are smooth. Recall that
one can associate to every Lie groupoid G a Lie algebroid, which we denote by L(G).

Definition A.8. Let F : H→ G be a morphism of Lie groupoids. We callH
∙ immersed subgroupoid of G if F and the induced map on the base are injective immersions,
∙ embedded subgroupoid of G if F and the induced map on the base are embeddings.

Definition A.9. For a Lie groupoid G = (G 󴁂󴀱 M) we define the following:
∙ Denote, for m ∈ M, by Cm the connected component of 1m in α−1(m). Then

C(G) := ⋃
n∈M

Cm .

6 The concept of infinite-dimensional Lie groupoid is clear, cf. [29, 31] and [6], though not needed for most of the text.
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10 | A. Schmeding, Vertical bisections of a regular Lie groupoid

By [19, Proposition 1.5.1], we obtain a wide Lie subgroupoid C(G) 󴁂󴀱 M of G, called the identity-
component subgroupoid of G.

∙ The isotropy subgroupoid IG := {g ∈ G | α(g) = β(g)}, and the identity component subgroupoid of the
isotropy groupoid IG∘ := C(IG).

Endowedwith the subspace topology, IG (and also IG∘) are topological bundles of Lie groups. In general, the
isotropy subgroupoid is not a Lie subgroupoid:

Example A.10. LetA = (𝕊1 × ℝ2 󴁂󴀱 ℝ2) be the action groupoid associated to the canonical action of the circle
group 𝕊1 onℝ2 via rotation. Then

IA = 𝕊1 × {0} ∪ ⨆
x∈ℝ2\{0}
{1} × {x} ⊆ 𝕊1 × ℝ2

is not a submanifold of 𝕊1 × ℝ2, and thus IA cannot be a Lie groupoid ofA.

Acknowledgment: The author is indebted to J. N.Mestre for pointing out Example 2.6 and useful literature he
was unaware of.⁷ Furthermore, he thanks S. Paycha and H. Amiri for interesting discussions concerning the
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This paper is about the relation of the geometry of Lie groupoids over a fixed 
compact manifold M and the geometry of their (infinite-dimensional) bisection Lie 
groups. In the first part of the paper we investigate the relation of the bisections to a 
given Lie groupoid, while the second part is about the construction of Lie groupoids 
from candidates for their bisection Lie groups. The procedure of this second part 
becomes feasible due to some recent progress in the infinite-dimensional Frobenius 
theorem, which we heavily exploit. The main application to the prequantisation 
of (pre)symplectic manifolds comes from an integrability constraint of closed Lie 
subalgebras to closed Lie subgroups. We characterise this constraint in terms of a 
modified discreteness conditions on the periods of that manifold.
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0. Introduction

The Lie group structure on bisection Lie groups was established in [28,31], along with a smooth action of 
the bisections on the arrow manifold of a Lie groupoid. In this paper, we develop a tight relation between 
Lie groupoids and their bisection Lie groups by making use of this action. As a first step, we show how this 
action can be used to reconstruct a Lie groupoid from its bisections. In general, this will not be possible, 
since there may not be enough bisections for a reconstruction to work. However, under mild assumptions 
on the Lie groupoid, e.g., the groupoid being source connected, the reconstruction works quite well. It is 
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worthwhile to note that in Chapter 2 the analytical tools we need are of moderate complexity, all results 
follow from a thorough usage of the concept of a submersion.

In the intermediate Chapter 3, we analyse in some more detail the structure that bisections have in 
addition to merely being Lie groups. For instance, they act on M and the stabilisers are closely related to 
the vertex groups of the Lie groupoid. To this end, we use the results of Glöckner on submersion properties 
in infinite-dimensions [6,7].

The next step is then to take the insights from Chapter 2 and Chapter 3 in order to formulate structures 
and conditions on a Lie group that turn it into a Lie group of bisections of a Lie groupoid. This becomes 
analytically more challenging, and the procedure is only possible due to a heavy usage of the recent results 
from [7], building on a generalised Frobenius Theorem of integrable co-Banach distributions [3,10]. The 
result, developed in Chapter 4, is the concept of a transitive pair, which describes in an efficient way the 
necessary structure that is needed on a Lie group in order to relate it in a natural way to the bisection 
group of a Lie groupoid. However, we restrict here to transitive (respectively locally trivial) Lie groupoids, 
the general theory will be part of future research.

Finally, in Chapter 5 we then apply the integration theory for abelian extensions from [23] in order to 
derive a transitive pair from an integration of an extension of V(M), given by a closed 2-form ω ∈ Ω2(M)
to an extension of Diff(M)0. The crucial point here is the integration of a certain Lie subalgebra to a closed 
Lie subgroup of the integrated extension, for which we derive a new discreteness condition in terms of the 
associated period groups.

We now go into some more detail and explain the main results. Suppose G = (G ⇒ M) is a Lie groupoid. 
This means that G, M are smooth manifolds, equipped with submersions α, β : G → M and an associative 
and smooth multiplication G ×α,β G → G that admits a smooth identity map 1: M → G and a smooth 
inversion ι : G → G. Then the bisections Bis(G) of G are the sections σ : M → G of α such that β ◦ σ is a 
diffeomorphism of M . This becomes a group with respect to

(σ � τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈ M.

This group is an (infinite-dimensional) Lie group (cf. [31]) if M is compact, G is modelled on a metrisable 
space and the groupoid G admits a local addition adapted to the source projection α, i.e. it restricts to a 
local addition on each fibre α−1(x) for x ∈ M (cf. [17,31]).

By construction of the Lie group structure, we obtain a natural action Bis(G) × M → M , (σ, m) �→
β(σ(m)) of Bis(G) on M . This action gives rise to the bisection action groupoid B(G) := (Bis(G) �M ⇒ M). 
Observe that the action is constructed from the joint evaluation map

ev: Bis(G) × M → G, (σ,m) �→ σ(m)

and the target projection of the groupoid G. While the target projection is a feature of the groupoid G, the 
evaluation map yields a groupoid morphism over M from B(G) to G. Thus information on the groupoid can 
be recovered from the group of bisections and the base manifold via the joint evaluation map. The idea is to 
recover the smooth structure of the arrow manifold from the evaluation map based on the following result:

Theorem A. Let G = (G ⇒ M) be a Lie groupoid, where M is compact, G is modelled on a metrisable space 
and G admits an α-adapted local addition. Then the joint evaluation ev is a submersion. If G is in addition 
source-connected, i.e. the source fibres are connected manifolds, then ev is surjective. �

Note that as an interesting consequence of Theorem A we obtain also information on the evaluation of 
smooth maps from a compact manifold M into a manifold N modelled on a metrisable space. In this case, 
the evaluation map
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ev : C∞(M,N) × M → N, (f,m) �→ f(m)

is a surjective submersion.
A crucial point of our approach will be that the joint evaluation map is a surjective submersion. Un-

fortunately, this will not be the case in general as there are Lie groupoids without enough bisections (see 
Remark 2.18 b) for an example). In this case there is no hope to recover the manifold of arrows, whence not 
all information on the groupoid is contained in its group of bisections. However, it turns out that at least the 
identity subgroupoid can always be reconstructed. Moreover, Theorem A still gives a sufficient criterion for 
the surjectivity of ev. It is sufficient that the Lie groupoid is source connected, and in general this condition 
can not be dispensed with. As a byproduct, we obtain generalisations of some results about the existence of 
global bisections through each point (cf. [37]) to infinite dimensions. Hence we can reconstruct the groupoid 
from its bisections and the base manifold for a fairly broad class of Lie groupoids. Namely, we obtain the 
following reconstruction result.

Theorem B. Let G = (G ⇒ M) be a Lie groupoid, where M is compact, G is modelled on a metrisable 
space and G admits an α-adapted local addition. If the joint evaluation map ev is surjective, e.g. G is 
source-connected, then the Lie groupoid morphism

ev : B(G) = (Bis(G) � M ⇒ M) → G

is the groupoid quotient of B(G) by a normal Lie subgroupoid. In this case, the Lie group of bisections and 
the manifold M completely determine the Lie groupoid G. �

Note that Theorem B really is a reconstruction theorem, i.e., we need a Lie groupoid to begin with as 
a candidate for the quotient. Hence, the original groupoid is needed and Theorem B does not provide a 
way to construct G without knowing it beforehand. The problem here is twofold. At first, we need to know 
the kernel of ev, or some equivalent information, that allows us to determine the groupoid G as a quotient 
of (Bis(G) � M ⇒ M). The other problem is an analytical problem: quotients of (infinite-dimensional) Lie 
groupoids and Lie groups usually do not admit a suitable smooth structure. In particular, it is not known 
if the familiar tools, e.g. Godement’s criterion, carry over to the infinite-dimensional setting beyond the 
Banach setting.

Nevertheless, one can extract some information on the quotient from Theorem B. The groupoid quotient is 
controlled by certain subgroups of the group of bisections which arise from the kernel of the joint evaluation. 
Namely, the source fibre over m in the kernel corresponds to the Lie subgroup Bism(G) = {σ ∈ Bis(G) |
σ(m) = 1m} of all bisections which take m to the corresponding unit. Observe that Bism(G) sits inside the 
Lie subgroup Loopm(G) := {σ ∈ Bis(G) | β(σ(m)) = m} of all elements whose image at m is an element in 
the vertex group. Both subgroups will later turn out to be important in the construction of Lie groupoids 
from their bisections. In this context Lie theoretic properties, like regularity in the sense of Milnor, of these 
subgroups are crucial to our approach. Thus we first study them in a separate section. Regularity (in the 
sense of Milnor) of a Lie group roughly means that a certain class of differential equations can be solved 
on the Lie group. Many familiar results from finite-dimensional Lie theory carry over only to regular Lie 
groups (cf. [8] for a survey). Our results then subsume the following theorem.

Theorem C. Let G = (G ⇒ M) be a Banach Lie groupoid, then for each m ∈ M the inclusions

Bism(G) ⊆ Loopm(G) ⊆ Bis(G)

turn Bism(G) and Loopm(G) into split Lie subgroups which are regular in the sense of Milnor. As subman-
ifolds these subgroups are even co-Banach submanifolds. �
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These Lie subgroups are of interest, as the quotient Bis(G)/ Bism(G) reconstructs the source fibre of G
over the point m and Loopm(G)/ Bism(G) reconstructs the vertex group at m. Moreover, Theorem C enables 
us to construct a natural smooth structure on these quotients which coincides a posteriori with the manifold 
structure on the fibre and the vertex group, respectively.

We now use the results obtained so far to turn the reconstruction result given by Theorem B into a 
construction result, at least in the locally trivial case. This means that we start with Lie groups, some extra 
structure on them and then produce a Lie groupoid such that the groups are related to the Lie group of 
bisections. Recall that a locally trivial Lie groupoid is completely determined by its source fibre and the 
vertex group over a given point. Hence, if we fix a point m ∈ M , the problem to construct a Lie groupoid 
reduces in the locally trivial case to reconstructing a manifold (modelling the source fibre) and a Lie group 
(modelling the vertex group). This motivates the notion of a transitive pair (cf. Definition 4.1). A transitive 
pair (θ, H) consists of a transitive Lie group action θ : K × M → M and a normal subgroup H of the 
m-stabiliser Km of θ, such that H is a regular and co-Banach Lie subgroup of Km. The guiding example is 
here the transitive pair (βG ◦ ev : Bis(G) × M → M, Bism(G)) induced by the bisections of a locally trivial 
Lie groupoid G with connected base M . The notion of transitive pair can be thought of as a generalisation of 
a Klein geometry for fibre-bundles (see Remark 4.19 for further information). We then obtain the following 
construction principle.

Theorem D. Let (θ : K×M → M, H) be a transitive pair. Then there is a locally trivial Banach Lie groupoid 
R(θ, H) together with a Lie group morphism aθ,H : K → Bis(R(θ, H)). If (θ, H) = (βG ◦ ev, Bism(G)) for 
some locally trivial Banach Lie groupoid G, then aθ,H is an isomorphism. �

One should think of the construction principle from Theorem D as an analogue of the reconstruction 
result in Theorem B for locally trivial Lie groupoids. The crucial difference here is that Theorem D makes 
no reference to the Lie groupoid, but constructs it purely from the given transitive pair. Note that the Lie 
group morphism aθ,H in Theorem D will in general not be an isomorphism. However, the morphisms are 
interesting in their own right due to the fact that the definition of a transitive pair is quite flexible. It allows 
us to construct for a wide range of Lie groups with transitive actions on M Lie group morphisms into the 
Lie group of bisections Bis(R(θ, H)). Moreover, these Lie group morphisms carry geometric information 
and thus connect the group actions of both Lie groups.

In the last section we then invoke the integration theory of abelian extensions of infinite-dimensional 
Lie algebras from [23] to construct transitive pairs from a closed 2-form ω on a 1-connected and compact 
manifold M . We formulate the results here for Diff(M)0, whereas in the text we allow for more general 
K ≤ Diff(M). If ω is prequantisable, then the prequantisation provides a gauge groupoid and thus an 
integration of the Lie algebroid extension. By the results from [31] and [23], the associated Lie algebra 
extension also integrates to an extension of Lie groups. In the other direction, we show that the integration 
of the extensions of Lie algebras to transitive pairs is in fact a two-step process. The first step is concerned 
with the integration of the extension

C∞(M) → C∞(M) ⊕ω V(M) → V(M) (1)

of Lie algebras to an extension of Lie groups, where ω is the abelian cocycle (X, Y ) �→ ω(X, Y ). By the 
results of [23], the integration of (1) is governed by the discreteness of the primary periods, i.e., the periods 
of the Lie group Diff(M)0 for the equivariant extension ωeq of ω. The second step is then the integration of 
the Lie subalgebra of C∞(M) ⊕ω V(M), that corresponds to the vector fields vanishing in the base-point, 
to a closed Lie subgroup. This is governed by the discreteness of the secondary periods, i.e., the periods of 
(M, ω) modulo the periods of (Diff(M)0, ωeq) (see Remark 5.5 and Remark 5.10 for a precise definition).
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Theorem E. Let M be a compact and 1-connected manifold with base-point m and ω ∈ Ω2(M) be closed. 
If the extension (1) integrates to an extension of Lie groups, then (M, ω) is prequantisable if and only if 
the secondary periods are discrete. The latter is equivalent to the integrability of the subalgebra C∞

m (M) ⊕ω

Vm(M) to a closed Lie subgroup, where C∞
m (M) and Vm(M) denote the functions (respectively vector fields) 

that vanish in m. �
Finally, we would like to remark that the constructions of Lie groupoids given in the present paper yield 

functors on suitable categories of Lie groups and Lie groupoids. These functors are closely connected to the 
bisection functor. However, there is no need for these results in the present paper as we are only concerned 
with the (re-)construction of Lie groupoids. Thus we will largely avoid categorical language and postpone 
a detailed investigation of these functors to [32].

1. Locally convex Lie groupoids and the Lie group of bisections

In this section we recall basic facts and conventions on Lie groupoids and bisections used in this paper. We 
refer to [16] for an introduction to (finite-dimensional) Lie groupoids and the associated group of bisections. 
The notation for Lie groupoids and their structural maps also follows [16]. However, we do not restrict our 
attention to finite dimensional Lie groupoids. Hence, we have to augment the usual definitions with several 
comments. Note that we will work all the time over a fixed base manifold M .

Definition 1.1. Let G = (G ⇒ M) be a groupoid over M with source projection α : G → M and target 
projection β : G → M . Then G is a (locally convex and locally metrisable) Lie groupoid over M1 if

• the objects M and the arrows G are locally convex and locally metrisable manifolds,
• the smooth structure turns α and β into surjective submersions, i.e., they are locally projections2
• multiplication m : G ×α,β G → G, object inclusion 1: M → G and inversion ι : G → G are smooth. �

Definition 1.2. The group of bisections Bis(G) of G is given as the set of sections σ : M → G of α such that 
β ◦ σ : M → M is a diffeomorphism. This is a group with respect to

(σ � τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈ M. (2)

The object inclusion 1: M → G is then the neutral element and the inverse element of σ is

σ−1(x) := ι(σ((β ◦ σ)−1(x))) for x ∈ M. � (3)

In [31] we have established a Lie group structure on the group of bisections of a (locally convex) Lie 
groupoid which admits a certain type of local addition. To understand the Lie group structure on Bis(G)
one uses local additions (cf. Definition B.7) which respect the fibres of a submersion. This is an adaptation 
of the construction of manifold structures on mapping spaces [35,13,17] (see also Appendix B).

Definition 1.3. We say that a Lie groupoid G = (G ⇒ M) admits an adapted local addition if G admits a 
local addition which is adapted to the source projection α (or, equivalently, to the target projection β). �

Recall from [31, Section 3] the following facts on the Lie group structure of the group of bisections:

1 See Appendix B for references on differential calculus in locally convex spaces.
2 This implies that the occurring fibre-products are submanifolds of the direct products, see [35, Appendix C].
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Theorem 1.4. Suppose M is compact and G = (G ⇒ M) is a locally convex and locally metrisable Lie 
groupoid over M which admits an adapted local addition. Then Bis(G) is a submanifold of C∞(M, G)
(with the manifold structure from Theorem B.9). Moreover, the induced manifold structure and the group 
multiplication

(σ � τ)(x) := σ((β ◦ τ)(x))τ(x) for x ∈ M

turn Bis(G) into a Lie group modelled on E1 := {γ ∈ C∞(M, TG) | ∀x ∈ M, γ(x) ∈ T1x
α−1(x)}. �

As the Lie group Bis(G) is a submanifold of C∞(M, G) the exponential law for smooth maps B.9 c) 
applies to maps defined on Bis(G). In particular, as in [31, Proposition 3.11] one easily concludes that the 
natural action of the bisections on the arrows and the evaluation of bisections are smooth:

Proposition 1.5. Let G = (G ⇒ M) be a Lie groupoid such that M is a compact manifold and G admits an 
adapted local addition. Then

a) the natural action γ : Bis(G) ×G → G, (ψ, g) �→ ψ(β(g)) ·g is smooth and for g ∈ G the restricted action

γg : Bis(G) → α−1(α(g)), ψ �→ ψ(β(g)) · g

is smooth;
b) the evaluation map ev: Bis(G) × M → G, (σ, m) �→ σ(m) is smooth and satisfies

ev(σ,m) = σ(m) = γ(σ, 1m). (4)

Furthermore, the map evm : Bis(G) → α−1(m), σ �→ σ(m) is smooth for each m ∈ M .

2. Reconstruction of the Lie groupoid from its group of bisections

In this section, the close link between Lie groupoids and their Lie groups of bisections is established. 
More precisely, we will show that each Lie groupoid is the quotient of its Lie group of bisections. In the end, 
we discuss some examples and applications of this link.

Throughout this section assume that G = (G ⇒ M) is a locally metrisable Lie groupoid that admits an 
adapted local addition and that has a compact space of objects M .

Definition 2.1. The Lie group Bis(G) acts on M , via the action induced by (βG)∗ : Bis(G) → Diff(M) and 
the natural action of Diff(M) on M . This gives rise to the action Lie groupoid B(G) := Bis(G) � M , with 
source and target projections defined by αB(σ, m) = m and βB(σ, m) = βG(σ(m)). The multiplication on 
B(G) is defined by

(σ, βG(τ(m))) · (τ,m) := (σ � τ,m).

Clearly, any morphism f : G → H of Lie groupoids over M induces a morphism f∗ × idM : B(G) → B(H) of 
Lie groupoids. �
Remark 2.2. The Lie groupoid B(G) admits an adapted local addition (for αB and thus also for βB). In fact, 
this is the case for the Lie group Bis(G) and the finite-dimensional manifold M separately (cf. [13, p. 441]), 
and on Bis(G) × M one can simply take the product of these local additions. In addition, the evaluation 
map ev : Bis(G) × M → G is a morphism of Lie groupoids over M
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⎛
⎜⎜⎜⎝

Bis(G) × M

βBαB

M

⎞
⎟⎟⎟⎠

ev−→

⎛
⎜⎜⎜⎝

G

βGαG

M

⎞
⎟⎟⎟⎠ . �

We will now study the analytic properties of the morphism ev: Bis(G) × M → G. It will turn out that 
under mild assumptions on G the groupoid is a groupoid quotient of the action groupoid B(G) via the 
evaluation map. The key point to establish this result is to prove that ev actually induces a quotient map, 
i.e. we need ev to be a surjective submersion. Let us first deal with some preparations:

Remark 2.3. Let G = (G ⇒ M) be a Lie groupoid and fix m ∈ M and τ ∈ Bis(G). Our goal is to split the 
space of sections Γ(τ∗TαG) into a product of (closed) subspaces. To this end define

Γ(τ∗TαG)m := {X ∈ Γ(τ∗TαG | X(m) = 0τ(m)}.

Choose a bundle trivialisation λ : Mλ → τ∗πα(Mλ) × E of the bundle τ∗πα : τ∗TαG → M such that 
m ∈ τ∗πα(Mλ). Since M is compact, we can choose a smooth cut-off function ρ : M → [0, 1] with ρλ(m) = 1
and ρ|M\πα(Mλ) ≡ 0. Then we obtain a (non-canonical) isomorphism of topological vector spaces

Iλ : Γ(τ∗TαG) → Γ(τ∗TαG)m × Tα
τ(m)G, X �→ (X − (ρ ◦ τ∗πα) · λ−1(τ∗πα, pr2 ◦λ(X(m))), X(m)), (5)

its inverse is given by

I−1
λ (X0, y) := X0 + (ρ ◦ τ∗πα) · λ−1(τ∗πα, pr2 ◦λ(y)) (6)

This turns Γ(τ∗TαG)m into a complemented subspace of Γ(τ∗TαG). Moreover, if G is a Banach–Lie groupoid 
then Tα

τ(m)G is a Banach space and thus Γ(τ∗TαG)m turns into a co-Banach subspace of Γ(τ∗TαG). �
Let us establish the submersion property for the restricted action of the group of bisections on the 

manifold of arrows.

Proposition 2.4. Let G = (G ⇒ M) be a Lie groupoid and g ∈ G. Then the restricted action

γg : Bis(G) → α−1(α(g)), σ �→ γ(σ, g) = σ(β(g)).g

is a submersion.

Proof. From Proposition 1.5 a) we infer that γg is smooth. Hence, we only have to prove that γg is locally 
a projection. To see this fix τ ∈ Bis(G) and a chart κ : Uκ → Vκ ⊆ E of the manifold α−1(α(g)) such 
that γg(τ) ∈ Uκ. Furthermore, choose a bundle trivialisation λ of τ∗TαG and construct the vector space 
isomorphism (5) for λ.

Now consider the canonical chart (Oτ , ϕτ ) of Bis(G). The set Iλ ◦ϕτ (Oτ ) is an open zero-neighbourhood 
in Γ(τ∗TαG)β(g) × Tα

τ(β(g))G. Shrinking Oτ , we can assume that Oτ ⊆ γ−1
g (Uκ) and that there are open 

zero-neighbourhoods U ⊆ Γ(τ∗TαG)β(g) and W ⊆ Tα
τ(β(g))G such that U ×W = Iλ ◦ϕτ (Oτ ). In conclusion, 

we obtain a commutative diagram

Bis(G) ⊇ Oτ

γg

Iλ◦ϕτ

α−1(α(g)) κ
E

U × W
γ̃g

E
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with γ̃g := κ ◦ γg ◦ (Iλ ◦ ϕτ )−1|U×W . Denote by Σ the adapted local addition of G and consider the right 
translation Rg : α−1(β(g)) → α−1(α(g)), h �→ hg. Then (6) and the definition of ϕ−1

τ yield

γ̃g(X, y) = κ(γg(Σ(X + (ρ ◦ πα) · λ−1(πα, pr2 λ(y)))) = κ(Σ(X(β(g))︸ ︷︷ ︸
=0

+ (ρ(β(g)))︸ ︷︷ ︸
=1

·y).g)

= κ(Σ(y).g) = κ ◦ Rg ◦ Σ(y).
(7)

Note that by (7) the map γ̃g does neither depend on the choice of the trivialisation λ nor on the cut-off 
function ρλ.

By definition of the adapted local addition, Σ restricts to a diffeomorphism W → Σ(W ) ⊆ α−1(β(g)). 
Moreover, κ is a chart and the right translation Rg is a diffeomorphism. Hence ψ := κ ◦Rg ◦ Σ|W : W → E

is a diffeomorphism onto its (open) image, mapping W ⊆ Tα
τ(β(g))G to an open subset in E. Now (7) yields 

a commutative diagram

Bis(G) ⊇ Oτ

γg

(idU ,ψ)◦Iλ◦ϕτ

α−1(α(g)) κ
E

U × ψ(W )
pr2

E

from which we conclude that γg is on Oτ a projection. As τ ∈ Bis(G) was chosen arbitrarily, γg is a 
submersion. �

The following corollary is now an immediate consequence of (4) and Proposition 2.4:

Corollary 2.5. Let G = (G ⇒ M) be a Lie groupoid, then for each m ∈ M the evaluation map

evm : Bis(G) → α−1(m), σ �→ σ(m)

is a submersion.

Furthermore, we can establish the existence of bisections through certain arrows which coincide with the 
object inclusion outside of pre-chosen open sets.

Note that in the following we will denote by the symbol “U ⊆◦ X” that some set U is an open subset of 
the topological space X.

Lemma 2.6. Let G = (G ⇒ M) be a Lie groupoid and m ∈ M fixed. For any m-neighbourhood U ⊆◦ M there 
exists a 1m-neighbourhood W ⊆◦ α−1(m) ∩β−1(U) such that for each g ∈ W there is a bisection σg ∈ Bis(G)
with σg(m) = g and σg(y) = 1y for all y ∈ M \ U .

Proof. Choose a C∞-function λ : M → [0, 1] such that λ(m) = 1 and λ|M\U ≡ 0. We denote by

ϕ1 : Γ(1∗TαG) ⊇ Ω → Bis(G), X �→ Σ ◦ X

the canonical manifold chart of Bis(G) (see Theorem 1.4). Computing with local representatives, it is easy 
to see that the map mλ : Γ(1∗TαG) → Γ(1∗TαG), X �→ (x �→ λ(x) ·X(x)) is continuous linear. Hence, there 
is an open zero-neighbourhood P ⊆◦ Ω ⊆ Γ(1∗TαG) with mλ(P ) ⊆ Ω.

Now define W := evm(ϕ1(P )) ∩ β−1(U). Observe that W is an open 1m-neighbourhood in α−1(m) ∩
β−1(U) ⊆◦ α−1(m) since P is open and evm is a submersion by Corollary 2.5. Moreover, for g ∈ W we have 
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g = sg(m) for some sg ∈ ϕ1(P ). Define Xg := mλ◦ϕ−1
1 (sg) for each g ∈ W. By construction Xg is contained 

in Ω since mλ takes the section ϕ−1
1 (sg) ∈ P to Ω. Hence σg := ϕ1(Xg) makes sense and is a bisection of G. 

From λ(m) = 1 we derive that σg(m) = sg(m) = g. Moreover, for x ∈ M \ U we obtain by definition of a 
local addition

σg(x) = Σ(λ(x)︸︷︷︸
=0

ϕ−1
1 (sg)(x)) = Σ(0Tα

1x
G) = 1x.

Hence σg(x) = 1x for all x ∈ M \ U . �
We can now prove a variant of [37, Theorem 3.2] for infinite-dimensional Lie groupoids over compact 

base. The proof of [37] carries over verbatim if one uses Lemma 2.6, whence we omit it.

Proposition 2.7. Let G = (G ⇒ M) be a Lie groupoid and g ∈ α−1(m) for m ∈ M . Suppose that W ⊆◦ α−1(m)
is connected and contains g and 1m and there is U ⊆ M with β(W ) ⊆ U . Then there exists σg ∈ Bis(G)
with σg(m) = g and σg(x) = 1x for all x ∈ M \ U .

Having dealt with the pointwise evaluation, we will now use the results obtained so far to also show that 
the joint evaluation is a submersion.

Proposition 2.8. Let M be a compact manifold, Q be a locally metrisable manifold and s : Q → M be a 
submersion such that Q admits a local addition that is adapted to s. Then the joint evaluation map

ev : Γ(M s←− Q) × M → Q, (σ,m) �→ σ(m) (8)

is a submersion. Here, Γ(M s←− Q) := {σ ∈ C∞(M, Q) | s ◦ σ = idM} is the space of sections of s, which is 
a submanifold of C∞(M, Q) by [31, Proposition 3.6].

Proof. Let (σ0, m0) ∈ Γ(M s←− Q) × M be arbitrary, but fixed from now on. Set q0 := σ0(m0). Then there 
exist open neighbourhoods O ⊆ M of m0 and P ⊆ Q of q0 such that σ0(M) ⊆ P and s|s−1(O)

∼= pr1. 
Indeed, there exist open neighbourhoods P ′ of q0 and O′ of m0 such that s|P ′ ∼= pr1 and s(P ′) = O′. After 
shrinking O′ if necessary, we may assume that σ(O′) ⊆ P ′. Then we choose O to be an open neighbourhood 
O with O ⊆ O′ and set P := s−1(M \ O) ∪ P ′.

From this it follows that C∞(M, P ) ∩ Γ(M s←− Q) is an open neighbourhood of M . Observe that 
s|P : P → M is also a submersion and that the adapted local addition on Q restricts to an adapted 
local addition on P . Consequently, the manifold structure on

C∞(M,P ) ∩ Γ(M s←− Q) = Γ(M s|P←−− P )

that is induced from Γ(M s←− Q) on the left hand side coincides with the manifold structure on the right 
hand side that is induced from applying [31, Proposition 3.6] to the submersion s|P . Thus it suffices to 
consider the case where Q = P and s = s|P .

We now reduce the claimed submersion property of (8) to the case of the evaluation in m0. Since the 
evaluation map evm0 : Diff(M) → M is also a submersion, there exists a local smooth section of it, i.e., 
an open neighbourhood U0 ⊆ M of m0 and a smooth map β : U0 → Diff(M) such that β(m0) = idM and 
β(m)(m0) = m for all m ∈ U0. Moreover, we may assume that U0 ⊆ O and β takes values in the identity 
neighbourhood ϕid(Ω) where ϕid is the chart of Diff(M) from Theorem B.9 a).

Consider now ϕid ◦ β : U0 → Γ(TM). We choose a and a compact m0-neighbourhood K and a neigh-
bourhood Ω ⊆◦ TO of the zero-section which is mapped by the local addition on M (which was used to 
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define ϕid) to O. For later use, we shrink Ω to achieve that Ω ∩ TxM is convex for each x ∈ O. Then the 
open set �K, Ω� := {X ∈ Γ(TM) | X(K) ⊆ Ω} ⊆◦ Γ(TM) is a zero-neighbourhood. Further, ϕ−1

id maps 
�K, Ω� ∩ (ϕ−1

id )−1(Diff(M)) to the set of diffeomorphisms which map K into O. Shrinking U0 we can achieve 
that ϕid ◦ β takes its image in �K, Ω�, i.e. the diffeomorphisms in the image of β map K into O.

Apply now the exponential law [35, Corollary 7.5] (cf. Theorem B.9 c)) to obtain a smooth map

γ := (ϕid ◦ β)∨ : U0 × M → TM, (u,m) �→ ϕid ◦ β(u)(m) with γ(·,m) ∈ TmM ∀m ∈ M.

Note that γ(m0, ·) coincides with the zero-section as β(m0) = idM . Choose a smooth cutoff function ρ : M →
[0, 1] which maps a m0-neighbourhood N ⊆ K to 1 and vanishes near the boundary ∂K. Multiplying 
fibre-wise we obtain a smooth map γ̃ : U0 × M → TM, (u, m) �→ ρ(m) · γ(u, m) which vanishes near the 
boundary of K. Apply the exponential law in reverse to obtain a smooth map γ̃∧ : U0 → Γ(TM).

Now recall that (ϕ−1
id )−1(Diff(M)) is an open set in the compact open C1-topology on Γ(TM) (see [17, 

4.3] and [13, proof of Theorem 43.1]). Hence we can choose suitable convex zero-neighbourhoods which 
control only the values of X ∈ Γ(TM) and TX on suitable compact sets, such that their intersection is 
contained in (ϕ−1

id )−1(Diff(M)). Since γ(m0, ·) is the zero-section, we can thus shrink U0 to achieve that γ̃∧

is still contained in �K, Ω� ∩ (ϕ−1
id )−1(Diff(M)). As γ̃∧ vanishes near the boundary of K (and outside of K), 

we can replace β with a map which satisfies β(m)(O) ⊆ O for all m ∈ U0.
Choose another smooth cutoff function δ which vanishes near the boundary ∂U0 and takes an open 

m0-neighbourhood U ⊆ N to 1. Multiplying (in local charts) ϕid◦β with δ, we can assume that β(m) = idM

for all m near the boundary ∂U0. Thus we can extend β to a smooth function β : M → Diff(M) by setting 
β(m) = idM if m /∈ U0. By construction this map satisfies β(m)(O) ⊆ O for all m ∈ M . Moreover, since ρ
and δ take the m0-neighbourhood U ∩ N to 1, β satisfies β(m)(m0) = m for all m ∈ U ∩ N .

Choose a diffeomorphism ξ : s−1(O) → O × W that makes

s−1(O)

s

ξ
O × W

pr1
O

commute, we may lift each β(m) to a diffeomorphism

β̃m : Q → Q, q �→
{
ξ−1(β(m)(o), w) if q = ξ−1(o, w) ∈ s−1(O)
q if q /∈ s−1(O)

.

From this explicit construction it follows in particular, that the map

Q × M → Q, (q,m) �→ β̃(m)(q)

is smooth. This then gives rise to the diffeomorphism

B : Γ(M s←− Q) × M → Γ(M s←− Q) × M, (σ,m) �→ ((β̃(m))−1 ◦ σ ◦ β(m),m),

with inverse (σ, m) �→ (β̃(m) ◦ σ ◦ (β(m))−1, m). Moreover, β(m0) = idM implies B(σ0, m0) = (σ0, m0).
For the next step, let Σ: TQ ⊇ Ω → Q be an s-adapted local addition with corresponding open 

σ0-neighbourhood Oσ0 ⊆ C∞(M, Q) and let ϕσ0 : Oσ0 → Γ(σ∗
0(TQ)) be the chart from Theorem B.9 a). 

Recall from the proof of [31, Proposition 3.6] that ϕσ0 also is a submanifold chart for Γ(M s←− Q) that maps 
the open neighbourhood Oσ0 ∩ Γ(M s←− Q) onto an open neighbourhood of the zero section in the closed 
subspace {τ ∈ Γ(σ∗

0(TQ)) | τ(m) ∈ Tσ0(m)s
−1(m) for all m ∈ M} of Γ(σ∗

0(TQ)).
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Denote R0 := ϕσ0(Oσ0 ∩ Γ(M s←− Q)). Then we define the diffeomorphism

Ξ: B−1((Oσ0 ∩ Γ(M s←− Q)) × O) → R0 × O, (f,m) �→ (ϕσ0((β̃(m))−1 ◦ f ◦ β(m)),m).

By shrinking B−1(Oσ0 × O) if necessary, we may assume that ev maps the open neighbourhood 
(B−1(Oσ0 × O)) of (σ0, m0) into the open neighbourhood s−1(O) of q0. Moreover, the following diagram 
commutes by the definitions of ϕσ0 and of β̃(m)

B−1(Oσ0 × O)

Ξ

ev
s−1(O)

ξ
W × O

R0 × O
evm0 × idO

Tq0s
−1(m0) × O.

Σ×idO

Since W is diffeomorphic to s−1(m0) and Σ restricts to a local diffeomorphism of a zero-neighbourhood in 
Tq0s

−1(m0) onto an open neighbourhood of q0 in s−1(m0), it follows that the arrow on the right is a local 
diffeomorphism. Hence each morphism except ev and evm0 × idO in this diagram is a local diffeomorphism. 
By [7, Lemma 1.6] ev will thus be a submersion if evm0 is a submersion.

The map evm0 is defined on an open zero neighbourhood of the space

Eσ0 := {τ ∈ Γ(σ∗
0(TQ)) | τ(m) ∈ Tσ0(m)s

−1(m) for all m ∈ M}

and takes values in Tq0s
−1(m0).

By using the diffeomorphism ξ : s−1(O) → W × O we have the following identifications

Tq0s
−1(m0) ∼= T(w0,m0)ξ(s−1(m0)) ∼= F

where F is the modelling space of W and (w0, m0) := ξ(q0). Using these and a cutoff function, one can build 
as in Remark 2.3 a continuous inverse to evm0 that takes Tq0s

−1(m0) into Eσ0 . Thus evm0 is a submersion, 
finishing the proof. �
Corollary 2.9. Let M be a compact manifold and N be a locally metrisable manifold that admits a local 
addition. Then the joint evaluation map

ev : C∞(M,N) × M → N, (f,m) �→ f(m) (9)

is a submersion.

Proof. We have the natural identification C∞(M, N) ∼= Γ(M pr2←−− N × M). Thus Proposition 2.8 shows 
that

C∞(M,N) × M → N × M, (f,m) �→ (f(m),m)

is a submersion. Now (9) is a submersion, since it is the composition to two submersions. �
Corollary 2.10. Let G = (G ⇒ M) be a Lie groupoid. Then the joint evaluation map

ev : Bis(G) × M → G, (σ,m) �→ σ(m)

is a submersion.



238 A. Schmeding, C. Wockel / Differential Geometry and its Applications 49 (2016) 227–276

Proof. This is implied by Proposition 2.8 since Bis(G) is an open submanifold of Γ(M α←− G). �
Corollary 2.11. Let G = (G ⇒ M) be a Lie groupoid. Then the division morphism

δ : Bis(G) × Bis(G) × M → G, (σ, τ,m) �→ (σ � τ−1)(m)

and for m ∈ M the restricted division δm : Bis(G) × Bis(G) → α−1(m), δm(σ, τ) := δ(σ, τ, m) are submer-
sions.

Proof. Note that we can write δ(σ, τ, m) = ev(σ � τ−1, m) and δm(σ, τ) = evm(σ � τ−1). Since ev and evm

are submersions by Corollary 2.5 and Corollary 2.10, it suffices to prove that the map

f : Bis(G) × Bis(G) → Bis(G), (σ, τ) �→ σ � τ−1

is a submersion. However, as (Bis(G), �) is a Lie group the map f is a submersion. �
We have now established that the evaluation map from the bisections onto the manifold of arrows is a 

submersion. However, to completely determine the manifold of arrows, we need ev to be surjective. Note 
that this means that there is a (global) bisection through each point in G. Consider first an easy example

Example 2.12. Let H be a Lie group modelled on a metrisable space which acts on the compact manifold 
M , i.e. the associated action groupoid H � M admits an adapted local addition by Remark 2.2. Then the 
evaluation ev : Bis(H � M) × M → H × M , (σ, m) �→ (σ(m), m) is a surjective submersion. We already 
know from Corollary 2.10 that ev is a submersion and thus have to establish only surjectivity. For each pair 
(h, m) ∈ H × M we can define the constant bisection ch : M → H × M, n �→ (h, n) which is contained in 
Bis(H � M). Hence ev(ch, m) = (h, m) and thus ev is surjective. In particular, for each arrow g ∈ H × M

in the action groupoid G there is a global bisection σg with σg(α(g)) = g.
The structure of Bis(H �M) is interesting in its own. Since the second component of a bisection σ : M →

H × M has to be the identity, Bis(H � M) can be identified with the subset

{γ ∈ C∞(M,H) | m �→ γ(m).m is a diffeomorphism of M}

of C∞(M, H). Since C∞(M, H) → C∞(M, M), γ �→ (m �→ γ(m).m) is smooth and Diff(M) ⊆ C∞(M, M)
is open, it follows that Bis(M �H) is an open submanifold of C∞(M, H) that contains the constant maps. 
However, the group structure on the functions from M to H is not given by the pointwise multiplication, 
but by

(γ � η)(m) := γ(η(m).m) · η(m).

One effect of this is that γ �→ (m �→ γ(m).m) is a homomorphism Bis(H � M) → Diff(M). �
In general there will not be a bisection through each arrow of a given groupoid (see Remark 2.18 b) below). 

Nevertheless, for source connected finite-dimensional Lie groupoids it is known (see [37]) that bisections 
through each arrow exist. We will now generalise this result to our infinite-dimensional setting.
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Definition 2.13. Let G = (G ⇒ M) be a Lie groupoid.

a) Denote for m ∈ M by Cm the connected component of 1m in α−1(m). Then we define the subset 
C(G) :=

⋃
m∈M Cm. By [16, Proposition 1.5.1] we obtain a wide subgroupoid C(G) ⇒ M of G, called 

the identity-component subgroupoid of G.3
b) The groupoid G is called α- or source connected if for each m ∈ M the fibre α−1(m) is connected.

Observe that for an α-connected groupoid G we have C(G) = G. �
Note that Proposition 2.7 implies that for α-connected Lie groupoids there is for every arrow a bisection 

whose image contains the given arrow. However, we give an alternative proof in the following theorem, 
which also yields more information:

Theorem 2.14. Let G = (G ⇒ M) be a locally metrisable Lie groupoid with compact M that admits an 
adapted local addition.

a) The image of the evaluation ev is an open and wide Lie subgroupoid which contains the identity sub-
groupoid C(G).

b) The identity subgroupoid C(G) coincides with ev(Bis(G)0 ×M), where Bis(G)0 is the identity component 
of Bis(G). Hence, C(G) is an open Lie subgroupoid of G.

Assume in addition that G is α-connected, then

c) For each g ∈ G there is a bisection σg ∈ Bis(G)0 with σg(α(g)) = g. In particular, ev is surjective.

Proof.

a) The image U := ev(Bis(G) × M) contains the image of the object inclusion 1: M → G, i.e. 1m ∈ U
for all m ∈ M . Define for m ∈ M the set Um = U ∩ α−1(m) and note that Um = evm(Bis(G)). As 
evm : Bis(G) → α−1(m) is a submersion by Corollary 2.5 we infer that Um is an open subset of α−1(m).
By construction of the group operations of Bis(G) the set U yields a wide subgroupoid U ⇒ M of G
such that Um is open in α−1(m). Hence the image of ev is an open and wide Lie subgroupoid. Now 
[16, Proposition 1.5.7]4 shows that Um is also closed in α−1(m). Thus the clopen set Um contains the 
connected component of 1m ∈ α−1(m). Since this holds for each m, we see that C(G) ⊆ U .

b) Set B0 := Bis(G)0. As B0 is an open subgroup, an argument as in a) shows that ev(B0 × M) is a 
subgroupoid of G which contains C(G).
Furthermore, for each m ∈ Di the set evm(B0) ⊆ α−1(m) is connected and contains 1m. Thus by 
definition of the connected set Cm ⊆ α−1(m) we have evm(B0) ⊆ Cm ⊆ C(G). Hence, ev(B0 × M) =
C(G) and since ev is a submersion by Corollary 2.10, C(G) is open in G. In particular, C(G) is an open 
subgroupoid of G, i.e. it is an open Lie subgroupoid.

c) If G is α-connected then C(G) = G whence the assertion follows from b). �
Definition 2.15. We say that a for a Lie groupoid G = (G ⇒ M) there exists a bisection through each 
arrow if G satisfies the condition of Theorem 2.14 c), i.e. for each g ∈ G there exists σg ∈ Bis(G) with 
σg(α(g)) = g. �
3 Note that at this stage we do not know that C(G) is a Lie subgroupoid. In particular, the proof for finite dimensional Lie 

groupoids (see [16, Proposition 1.5.1]) does not carry over to our setting. Compare however Theorem 2.14 b).
4 Mackenzie [16] considers only finite-dimensional Lie groupoids. However, the proof of this result carries over verbatim to the 

infinite-dimensional setting.
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Note that Part c) of Theorem 2.14 yields [37, Theorem 3.1] as a corollary for (finite-dimensional) Lie 
groupoids over a compact base.

Corollary 2.16. In a finite-dimensional source-connected Lie groupoid with compact space of objects there 
exist bisections through each arrow.

We also obtain the following well known result on the natural action of Diff(M) on M (cf. [1,21]).

Corollary 2.17. If M is a compact and connected manifold, then Diff(M)0 acts transitively on M .

Remark 2.18.

a) Note that [37, Theorem 3.1] holds for arbitrary finite-dimensional α-connected Lie groupoids whereas 
Corollary 2.16 is limited to groupoids over compact base.

b) The assumption on G to be source connected cannot be dispensed with. For instance, if N, N ′ are 
non-diffeomorphic compact manifolds (of the same dimension), then the pair groupoid P(M) := (M ×
M ⇒ M) of M := N � N ′ has Bis(P(M)) ∼= Diff(M) and the action of Bis(P(M)) on the source fibre 
naturally identifies with the natural action of Diff(M) on M . But since N, N ′ are not diffeomorphic, 
there cannot exist a diffeomorphism of M that interchanges the points n and n′ if n ∈ N and n′ ∈ N ′. 
Consequently, there cannot exist a bisection through the morphism ((n, n′), (n′, n)) of P(M).
However, as we have seen in Example 2.12, there exist non-source connected Lie groupoids, for 
which there exist bisections through each point. For another example consider the gauge groupoid 
G = Gauge(M × K) of the trivial principal bundle M × K → M , then Bis(Gauge(M × K)) ∼=
Aut(M × K) ∼= C∞(M, K) � Diff(M). If M is connected, then Diff(M) acts transitively on M
and C∞(M, K) always acts transitively on K. Thus there exist a bisection through each arrow of 
Gauge(M × K), even if K is not connected. �

Before we continue with our investigation of the bisection action groupoid, note the following interesting 
consequences of Corollary 2.5.

Lemma 2.19. Let G be locally trivial and denote by θ : Bis(G) × M → M, (σ, x) �→ βG ◦ σ(m) the canonical 
Lie group action. Then

a) θ restricts for each m ∈ M to a submersion θm : Bis(G) × {m} → M .

If in addition G admits bisections through each arrow or M is connected, then

b) B(G) is locally trivial and θ is transitive.

Proof. As G is locally trivial βG |α−1(m) : α−1(m) → M is a surjective submersion. Since the αB-fibre is 
Bis(G) and evm : Bis(G) → α−1(m) is a submersion by Corollary 2.5 we see that βB|α−1

B (m) = βG ◦ evm is a 
submersion. We claim that βB is surjective. If this is true then B(G) is locally trivial by [16, Proposition 1.3.3]
which carries over verbatim to our infinite-dimensional setting. Moreover, we derive that the canonical action 
of Bis(G) is transitive and restricts to a submersion Bis(G) × {m} → M for all m ∈ M .

To prove the claim we have to treat both cases separately. Assume first that G admits bisections through 
each arrow, then evm is surjective and thus βB is surjective. On the other hand let now M be connected. 
Then we note that βB = ẽvm ◦ (βG)∗, where (βG)∗ : Bis(G) → Diff(M), σ �→ βG ◦ σ and ẽvm : Diff(M) →
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M, ϕ �→ ϕ(m). Now the image of (βG)∗ contains the identity component Diff(M)0 of Diff(M) (by [31, 
Example 3.16]) and Diff(M)0 acts transitively on the connected manifold M by Corollary 2.17. Thus βB is 
surjective.

We conclude that in both cases the assertion holds. �
Remark 2.20. Quotient constructions for Lie groupoids (and already for Lie groups) are quite tricky. In fact, 
Lie groupoids are a tool to circumvent badly behaved quotients (for instance for non-free group actions). 
However, each category carries a natural notion of quotient object for an internal equivalence relation. If 
C is a category with finite products and R ⊆ E × E is an internal equivalence relation, then the quotient 
E → E/R in C (uniquely determined up to isomorphism) is, if it exists, the coequaliser of the diagram

R
pr1

pr2
E . (10)

If, in the case that the quotient exists, (10) is also the pull-back of E → E/R along itself, then the quotient 
E → E/R is called effective (see [19, Appendix.1] for details). We want to apply this to the category 
LieGroupoidsM , whose objects are locally convex and locally metrisable Lie groupoids over M and whose 
morphisms are smooth functors that are the identity on M . Note that the product of two Lie groupoids 
(G ⇒ M) and (H ⇒ M) is given by restricting the product Lie groupoid (G ×H ⇒ M ×M) to the diagonal 
M ∼= ΔM ⊆ M × M . �
Theorem 2.21. If G = (G ⇒ M) is a Lie groupoid with a bisection through each arrow in G, e.g. G is source 
connected, then the morphism ev: B(G) → G is the quotient of B(G) in LieGroupoidsM by

R = {(σ,m), (τ,m) ∈ Bis(G) × Bis(G) × M | σ(m) = τ(m)}.

Proof. We first note that R is isomorphic to K × Bis(G), where

K := {(σ,m) ∈ Bis(G) × M | σ(m) = 1m} = ev−1(M) (11)

is the kernel of ev. To see this note that as M ⊆ G is a closed submanifold and ev is a submersion by 
Corollary 2.10, it follows that K is a closed submanifold of Bis(G) × M . Now

Bis(G) × Bis(G) × M → Bis(G) × M × Bis(G), ((σ,m), (τ,m)) �→ (σ � τ−1,m, τ)

is a diffeomorphism which maps R onto K × Bis(G). Consequently, R is a closed submanifold of Bis(G) ×
Bis(G) × M .

We now argue that R is in fact an internal equivalence relation. It is clear that the relation is reflexive 
and symmetric. After applying the diffeomorphism (11), the second projection pr2 : R → Bis(G) × M , 
((σ, m), (τ, m)) �→ (τ, m) is an actual projection. So pr2 is a surjective submersion. Thus the pull-back

R ∗ R := R ×(Bis(G)×M) R = {(((σ,m), (τ,m)), ((σ′,m′), (τ ′,m′))) | m = m′, τ = σ′}

is a submanifold of R × R and

R ∗ R → Bis(G) × Bis(G) × M, (((σ,m), (τ,m)), ((τ,m), (τ ′,m))) �→ ((σ,m), (τ ′,m))

clearly factors through R. Consequently, R is an internal equivalence relation.
Finally, if f : Bis(G) × M → H is a morphism of Lie groupoids that satisfies f ◦ pr1 = f ◦ pr2 (for 

pri : R → Bis(G) × M the canonical maps), then we construct a smooth map ϕ : G → H by taking a local 
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smooth section of ev and composing it with f . Since f ◦pr1 = f ◦pr2, two possible pre-images of an element 
from G in Bis(G) × M are mapped to the same element in H, and thus ϕ is well-defined and smooth by 
construction. One directly checks that it also defines a morphism of Lie groupoids (i.e., ϕ is compatible with 
the structure maps, see also [16, Proposition 2.2.3]). �
Remark 2.22. We have seen in Theorem 2.21 that a source connected Lie groupoid G with compact base 
is the quotient of its associated bisection action Lie groupoid B(G). However, Theorem 2.21 already uses 
that a candidate for the quotient, namely G exists. Thus the theorem does not provide the existence of the 
quotient without using G. �

In the proof of Theorem 2.21 it is visible that the quotient of B(G) was taken with respect to the 
kernel5 of the base-preserving morphism ev. We refer to [16, 2.2] for details on the groupoid quotient by a 
normal subgroupoid. Since ev is a surjective submersion in the situation of Theorem 2.21, its kernel is a Lie 
subgroupoid of B(G). Finally, the α-fibre of the kernel over m ∈ M is given by

ev(·,m)−1{1m} = {σ ∈ Bis(G) | σ(m) = 1m}.

In the next section we will study the subgroups of Bis(G) which arise from this construction. Later on these 
information will allow us to investigate the groupoid quotients in more detail.

3. Subgroups and quotients associated to the bisection group

In this section we study subgroups of the bisections which are associated to a fixed point in the base 
manifold. These subgroups are closely related to the reconstruction result outlined in Theorem 2.21 and 
will become an important tool to study locally trivial Lie groupoids in Sections 4 and 5.

As before, (unless stated explicitly otherwise) we shall assume that G = (G ⇒ M) is a locally metrisable 
Lie groupoid over a compact base M which admits an adapted local addition.

Definition 3.1. Let G = (G ⇒ M) be a locally convex Lie groupoid (we require neither that M is compact 
or finite dimensional nor that G admits a local addition). Fix m ∈ M and denote by Vertm(G) the vertex 
subgroup of the groupoid G. There are now two subsets of Bis(G) whose elements are characterised by their 
value at m

Loopm(G) := {σ ∈ Bis(G) | σ(m) ∈ Vertm(G) = α−1(m) ∩ β−1(m)},

Bism(G) := {σ ∈ Bis(G) | σ(m) = 1m}.

Clearly Bism(G) ⊆ Loopm(G) and both are subgroups of Bis(G) by definition of the group operation (see 
(2) and (3)). �

Note that Bism(G) is a normal subgroup of Loopm(G) as for σ ∈ Bism(G) and τ ∈ Loopm(G) we have

τ � σ � τ−1(m) = τ � (σ ◦ β ◦ τ · τ)(m) = τ(β ◦ σ ◦ β ◦ τ(m)︸ ︷︷ ︸
=m

) · (σ(β ◦ τ(m)︸ ︷︷ ︸
=m

) · τ(m)

= τ(m) · 1m · τ−1(m) = 1m.

5 I.e. the set {g ∈ B(G) | ev(g) = 1x for some x ∈ M} which is a wide subgroupoid of the inner subgroupoid, called a normal Lie 
subgroupoid (see [16, Definition 2.2.2]).
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We will now investigate the subgroups from Definition 3.1 in the case that Bis(G) is a Lie group. Thus M
will be assumed to be compact, whence Lemma A.4 implies that the vertex group Vertm(G) of G = (G ⇒ M)
is a submanifold of G and in particular a Lie group.

Proposition 3.2. Fix some m ∈ M .

a) The group Loopm(G) is a Lie subgroup of Bis(G) and as a submanifold in Bis(G) it is of finite codimen-
sion.

b) The map evm : Bis(G) → α−1(m) restricts to a Lie group morphism ψm : Loopm(G) → Vertm(G) whose 
kernel is Bism(G). Moreover, ψm is a submersion.

c) The group Bism(G) is a split Lie subgroup of Loopm(G) and a split Lie subgroup of Bis(G). It is modelled 
on Γ(1∗TαG)m = {X ∈ Γ(1∗TαG) | X(1m) = 01m

}.
d) If G is a Banach–Lie groupoid then Bism(G) is a co-Banach submanifold in Loopm(G) and also in 

Bis(G).

Proof.

a) Recall that by Corollary 2.5 the map evm : Bis(G) → α−1(m) is a submersion. Moreover, the vertex 
group Vertm(G) is a submanifold of finite codimension of α−1(m) by Lemma A.4. Thus Loopm(G) =
ev−1

m (Vertm(G)) is a submanifold of finite codimension in Bis(G) by [7, Theorem C]. Now Loopm(G) is 
a subgroup and a split submanifold of Bis(G) whence a split Lie subgroup.

b) To see that ψm is also a group homomorphism we pick σ, τ ∈ Loopm(G) and compute

ψm(σ � τ) = ψm((σ ◦ β ◦ τ) · τ) = σ(β(τ(m)) · τ(m) = σ(m) · τ(m) = ψm(σ) · ψm(τ).

As evm(σ) = 1m if and only if σ(m) = 1m, we see that Bism(G) is the kernel of ψm. Having applied [7, 
Theorem C] in part a), we observe that this also entails that ψm is a submersion.

c) By part b) the subgroup Bism(G) is the preimage of a singleton under a submersion, whence a split 
submanifold of Loopm(G) by the regular value theorem [7, Theorem D]. In particular, Bism(G) becomes 
a split Lie subgroup of Loopm(G). Since Loopm(G) is a split submanifold in Bis(G), [7, Lemma 1.4]
yields that Bism(G) is a split submanifold of Bis(G) and thus a split Lie subgroup of Bis(G).
Recall that by the regular value theorem the tangent space of Bism(G) at 1 is the kernel kerT1 evm ⊆
T1 Bis(G) ∼= Γ(1∗TαG). Taking identifications we compute kerT1 evm as a subspace of Γ(1∗TαG). On 
the level of isomorphism classes of curves the isomorphism ϕG : T1 Bis(G) → Γ(1∗TαG) is given by

ϕG([t �→ c(t)]) = (m �→ [t �→ c∧(t,m)])(cf. [31, Remark 4.1]).

Hence ϕG identifies T1 evm with Γ(1∗TαG) → G, X �→ X(m) whose kernel is Γ(1∗TαG)m.
d) If G is a Banach–Lie groupoid then α−1(m) and thus also Vertm(G) are manifolds modelled on Banach-

spaces. In this situation the regular value theorem implies that Bism(G) is a co-Banach submanifold of 
Loopm(G). Since Loopm(G) is of finite codimension in Bis(G), we deduce that Bism(G) is a co-Banach 
submanifold of Bis(G). �

An important property of the Lie subgroups constructed in Proposition 3.2 is that they are regular as 
Lie groups (we recall the definition of regularity for Lie groups in Appendix B). Namely, the subgroups 
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Bism(G) and Loopm(G) will be regular Lie groups if Bis(G) is a regular Lie group. Let us first recall when 
bisection groups are regular.6

Remark 3.3. In [31, Section 5] we established Ck-regularity of Bis(G) if G is either

a) a Banach–Lie groupoid (then Bis(G) is C0-regular);
b) or a locally-trivial Lie groupoid whose vertex groups are locally exponential Ck-regular Lie groups (then 

Bis(G) is Ck-regular). �
We will now prove that Bism(G) and Loopm(G) inherits the regularity properties from Bis(G).

Proposition 3.4. Let G = (G ⇒ M) be a Lie groupoid and fix m ∈ M . Assume that Bis(G) is Ck-regular 
for some k ∈ N0 ∪ {∞}, e.g. in the situation of Remark 3.3. Let H be either Bism(G) and Loopm(G) and 
consider η ∈ Ck([0, 1], L(H)).

a) The solution γη of the initial value problem

{
γ′(t) = γ(t).η(t) ∀t ∈ [0, 1]
γ(0) = 1

(12)

in G takes its image in H.
b) The Lie groups Bism(G) and Loopm(G) are Ck-regular

Proof.

a) Fix η ∈ Ck([0, 1], L(H)) together with the evolution γη : [0, 1] → Bis(G) of η. The composition evm ◦γη
yields a smooth curve in α−1(m). As γη solves (12) we already know that evm ◦γη(0) = 1m. Now we 
consider both subgroups separately:

Case H = Bism(G). By definition, γη will take its image in Bism(G) if evm ◦γη(t) = 1m, ∀t ∈ [0, 1], i.e. 
we have to prove that (evm ◦γη)′(t) = 0 ∈ Tα

γη(t)G, ∀t ∈ [0, 1]. To this end fix t ∈ [0, 1] and a curve 
ct,η : ] − ε, ε[→ Bism(G) such that ct,η(0) = 1 and η(t) (as an element in the tangent space T1 Bism(G)) 
coincides with the equivalence class [s �→ ct,η(s)]. Now we compute

(evm γη)′(t) = T evm(γ′
η(t))

(12)= T evm(γη(t).η(t)) = T (evm ◦λγη(t))(η(t))

= [s �→ evm(γη(t) � ct,η(s))] = [s �→ γη(t)(β ◦ ct,η(s)(m)) · ct,η(s)(m)] (13)

= [s �→ γη(t)(m) · 1m] = 0 ∈ Tα
γη(t)(m)G

In passing from the second to the last line, we have used ct,η(s) ∈ Bism(G), whence ct,η(s)(m) = 1m. 
We finally conclude that γη(t) ∈ Bism(G) for all t ∈ [0, 1] if η ∈ Ck([0, 1], L(Bism(G)).

Case H = Loopm(G). We need to show that for all t ∈ [0, 1] we have γη(t) ∈ Vertm(G), i.e. that 
β ◦evm ◦γη(t) = m. Since evm(γη(0)) = 1m this will follow from (β ◦evm ◦γη)′(t) = 0 for all t ∈ [0, 1]. To 
this end fix again t ∈ [0, 1] and a curve ct,η : ] −ε, ε[→ Loopm(G) with ct,η(0) = 1 and η(t) = [s �→ ct,η(s)]. 
Computing as in (13) we obtain

6 At the moment, no example of a non-regular Lie group modelled on a space with suitable completeness properties (i.e. Mackey 
completeness) is known.
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(β ◦ evm ◦γη)′(t) (13)= [s �→ β (γη(t)(m) · ct,η(s)(m))] = [s �→ β (γη(t)(m))] = 0 ∈ Tβ(γη(t)(m))M.

We can thus conclude that γη(t) ∈ Loopm(G) for all t ∈ [0, 1] if η ∈ Ck([0, 1], L(Loopm(G))).
b) Proposition 3.2 c) asserts that the subgroups Bism(G) and Loopm(G) are closed subgroups of the 

Ck-regular Lie group Bis(G). By part (a), the Lie groups Bism(G) and Loopm(G) are Ck-semiregular. 
Thus Lemma B.5 proves that Bism(G) and Loopm(G) are Ck-regular. �

Example 3.5. Let M be a compact manifold and consider the pair groupoid P(M) = (M × M ⇒ M). The 
vertex group Vertm(P(M)) for m ∈ M is just {(m, m)}, whence Loopm(P(M)) = Bis(P(M))m. Then the 
map (pr2)∗ : Bis(P(M)) → Diff(M), σ �→ pr2 ◦σ is an isomorphism of Lie groups. By construction, this 
restricts to an isomorphism

Loopm(P(M)) = Bis(P(m))m ∼= Diffm(M) := {ϕ ∈ Diff(M) | ϕ(m) = m}.

In particular, we infer from Proposition 3.2 and Proposition 3.4 that Diffm(M) is a regular and split Lie 
subgroup of Diff(M). �
Proposition 3.6. Let G = (G ⇒ M) be a Lie groupoid. For m ∈ M we endow the right coset space 
Bis(G)/ Bism(G) with the quotient topology induced by Bis(G). Then the map evm induces homeomorphisms

a) a homeomorphism ẽvm of Bis(G)/ Bism(G) onto evm(Bis(G)) ⊆◦ α−1(m),
b) an isomorphism of topological groups em of Λm := Loopm(G)/ Bism(G) onto an open subgroup of 

Vertm(G),

Moreover, Bis(G)/ Bism(G) and Loopm(G)/ Bism(G) carry unique manifold structures turning the canonical 
quotient maps into submersions.

If there is a bisection through every arrow in G, e.g. G is α-connected, then Bis(G)/ Bism(G) ∼= α−1(m)
as manifolds and Loopm(G)/ Bism(G) ∼= Vertm(G) as Lie groups.

Proof.

a) By definition, the quotient topology turns qm : Bis(G) → Bis(G)/ Bism(G), σ �→ σ Bism(G) into a quo-
tient map. Recall from Corollary 2.5 that evm : Bis(G) → α−1(m) is a submersion, whence its image 
in the α-fibre is open. For τ ∈ Bis(G)m we observe evm(σ � τ) = σ � τ(m) = σ(β(τ(m)))τ(m) =
σ(β(1m))1m = σ(m) = evm(σ). Hence evm is constant on right cosets and evm factors through 
hm : Bis(G)/ Bism(G) → im evm ⊆◦ α−1(m), σ Bis(G) �→ evm(σ). Now hm is continuous since evm =
hm ◦ qm is continuous.
Let us prove that for σ, τ ∈ Bis(G) with evm(σ) = evm(τ) we have σ−1�τ ∈ Bism(G). Using the formulae 
(2) and (3) for the group operations of Bis(G) we obtain

σ−1 � τ(m) = σ−1(β(τ(m)))τ(m) = σ−1(β(σ(m)))σ(m) = ι(σ(m))σ(m) = 1m.

Hence σ−1 � τ ∈ Bism(G) if σ(m) = τ(m) and in this case we see σ Bism(G) = τ Bism(G). This implies 
that hm is a bijection onto the open set im evm.
We deduce from Corollary 2.5 that evm |im evm : Bis(G) → im evm ⊆◦ α−1(m) is a surjective submersion. 
In particular, evm is open, whence a quotient map and thus qm = h−1

m ◦ evm implies that h−1
m is 

continuous.
b) By Proposition 3.2 b) we know that evm induces a Lie group morphism ψm : Loopm(G) → Vertm(G)

which is a submersion. Its kernel is the normal Lie subgroup Bism(G). Thus Loopm(G)/ Bism(G) with the 



246 A. Schmeding, C. Wockel / Differential Geometry and its Applications 49 (2016) 227–276

quotient topology becomes a topological group such that ψm descents to an isomorphism of topological 
groups onto evm(Loopm(G)) ⊆◦ Vertm(G). Endow the quotient with the manifold structure turning the 
isomorphism into an isomorphism of Lie groups. Then the canonical quotient map becomes a submersion 
as a composition of a diffeomorphism and the submersion ψm.

The manifold structure on the open submanifolds im evm ⊆◦ α−1(m) and evm(Loopm(G)) ⊆◦ Vertm(G) is 
uniquely determined up to diffeomorphism by the property that evm is a submersion. This is due to [7, 
Lemma 1.9].

The last assertion follows from part a) and b), since then im evm = α−1(m) and imψm = Vertm(G)
hold. �
Example 3.7. Suppose π : P → M is a principal K-bundle for some locally exponential Lie group K with 
connected P . Then the gauge groupoid Gauge(P ) := ((P × P )/K ⇒ M) admits an adapted local addition 
[31, Proposition 3.14] and Bis(Gauge(P )) is naturally isomorphic to Aut(P ). Assume that K and P are 
locally metrisable, i.e. Gauge(P ) is locally metrisable. The source fibre α−1(m) = (Pm ×P )/K of Gauge(P )
is diffeomorphic to P by choosing o ∈ Pm and mapping 〈p, q〉 to q.(p−1 · o). Here we use p−1 · o as the 
suggestive notation for the element k ∈ K that satisfies p.k = o. With respect to these identification the 
evaluation evm turns into the evaluation map

evo : Aut(P ) → P, ϕ �→ ϕ(o).

Consequently,

Auto(P ) := ev−1(o) = {f ∈ Aut(P ) | f(o) = o}

is a Lie subgroup of Aut(P ) and by Proposition 3.6, Aut(P )/ Auto(P ) carries a unique smooth structure 
turning the induced map [ϕ] �→ ϕ(p) into a diffeomorphism. So we may view P a homogeneous space for 
its automorphism group. In particular, this applies to the trivial bundle, yielding a smooth structure on 
Diff(M)/ Diffm(M) and a diffeomorphism Diff(M)/ Diffm(M) ∼= M . �

By now, the quotients Bis(G)/ Bism(G) and Loopm(G)/ Bism(G) carry a manifold structure which was 
derived from the manifold structure of the α-fibre to the quotient. However, if the Lie groupoid G is 
a Banach–Lie groupoid then the homogeneous space Bis(G)/ Bism(G) already carries a natural manifold 
structure as a homogeneous space. This is a consequence of Glöckner’s inverse function theorem (see the 
next Lemma for references and details). Again this manifold structure turns the canonical quotient map 
into a submersion.

Lemma 3.8. Let G = (G ⇒ M) be a Banach–Lie groupoid and m ∈ M . Then the homogeneous spaces 
Bis(G)/ Bism(G) and Loopm(G)/ Bism(G) are manifolds and these manifold structures coincide with the 
ones obtained in Proposition 3.6.

Proof. Combining Proposition 3.4 and Remark 3.3 we see that Bism(G) is a C0-regular closed Lie sub-
group of Bis(G) and of Loopm(G). Moreover, Bism(G) is a co-Banach submanifold in both Loopm(G) and 
Bis(G). Thus the homogeneous spaces Bis(G)/ Bism(G) and Loopm(G)/ BisGm carry manifold structures by 
[7, Theorem G (a)]. Furthermore, since Bism(G) is a normal Lie subgroup, the manifold Loopm(G)/ BisGm

becomes a Lie group. In both cases this manifold structure turns the canonical quotient map into a sub-
mersion. By the uniqueness assertion in Proposition 3.6 the manifold structures on the homogeneous spaces 
must coincide. �
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The interesting feature of the manifold structure obtained on the homogeneous spaces Bis(G)/ Bism(G)
and Loopm(G)/ Bism(G) for Banach–Lie groupoids is that it exactly coincides with the structure induced 
by the fibre. Hence, under some assumptions, we can endow the quotient Bis(G)/ Bis(G)∗ with a manifold 
structure which does not a priori use the manifold structure on the α-fibre. We will apply these results in 
the next section after we compile some more facts on natural group actions on the quotient Bis(G)/ Bism(G).

Lemma 3.9. Let G = (G ⇒ M) be a Lie groupoid, fix m ∈ M and define Λm := Loopm(G)/ Bism(G). Then 
the quotient Bis(G)/ Bism(G) admits left- and right group actions

λBis(G) : Bis(G) × (Bis(G)/Bism(G)) → Bis(G)/Bism(G), (σ, τ Bism(G)) �→ (σ � τ) Bism(G)

ρΛm
: (Bis(G)/Bism(G)) × Λm → Bis(G)/Bism(G), (σ Bism(G), γ Bism(G)) �→ (σ � γ) Bism(G)

which commute, i.e. λBis(G)(σ, ·) ◦ ρΛm
([τ ], ·) = ρΛm

([τ ], ·) ◦ λBis(G)(σ, ·) for all σ ∈ Bis(G) and [τ ] ∈ Λm.

Proof. Observe that Bis(G) acts via left translation on itself and this action descents to a group action 
on the quotient Bis(G)/ Bism(G). Moreover, Loopm(G) acts via right translation on Bis(G) and this action 
descents to a Λm = Loopm(G)/ Bism(G)-action on the quotient. The left action by left translation on Bis(G)
commutes with the right translation with elements in Loopm(G), whence the induced actions on the quotient 
commute. �
Lemma 3.10. Let G be a transitive Lie groupoid which admits bisections through each arrow. Then λBis(G)
is an effective group action, i.e. λBis(G)(σ, ·) = idBis(G)/ Bism(G) implies σ = 1.

Proof. The prerequisites imply that evm is a surjective map. Consider σ ∈ Bis(G) \ {1} and choose n ∈ M

such that σ(n) �= 1n. Now G is transitive, whence there is gn ∈ α−1(m) with β(g) = n. As evm is surjective 
we can choose τ ∈ Bis(G) with τ(m) = gn. Arguing indirectly, we assume that [σ � τ ] = [τ ], i.e. there is 
s ∈ Bism(G) with σ � τ = τ � s. Evaluating in m, we use s ∈ Bism(G) to obtain

σ(n) · g = σ(β(τ(m)) · τ(m) = (σ � τ)(m) = (τ � s)(m) = τ(m) · 1m = g

Hence, σ(n) = g · g−1 = 1n follows, contradicting our choice of n. We conclude that λBis(G) is effective. �
Remark 3.11. In general, the left action ΛBis(G) will not be effective. To see this, we return to the example 
given in Remark 2.18 b):

Let M = N �N ′ be the disjoint union of two non-isomorphic smooth manifolds. Then the pair groupoid 
P(M) is locally trivial, but there are arrows which are not contained in the image of any bisection. Fix 
m ∈ N and recall that

Bis(G) ∼= Diff(M) ∼= Diff(N) × Diff(N ′) and Bism(G) ∼= Diffm(N) × Diff(N ′).

Thus Bis(G)/ Bism(G) ∼= Diff(N)/ Diffm(N). Hence, for ϕ ∈ Diff(N ′) the bisection idN ×ϕ acts trivially 
on Bis(G)/ Bism(G). If N ′ is not the singleton manifold, choose ϕ �= idN ′ , to see that λBis(G) can not be 
effective. �
Lemma 3.12. Let G = (G ⇒ M) be a Lie groupoid, fix m ∈ M and define Λm := Loopm(G)/ Bism(G). Then 
the map

ẽvm : Bis(G)/Bism(G) → ẽvm(Bis(G)/Bism(G)) ⊆◦ α−1(m), σ Bism(G) �→ σ(m)
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(cf. Proposition 3.6) is equivariant with respect to the right Λm-action ρΛm
and the right Vertm(G)-action, 

i.e. for τ ∈ Loopm(G) and σ ∈ Bis(G) we obtain the formula

ẽvm((σ � τ) Bism(G))) = ẽvm(ρΛm
(σ Bism(G), τ Bism(G))) = ẽvm(σ Bism(G))) · τ(m)

Proof. Fix σ ∈ BisG and τ ∈ Loopm(G) and compute

ẽvm((σ � τ) Bism(G))) = (σ � τ)(m) = σ(β(τ(m))︸ ︷︷ ︸
=m

) · τ(m) = σ(m) · τ(m) = ẽvm(σ Bism(G))τ(m). �

4. Locally trivial Lie groupoids and transitive group actions

Our aim is now to study the construction of groupoids from their groups of bisections for locally trivial 
Lie groupoids. Again we consider in this section only Lie groupoids over a compact manifold M that admit 
an adapted local addition. Moreover, we choose and fix a point m ∈ M .

For locally trivial Lie groupoids the α-fibre over any point already determines the manifold of arrows. 
Hence, the groupoid quotient discussed in Theorem 2.21 of B(G) is determined by a quotient of the α-fibre. 
To construct the quotient, one needs to construct the fibre over a point and the vertex group from the group 
action of Bis(G) on M and the subgroup Bism(G). Following Proposition 3.6 these objects can be obtained 
as certain quotients of the group of bisections. The idea is now to study similar situation for abstract Lie 
groups and relate these Lie groups to groups of bisections. To this end, we define the central notion of this 
section:

Definition 4.1. Let θ : K × M → M be a transitive (left-)Lie group action of a Lie group K modelled on a 
metrisable space and H be a subgroup of K.

Then we call (θ, H) a transitive pair (over M with base point m) if the following conditions are satisfied:

(P1) the action is smoothly transitive, i.e., the orbit map θm := θ(·, m) is a surjective submersion,
(P2) H is a normal Lie subgroup of the stabiliser Km of m and this structure turns H into a regular Lie 

group which is co-Banach as a submanifold in Km.

The largest subgroup of H which is a normal subgroup of K is called kernel of the transitive pair.7 If the 
action of K on M is also n-fold transitive, then we call (θ, H) an n-fold transitive pair. �

Transitive pairs are closely related to Klein geometries [29, Chapter 3]. Indeed, they can be understood 
as infinite-dimensional Klein geometries for principal bundles. This view motivates the notion of the kernel 
of a transitive pair. We will come back to this perspective in Remark 4.19.

A transitive pair will allow us to construct a locally trivial Lie groupoid which is related to the group 
action on M . Before we begin with this construction, let us first exhibit two examples of transitive pairs.

Example 4.2.

a) Let G = (G ⇒ M) be a locally trivial Banach–Lie groupoid over a compact manifold M . By [31, 
Proposition 3.12] G admits an adapted local addition, whence Bis(G) becomes a Lie group. Then the 
Lie group action θ : Bis(G) × M → M, θ := β ◦ ev induces a submersion θm = β|α−1(m) ◦ evm by 

7 We will see in Proposition 4.16 that there exists a kernel for each transitive pair. By standard arguments for topological groups, 
the kernel is a closed subgroup. In general this will not entail that the kernel is a closed Lie subgroup (of the infinite-dimensional 
Lie group K).
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Lemma 2.19. Observe that Km = Loopm(G) and Bism(G) ⊆ Loopm(G) is a normal subgroup. Combining 
Proposition 3.2 and Proposition 3.4 we see that (θ, Bism(G)) is a transitive pair if the action θ is 
transitive.
In general θ will not be transitive. However, under some mild assumptions, e.g., M being connected or 
if G admits bisections through each arrow (see Lemma 2.19), the action will be transitive and we obtain 
a transitive pair.

The preceding example motivated the definition of a transitive pair. However, one has considerable freedom 
in choosing the ingredients for such a pair (see also Remark 4.3):

b) Consider the diffeomorphism group Diff(M) of a compact and connected manifold M . Choose a Lie group 
B modelled on a Banach space and define K := Diff(M) ×B. Then K becomes a Lie group which acts 
transitively via θ : K × M → M, ((ϕ, b), m) �→ ϕ(m). Fix m ∈ M and observe that θm is a submersion 
as θm = evm ◦ pr1 and evm : Diff(M) → M is a submersion. By construction Km = Diffm(M) × B

and H := Km is a regular (and normal) Lie subgroup of Km by Proposition 3.4.8 We conclude that 
(evm ◦ pr1, Diffm(M) × B) is a transitive pair. �

Remark 4.3. The conditions (P1) and (P2) in Definition 4.1 are quite weak. We illustrate this by rewriting 
the conditions for finite-dimensional Lie groups:

If K is a finite-dimensional Lie group, the conditions (P1) and (P2) are equivalent to

(Pfin) H is a normal closed subgroup of the stabiliser Km of m under the action θ.

Proof. To see this note that Km = θ−1
m (m) is a closed subgroup of the finite-dimensional Lie group K, 

whence it is a Lie subgroup of K. Then θm factors through K/Km
∼= M and thus (P1) holds as K → K/Km

is a submersion. Note that H is a closed subgroup of Km and every Lie subgroup of a finite-dimensional 
Lie group is co-Banach as a submanifold and a regular Lie group. Hence (Pfin) implies (P2). �
Remark 4.4. From a transitive pair (θ : K×M → M, H) we can construct the following normal subgroupoid 
N(θ, H) of the action groupoid K �θ M . For each n ∈ M , we choose some kn ∈ K with θ(kn, m) = n and 
set Hn := kn · H · k−1

n . Then Hn is a normal subgroup of Km that does not depend on the choice of kn. 
Indeed, if θ(k′

n, m) = n, then we have k−1
n k′

n ∈ Km and thus

knHk−1
n = knk

−1
n k′

nH(k′
n)−1knk

−1
n = k′

nH(k′
n)−1,

since H is normal in Km. Moreover,

N(θ,H) :=
⋃

n∈M

Hn × {n}

is a closed submanifold of K ×M , which can be seen as follows: by (P1) there exist for each n ∈ M an open 
neighbourhood U ⊆ M of n such that we can choose kp to depend smoothly on p for p ∈ U . Then

G × U → G × U, (g, p) �→ (k−1
p gkp, p)

is a diffeomorphism that maps N(θ, N) ∩ (G × U) to the submanifold H × U of G × M . Thus N(θ, N) is a 
normal Lie subgroupoid of K �θ M .

8 Here we have used that for the pair groupoid P(M) the Lie group Diff(M) = Bis(P(M)) is regular and Bism(P(M)) =
Diffm(M). Moreover, B is regular as a Banach Lie group and L(Diff(M) × B) ∼= L(Diff(M)) × L(B).
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On the other hand, given a transitive action of K on M , each normal Lie subgroupoid of K�M gives rise 
to a normal subgroup H of Km, and one easily sees that these two constructions are inverse to each other. 
Thus normal Lie subgroupoids of action groupoids are the equivalent reformulation of transitive pairs that 
do not require to fix a point m ∈ M . However, it will be analytically much easier to work with transitive 
pairs (see Remark 4.10) and to have in mind that the choice of a base point does not matter. �

Now we associate a locally trivial Lie groupoid to a transitive pair. To this end, we will first construct a 
principal bundle which will then give rise to the desired locally trivial Lie groupoid.

Proposition 4.5. Let (θ, H) be a transitive pair. Then the quotients K/H and Λm := Km/H are Banach 
manifolds. Moreover, the map θm induces a Λm-principal bundle π : K/H → M, kH �→ θ(k, m).

To prove Proposition 4.5, the following lemma deals with some needed technical details first (compare 
[35, Example D.4]).

Lemma 4.6. Let (θ, H) be a transitive pair. The group action θ induces a Km = θ−1
m (m)-principal bundle 

θm : K → M . Canonical bundle trivialisations for this bundle are given by

θ−1
m (Ui) → Ui × Km, g �→ (θm(g), σi(θm(g))−1 · g) (14)

where (σi : Ui → θ−1
m (Ui))i∈I is a section atlas of θm.

Proof. Note that θm is a surjective submersion. Thus [7, Theorem D] implies that Km is a split Lie subgroup 
in K and θm descents to a homeomorphism K/Km

∼= M . Identify K/Km with the manifold M . Clearly by 
conjugation Km

∼= θ−1
m (n) for all n ∈ M . It is now trivial to check that (14) yields bundle trivialisations 

whose trivialisation changes are Km-torsor isomorphisms. �
Proof of Proposition 4.5. The manifold M is finite-dimensional, whence Km is a Lie subgroup of finite 
codimension (as a submanifold). By (P2) H is a co-Banach submanifold in Km and thus H is also a 
co-Banach submanifold of K by [7, Lemma 1.4]. In particular, H is a Lie subgroup of K. As H is a regular 
Lie group by (P2), we can apply [7, Theorem G (a)] to obtain a manifold structure on the quotients

pm : K → K/H and qm : Km → Km/H =: Λm

turning the projections into submersions. Moreover, we deduce from [7, Theorem G] that K/H is a Banach 
manifold, Λm is a Banach–Lie group, qm is a morphism of Lie groups and Λm acts on K/H via

ρΛm
: K/H × Λm → K/H, (gH, λH) �→ (g · λ)H.

The subgroup H is contained in Km, whence θm induces a map π : K/H → M which satisfies π ◦ pm = θm. 
Now pm and θm are submersions, whence π is smooth with surjective tangent map at every point (cf. [7, p.2 
and Lemma 1.8]). Since M is finite-dimensional, [7, Theorem A] implies that π is a submersion. The action 
θ is transitive and thus π is surjective submersion. Note that the π-fibre over a point n ∈ M is given by

π−1(n) = pm(θ−1
m (n)) = {gH ∈ K/H | θ(g,m) = n}.

Now it is easy to see that the π-fibres coincide with the orbits of the action ρΛm
and the ρΛm

-action on the 
fibres is free, i.e. π−1(n) is a Λm-torsor for each n ∈ M .

To turn π : K/H → M into a Λm-principal bundle we will now prove that the change of trivialisations 
induce Λm-torsor isomorphisms. Recall that by Lemma 4.6 the bundle θm : K → M is a Km-principal 
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bundle. The trivialisations (14) descent to K/H via

κi : π−1(Ui) → Ui × Λm, (gH) �→ (π(gH), ((σi(π(gH)))−1 · g)H). (15)

For each i ∈ I we obtain a commutative diagram

K

θm

pm

θ−1
m (Ui)

⊇ (14)
Ui × Km

idUi
×qm

pr1K/H

π

π−1(Ui)
⊇ κi

Ui × Λi

pr1

M Ui

⊇
Ui

and the sets π−1(Ui), i ∈ I cover K/H. Note that the trivialisation changes descent to Λm-torsor isomor-
phisms, whence the κi form an atlas of Λm-principal bundle trivialisations for K/H. Summing up, we have 
constructed a principal Λm-bundle π : K/H → M . �
Example 4.7. Let G = (G ⇒ M) be a locally trivial Banach–Lie groupoid such that there is a 
bisection through each element in G. Consider the transitive pair (β ◦ evm, Bism(G)) discussed in 
Example 4.2 a). The m-stabiliser of β ◦ ev coincides with Loopm(G) and Lemma 4.6 yields the 
Loopm(G)-bundle β ◦ evm : Bis(G) → M . Moreover, the Λm-principal bundle constructed in Proposition 4.5
is π : Bis(G)/ Bism(G) → M, σ Bism(G) �→ β(σ(m)) with Λm = Loopm(G)/ Bism(G). Then the α-fibre 
through m yields a Vertm(G)-principal bundle β|α−1(m) : α−1(m) → M . Now Proposition 3.6 allows us to 
identify Λm and Vertm(G) and Lemma 3.12 shows that evm : Bis(G) → α−1(m) descends to a Λm-principal 
bundle isomorphism

Bis(G)/Bism(G)
ẽvm

π

α−1(m)

β|α−1(m)

M

. �

Definition 4.8. Let (θ, H) be a transitive pair with associated Λm-principal bundle π : K/H
Λm−−→ M . As 

principal bundles correspond to locally trivial groupoids, this allows us to construct a gauge groupoid

R(θ,H) :=

⎛
⎜⎜⎜⎜⎝

K/H×K/H
Λm

βRαR

M.

⎞
⎟⎟⎟⎟⎠

with αR(〈gH, kH〉) = π(kH) and βR(〈gH, kH〉) = π(gH). �
Note that we will work with the gauge groupoid R(θ, H) associated to the transitive pair (θ, H) and 

not with the principal bundle (although many constructions will be carried out in the context of principal 
bundles). The reason for this is that many interesting maps considered later can not be described as mor-
phisms of principal bundles (with fixed structure group). However, one can treat these maps as morphisms 
of (locally trivial) Lie groupoids over the fixed base M . Hence we prefer the groupoid perspective.

Before we continue, let us record some technical details on the construction of the Lie groupoid R(θ, H).
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Remark 4.9. Let (θ, H) be a transitive pair with θ : K × M → M .

a) Observe that as K/H is a Banach manifold, the gauge groupoid R(θ, H) is a Banach–Lie groupoid and 
thus R(θ, H) admits an adapted local addition by [31, Proposition 3.12]. Moreover, the gauge groupoid 
R(θ, H) is source connected if and only if K/H is connected.

b) Choose a section atlas (σi, Ui)i∈I of θm : K Km−−−→ M as in (14). This atlas induces a section atlas 
si := pm ◦ σi : Ui → π−1(Ui) ⊆ K/H of the bundle π : K/H

Λm−−→ M (cf. the proof of Proposition 4.5). 
Using these section, we identify the bisections of R(θ, H) with bundle automorphisms via the Lie group 
isomorphism from [31, Example 3.16]

Aut(π : K/H → M) → Bis(R(θ,H)), f �→ (m �→ 〈f(si(m)), si(m)〉, if m ∈ Ui. (16)

For later use we recall that the bundle trivialisations (15) induce charts for the manifold K/H×K/H
Λm

via

π−1(Ui) × π−1(Uj)
Λm

→ Ui×Uj×Λm, 〈p1, p2〉 �→ (π(p1), π(p2), δ(σi(π(p1)), p1)δ(σj(π(p2), p2)−1), (17)

where δ : K/H ×π K/H → Λm is the smooth map mapping a pair (p, q) to the element p−1 · q ∈ Λm

which maps p to q (via the Λm-right action). �
Remark 4.10. In the base point free version of transitive pairs from Remark 4.4, one constructs the groupoid 
R(θ, H) by taking the quotient

(K �θ M)/N(θ,H).

Indeed, we have the isomorphisms of Lie groupoids over M

K �θ M :=

⎛
⎜⎜⎜⎝

K × M

M

⎞
⎟⎟⎟⎠

∼=

⎛
⎜⎜⎜⎜⎝

(K×K)
Km

M

⎞
⎟⎟⎟⎟⎠

∼=

⎛
⎜⎜⎜⎜⎝

(K×K)
H

/
H
Km

M

⎞
⎟⎟⎟⎟⎠

.

Then N(θ, H) corresponds exactly to the normal subgroupoid (H×H)
H

/
H
Km

on the right hand side.
However, it is much harder to construct the smooth structure on the quotient (K�θM)/N(θ, H) directly. 

For instance, in the finite-dimensional case (or also in the case of K being a Banach–Lie group) one can 
use Godement’s criterion for the existence of the quotient (K �θ M)/N(θ, H) in the category of smooth 
manifolds (cf. [16, Theorem 2.2.4]). It is not known to the authors whether Godement’s criterion extends 
beyond Banach manifolds, whereas the construction of R(θ, H) as in 4.8 is possible in the full generality of 
our definition of a transitive pair. �

So far we have constructed a locally trivial groupoid R(θ, H) associated to a transitive pair (θ, H). Let us 
now analyse how the Lie group K (i.e. the group acting via θ on M) is related to the Lie group Bis(R(θ, H)). 
To this end, we study a natural Lie group morphism K → Bis(R(θ, H)) which is closely related to the action 
of the transitive pair.

Lemma 4.11. Let (θ, H) be a transitive pair. Then the action of K on K/H by left multiplication gives 
rise to a group homomorphism K → Aut(π : K/H

Λm−−→ M). With respect to the canonical isomorphism 

Aut(π : K/H
Λm−−→ M) ∼= Bis(R(θ, H)) of Lie groups from (16) this gives rise to the group homomorphism
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aθ,H : K → Bis(R(θ,H)), k �→ (x �→ 〈k · si(x), si(x)〉, for x ∈ Ui),

where si = pm ◦ σi, i ∈ I are the sections from 4.9 b). Moreover, aθ,H is smooth and thus a morphism of 
Lie groups.

Proof. Consider the smooth group action λK : K × K/H → K/H, (k, gH) �→ λk(gH) := (kg)H. By 
Lemma 3.9 this group action commutes with the right action ρΛm

on K/H. Hence for each k ∈ K the 
map λK(k) : K/H → K/H is a bundle automorphism of the Λm-principal bundle. Now aθ,H(k) is the image 
of the bundle automorphism λK(k) under the Lie group isomorphism (16). Since λK(kk′) = λK(k)λK(k′), 
we derive that aθ,H is a group homomorphism.

Let us now prove that aθ,H is smooth. To this end recall that K and K/H×K/H
Λm

are modelled on metris-
able spaces and Bis(R(θ, H)) ⊆ C∞(M, K/H×K/H

Λm
). Since M is compact, we apply the exponential law 

Theorem B.9 c) to see that aθ,H will be smooth if the map

a∨
θ,H : K × M → K/H × K/H

Λm
, (k, x) �→ 〈k · si(x), si(x)〉, for x ∈ Ui

is smooth. We work locally around (k, x) ∈ K × M . Fix i ∈ I such that x ∈ Ui and recall that si = pm ◦ σi

and θm(σi) = idUi
hold. Then we have

βR(〈k · si(x), si(x)〉) = π(k · si(x)) = θm(k · σi(x)) = θ(k, θm(σi(x)) = θ(k, x). (18)

Now we choose j ∈ I with θ(k, x) ∈ Uj and denote by κji the manifold charts (17) defined in Remark 4.9. 
Then the composition κji ◦ aθ,H which is defined at least on the pair (k, x) and we compute:

κji ◦ a∨
θ,H(k, x) (17)= (π(k · si(x)), π(si(x)), δ(sj(π(k · si(x))), k · si(x))δ−1(si ◦ π ◦ si(x)︸ ︷︷ ︸

=x

, si(x)))

(18)= (θ(k, x), x, δ(sj(θ(k, x)), k · si(x))) = (θ(k, x), x, δ(sj(θ(k, x)), λK(k, si(x))))

Note that the above formula did not depend on (k, x), whence it is valid for all (g, y) with a∨
θ,H(g, y) ∈

π−1(Uj)×π−1(Ui)
Λm

. In particular, we see that κji ◦ a∨
θ,H is smooth as a composition of the smooth maps θ, δ

and λK . Since K/H×K/H
Λm

carries the identification topology with respect to the atlas (Kji)i,j∈I , we deduce 
that a∨

θ,H is smooth. Summing up, this proves that aθ,H is smooth and thus a Lie group morphism. �
Before we clarify the relation of aθ,H and θ let us return briefly to the problem of (re-)constructing a 

Lie groupoid from its group of bisections (see Theorem 2.21 and Remark 2.22). To obtain a construction 
principle for Lie groupoids, we would like aθ,H to be an isomorphism of Lie groups. Then aθ,H would 
identify the Lie group with the group of bisections of R(θ, H) and thus transitive pairs would induce (up to 
isomorphism) unique locally trivial Lie groupoids. However, in general for an arbitrary transitive pair (θ, H)
the Lie group morphism aθ,H will neither be injective nor surjective. We illustrate this with two examples:

Example 4.12.

a) Let K be a compact finite-dimensional Lie group. Then K acts on itself transitively via left multiplication 

λ : K × K → K. Take m = 1K and H = {1K} to obtain the principal bundle idK : K H−→ K. The 
associated gauge groupoid is the pair groupoid K × K ⇒ K whose bisections are given by Diff(K). 
Taking this identification, aθ,H becomes the map K → Diff(K), k �→ λ(k, ·) which will only be surjective 
in trivial cases.
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b) We return to Example 4.2 b): Let B be a Banach Lie group, M a compact connected manifold and 
m ∈ M . Then (evm ◦ pr1, Diffm(M) × B) is a transitive pair. Set H := Diffm(M) × B and observe

(Diff(M) × B)/H ∼= Diff(M)/Diffm(M) ∼= M.

Moreover, since H is the m-stabiliser of the action evm ◦ pr1, we deduce that R(evm ◦ pr1, H) is isomor-
phic to the pair groupoid P(M). With respect to these identifications, the map aevm ◦ pr1,H becomes

Diff(M) × B → Bis(P(M)) ∼= Diff(M), (ϕ, b) �→ ϕ

which is surjective but can not be injective for non-trivial B. Note that this example arose from enlarging 
Diff(M) ∼= Bis(P(M)). Moreover, we record that the action of Diff(M) × B by left multiplication 
on (Diff(M) × B)/H is not effective and this causes aevm ◦ pr1,H to be not injective (cf. Lemma 4.15
below). �

As we have already pointed out, transitive pairs are quite flexible and more general than groups of 
bisections (of locally trivial Lie groupoids) However, transitive pairs are a source of Lie group morphisms 
from Lie groups with transitive actions on M into the bisections of suitable locally trivial Lie groupoids 
over M . In particular, the morphism aθ,H is closely related to the action θ as the following lemma shows.

Lemma 4.13. For a transitive pair (θ, H) the Lie group morphism aθ,H makes the diagram

K
aθ,H

θ∧

Bis(R(θ,H))

(βR)∗

Diff(M)

commutative. If aθ,H is an isomorphism of Lie groups, then the map θ∧ is a submersion.

Proof. Observe first that for x ∈ M we have (after choosing an appropriate section si) the formula (18)

βR ◦ aθ,H(k)(x) = βR(〈k · si(x), si(x)〉) = θ(k, x) = θ∧(k)(x).

Hence (βR)∗ ◦ aθ,H = θ∧ and the diagram commutes. This also entails aθ,H(H) ⊆ Loopm(R(θ, H)).
If aθ,H is a Lie group isomorphism, θ∧ is a submersion if (βR)∗ : Bis(R(θ, H)) → Diff(M) is a submersion. 

However, since R(θ, H) is locally trivial, the map (βR)∗ is a submersion by [31, Example 3.16]. �
Remark 4.14. That θ∧ must be a submersion if aθ,H is an isomorphism of Lie groups can be understood 
as the statement that the Lie group K needs to be large enough to be eligible to be the bisection group. 
In particular, if M is not a zero-dimensional manifold, this condition rules out every transitive pair which 
arises by a group action of a finite-dimensional Lie group. �

Building on the observation in Example 4.12 b) we will now develop a simple criterion which ensures 
that for a given transitive pair (θ, H) the morphism aθ,H is injective.

Lemma 4.15. Let (θ, H) be a transitive pair. The Lie group morphism

aθ,H : K → Bis(R(θ,H)), g �→ (kH �→ (g · k)H)

is injective if and only if the action λH : H × K/H → K/H, (h, gH) �→ (hg)H is effective.
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Proof. The isomorphism Aut(π : K/H
Λm−−→ M) ∼= Bis(R(θ, H)) allows us to rewrite aθ,H as the left mul-

tiplication λK : K → Aut(π : K/H
Λm−−→ M), where λK(k) : K/H → K/H, gH �→ (kg)H. Assume first that 

aθ,H (and thus also λK) is injective. Now consider k ∈ H such that (hg)H = gH for all g ∈ G. This implies 
λK(h)(gH) = (hg)H = gH = idK/H(gH), whence h = 1K as the group homomorphism λK is injective.

Conversely assume that the action H × K/H → K/H, (h, gH) �→ (hg)H is effective and consider g ∈
kerλK , i.e. λK(g) = idG/H . Then (g · k)H = kH holds for all kH ∈ G/H. As this entails gH = 1GH, we 
deduce g ∈ H. Now the left action of H on G/H by multiplication is effective, forcing g ∈ H to be the 
identity 1K . �
Proposition 4.16. Consider a transitive pair (θ, H) and denote by λH the left action on the quotient K/H

as in Lemma 4.15. Then the kernel of aθ,H is given by

ker aθ,H = {h ∈ H | λH(h, ·) ≡ idK/H}

and coincides with the kernel of the transitive pair (θ, H). In particular every transitive pair admits a unique 
kernel.

Proof. Recall from the proof of Lemma 4.15 that ker aθ,H is contained in H and consists of all elements of 
H which act trivially by left multiplication on K/H. Thus we obtain the first description of ker aθ,H .

As a kernel of a Lie group morphism, keraθ,H is a closed and normal subgroup of K. Let us now prove 
that every subgroup G of H which is normal in K is contained in ker aθ,H . Then for k ∈ K and g ∈ G ⊆ H

we derive from G being normal in K that gk = kg′ for g′ ∈ H, i.e. gkH = kH for all k ∈ K. Thus elements 
in G act trivially on K/H, whence G ⊆ ker aθ,H . We conclude that ker aθ,H is the kernel of the transitive 
pair (θ, H). �
Definition 4.17. A transitive pair (θ, H) is called effective if H acts effectively on the quotient K/H by left 
multiplication, i.e. the kernel of the transitive pair is trivial. �

The characterisation of the kernel of a transitive pair in Proposition 4.16 can be used to compute it. For 
the examples considered in this section we obtain:

Example 4.18. The transitive pairs in Example 4.2 a) and 4.12 a) are effective, whence the kernel is trivial. 
For the transitive pair (evm ◦ pr1, Diff(M)m × B) from Example 4.2 b) the kernel is {idM} × B (by Ex-
ample 4.12 b)). In Theorem 5.15 below the kernel of a class of transitive pairs arising from extensions of 
diffeomorphism groups is computed. �

Although the criterion for the injectivity of aθ,H gives rise to a very natural condition on the transitive 
pair, the question of surjectivity is much more subtle.

Remark 4.19. We now describe the relation between Klein geometries [29, Chapter 3] and transitive pairs. 
First note that our setting is infinite-dimensional, and the notion of a transitive pair takes the additional 
analytical issues caused by this into account.

Recall that a Klein geometry is a pair (K, H), where K is a finite-dimensional Lie group (called the 
principal group) and H is a closed subgroup such that the manifold K/H is connected. The kernel of a 
Klein geometry is the largest subgroup L of H which is normal in K. A Klein geometry is called effective
if L is trivial. Klein geometries are constructed to model geometry via the principal H-bundle K → K/H.

Note that the principal group of a Klein geometry is finite-dimensional. Hence the quotient K/H inherits 
a canonical manifold structure turning K → K/H into a submersion. In our infinite-dimensional setting 



256 A. Schmeding, C. Wockel / Differential Geometry and its Applications 49 (2016) 227–276

the quotient does not automatically inherit a manifold structure, whence a transitive pair has to guarantee 
this behaviour via extra assumptions (cf. Proposition 4.5).

In studying a transitive pair (θ, H), we are interested in the principal Km/H-bundle K/H → K/Km = M . 
Thus a transitive pair encodes more information than a Klein geometry, as the principal H-bundle K → K/H

is obtained as additional information. To some extent, one can interpret a transitive pair as a “Klein 
geometry for principal bundles”. In particular, the notion of a transitive pair also covers the concept of an 
(infinite-dimensional) Klein geometry in the case that Km = H and the quotient K/H is connected.

Finally, there is a close connection between effective transitive pairs and effective Klein geometries. 
Namely, the kernel of the transitive pair (i.e. the kernel of the Lie group morphism aθ,H : K → R(θ, H)) 
is by definition the largest closed subgroup of H which is normal in K. Hence the kernel of the transitive 
pair (θ, H) corresponds to the kernel of a Klein geometry. Let us stress again that contrary to the finite 
dimensional case, the kernel of a transitive pair will only be a closed subgroup and not automatically a 
closed Lie subgroup. Summing up, if the pair (θ, H) is effective and H = Km and K/H is connected, then 
the transitive pair corresponds to an (infinite-dimensional) effective Klein geometry. �

Let us now return to Example 4.2 a) and consider R(θ, H) and aθ,H for the action of a bisection group 
on M . We will see that the constructions given in this section are in a certain sense inverse to computing 
the bisections of a locally trivial groupoid.

Example 4.20. Let G = (G ⇒ M) be a locally trivial Banach–Lie groupoid such that there is a bisection 
through every g ∈ G. Consider the group action β ◦ ev : Bis(G) × M → M, (τ, m) �→ β ◦ τ(m). We have 
seen in Example 4.2 a) that (β ◦ ev, Bism(G)) is a transitive pair. Moreover, since every locally trivial Lie 
groupoid is transitive, Lemma 3.10 shows that (β◦ev, Bism(G)) is an effective transitive pair. For this special 
effective transitive pair we note the following consequences (a detailed verification for the claims made in 
this example can be found in Lemma 4.21 below):

The groupoid G is isomorphic to R(β ◦ ev, Bism(G)). We have already seen in Example 4.7 that the vertex 
bundles associated to the locally trivial Lie groupoids G and R(β ◦ ev, Bism(G)) are isomorphic. Moreover, 
from Proposition 3.6 we recall that Bis(G)/ Bism(G) ∼= α−1(m) and Loopm(G)/ Bism(G) ∼= Vertm(G). Hence 
the gauge groupoid R(β ◦ ev, Bism(G)) is canonically isomorphic to the gauge groupoid of a vertex bundle 
of G. Consider the canonical map over M from the gauge groupoid R(β ◦ ev, Bism(G)) to the locally trivial 
Lie groupoid G

χG : Bis(G)/Bism(G) × Bis(G)/Bism(G)
Loopm(G)/Bism(G) → G, 〈σ Bism(G), τ Bism(G)〉 �→ σ(m) · (τ(m))−1. (19)

Since G admits bisections through each arrow and G is locally trivial, Proposition 3.6 shows that the 
image of χG coincides with G. One then proves that χG is an isomorphism of Lie groupoids over M . We 
can thus recover the locally trivial Lie groupoid G (up to isomorphism depending on m) as the groupoid 
R(β ◦ ev, Bism(G)).

The map aβ◦ev,Bism(G) : Bis(G) → Bis(R(β ◦ ev, Bism(G))) is a Lie group isomorphism. For this special 
transitive pair, an inverse of aβ◦ev,Bism(G) is given by Bis(χG) : Bis(R(θ, H)) → Bis(G), σ �→ χG ◦ σ. �
Lemma 4.21. Let G = (G ⇒ M) be a locally trivial Banach–Lie groupoid such that the action β ◦ ev of the 
bisections on M is transitive, e.g. G is source-connected. Then

a) the Lie groupoid morphism χG from (19) induces an isomorphism onto the open subgroupoid 
ev(Bis(G) × M) of G. Hence ev is surjective if and only if χG : R(β ◦ ev, Bism(G)) → G is an iso-
morphism;
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b) the Lie group morphism Bis(χG) : Bis(R(β ◦ ev, Bism(G))) → Bis(G) is an isomorphism with inverse 
aβ◦ev,Bism(G).

Proof.

a) Clearly χG is injective and after restricting it to its image, it becomes a bijection. Now consider the 
commutative diagram

Bis(G)/Bism(G) × Bis(G)/Bism(G)

q

ẽvm×ẽvm

α−1(m) × α−1(m)

(ξ,η) �→ξ·η−1

Bis(G)/ Bism(G)×Bis(G)/ Bism(G)
Loopm(G)/ Bism(G)

χG
G

. (20)

Here q is the canonical quotient map which is a submersion. The map ẽvm × ẽvm is the map induced 
on the quotient via ẽvm × ẽvm ◦ (pm × pm) = evm × evm where pm : Bis(G) → Bis(G)/ Bism(G) is the 
canonical quotient map. Now evm × evm is a submersion by [7, Lemma 1.6] and Corollary 2.5). Since G
is a Banach–Lie groupoid and qm is a submersion, we deduce with [7, Lemma 1.10] that ẽvm × ẽvm is a 
submersion. Finally, [16, Proposition 1.3.3] shows that the division map α−1(m) ×α−1(m) → G, (ξ, η) �→
ξ · η−1 is a surjective submersion as G is a locally trivial Lie groupoid.
Note that the division map restricts to a map im(evm × evm) → ev(Bis(G) ×M) because for σ, τ ∈ Bis(G)
we have σ(m) ·(τ(m))−1 = (σ�τ−1)(β(τ(m))) ∈ ev(Bis(G) ×M). In particular im(χG) ⊆ ev(Bis(G) ×M)
We claim that the image of χG coincides with ev(Bis(G) ×M). If the claim is true, then the proof can be 
finished as follows: The set ev(Bis(G) ×M) is an open and wide subgroupoid of G by Theorem 2.14. Hence 
(20) proves that χG induces a Lie groupoid isomorphism from R(β ◦ ev, Bism(G)) onto the subgroupoid 
ev(Bis(G) × M) of G.

Proof of the claim. Choose a bisection γ ∈ Bis(G) and x ∈ M and let us show that γ(x) ∈ imχG . The 
action β ◦ ev : Bis(G) × M → M, (σ, y) �→ β(σ(y)) is transitive. Hence there are σ, τ ∈ Bis(G) with 
β(τ(m)) = x and β(σ(m)) = β(γ(x)). We compute

(γ(x))−1 · σ(m) · (τ(m))−1 = (γ(x))−1 · (σ � τ−1)(x) = γ−1 � σ � τ−1
︸ ︷︷ ︸

=:lx∈Bis(G)

(x).

By construction γ � lx(x) = σ(m) · (τ(m))−1 and thus γ(x) = σ(m) · ((lx � τ)(m))−1 ∈ imχG . As γ and 
x were arbitrary this establishes ev(Bis(G) × M) = imχG .

b) Set Λm := Loopm(G)/ Bism(G). To compute on the Λm-principal bundle β◦evm : Bis(G)/ Bism(G) → M

we choose a section atlas (si, Ui)i∈I and obtain

Bis(χG) ◦ aβ◦ev,Bism(G)(σ) = χG ◦ aβ◦ev,Bism(G)(σ) = χG ◦ (x �→ 〈σ � si(x), si(x)〉, x ∈ Ui)

= (x �→ (σ � si(x))(m) · (si(x)(m))−1, x ∈ Ui)

= (x �→ σ(β(si(x)(m))︸ ︷︷ ︸
=x

) · (si(x)(m)) · (si(x)(m))−1, x ∈ Ui) = σ.

Hence Bis(χG) ◦ aβ◦ev,Bism(G) = idBis(G). Let us show aβ◦ev,Bism(G) ◦ Bis(χG) = idBis(R(θ,H)). Denote 
by ψ : Aut(β ◦ evm : Bis(G)/ Bism(G) → M) → Bis(R(θ, H)) the isomorphism from (16). We fix a 
Λm-principal bundle automorphism f and compute the image of ψ(f) under aβ◦ev,Bism(G) ◦ Bis(χG) as
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aβ◦ev,Bism(G) ◦ Bis(χG)(ψ(f)) = aβ◦ev,Bism(G)(χG(x �→ 〈f(si(x)), si(x)〉, x ∈ Ui)

= ψ ◦ ψ−1 ◦ aβ◦ev,Bism(G)(x �→ (f(si(x))(m)) · (si(x)(m))−1, x ∈ Ui)

= ψ(τ Bism(G) �→
(
((f(si(•))(m)) · (si(•)(m))−1) � τ

)
Bism(G)). (21)

In passing from the second to the third line we have used that ψ−1 takes aθ,H to the left action λBis(G)
discussed in Lemma 3.9. We will now prove that the argument of ψ in (21) coincides with the principal 
bundle automorphism f . If this is true, then Bis(χG) is an isomorphism with inverse aβ◦ev,Bism(G).
The equivariant map ẽvm : Bis(G)/ Bism(G) → α−1(m) from Lemma 3.12 identifies Bis(G)/ Bism(G)
with the open subset evm(Bis(G)) of α−1(m). Recall from Proposition 3.6 that Λm is isomorphic to an 
open subgroup em(Λm) ⊆◦ Vertm(G) and em(Λm) = {τ(m) | τ ∈ Loopm(G)}. Since β ◦ ev is transitive, 
the Vertm(G)-principal bundle β|α−1(m) : α−1(m) → M restricts on evm(Bis(G)) to a em(Λm)-principal 
bundle. Identifying the groups, we obtain a Λm-principal bundle β|evm(Bis(G)) : evm(Bis(G)) → M and 
ẽvm induces an isomorphism of Λm-principal bundles (cf. Example 4.7).
The principal bundle isomorphism ẽvm allows us to associate to the automorphism f a em(Λm)−bundle 
automorphism f̃ : evm(Bis(G)) → evm(Bis(G)) via f̃ ◦ ẽvm = ẽvm ◦ f . Evaluating the argument of ψ
from (21) at τ Bism(G), our preparations allow us to compute as follows.

ẽvm
−1(((f(si(•))(m)) · (si(•)(m))−1) � τ(m)) = ẽvm

−1((f(si(β(τ(m))(m)) · (si(β(τ(m))(m))−1 · τ(m))

= ẽvm
−1(f̃(si(β(τ(m))(m))) · (si(β(τ(m))(m))−1 · τ(m)︸ ︷︷ ︸

∈em(Λm)⊆◦ Vertm(G)

))

= ẽvm
−1(f̃(si(β(τ(m))(m)) · (si(β(τ(m))(m))−1

︸ ︷︷ ︸
=1β(τ(m))

·τ(m)))

= ẽvm
−1(f̃(τ(m)) = f(τ Bism(G)). �

Problem 4.22.

a) It would be interesting to develop a notion/theory of infinitesimal transitive pairs, i.e., an infinitesimal 
action k → V(M) together with an ideal h of km. In particular, a derivation of the Lie algebra morphism 
L(aθ,H) directly from these data in case of an effective transitive pair would be a valuable tool.

b) It would also be interesting to develop the theory of this section for not necessarily locally trivial 
Lie groupoids (analogously perhaps to the notion of Lie–Rinehart algebras in the infinitesimal setting, 
see [11]). �

5. Integrating extensions of Lie groups to transitive pairs

We now study the application of the previously developed theory to the integration theory of extensions of 
Lie algebroids and Lie groupoids. Throughout this section, M denotes a compact and 1-connected manifold 
for which we choose some fixed base-point m ∈ M . We will heavily use the integration theory of abelian 
extensions of infinite-dimensional Lie groups, for which we refer to [23] (see also the Appendix in [23] for 
some of the terminology that we are using).

Throughout this section, K will be a connected and C∞-regular Lie subgroup of Diff(M) such that 
(θ, Km) is a 2-fold transitive pair, where θ : K × M → M , is the natural action of K ≤ Diff(M) on M
and Km is the stabiliser of the base-point m in K. In particular, evm : K → M then factors through a 
diffeomorphism K/Km → M and Km acts transitively on M \ {m}.
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The Lie group Diff(M) acts naturally and smoothly on C∞(M) := C∞(M, R) via ϕ.f := f ◦ ϕ−1. This 
turns a := C∞(M) into a K-module containing the constant functions a0 = aK ∼= R. If we set k = L(K)
and km = L(Km), then a is also a k-module for the derived action

(X.f)(n) := dfn(X(n)).

Moreover, am := C∞
m (M) is a km-submodule for

C∞
m (M) := {f ∈ C∞(M) | f(m) = 0}.

Clearly, a0 is a module complement for this km-submodule, so that we have a ∼= a0 ⊕ am as km-modules.
The last piece of information that we choose is a closed 2-form ω ∈ Ω2(M) := Ω2(M, R). This gives rise 

to the abelian cocycle

ω : k × k → a, (X,Y ) �→ (n �→ ωn(X(n), Y (n))),

i.e.,

[(f,X), (g, Y )] := (X.g − Y.f + ω(X,Y ), [X,Y ])

defines on a ⊕ k the structure of a Lie algebra. We denote this Lie algebra by a ⊕ω k, and the canonical maps 
give rise to an abelian extension

a → a ⊕ω k → k

of topological Lie algebras. Moreover, as elements of km vanish when they are evaluated in m, we have 
ω(km × km) ⊆ am. Hence there is a subalgebra

am ⊕ωm
km ≤ a ⊕ω k,

where ωm : km × km → am denotes the restriction (and corestriction) of ω to km × km (and am).
Before we go on we give the two examples of the above situations that we have in mind.

Example 5.1.

a) The easiest example is that where K = Diff(M)0 and a = C∞(M). Then we have seen in Example 3.5
that Diffm(M) is a regular Lie subgroup of Diff(M). Moreover, Diff(M) acts smoothly transitively on 
M by Corollary 2.17 and Corollary 2.5. Finally, Diff(M) acts 2-fold transitively on M [21]. In this case 
ω ∈ Ω2(M) can be an arbitrary closed 2-form on M (cf. [23, Section 9]).

b) For the next example, let ω ∈ Ω2(M) be symplectic and dim(M) = 2d. Then

Symp(M,ω) := {ϕ ∈ Diff(M) | ϕ∗ω − ω = 0}

is a closed Lie subgroup of Diff(M) [13, Theorem 43.12] with Lie algebra

symp(M,ω) := {X ∈ V(M) | LXω = d(iXω) = 0}

the symplectic vector fields on M . This Lie algebra has the Hamiltonian vector fields

ham(M,ω) := {X ∈ symp(M) | iXω is exact}
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as closed subalgebra. Moreover, the chart constructed in the proof of [13, Theorem 43.12] maps

km := sympm(M,ω) := {X ∈ symp(M,ω) | X(m) = 0}

to

Sympm(M,ω) := {ϕ ∈ Symp(M,ω) | ϕ(m) = m}.

Thus K := Symp(M, ω)0 has Km = Sympm(M, ω)0 as Lie subgroup with Lie algebra km. That (θ, Km) is 
indeed a transitive pair will follow from the following two propositions. Finally, K acts 2-fold transitively 
by [21]. �

Proposition 5.2. Let (M, ω) be a compact symplectic manifold and x ∈ M . Then the evaluation map

evx : Symp(M,ω)0 → M, ϕ �→ ϕ(x)

is a submersion. If, moreover, M is connected, then evx is also surjective.

Proof. We show that evx is a submersion by showing that Tid evx : Tid Symp(M, ω) → TxM is surjective. 
This suffices by [7, Theorem A]. To this end, note that Tid evx is given with respect to the identification 
symp(M, ω) ∼= Tid Symp(M, ω) by

evx : symp(M,ω) → TxM, X �→ X(x)

(cf. [13, Corollary 42.18] or [31, Theorem 7.9]). Thus the claim follows from observing that for each v ∈ TxM

there exists a function H ∈ C∞(M) with dHx = ωx(v, ·), and thus a Hamiltonian vector field X (which is 
then in particular symplectic) with X(x) = v.

Since the point x ∈ M in the above argument was arbitrary, this shows in particular that each orbit of the 
natural action of Symp(M, ω) on M is open and thus consist of unions of path components. In particular, 
evx is surjective if M is connected. �
Proposition 5.3. Let (M, ω) be a compact symplectic manifold and k ∈ N0 ∪ {∞}. Then Symp(M, ω) and

Sympm(M,ω) := {ϕ ∈ Symp(M,ω) | ϕ(m) = m}

are Ck-regular Lie subgroups of Diff(M).

Proof. By [13, Theorem 43.12] the Lie group Symp(M, ω) is a closed Lie subgroup of Diff(M). Recall from 
[31, Theorem 5.5] that Diff(M) is Ck-regular. Arguing as in the proof of [13, Theorem 43.12] (where 
C∞-(semi)regularity for Symp(M, ω) was established), one proves that Symp(M, ω) is Ck-semiregular. 
Hence Lemma B.5 implies that Symp(M, ω) is Ck-regular.

Fix some η ∈ Ck([0, 1], sympm(M, ω)) and let γη be a solution in Symp(M, ω) of the corresponding 
initial value problem from Definition B.3. Note that γη is also a solution of the corresponding initial value 
problem in Diff(M). By Proposition 3.4, ηγ takes its image in Sympm(M, ω), whence Sympm(M, ω) is 
Ck-semiregular. Again by Lemma B.5, Sympm(M, ω) is also Ck-regular. �

For later reference we also record the following fact (see also [12, Corollary 3.5]).

Proposition 5.4. If (M, ω) is a compact and connected symplectic manifold, then the restriction of the abelian 
cocycle
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ω : V(M) × V(M) → C∞(M), (X,Y ) �→ ω(X,Y )

to ham(M, ω) is a coboundary. This also applies to the restriction of ω to symp(M, ω) if M is 1-connected.

Proof. We consider the continuous linear surjection ξ : C∞(M) → ham(M, ω), f �→ Xf , where Xf is the 
unique vector field such that iXf

ω = df . Since ker(ξ) ∼= R is finite-dimensional and thus complemented, ξ
has a continuous linear section σ : ham(M, ω) → C∞(M). We claim that

b : ham(M,ω) → C∞(M), X �→
∫

M

σ(X)ωd − σ(X)

satisfies dCEb = ω, where d = dim(M)
2 and we consider R as constant functions on M . To this end we note 

that we have the equality

ω(X,Y ) −
∫

M

ω(X,Y )ωd = σ([X,Y ]) −
∫

M

σ([X,Y ])ωd. (22)

Indeed, both sides of (22) are uniquely determined by the property of being mapped to [X, Y ] under ξ and 
having vanishing integral over M . If X = Xf and Y = Xg for some f, g ∈ C∞(M), then we also have

∫

M

ω(X,Y ) ωd =
∫

M

{f, g} ωd =
∫

M

(LXf
g) ωd =

∫

M

LXf
(g ωd) =

∫

M

d(iXf
g ωn) = 0. (23)

Thus we conclude from (23) and (22) that

dCEb(X,Y ) = −X.σ(Y ) + Y.σ(X) −
( ∫

M

σ([X,Y ])ωd − σ([X,Y ])
)

= ω(X,Y ).

If M is also simply connected, then ham(M, ω) = symp(M, ω) and the assertion follows. �
Remark 5.5. We shortly fix our conventions about the periods and prequantisation of presymplectic man-
ifolds and integration of abelian extensions of Lie algebras to Lie group extensions. Let N be an arbitrary 
manifold, V be a locally convex space and ω ∈ Ω2(M, V ) be a V -valued closed 2-form. Then the period 
homomorphism associated to the cohomology class [ω] ∈ H2

dR(N, V ) is the homomorphism

per[ω] : π2(N) → V, [σ] �→
∫

S2

σ∗ω,

where σ : S2 → N is a smooth representative of [σ] (cf. [22, Appendix A.3] or [34, Corollary 14]). Moreover, 
let Γ ⊆ R be an arbitrary but fixed discrete subgroup and set AΓ := a/Γ denote by qΓ : a → AΓ the canonical 
quotient homomorphism. In addition, we assume that V comes along with a distinguished embedding 
R ↪→ V .

We now consider two special cases of this. At first, assume that V = R and that N is finite-dimensional 
(or more generally smoothly paracompact) and 1-connected. Then the subgroup per[ω](π2(M)) is called the 
group of periods (or shortly just the periods) of (M, [ω]). Moreover, we say that (M, ω) is Γ-prequantisable
if there a principal TΓ := R/Γ-bundle P → N that admits a connection with curvature ω. By the general 
theory (see, e.g., [36, Chapter 8] or [14]) this is the case if and only if the periods per[ω](π2(M)) are 
contained in Γ (or more generally if [ω] is contained in the image of H2(N, Γ) → H2(M, V ) if N is not 
simply connected).
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The other case is that N = K and V = a for K and a. Then we consider the equivariant extension 
ωeq ∈ Ω2(K, a) of ω, which is given by

(ωeq)k : TkK × TkK → a, (X,Y ) �→ k.ω(X · k−1, Y · k−1).

Note that we have here used the right trivialisation of the tangent bundle of a Lie group, which is more 
adapted to our setting than the left trivialisation (cf. [31, Remarks 2.4 and 2.6]). Then we call per[ωeq](π2(K))
the group of primary periods (or shortly just the primary periods) of (K, [ω]). Note that they really only 
depend on the cohomology class of [ω] in H2

dR(M, R) by the following lemma. Moreover, the primary periods 
per[ωeq](π2(K)) are contained in the fixed points aK [23, Lemma 4.2]. If they are also contained in Γ, then 
there exists an extension of Lie groups

AΓ → K� q�

−→ K̃, (24)

whose underlying extension of Lie algebras is equivalent to a → a ⊕ωg → g [23, Theorem 6.7]. Here and in the 
sequel, qπ1(K) : K̃ → K denotes the universal covering morphism. The extension (24) is uniquely determined 
(up to equivalence) by the associated Lie algebra extension [23, Theorem 7.2]. Moreover, K� → K̃ is a 
principal AΓ-bundle that admits a connection with curvature ωeq, so ωeq is Γ-prequantisable on K̃ in this 
case (cf. the proof of Lemma 5.13). The question, whether AΓ → K� → K̃ factors to an extension of K by 
AΓ is then controlled by the flux homomorphism

F[ω] : π1(K) → H1
dR(M,R) ⊆ H1

c (k, a)

(cf. [23, Lemma 6.2, Proposition 6.3 and Proposition 9.13]). Since M is assumed to be 1-connected, F[ω]
vanishes automatically. Almost all flux phenomena will be irrelevant for this paper since we only work with 
1-connected M . The flux will only occur shortly in Remark 5.12. One main observation of this section is 
that the integration of the Lie algebra extension a → a ⊕ω k → k to a transitive pair is not governed by the 
flux, but rather by the secondary periods that we will introduce in Remark 5.10. �
Lemma 5.6. The map

H2
dR(M,R) → H2

c (V(M), C∞(M)), [ω] �→ [ω] (25)

is injective.

Proof. We may assume without loss of generality that dim(M) ≥ 2. Let H2
c,Δ(V(M), C∞(M)) be the 

diagonal cohomology of V(M) with coefficients in C∞(M), i.e., the cohomology of the subcomplex of 
R-linear alternating cochains

ξ : V(M) × V(M) → C∞(M)

for which ξ(X, Y )(m) only depends on the germs of X and Y at m. Since ω ∈ Ω2(M) is C∞-linear in both 
arguments, ω is a cocycle of this kind, so that the map (25) factors as

H2
dR(M,R) → H2

c,Δ(V(M), C∞(M)) → H2
c (V(M), C∞(M)). (26)

Now the first map in (26) is injective by [15, Corollary 2] and the second map in (26) is injective by [4, 
Theorem 2.4.10], and the assertion follows. �

The following is the only result on the flux homomorphism that we shall need in the sequel.
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Lemma 5.7. The flux

F[ωm] : π1(Km) → H1
c (km, am)

also vanishes. More generally, if M is only assumed to be compact, then F[ωm] vanishes if F[ω] does so.

Proof. This follows immediately from the commuting diagram

K̃m K̃
F[ω]

H1
dR(M,R) H1

c (k, a)
reskm

H1
c (km, a)

prm

K̃m

F[ωm]
H1

c (km, am),

where K̃m → K̃ is induced by the inclusion Km ↪→ K, reskm
is induced by the inclusion km ↪→ k and prm is 

induced by the morphism a → am, f �→ f − f(m) of km-modules. �
The previous remark introduces the most important concepts from the integration theory of abelian 

extensions of Lie groups that occur in the sequel, for the rest see [23]. From Proposition 5.4 we immediately 
obtain the following

Corollary 5.8. If K = Symp(M, ω)0 for ω ∈ Ω2(M) symplectic, then per[ω](π2(K)) = 0.

Remark 5.9. Keeping the notation as in Remark 5.5, we can also integrate the restricted extension

am → am ⊕ωm
km → km

to a unique extension

am → K�
m → K̃m.

Indeed, perωm
(π2(Km)) is contained in the fixed-points of Km. Since Km is assumed to act transitively on 

M \ {m}, if follows that

(am)Km = {f ∈ C∞(M) | f is constant on M \ {m} and f(m) = 0} = {0}

by the continuity of f . Consequently, perωm
(π2(Km)) = {0} and [23, Theorem 6.7] implies that there exists 

an extension am → K�
m → K̃m whose derived extension is equivalent to am → am ⊕ωm km → km. �

Now we have the extensions K� → K̃ from Remark 5.9 and K�
m → K̃m from Remark 5.9 at hand, and we 

want to build our transitive pair from them. The question is now how these two extensions are relate to one 
another. The crucial information about this in contained in the modification of the period homomorphism 
per�[ω] and the associated secondary periods that we introduce and analyse now.

Remark 5.10. From the transitive action of K on M we obtain the principal Km-bundle evm : K → M . 
This gives in particular rise to the long exact sequence

· · · → π2(Km) → π2(K) evm−−−→ π2(M) δ−→ π1(Km) → π1(K) → · · ·

At π2(M), this induces a short exact sequence
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0 → Λ evm−−−→ π2(M) δ−→ Δ → 0

with Δ := ker(π1(Km) → π1(K)), Λ := im(π2(K) → π2(M)). From [25, Theorem 3.18] it follows that 
per[ω]([γ]) = per[ω]([evm ◦γ]) holds for γ ∈ C∞

∗ (S2, K) and thus per[ω] factors through per[ω]

∣∣∣
Λ
.

If now Γ ≤ R is a (not necessarily discrete) subgroup that contains per[ω](π2(K)) and qΓ : R → R/Γ is 
the quotient map, then qΓ ◦per[ω] factors through δ and a homomorphism per�[ω] : Δ → R/Γ. This gives rise 
to a morphism

0 Λ

per[ω]

π2(M)

per[ω]

Δ

per

[ω]

0

0 Γ R R/Γ 0

of short exact sequences. �
Definition 5.11. If, in the setting of the previous remark, Γ := per[ω](π2(K)) is the group of primary periods 
(cf. Remark 5.5), then we call

per�[ω](π1(Km)) ⊆ R/Γ

the group of secondary periods (or shortly the secondary periods) of (K, [ω]). �
Remark 5.12. We keep the notation from Remark 5.5 and Remark 5.9. The inclusion am ⊕ωm

km ↪→ a ⊕ω k

induces a unique homomorphism

ϕm : K�
m → K

(cf. [18, Theorem 8.1]) that makes the diagram

am K�
m

ϕm

q�
m

K̃m

qΔ

AΓ K� K̃

(27)

commute. Here, am ↪→ AΓ = a/Γ is the morphism induced from the embedding am ↪→ a and the quotient 
a → a/Γ (note that am ∩ Γ = {0}). The morphism qΔ : K̃m → K̃ in (27) is induced from the inclusion 
Km ↪→ K. The kernel ker(qΔ) can be identified with Δ = ker(π1(Km) → π1(K)) and the image with K̃m/Δ. 
Then the latter is a closed Lie subgroup of K̃. This gives rise to an extension

A�
m −→ K�

m

qΔ◦q�
m−−−−→ K̃m/Δ

of K̃m/Δ by A�
m := (q�m)−1(Δ). Now F[ωm] vanishes by Lemma 5.7, whence there exists a homomorphism 

σ : Δ → Z(K�
m) with qm ◦ σ = idΔ [23, Corollary 6.6]. �

Lemma 5.13. In the situation of Remark 5.12 and Remark 5.10 we have

ϕm(σ(x)) + am = per�[ω](x) + am

for each x ∈ Δ.
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Proof. We first recall the following fact about abelian extensions of Lie groups. If A → Ĝ
q−→ G is such 

an extension and if τ : g := L(G) → ĝ := L(Ĝ) is a continuous linear splitting of the induced extension 
L(A) → L(Ĝ) → L(G), then we obtain a connection on the principal right A-bundle q : Ĝ → G, induced 
for each ĝ ∈ Ĝ by the horizontal lift of tangent vectors

τĝ : TgG → TĝĜ, v �→ τ(v · g−1) · ĝ

where g := q(ĝ). The curvature of this connection is given by ωeq
τ , where ωτ : g ×g → L(A) is the abelian Lie 

algebra cocycle (x, y) �→ τ([x, y]) − [τ(x), τ(y)]. Note again that we have here used the right trivialisation 
of the tangent bundle.

For each x ∈ Δ we now choose a representative γx ∈ C∞
∗ (S1, Km) in π1(Km) such that there exists a 

smooth map Fx : [0, 1] × S1 → K with Fx(0, ·) ≡ eK , Fx(1, ·) = γx and Fx(t, ∗) = idM for all t ∈ [0, 1]. If γ�
x

denotes the horizontal lift of γx, induced by the canonical linear splitting km → am⊕ωm
km and the Lie algebra 

isomorphism L(K�
m) ∼= am ⊕ωm

km, then there exists some bσ : Δ → am such that σ(x) = γ�
x(1) + bσ(x) (cf. 

[23, Corollary 6.6]).
By the construction of the morphism ϕm (cf. [18, Theorem 8.1]),

ϕm(σ(x)) = ϕm(γ�
x(1)) + ϕm(bσ(x)) = Γx(1) + ϕm(bσ(x)),

where Γx ∈ C∞([0, 1], K�) is the solution of the initial value problem in K� with Γx(0) = eK� and δl(Γx) =
ι ◦δl(γ�

x) for ι : am⊕ωm
km → a ⊕ω k the canonical embedding. Note that Γx exists as K� is C∞-regular as an 

extension of C∞-regular Lie groups (cf. [26, Appendix B]). This implies in particular that Γx is a horizontal 
lift of the smooth loop γ′

x := qΔ ◦γx for the connection on the principal AΓ-bundle K� → K̃ that is induced 
by the canonical linear splitting k → a ⊕ k and the Lie algebra isomorphism L(K�) ∼= a ⊕ω k. Consequently, 
ϕm(γ�

x(1)) = Γx(1) equals the holonomy of the loop γ′
x for this connection.

If we take the restriction K�
∣∣
K̃m/Δ of the AΓ-bundle K� → K to the Lie subgroup K̃m/Δ, then the 

curvature of the above connection takes values in the subspace am of AΓ ∼= am × TΓ. Consequently, the 
connection is flat modulo am and thus the TΓ-component of the holonomy can be computed as the integral 
of the curvature over any filler of the loop γ′

x. This implies

Γx(1) + am = hol(γ′
x) + am =

∫

F

ωeq + am = per�[ω](x) + am.

Since ϕm(bσ(x)) ⊆ ϕm(am) ⊆ am, this establishes the claim. �
The following example illustrates the rôle of per�[ω] pretty well.

Example 5.14. Let ω be the standard volume form on M := S2 with total volume 1. Then we consider the 
subgroup K := Diff(S2)0. The action of SO3(R) on S2 by rotations induces a map SO3(R) → Diff(S2)0, 
which is a homotopy equivalence [30]. Consequently, π2(K) = 0 and the primary periods vanish. Thus we 
may take Γ = 0 to integrate the extension

C∞(S2) → C∞(S2) ⊕ω V(S2) → V(S2)

to an extension

C∞(S2) → K� → K̃
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of Lie groups (cf. Remark 5.5). From the five lemma and the long exact sequence in homotopy groups of 
the fibrations Km → K → S2 and SO2(R) → SO3(R) → S2 it follows that the induced map SO2(R) → Km

is also a homotopy equivalence. From this it follows that the exact sequence

π2(K) → π2(S2) → π1(Km) → π1(K) → π1(S2)

identifies with

0 → Z ·2−→ Z → Z/2Z → 0

and with respect to this identification we have Δ = 2Z. Since per[ω] is given by the natural embedding 
Z ↪→ R, it follows that per�ω is given by

per�[ω] : Δ ∼= 2Z → R, 2x �→ x.

Thus the secondary periods coincide with Z and ϕm(A�
m) = C∞

m (S2) × Z. �
We now put all the bits and pieces that we have collected so far together.

Theorem 5.15. Let M be a compact and 1-connected manifold, ω ∈ Ω2(M) be closed and let K ≤ Diff(M)
be a connected and C∞-regular Lie subgroup such that evm : K → M is a surjective submersion and K acts 
2-fold transitively on M . Let Δ be the kernel of the map K̃m → K̃ induced on the universal cover by the 
inclusion Km ↪→ K. Suppose Γ, Π ⊆ R are discrete subgroups with per[ω] ⊆ Γ ⊆ Π, set AΓ := C∞(M, R)/Γ
and identify AΓ with C∞

m (M) ×TΓ (as abelian Lie groups or as Km-modules). Then the following assertions 
are equivalent:

a) per�[ω](Δ) ⊆ Π/Γ.
b) Let

AΓ → K� q�

−→ K̃

be the unique extension of K̃ by AΓ whose Lie algebra extension is equivalent to a → a ⊕ω k → k with 
a := C∞(M). If am := C∞

m (M), then the closed Lie subalgebra am ⊕ωm
km of a ⊕ k integrates to a closed 

Lie subgroup Im of K� such that Im ∩ AΓ ⊆ am × Π/Γ.
c) Let

am → K�
m

q�
m−−→ K̃m

be the unique extension of K̃m by am whose Lie algebra extension is equivalent to am ⊕ωm
km and set 

A�
m := (q�m)−1(Δ). Then the image of the Lie group morphism ϕm : K�

m → K� induced by the canonical 
embedding am ⊕ωm km → a ⊕ω k is a closed Lie subgroup and ϕm(A�

m) ⊆ C∞
m (M, R) × Π/Γ.

If one (and thus all) of these conditions is satisfied, then the composition of the maps

θ∧ : K� q�

−→ K̃
qπ1(K)−−−−→ K ↪→ Diff(M)

gives rise to a transitive pair (θ, (ϕm(K�
m) · Π/Γ)) with kernel Π/Γ. Moreover, the associated principal 

TΠ-bundle K�/(ϕm(K�
m) · Π/Γ) → M admits a connection whose curvature equals ω and thus is (together 

with the choice of such a connection) a Π-prequantisation of ω.
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Proof. We will use throughout that C∞-regularity is an extension property [26, Appendix B], so that all 
extensions that appear will automatically be C∞-regular (which suffices to integrate Lie algebra morphisms 
to 1-connected Lie groups).

a)⇒c): Consider K̃m/Δ as a closed Lie subgroup of K̃ and obtain from this the extension

AΓ → K�
∣∣
K̃m/Δ → K̃m/Δ.

Since AΓ ∼= am × TΓ is a decomposition of AΓ as a K̃m/Δ-module and σ : Δ → K� induces the 
isomorphism A�

m
∼= am × Δ, we obtain from Remark 5.12 and Lemma 5.13 the morphism

am × Δ

idam × per

[ω]

K�
m

ϕm

K̃m/Δ

AΓ K� K̃

of extensions of Lie groups. Since K̃m/Δ ↪→ K̃ is injective and im(per�[ω]) ⊆ Π/Γ is discrete in 

TΓ, this implies that K�
∣∣
K̃m/Δ reduces to an extension of K̃m/Δ by the closed Lie subgroup 

am × im(per�[ω]) of am × TΓ. This reduction is itself a closed Lie subgroup which equals ϕm(K�
m) by 

construction. Moreover, ϕm(A�
m) ⊆ C∞

m (M) × Π/Γ follows from am × im(per�[ω]) ⊆ am × Π/Γ.
c)⇒b): As above we see that ϕm(K�

m) ⊆ K� is a reduction of K�
∣∣
K̃m/Δ to an extension of K̃m/Δ by 

am × im(per�[ω]), and thus in particular a closed Lie subgroup. Thus we may take Im := ϕm(K�
m).

b)⇒a): By construction we have that Ĩm ∼= K�
m, so that ϕm factors through the inclusion Im ↪→ K� and 

the universal covering map K�
m → Im. Thus per�[ω](Δ) ⊆ Π/Γ follows from Im ∩ AΓ ⊆ am × Π/Γ.

It remains to show the assertion that if c) is satisfied, then (θ, ϕm(K�
m) ·Π/Γ) is a transitive pair with kernel 

Π/Γ and that K�/(ϕm(K�
m) · Π/Γ) → M is a Π-prequantisation of ω.

Set Hm := ϕm(K�
m) · Π/Γ. To show that (θ, Hm) is a transitive pair, we first show that Hm is in fact 

a normal subgroup of (θ∧)−1(Km). In fact, each g ∈ (θ∧)−1(Km) may be written as a product a0 · gm
for gm ∈ ϕm(K�

m) and a0 ∈ TΓ. This is due to the fact that ϕm(K�
m) is a reduction of K�

∣∣
K̃m/Δ to an 

extension by C∞
m (M, R) × im(per�[ω]) and that C∞

m (M, R) · TΓ ∼= C∞(M, R)/Γ = AΓ. Since the action of 
k ∈ K̃ on C∞(M, TΓ) coincides with conjugation action of an arbitrary lift of k to K� it follows that 
a0 ∈ TΓ = C∞(M, TΓ)K̃ ⊆ Z(K�) and thus Ad(a0) = idK� . Consequently, Ad(g) = Ad(gm) and thus Ad(g)
preserves the subalgebra L(ϕm(K�

m)). Furthermore, Ad(g) = L(cg) (where cg is conjugation by g and the 
groups K� and ϕm(K�

m) are connected and regular Lie groups. Thus Lemma B.6 implies that conjugation 
by g preserves ϕm(K�

m). Since Hm = ϕm(K�
m) ·Π/Γ and Π/Γ ⊆ TΓ ⊆ Z(K�) follows as above, it also follows 

that conjugation by g preserves Hm.
Since g ∈ (θ∧)−1(Km) was arbitrary, this shows that Hm is normal in (θ∧)−1(Km). To conclude that 

(θ, Hm) is a transitive pair it thus suffices to observe that θ(·, m) = evm ◦qπ1(K) ◦ q� clearly is a submersion, 
and L(Ĝ)/L(Hm) is finite-dimensional, so Hm in particular co-Banach.

It remains to show that P := K�/(Hm) → M is a Π-prequantisation. First note that Hm is an extension 
of K̃m/Δ by am ×Π/Γ and (θ∧)−1(Km) is an extension of K̃m/Δ by am × TΓ, so that the morphism of Lie 
groups

TΠ → ((θ∧)−1(Km))/Hm, (28)
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induced by mapping an element of TΠ to the respective constant function, is an isomorphism. With respect 
to this isomorphism we endow P → M with the structure of a TΠ-bundle over M .

We now construct a connection on P → M with curvature ω as follows. Let H ≤ TK̃ be a horizontal 
distribution on the bundle evm : K̃ → M , i.e., we have each k ∈ K̃ a subspace H̃k ≤ TkK such that 
H̃k·k′ = H̃k · k′ for k′ ∈ K̃m/Δ and that T evm : H̃k → Tk(m)M is a linear isomorphism. Denote by 

σ̃ : V(M) → V(K̃)K̃m/Δ the corresponding horizontal lift of vector fields. On the bundle q� : K� → K̃ we 
have the connection which is induced by the isomorphisms TRk−1 : TkK̃ → TeK̃ ∼= k, TR

k
−1 : TkK

� →
TeK

� ∼= a ⊕ω k and the canonical linear splitting σ : k → a ⊕ω k. Denote the corresponding horizontal lift by 
σω : V(K̃) → V(K�)AΓ . If we now set

H�

k
:= σ(H̃k · k−1) · k

for k ∈ K̃ and k := q�(k) (where we suppressed the isomorphisms TkK̃ ∼= k and TkK
� ∼= a ⊕ω k), then 

Tk(evm ◦q�) also restricts to a linear isomorphism on H�

k
and we have

H�

kk
′ = σ(H̃kk′(kk′)−1) · kk′ = H�

k
· k′

for each k
′ ∈ (q�)−1(K̃m/Δ) and k′ := q�(k′). Consequently, H� defines a horizontal distribution on the 

bundle evm ◦q� : K� → M . If σ� : V(M) → V(K�)(θ∧)−1(Km) denotes the corresponding horizontal lift of 
vector fields, then we clearly have σ� = σω ◦ σ̃.

From this we obtain a connection

σP : V(M) → V(P )TΠ , X �→ TQ∗(σ�(X))

on P → M , where Q : K� → P = K�/(Hm) is the canonical quotient morphism. For the curvature of the 
connection σP we then have

FσP
(X,Y ) := σP ([X,Y ]) − [σP (X), σP (Y )] = TQ∗(σ�([X,Y ]) − [σP (X), σP (Y )]) = TQ∗(Fσ�(X,Y ))

for X, Y ∈ V(M), and, furthermore

Fσ�(X,Y ) = σω(σ̃([X,Y ])) − [σω(σ̃(X)), σω(σ̃(Y ))] = σω(σ̃([X,Y ])) − σω([σ̃(X), σ̃(Y )]) +

Fσω
(σ̃(X), σ̃(Y )) = σω(Fσ̃(X,Y )) + Fσω

(σ̃(X), σ̃(Y )).

Since Fσω
= ωeq (cf. the proof of Lemma 5.13) and since σω(Fσ̃(X, Y )) is at each point tangential to the 

fibre Hm of Q, it follows that

TQ(Fσ�(X,Y )(k(m))) = TQ(Fσω
(σ̃(X)(k), σ̃(Y )(k))) = TQ(ωeq(σ̃(X)(k), σ̃(Y )(k)))

= evm(k.ω(σ̃(X)(k) · k−1, σ̃(Y )(k) · k−1)) = ωk(m)(X(k(m)), X(k(m)))

for each k ∈ K� and k := q�(k) ∈ K̃. Thus FσP = ω.
It remains to check that the kernel actually coincides with Π/Γ. To this end we define q := qπ1(K) ◦ q�

and consider the diagram
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ker(q�)
aθ,Hm |ker(q�)

ker((βR)∗)

K�
aθ,Hm

q�
θ∧

Bis(R(θ,Hm))

(βR)∗

K Diff(M),

which commutes by Lemma 4.13 and the construction of θ∧. From this it follows that the kernel of aθ,Hm
is 

contained in ker(q�). Moreover, we have ker(q�) = AΓ = C∞(M, TΓ) by definition. To determine aθ,Hm
(γ)

for γ ∈ ker(q), we first note that the element in Aut(K�/Hm → M) corresponding to aθ,Hm
(γ) is given by 

kHm �→ (γ · k)Hm (cf. Lemma 4.11). On the other hand, an element η ∈ ker((βR)∗) ∼= C∞(M, TΠ) acts on 
K�/Hm by

kHm �→ kHm · η(θ(k,m)) = (k · η(θ(k,m)))Hm,

since the bundle projection K�/Hm → M is given by kHm �→ θ(k, m) and TΓ is contained in Z(K�) (cf. 
(28)). From this it follows that the value of aθ,Hm

(γ) in θ(k, m) has to satisfy

(k−1 · γ · k)Hm = aθ,Hm
(γ)(θ(k,m))Hm.

Since k
−1 · γ · k = γ ◦ θ∧(k) follows from the fact that K� → K is an abelian extension for the natural 

action of K on C∞(M, TΓ), we conclude that aθ,Hm
|ker(q) coincides with the map that is induced by 

the projection TΓ → TΠ = TΓ/(Π/Γ) and the isomorphisms C∞(M, TΓ) ∼= ker(q�) and C∞(M, TΠ) ∼=
ker((βR)∗). Consequently, ker(aθ,Hm

) = ker(aθ,Hm
) ∩ ker(q�) ∼= Π/Γ (cf. Proposition 4.16). �

Corollary 5.16. With the notation and under the assumptions of Theorem 5.15 the following assertions are 
equivalent:

a) The primary periods perω(π2(M)) ⊆ R are discrete.
b) The extension a → a ⊕ω k → k integrates to an extension AΓ → K� → K̃ of Lie groups.

If one (and thus both) of these conditions is satisfied, then the following assertions are equivalent:

i) The secondary periods per[ω](π1(Km)) ⊆ R are discrete.
ii) The closed subalgebra am ⊕ωm

k of a ⊕ω k integrates to a closed Lie subgroup of K�.

Corollary 5.17. If M is a compact and 1-connected manifold and ω ∈ Ω2(M) is closed, then the extension 
R → R ⊕ωTM → TM of Lie algebroids integrates to an extension of Lie groupoids if and only if the extension 
of Lie algebras C∞(M) → C∞(M) ⊕ω V(M) → V(M) integrates to an extension A → K̂ → Diff(M)0 of 
Lie groups and C∞

m (M) ⊕ωm
Vm(M) integrates to a closed Lie subgroup in K̂.

Example 5.18. This is a continuation of Example 5.14. Of course, (S2, ω) is Z-prequantisable, a (suitably 
normalised) prequantisation is the Hopf fibration S3 → S2, viewed as a U(1) := TZ-principal bundle (together 
with the standard contact form on S3). From this we obtain the extension

C∞(S2, U(1)) → Aut(S3 → S2) → Diff(S2)0
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(cf. Example 3.7) whose Lie algebra extension is equivalent to

C∞(S2,R) → C∞(S2,R) ⊕ω V(S2) → V(S2). (29)

Since the primary periods vanish, the extension (29) integrates to an extension (unique up to equivalence)

C∞(S2,R) → K� → ˜Diff(S2)0

and the identity on C∞(S2, R) ⊕ω V(S2) integrates to a Lie group morphism ψ : K� → Aut(S3 → S2). This 
morphism makes

C∞(S2,R)

qZ

K�

ψ

˜Diff(S2)0

qπ1

C∞(S2, U(1)) Aut(S3 → S2) Diff(S2)0

commute, where qZ is induced by the quotient map R → U(1) = R/Z and qπ1 is the universal covering 
morphism of Diff(S2)0. If now o ∈ S3 is mapped to the base-point m ∈ S2, then Auto(S3 → S2) is a closed 
Lie subgroup of Aut(S3 → S2) (cf. Example 3.7) and since qπ1 is a covering morphism, ψ−1(Auto(S3 → S2))
is also a closed Lie subgroup of K�. Since ψ|C∞(S2,R) = qZ, we have

ψ−1(C∞(S2, U(1)) ∩ Auto(S3 → S2)) = C∞
m (S2,R) × Z,

and thus ψ−1(Auto(S3 → S2)) gives rise to an extension

C∞
m (S2,R) × Z → ψ−1(Auto(S3 → S2)) → q−1

π1 (Diffm(S2)0).

If we identify q−1
π1 ((Diff(S2)0)m) with ˜Diffm(S2)0/Δ (for Δ as in Remark 5.10), then we deduce from Exam-

ple 5.14 and Theorem 5.15 that ψ−1(Auto(S3 → S2)) is precisely the Lie subgroup ϕm((Diff(S2)0)�m). �
Example 5.19. An example where the conditions of Theorem 5.15 are not fulfilled is the following (cf. [33, 
Example 1]). Let η be the standard volume form on S2 with total volume 1. On M := S2 × S2, consider the 
form ω ∈ Ω2(S2 × S2)

ω(p,q) : T(p,q)S2 × S2 ∼= TpS2 × TqS2 → R, (x, y) �→ η(x) + λη(y).

Then π2(S2 × S2) = Z × Z and we have per[ω]((1, 0)) = 1 and per[ω]((0, 1)) = λ. Thus per[ω](π2(S2 × S2))
is the subgroup of R which is generated by 1 and λ. If λ /∈ Q, then this is not contained in any discrete 
subgroup.

If we take K = Symp(M, ω), then the primary periods vanish by Corollary 5.8 and we may take Γ = {0}
in Theorem 5.15. Consequently, the secondary periods per�[ω](π1(Km)) are not contained in any discrete 
subgroup of R and the subalgebra C∞

m (M) ⊕ωm
km does not integrate to a closed Lie subgroup in the 

extension

C∞(M,R) → K� → K̃. �
Problem 5.20. If one takes the results of this section, then the following questions seem to be natural and 
interesting.
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a) How do the primary and secondary periods per[ω](π2(K)) and per�[ω](π1(Km)) vary if one varies the 
subgroup K? It is clear that for K, K ′ with K ≤ K ′ we have per[ω](π2(K)) ≤ per[ω](π2(K ′)) and 
per�[ω](π1(Km)) ≤ per�[ω](π1(K ′

m)), but under which assumptions does one have equality here? In par-
ticular, it would be interesting to have a symplectic manifold with non-vanishing primary periods for 
K = Diff(M)0 (since for K = Symp(M, ω) the primary periods always vanish by Proposition 5.8).

b) It would be interesting to develop an integration theory for infinitesimal transitive pairs (cf. Prob-
lem 4.22). In particular, this should shed some further light on the precise relation between the 
integration theory of Lie algebroids, Lie algebras (of sections) and the associated obstructions.

c) What is the interplay between the primary and secondary periods and the flux group

F[ω](π1(Symp(M,ω))) ⊆ H1(M,R)

in the case that M is only assumed to be connected? Conjecturally, there might be a relation of the 
long exact homotopy sequence of the evaluation fibration and the one induced by Γ → R → R/Γ

π2(Symp(M,ω))

per[ω]

π2(M)

per[ω]

π1(Sympm(M,ω))

?

π1(Symp(M,ω))

F[ω]

H0(M,Γ) H0(M,R) H0(M,R/Γ) H1(M,Γ)

in case that the primary periods per[ω](π2(Symp(M, ω))) ≤ R are contained in the discrete subgroup 
Γ ≤ R and the flux group is contained in H1(M, Γ). Note that the flux group is known to be discrete 
by the proof of the flux conjecture [27] and that both, the secondary periods and the flux subgroup are 
related to the integrability of Lie subalgebras to closed Lie subgroups (cf. [20, Proposition 10.20]). The 

conjectural homomorphism π1(Sympm(M,ω)) H0(M,R/Γ) should be related to the fluxes F[ω], 
F[ωm] and the homomorphism ϕm : K�

m → K�, restricted to the pre-image (q�m)−1(π1(Sympm(M, ω))). 
However, this involves the (continuous) Lie algebra cohomology of km with coefficients in C∞

m (M), a 
topic that goes beyond the scope of the present paper. �

Acknowledgements

The authors would like to thank Helge Glöckner for various stimulating discussions about submer-
sion properties for maps between infinite-dimensional manifolds and Friedrich Wagemann for help with 
Lemma 5.6. The research on this paper was partially supported by the DFG Research Training group 1670 
Mathematics inspired by String Theory and Quantum Field Theory, the Scientific Network String Geometry
(DFG project code NI 1458/1-1) and the project Topology in Norway (Norwegian Research Council project 
213458).

Appendix A. Local bisections for infinite-dimensional Lie groupoids

In this appendix we prove that (infinite-dimensional) Lie groupoids over a finite-dimensional manifold 
admit local bisections through each point. Consequently, we are able to derive that their vertex groups are in 
a natural way Lie groups. These results are standard for finite-dimensional Lie groupoids. We repeat them 
here for the readers convenience since some details of proofs need to be adapted for our infinite-dimensional 
setting.

Definition A.1. Let G = (G ⇒ M) be a locally convex Lie groupoid. For U ⊆◦ M , a local bisection of G on U
is a smooth map σ : U → G such that α ◦ σ = idU and β ◦ σ : U → (β ◦ σ)(U) ⊆◦ M is a diffeomorphism. �
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Lemma A.2 ([16, Proposition 1.4.9]). Let G = (G ⇒ M) be a locally convex Lie groupoid such that M is a 
finite dimensional manifold. For each g ∈ G there exists an α(g)-neighbourhood U ⊆◦ M and a local bisection 
σ of G on U such that σ(α(g)) = g.

Proof. Note that in [16] only finite-dimensional Lie groupoids are discussed. However, to prove the assertion, 
one can copy the proof of [16, Proposition 1.4.9] verbatim to our setting, since the Lie groupoid is assumed 
to have a finite-dimensional base. The crucial point here is that the algebraic argument used in the proof 
of [16, Proposition 1.4.9] carries over to subspaces of finite codimension of arbitrary locally convex spaces. 
Assuming that the base M is finite-dimensional ensures exactly this property. �

For mappings into finite-dimensional manifolds (whose domain is an infinite-dimensional manifold), one 
can define maps of constant rank analogously to the finite-dimensional case (cf. [7, Theorem F]).

Corollary A.3 ([16, Corollary 1.4.10]). Let G = (G ⇒ M) be a locally convex Lie groupoid over a finite 
dimensional manifold M . Then for each m ∈ M the maps

β|α−1(m) : α−1(m) → M, g �→ β(g) and α|β−1(m) : β−1(m) → M, g �→ α(g)

are maps of constant rank.

The next proof follows [16, Corollary 1.4.11] but we need to adapt the arguments.

Lemma A.4. Let G = (G ⇒ M) be a locally convex Lie groupoid over a finite dimensional manifold M . Then 
for all m, n ∈ M , α−1(m) ∩β−1(n) is a split submanifold (of finite codimension) of α−1(m), of β−1(n) and 
of G. In particular, each vertex group Vertm(G) := α−1(m) ∩ β−1(m) is a closed submanifold of G and this 
structure turns it into a Lie group.

Proof. The set α−1(m) ∩β−1(n) is the preimage of n under the constant rank map β|α−1(m). As M is a finite 
dimensional manifold we can apply Glöckner’s constant rank theorem [7, Theorem F]. Thus α−1(m) ∩β−1(n)
is a split submanifold of finite codimension in α−1(m). Moreover, α−1(m) is a split submanifold of G (by 
the regular value theorem [7, Theorem D]) and since M is finite-dimensional, α−1(m) is even of finite-
codimension in G. Thus [7, Lemma 1.4] implies that also α−1(m) ∩ β−1(n) is a split submanifold (of 
finite-codimension) of G. Analogously one shows that α−1(m) ∩ β−1(n) is a split submanifold (of finite-
codimension) of β−1(n).

Groupoid multiplication and inversion induce a group structure on Vertm(G). By the universal property 
of the pullback, the inclusion Vertm(G) × Vertm(G) → G ×α,β G is smooth, whence this group structure 
turns Vertm(G) into a Lie group. �
Appendix B. Locally convex manifolds, Lie groups and spaces of smooth maps

In this appendix we collect the necessary background on the theory of manifolds and Lie groups that are 
modelled on locally convex spaces and how spaces of smooth maps can be equipped with such a structure. 
Let us first recall some basic facts concerning differential calculus in locally convex spaces. We follow [5,2].

Definition B.1. Let E, F be locally convex spaces, U ⊆ E be an open subset, f : U → F a map and 
r ∈ N0 ∪ {∞}. If it exists, we define for (x, h) ∈ U × E the directional derivative

df(x, h) := Dhf(x) := lim
t→0

t−1(f(x + th) − f(x)).
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We say that f is Cr if the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (Dyk
Dyk−1 · · ·Dy1f)(x)

exist for all k ∈ N0 such that k ≤ r, x ∈ U and y1, . . . , yk ∈ E and define continuous maps d(k)f : U ×Ek →
F . If f is C∞ it is also called smooth. We abbreviate df := d(1)f . From this definition of smooth map there 
is an associated concept of locally convex manifold, i.e., a Hausdorff space that is locally homomorphic to 
open subsets of locally convex spaces with smooth chart changes. Accordingly, a locally convex Lie group 
is a manifold, equipped with a group structure such that all group operations are smooth. See [35,24,5] for 
more details. �
Definition B.2. Let M be a smooth manifold. Then M is called Banach (or Fréchet) manifold if all its 
modelling spaces are Banach (or Fréchet) spaces. The manifold M is called locally metrisable if the underlying 
topological space is locally metrisable (equivalently if all modelling spaces of M are metrisable). It is called 
metrisable if it is metrisable as a topological space (equivalently locally metrisable and paracompact). �
Definition B.3. Let H be a Lie group modelled on a locally convex space, with identity element 1, and 
r ∈ N0 ∪ {∞}. We use the tangent map of the left translation λh : H → H, x �→ hx by h ∈ H to define 
h.v := T1λh(v) ∈ ThH for v ∈ T1(H) =: L(H). Following [8], H is called Cr-semiregular if for each Cr-curve 
η : [0, 1] → L(H) the initial value problem

{
γ′(t) = γ(t).η(t)
γ(0) = 1

has a (necessarily unique) Cr+1-solution Evol(η) := γ : [0, 1] → H. If in addition the map

evol : Cr([0, 1],L(H)) → H, η �→ Evol(η)(1)

is smooth, we call H Ck-regular. �
Remark B.4. If H is Cr-regular and r ≤ s, then H is also Cs-regular. A C∞-regular Lie group H is 
called regular (in the sense of Milnor) – a property first defined in [18]. Every finite dimensional Lie group 
is C0-regular (cf. [24]). Several important results in infinite-dimensional Lie theory are only available for 
regular Lie groups (see [18,24,7], cf. also [13] and the references therein). �
Lemma B.5. Let G be a Ck-regular Lie group for k ∈ N0 ∪ {∞} and H be a closed Lie subgroup of G. If H
is Ck-semiregular, then H is Ck-regular.

Proof. Denote by iH : H → G and IH : Ck+1([0, 1], H) → Ck+1([0, 1], G) the canonical inclusions. Then 
L(iH) : L(H) → L(G) allows us to identify curves η ∈ Ck([0, 1], L(H)) with Ck-curves L(iH) ◦ η in L(G). 
As G and H are Ck-semiregular, we obtain maps EvolJ : Ck([0, 1], L(J)) → Ck+1([0, 1], J) for J ∈ {G, H}
which map a curve to the solution of the initial value problem

{
γ′(t) = γ(t).η(t) ∀t ∈ [0, 1]
γ(0) = 1

in the respective group. Consider the map L(iH)∗ : Ck([0, 1], L(H)) → Ck([0, 1], L(G)), η �→ L(iH) ◦η, which 
is smooth by [9, Lemma 1.2]. By [8, 1.16] we have
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EvolG ◦L(iH) = IH ◦ EvolH

As H is a closed subgroup of G, the same holds for Ck+1([0, 1], H) ⊆ Ck+1([0, 1], G) (cf. [8, 1.8 and 1.10]) 
Hence EvolH is smooth if IH ◦ EvolH is smooth. Observe that since G is Ck-regular, EvolG and thus 
EvolG ◦L(iH)∗ = IH ◦ EvolH is smooth. We deduce that EvolH is smooth and [8, Lemma 3.1] shows that 
H is Ck-regular. �
Lemma B.6. Suppose H, K are Lie groups with Lie subgroups H∗ ≤ H, K∗ ≤ K such that K and K∗ are 
regular and H∗ is connected. Let ϕ : H → K be a morphism of Lie groups. If L(ϕ)(L(H∗)) ⊆ L(K∗), then 
ϕ(H∗) ⊆ K∗.9

Proof. Since H∗ is connected, it is contained in the identity component of H. Restricting to that component 
we may assume that also H is connected. Then [24, Proposition II.4.1] implies that L(ϕ) has at most 
one integration to a morphism of Lie groups, which thus has to coincide with ϕ. Recall that the left 
logarithmic derivative δl(γ) : [0, 1] → L(H) of a C1-curve γ : [0, 1] → H in a Lie group is defined via 
δl(γ)(t) := γ(t)−1.γ′(t). Thus Evol(η) = γ if and only if δl(γ) = η and γ(0) = 1H . The integration of L(ϕ)
is constructed by taking a smooth path γ : [0, 1] → H with γ(0) = 1H , applying L(ϕ) to δl(γ), solving the 
initial value problem

{
δl(η) = L(ϕ) ◦ δl(γ)
η(0) = 1K

(30)

in K and setting ϕ(γ(1)) = η(1) (which is possible since K is regular, cf. [18, Theorem 8.1]). Under the 
assumptions made, this only depends on γ(1).

Since H∗ is assumed to be connected, we can choose for each h ∈ H∗ a path γ with γ(0) = eH and γ(1) = h

such that γ(t) ∈ H∗ for all t ∈ [0, 1]. Consequently, δl(γ)(t) ∈ L(H∗), and thus L(ϕ)(δl(γ)(t)) ∈ L(K∗) for 
all t ∈ [0, 1]. Now K∗ is regular and L(ϕ) ◦ δl(γ) takes its image in L(K∗) by assumption. Thus we can solve 
(30) in K∗. From [8, Lemma 10.1], we deduce that the solution to the initial value problem (30) for η in K
coincides with the solution in K∗, and thus takes its values in K∗. Summing up, ϕ(h) = η(1) ∈ K∗ for each 
h ∈ H∗. �
Definition B.7. Suppose M is a smooth manifold. Then a local addition on M is a smooth map Σ: U ⊆◦
TM → M , defined on an open neighbourhood U of the submanifold M ⊆ TM such that

a) π×Σ: U → M ×M , v �→ (π(v), Σ(v)) is a diffeomorphism onto an open neighbourhood of the diagonal 
ΔM ⊆ M × M and

b) Σ(0m) = m for all m ∈ M .

We say that M admits a local addition if there exist a local addition on M . �
Definition B.8. (cf. [17, 10.6]) Let s : Q → N be a surjective submersion. Then a local addition adapted to 
s is a local addition Σ: U ⊆◦ TQ → Q such that the fibres of s are additively closed with respect to Σ, i.e. 
Σ(vq) ∈ s−1(s(q)) for all q ∈ Q and vq ∈ Tqs

−1(s(q)) (note that s−1(s(q)) is a submanifold of Q). �
An important tool will be the following excerpt from [35, Theorem 7.6].

9 The authors believe that this result is well-known to experts in the field but were unable to locate a reference.
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Theorem B.9. Let M be a compact manifold and N be a locally convex and locally metrisable manifold that 
admits a local addition Σ: U ⊆◦ TN → N . Set V := (π × Σ)(U), which is an open neighbourhood of the 
diagonal ΔN in N × N . For each f ∈ C∞(M, N) we set

Of := {g ∈ C∞(M,N) | (f(x), g(x)) ∈ V }.

Then the following assertions hold.

a) The set Of contains f , is open in C∞(M, N) and the formula (f(x), g(x)) = (f(x), Σ(ϕf (g)(m)))
determines a homeomorphism

ϕf : Of → {h ∈ C∞(M,TN) | π(h(x)) = f(x)} ∼= Γ(f∗(TN))

from Of onto the open subset {h ∈ C∞(M, TN) | π(h(x)) = f(x)} ∩ C∞(M, U) of Γ(f∗(TN)).
b) The family (ϕf : Of → ϕf (Of ))f∈C∞(M,N) is an atlas, turning C∞(M, N) into a smooth locally convex 

and locally metrisable manifold. The manifold structure is independent of the choice of the local addition.
c) If L is another locally convex and locally metrisable manifold, then a map f : L × M → N is smooth if 

and only if f∧ : L → C∞(M, N) is smooth. In other words,

C∞(L × M,N) → C∞(L,C∞(M,N)), f �→ f∧

is a bijection (which is even natural).
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Abstract. — In this article character groups of Hopf algebras are studied
from the perspective of infinite-dimensional Lie theory. For a graded and connected
Hopf algebra we obtain an infinite-dimensional Lie group structure on the character
group with values in a locally convex algebra. This structure turns the character
group into a Baker–Campbell–Hausdorff–Lie group which is regular in the sense
of Milnor. Furthermore, we show that certain subgroups associated to Hopf ideals
become closed Lie subgroups of the character group.

If the Hopf algebra is not graded, its character group will in general not be a
Lie group. However, we show that for any Hopf algebra the character group with
values in a weakly complete algebra is a pro-Lie group in the sense of Hofmann
and Morris.
Résumé. — Dans cet article, nous étudions les groupes de caractères des al-

gèbres de Hopf du point de vue de la théorie de Lie de dimension infinie. Pour
une algèbre de Hopf connexe et graduée, nous munissons le groupe de caractères
d’une structure de groupe de Lie de dimension infinie, à valeurs dans une algèbre
localement convexe. Cette structure permet de voir le groupe de caractères comme
un groupe de Lie de Baker–Campbell–Hausdorff, qui est régulier au sens de Milnor.
De plus, nous montrons que certains sous-groupes associés aux idéaux de Hopf sont
alors des sous-groupes de Lie du groupe de caractères.

Si l’algèbre de Hopf n’est pas graduée, son groupe de caractères ne sera pas un
groupe de Lie, en général. Cependant, nous montrons que pour une algèbre de Hopf
quelconque, le groupe de caractères à valeurs dans une algèbre faiblement complète
est un groupe pro-Lie au sens de Hofmann et Morris.
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algebra, Butcher group, weakly complete space, pro-Lie group.
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Introduction and statement of results

Hopf algebras and their character groups appear in a variety of math-
ematical and physical contexts. To name just a few, they arise in non-
commutative geometry, renormalisation of quantum field theory (see [7, 10])
and numerical analysis (cf. [4]). We recommend [5] as a convenient intro-
duction to Hopf algebras and their historical development.

In their seminal work [8, 9] Connes and Kreimer associate to the group of
characters of a Hopf algebra of Feynman graphs a Lie algebra. It turns out
that this (infinite-dimensional) Lie algebra is an important tool to analyse
the structure of the character group. In fact, the character group is then
called “infinite-dimensional Lie group” meaning that it is a projective limit
of finite-dimensional Lie groups with an associated infinite-dimensional Lie
algebra. These structures enable the treatment of certain differential equa-
tions on the group which are crucial to understand the renormalisation
procedure. Moreover, on a purely algebraic level it is always possible to
construct a Lie algebra associated to the character group of a Hopf alge-
bra. Thus it seems natural to ask whether the differential equations and
the Lie algebras are connected to some kind of Lie group structure on the
character group. Indeed, in [3] the character group of the Hopf algebra of
rooted trees was turned into an infinite-dimensional Lie group. Its Lie alge-
bra is closely related to the Lie algebra constructed in [7] for the character
group.

These observations hint at a general theme which we explore in the
present paper. Our aim is to study character groups (with values in a com-
mutative locally convex algebra) of a Hopf algebra from the perspective of
infinite-dimensional Lie theory. We base our investigation on a concept of
Cr-maps between locally convex spaces known as Keller’s Crc -theory(1) [21]
(see [12, 28, 30] for streamlined expositions and Appendix A for a quick
reference). In the framework of this theory, we treat infinite-dimensional
Lie group structures for character groups of Hopf algebras. If the Hopf al-
gebra is graded and connected, it turns out that the character group can
be made into an infinite-dimensional Lie group. We then investigate Lie
theoretic properties of these groups and some of their subgroups. In par-
ticular, the Lie algebra associated to the Lie group structure on the group
of characters turns out to be the Lie algebra of infinitesimal characters.

(1)Although Keller’s Cr
c -theory is in general inequivalent to the “convenient setting” of

calculus [22], in the important case of Fréchet spaces both theories coincide (e.g. Exam-
ple 4.7).
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The character group of an arbitrary Hopf algebra can in general not be
turned into an infinite-dimensional Lie group and we provide an explicit
example for this behaviour. However, it turns out that the character group
of an arbitrary Hopf algebra (with values in a finite-dimensional algebra)
is always a topological group with strong structural properties, i.e. it is
always the projective limit of finite-dimensional Lie groups. Groups with
these properties — so called pro-Lie groups — are accessible to Lie theoretic
methods (cf. [18]) albeit they may not admit a differential structure.

We now go into some more detail and explain the main results of the
present paper. Let us recall first the definition of the character group of
a Hopf algebra (H,mH, 1H,∆H, εH, SH) over the field K ∈ {R,C}. Fix a
commutative locally convex algebra B. Then the character group G(H, B)
of H with values in B is defined as the set of all unital algebra characters

G(H, B) :=
{
φ ∈ HomK(H, B)

∣∣∣∣
φ(ab) = φ(a)φ(b),∀a, b ∈ H

and φ(1H) = 1B

}
,

together with the convolution product φ ? ψ := mB ◦ (φ⊗ ψ) ◦∆H.
Closely related to this group is the Lie algebra of infinitesimal characters

g(H, B) := {φ ∈ HomK(H, B) | φ(ab) = εH(a)φ(b) + εH(b)φ(a)}
with the commutator Lie bracket [φ, ψ ] := φ ? ψ − ψ ? φ.

It is well known that for a certain type of Hopf algebra (e.g. graded
and connected) the exponential series induces a bijective map g(H, B) →
G(H, B). In this setting, the ambient algebra (HomK(H, B), ?) becomes a
locally convex algebra with respect to the topology of pointwise convergence
and we obtain the following result.

Theorem A. — Let H be a graded and connected Hopf algebra and B
a commutative locally convex algebra, then the group G(H, B) of B-valued
characters of H is a (K-analytic) Lie group.

The Lie algebra of G(H,B) is the Lie algebra g(H, B) of infinitesimal
characters.

Note that this Lie group structure recovers the Lie group structure on
the character group of the Hopf algebra of rooted trees which has been
constructed in [3]. For further information we refer to Example 4.7.

We then investigate the Lie theoretic properties of the character group
of a graded connected Hopf algebra. To understand these results first recall
the notion of regularity for Lie groups.

Let G be a Lie group modelled on a locally convex space, with identity
element 1, and r ∈ N0∪{∞}. We use the tangent map of the left translation
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λg : G → G, x 7→ gx by g ∈ G to define g.v := T1λg(v) ∈ TgG for v ∈
T1(G) =: L(G). Following [15], G is called Cr-semiregular if for each Cr-
curve γ : [0, 1]→ L(G) the initial value problem

{
η′(t) = η(t).γ(t)
η(0) = 1

has a (necessarily unique) Cr+1-solution Evol(γ) := η : [0, 1]→ G. If further
the map

evol : Cr([0, 1],L(G))→ G, γ 7→ Evol(γ)(1)

is smooth, we call G Ck-regular. If G is Cr-regular and r 6 s, then G is also
Cs-regular. A C∞-regular Lie group G is called regular (in the sense of Mil-
nor) — a property first defined in [28]. Every finite-dimensional Lie group
is C0-regular (cf. [30]). Several important results in infinite-dimensional Lie
theory are only available for regular Lie groups (see [15, 28, 30], cf. also [22]
and the references therein).

Concerning the Lie theoretic properties of the character groups our re-
sults subsume the following theorem.

Theorem B. — Let H be a graded and connected Hopf algebra and B
be a commutative locally convex algebra.

(a) Then G(H,B) is a Baker–Campbell–Hausdorff–Lie group which
is exponential, i.e. the Lie group exponential map is a global K-
analytic diffeomorphism.

(b) If B is sequentially complete then G(H, B) is a C0-regular Lie
group.

To illustrate the importance of regularity, let us digress and consider the
special case of the C-valued character group of the Hopf algebra of Feyn-
man graphs. In the Connes–Kreimer theory of renormalisation of quantum
field theories, a crucial step is to integrate paths in the Lie algebra asso-
ciated to this group. These integrals, called “time-ordered exponentials”
(cf. [10, Definition 1.50]), encode information on the renormalisation pro-
cedure. By [10, Chapter 1, 7.2] the “main advantage” of the time-ordered
differentials is that they are the solutions of certain differential equation on
the character group (see [10, Proposition 1.51 (3)]). In view of the Lie group
structure induced by Theorem A on the character group, these differential
equations turn out to be the differential equations of regularity of the Lie
group. Hence, in our language loc. cit. proves that the C-valued characters
of the Hopf algebra of Feynman graphs are regular in the sense of Milnor.
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Returning to the results contained in the present paper, we turn to a class
of closed subgroups of character groups which are closed Lie subgroups. For
a Hopf ideal J of a Hopf algebra H, consider the annihilator

Ann(J , B) := {φ ∈ HomK(H, B) | φ(a) = 0B , ∀a ∈ J }.
Then Ann(J , B)∩G(H, B) becomes a subgroup and we obtain the following
result.

Theorem C. — Let H be a connected and graded Hopf algebra and B
be a commutative locally convex algebra.

(a) Then Ann(J , B) ∩ G(H, B) is a closed Lie subgroup of G(H, B)
whose Lie algebra is Ann(J , B) ∩ g(H, B).

(b) There is a canonical isomorphism of (topological) groups

Ann(J , B) ∩G(H, B) ∼= G(H/J , B),

where H/J is the quotient Hopf algebra. If H/J is a connected
and graded Hopf algebra (e.g. J is a homogeneous ideal) then this
map is an isomorphism of Lie groups.

Note that in general H/J will not be graded and connected. In these
cases the isomorphism Ann(J , B) ∩ G(H, B) ∼= G(H/J , B) extends the
construction of Lie group structures for character groups to Hopf algebras
which are quotients of connected and graded Hopf algebras. However, this
does not entail that the character groups of all Hopf algebras are infinite-
dimensional Lie groups. In general, the character group will only be a topo-
logical group with respect to the topology of pointwise convergence. We
refer to Example 4.11 for an explicit counterexample of a character group
which can not be turned into an infinite-dimensional Lie group.

Finally, we consider a class of character groups of (non-graded) Hopf
algebras whose topological group structure is accessible to Lie theoretic
methods. The class of characters we consider are character groups with
values in an algebra which is “weakly complete”, i.e. the algebra is as a
topological vector space isomorphic to KI for some index set I. All finite-
dimensional algebras are weakly complete, we refer to the Diagram B.1 and
Appendix C for more information. Then we obtain the following result:

Theorem D. — Let H be an arbitrary Hopf algebra and B be a com-
mutative weakly complete algebra. Then the following holds

(a) the topological group G(H, B) is a projective limit of finite-
dimensional Lie groups (a pro-Lie group in the sense of [18]).

A pro-Lie group is associated to a Lie algebra which we identify forG(H, B):
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(b) the pro-Lie algebra L(G(H, B)) of the pro-Lie group G(H, B) is the
Lie algebra of infinitesimal characters g(H, B).

The pro-Lie group structure of the character group is exploited in the
theory of renormalisation (cf. [10]). We refer to Remark 5.8 for concrete
examples of computations in loc. cit. which use the pro-Lie structure.

Note that pro-Lie groups are in general only topological groups without
a differentiable structure attached to them. However, these groups admit
a Lie theory which has been developed in the extensive monograph [18].
The results on the pro-Lie structure are somewhat complementary to the
infinite-dimensional Lie group structure. If the Hopf algebra H is graded
and connected and B is a commutative weakly complete algebra, then
the pro-Lie group structure of G(H, B) is compatible with the infinite-
dimensional Lie group structure of G(H, B) obtained in Theorem A.

1. Linear maps on (connected) coalgebras

In this preliminary section we collect first some basic results and nota-
tions used throughout the paper (also cf. Appendices A–C). Most of the
results are not new, however, we state them together with a proof for the
reader’s convenience.

Notation 1.1. — We write N := {1, 2, 3, . . .}, and N0 := N∪{0}. In this
article (with the exception of Appendix C), K denotes either the field R of
real or the field C of complex numbers.

Notation 1.2 (Terminology).
(a) By the term (co-)algebra, we always mean an (co-)associative unital

K-(co-)algebra.
(b) The unit group or group of units of an algebra A is the group of its

invertible elements and is denoted by A×.
(c) A locally convex space is a locally convex Hausdorff topological

vector space and a weakly complete space is a locally convex space
which is topologically isomorphic to KI for an index set I (see
Definition C.1).

(d) A locally convex algebra (weakly complete) algebra is a topological
algebra whose underlying topological space is locally convex (weakly
complete). Cf. also Lemma 5.3.

(e) Finally, a continuous inverse algebra (CIA) is a locally convex al-
gebra with an open unit group and a continuous inversion.
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If we want to emphasize that an algebraic structure, such as a vector space
or an algebra, carries no topology, we call it an abstract vector space or
abstract algebra, etc.

Throughout this section, let C = (C,∆C , εC) denote an abstract coalgebra
and let B denote a locally convex topological algebra, e.g. a Banach algebra.

Definition 1.3 (Algebra of linear maps on a coalgebra). — We consider
the locally convex space

A := HomK(C, B)
of all K-linear maps from C into B. We will give this space the topology
of pointwise convergence, i.e. we embed A into the product space BC with
the product topology.

The space A becomes a unital algebra with respect to the convolution
product (cf. [33, Section IV])

? : A×A→ A, (h, g) 7→ mB ◦ (h⊗ g) ◦∆C .
Here mB : B ⊗B → B is the algebra multiplication. The unit with respect
to ? is the map 1A = uB ◦ εC where we defined uB : K→ B, z 7→ z1B .

One of the most interesting choices for the target algebra B of A =
HomK(C, B) is B = K: In this case, A is the algebraic dual of the abstract
vector space C with the weak*-topology.

Lemma 1.4. — Consider the algebra A = HomK(C, B) with the convo-
lution ? as above. The map ? : A× A→ A is continuous, whence (A, ?) is
a locally convex algebra,

Proof. — Since the range space A = HomK(C, B) carries the topology of
pointwise convergence, we fix an element c ∈ C. We write ∆C(c) ∈ C ⊗C in
Sweedler’s sigma notation (see [20, Notation 1.6] or [33, Section 1.2]) as a
finite sum

∆C(c) =
∑

(c)

c1 ⊗ c2.

Then the convolution product φ ? ψ evaluated at point c is of the form:

(φ ? ψ)(c) = mB ◦ (φ⊗ ψ) ◦∆C (c) = mB ◦ (φ⊗ ψ)


∑

(c)

c1 ⊗ c2




=
∑

(c)

mB (φ(c1)⊗ ψ(c2)) =
∑

(c)

φ(c1) · ψ(c2).

This expression is continuous in (φ, ψ) since point evaluations are continu-
ous as well as multiplication in the locally convex algebra B. �
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Remark 1.5. — Note that the multiplication of the locally convex alge-
bra B is assumed to be a continuous bilinear map B×B → B. However, we
did not need to put a topology on the space B⊗B nor did we say anything
about the continuity of the linear map mB : B ⊗B → B.

Lemma 1.6 (Properties of the space A). — Let A = HomK(C, B) as
above.

(a) As a locally convex space (without algebra structure), the space A
is isomorphic to BI , where the cardinality of the index set I is equal
to the dimension of C.

(b) If the vector space C is of countable dimension and B is a Fréchet
space, A is a Fréchet space as well.

(c) The locally convex algebra A is (Mackey/sequentially) complete if
and only if the algebra B is (Mackey/sequentially) complete.

Proof.
(a) A linear map is uniquely determined by its valued on a basis (ci)i∈I

of C.
(b) As a locally convex space A ∼= BI . Since I is countable and B is a

Fréchet space, A is a countable product of Fréchet spaces, whence
a Fréchet space.

(c) By part (a), B is a closed vector subspace of A. So every complete-
ness property of A is inherited by B. On the other hand, products
of Mackey complete (sequentially complete, complete) spaces are
again of this type. �

The terms abstract gradings and dense gradings used in the next lemma
are defined in Definition B.1 and B.2, respectively.

Lemma 1.7. — Let C be an abstract coalgebra, let B be a locally convex
algebra, and set A = HomK(C, B) as above.

(a) If C admits an (abstract) grading C =
⊕∞

n=0 Cn, the bijection

(1.1) A = HomK

( ∞⊕

n=0
Cn, B

)
→

∞∏

n=0
HomK(Cn, B), φ 7→ (φ|Cn)n∈N0

turns A into a densely graded algebra with respect to the grading
(HomK(Cn, B))n∈N0

.
(b) If in addition C is connected and B is a CIA, then A is a CIA as

well.
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Proof.
(a) It is clear that the map (1.1) is an isomorphism of topological vector

spaces. Via this dualisation, the axioms of the graded coalgebra (see
Definition B.1(c)) directly translate to the axioms of densely graded
locally convex algebra (see Definition B.2(b)).

(b) By Lemma B.7, we know that the densely graded locally convex
algebra A is a CIA, if A0 = HomK(C0, B) is a CIA. Since we assume
that C is connected, this means that C ∼= K and hence A0 ∼= B. The
assertion follows. �

From Lemma 1.7 and Lemma A.6 one easily deduce the following propo-
sition.

Proposition 1.8 (A× is a Lie group). — Let C be an abstract graded
connected coalgebra and let B be a Mackey complete CIA. Then the unit
group A× of the densely graded algebra A = (HomK(C, B), ?) is a BCH–Lie
group. The Lie algebra of the group A× is (A, [·, ·]), where [·, ·] denotes the
usual commutator bracket.

Furthermore, the Lie group exponential function of A× is given by the ex-
ponential series, whence it restricts to the exponential function constructed
in Lemma B.5.

Theorem 1.9 (Regularity of A×). — Let C be an abstract graded con-
nected coalgebra and let B be a Mackey complete CIA. As above, we set
A := (HomK(C, B), ?) and assume that B is commutative or locally m-
convex (i.e. the topology is generated by a system of submultiplicative
seminorms).

(a) The Lie group A× is C1-regular.
(b) If in addition, the space B is sequentially complete, then A× is

C0-regular.
In both cases the associated evolution map is even K-analytic.

Proof. — Since B is a commutative CIA or locally m-convex, the algebra
B has the (GN)-property by Lemma A.8. The algebra A := HomK(C, B) is
densely graded with A0 ∼= B by Lemma 1.7. We claim that since A0 = B

has the (GN)-property, the same holds for A (the details are checked in
Lemma 1.10 below).

By Lemma 1.6, we know that A and B share the same completeness prop-
erties, i.e. the algebra A is Mackey complete if B is so and the same hold for
sequential completeness. In conclusion, the assertion follows directly from
Lemma A.9. �
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Lemma 1.10. — Let A be a densely graded algebra and denote the dense
grading by (AN )N∈N0 . Then A has the (GN)-property (see Definition A.7)
if and only if the subalgebra A0 has the (GN)-property.

Proof. — Let us first see that the condition is necessary. Pick a continu-
ous seminorm p0 on A0. Then P := p0 ◦ π0 is a continuous seminorm on A
(where π0 : A → A0 is the canonical projection). Following Definition A.7
there is a continuous seminorm Q on A and a number M > 0 such that
the following condition holds

(1.2)
∀n ∈ N and each (a1, . . . , an) ∈ An with Q(ai) 6 1 for 1 6 i 6 n,

we have P (a1 · · · an) 6Mn.

Now we set q0 := Q|A0 and observe that q0 is a continuous seminorm
as the inclusion A0 → A is continuous and linear. A trivial computation
now shows that p0, q0 and M satisfy (1.2). We conclude that A0 has the
(GN)-property.

For the converse assume that A0 has the (GN)-property and fix a con-
tinuous seminorm P on A. The topology on A is the product topology, i.e.
it is generated by the canonical projections πN : A → AN . Hence we may
assume that P is of the form

P = max
06N6L

(pN ◦ πN )

where each pN : AN → [0,∞[ is a continuous seminorm on AN . The number
L ∈ N0 is finite and remains fixed for the rest of the proof.

The key idea is here that P depends only on a finite number of spaces in
the grading. Now the multiplication increases the degree of elements except
for factors of degree 0. However, these contributions can be controlled by
the (GN)-property in A0.

We will now construct a continuous seminorm Q on A and a number
M > 0 such that (1.2) holds.

Construction of the seminorm Q. Let w = (w1, w2, . . . , wr) ∈ Nr
(where r ∈ N) be a multi-index and denote by |w| the sum of the entries of
the multi-index w. Define for r 6 L and w ∈ Nr with |w| 6 L a continuous
r-linear map

fw : Aw1 ×Aw2 × · · · ×Awr → A|w|, (b1, . . . , br) 7→ b1 · · · br,

Since L < ∞ is fixed and the wi are strictly positive for 1 6 i 6 r, there
are only finitely many maps fw of this type. This allows us to define for
each 1 6 k 6 L a seminorm qk on Ak with the following property: For all
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r 6 L and w ∈ Nr with |w| 6 L we obtain an estimate

(1.3) p|w| (fw(b1, . . . , br)) 6 qw1(b1) · qw2(b2) · · · qwr (br).

Consider for each N 6 L the continuous trilinear map

gN : A0 ×AN ×A0 → AN , (c, d, e) 7→ c · d · e.

As there are only finitely many of these maps, we can define a seminorm
q0 on A0 and a seminorm q∼N on AN for each 1 6 N 6 L such that

(1.4) qN (gN (c, d, e)) 6 q0(c)q∼N (d)q0(e) holds for 1 6 N 6 L.

Enlarging the seminorm q0, we may assume that q0 > p0.
Now we use the fact that the subalgebra A0 has the (GN)-property.

Hence, there is a continuous seminorm q∼0 on A0 and a number M0 > 1
such that for n ∈ N and elements ci ∈ A0, 1 6 i 6 n with q∼0 (ci) 6 1 we
have

(1.5) q0(c1 · · · cn) 6Mn
0 .

Finally, we define the seminorm Q via

Q := max
06k6L

(q∼k ◦ πk) .

Clearly Q is a continuous seminorm on A. Moreover, we set

M := M
2(L+1)
0 · (L+ 1).

The seminorms P , Q and the constant M satisfy (1.2). Let n ∈ N
and (a1, . . . , an) ∈ An with Q(aj) 6 1 be given. It remains to show that
P (a1 · · · an) 6Mn. Each element aj can be written as a converging series

aj =
∞∑

k=0
a

(k)
j with a(k)

j ∈ Ak.

Plugging this representation into P , we obtain the estimate

P (a1 · · · an) = P



∞∑

N=0

∑

α∈Nn0
|α|=N

a
(α1)
1 · · · a(αn)

n




= max
06N6L

pN



∑

α∈Nn0
|α|=N

a
(α1)
1 · · · a(αn)

n


 6 max

06N6L

∑

α∈Nn0
|α|=N

pN

(
a

(α1)
1 · · · a(αn)

n

)
.
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For fixed 0 6 N 6 L the number of summands in this sum is bounded from
above by (N + 1)n 6 (L+ 1)n since for the entries of α there are at most
N + 1 choices. We claim that each summand can be estimated as

(1.6) pN

(
a

(α1)
1 · · · a(αn)

n

)
6
(
M

2(L+1)
0

)n
.

If this is true then one easily deduces that P (a1 · · · an) 6 (L + 1)n ·
(M2(L+1)

0 )n = Mn and the assertion follows.
Hence we have to prove that (1.6) holds. To this end, fix 0 6 N 6 L and

α ∈ Nn0 .

Case N = 0. — Then α = (0, . . . , 0) and we have

p0

(
a

(0)
1 · · · a(0)

n

)
6 q0

(
a

(0)
1 · · · a(0)

n

) (1.5)
6 Mn

0 6
(
M

2(L+1)
0

)n
.

Case N > 1. — The product a(α1)
1 · · · a(αn)

n may contain elements from
the subalgebra A0 and elements from the subspaces Ak with k > 1. Com-
bining each element contained in A0 with elements to the left or the right,
we rewrite the product as

a
(α1)
1 · · · a(αn)

n = b1 · · · br

for some r 6 min{n,L}. Deleting all zeroes from α, we obtain a multi-
index w ∈ Nr. Now by construction bk ∈ Awk is a product bk = ck · dk · ek,
where each dk ∈ Awk is one of the aj and ck and ek are finite products of
A0-factors in the original product.

Since each ck is a product of at most n elements of A0, all of which have
q∼0 -norm at most 1, we may apply (1.5) to obtain the estimate:

q0(ck) 6Mn
0 .

For the same reason, we have the corresponding estimate q0(ek) 6Mn
0 .

Combining these results, we derive

pN

(
a

(α1)
1 · · · a(αn)

n

)
= pN (b1 · · · br)

(1.3)
6

r∏

k=1
qwk(bk) =

r∏

k=1
qwk(ckdkek)

(1.4)
6

r∏

k=1
q0(ck)︸ ︷︷ ︸
6Mn

0

· q∼wk(dk)
︸ ︷︷ ︸

61

· q0(ek)︸ ︷︷ ︸
6Mn

0

6
r∏

k=1
(M2

0 )n = (M2r
0 )n

6
(
M

2(L+1)
0

)n
�
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2. Characters on graded connected Hopf algebras

In this section we construct Lie group structures on character groups of
(graded and connected) Hopf algebras.

Notation 2.1. — From now on H = (H,mH, uH,∆H, εH, SH) will de-
note a fixed Hopf algebra and we let B be a fixed commutative locally
convex algebra. Using only the coalgebra structure of H, we obtain the
locally convex algebra

A := (HomK(H, B), ?) (see Lemma 1.4).

Note that our framework generalises the special case B = K which is
also an interesting case. For example, the Hopf algebra of rooted trees
(see Example 4.6) is a connected, graded Hopf algebra and its group of
K-valued characters turns out to be the Butcher group from numerical
analysis (cf. Example 4.7).

We will now consider groups of characters of Hopf algebras:

Definition 2.2. — A linear map φ : H → B is called (B-valued) char-
acter if it is a homomorphism of unital algebras, i.e.

(2.1) φ(ab) = φ(a)φ(b) for all a, b ∈ H and φ(1H) = 1B .

Another way of saying this is that φ is a character, if

(2.2) φ ◦mH = mB ◦ (φ⊗ φ) and φ(1H) = 1B .

The set of characters is denoted by G(H, B).

Lemma 2.3. — The set of characters G(H, B) is a closed subgroup of
(A×, ?). With the induced topology, G(H, B) is a topological group. Inver-
sion in this group is given by the map φ 7→ φ ◦ SH and the unit element is
1A := uB ◦ εH : H → B, x 7→ εH(x)1B .

Proof. — The fact that the characters of a Hopf algebra form a group
with respect to the convolution product is well-known, see for example [26,
Proposition II.4.1 3)]. Note that in loc. cit. this is only stated for a con-
nected graded Hopf algebra although the proof does not use the grading at
all.

The closedness of G(H, B) follows directly from Definition 2.2 and the
fact that we use the topology of pointwise convergence on A. Continuity of
the convolution product was shown in Lemma 1.4. Inversion is continuous as
the precomposition with the antipode is obviously continuous with respect
to pointwise convergence. �
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Our goal in this section is to turn the group of characters into a Lie
group. Hence, we need a modelling space for this group. This leads to the
following definition:

Definition 2.4. — A linear map φ ∈ HomK(H, B) is called an infini-
tesimal character if
(2.3) φ ◦mH = mB ◦ (φ⊗ εH + εH ⊗ φ),
which means for a, b ∈ H that φ(ab) = φ(a)εH(b) + εH(a)φ(b).

We denote by g(H, B) the set of all infinitesimal characters.

Lemma 2.5. — The infinitesimal characters g(H, B) form a closed Lie
subalgebra of (A, [·, ·]), where [ · , · ] is the commutator bracket of (A, ?).

Proof. — As for G(H, B), the closedness follows directly from the defi-
nition. The fact that the infinitesimal characters form a Lie subalgebra is
well-known, see for example [26, Proposition II.4.2]. �

Remark 2.6. — From now on we assume for the rest of this section that
the Hopf algebra H is graded and connected (see Definition B.1). Thus by
Lemma 1.7 the locally convex algebra A = HomK(H, B) is densely graded.

Every infinitesimal character φ ∈ g(H, B) maps 1H to 0K · 1B since
φ(1H · 1H) = φ(1H)εH(1H) + εH(1H)φ(1H) = 2φ(1H). Now H =

⊕
n=0Hn

is assumed to be connected and we have H0 = K1H, whence φ|H0 = 0.
Translating this to the densely graded algebra A, we observe g(H, B) ⊆ IA
(the ideal of all elements which vanish on H0, cf. Definition B.2). Similarly,
a character maps 1H to 1B by definition. Hence, G(H, B) ⊆ 1A + IA.
Theorem 2.7. — Let H be an abstract graded connected Hopf algebra

H. For any commutative locally convex algebra B, the group G(H, B) of
B-valued characters of H is a (K−analytic) Lie group.

Furthermore, we observe the following properties
(i) The Lie algebra L(G(H,B)) of G(H,B) is the Lie algebra g(H, B)

of infinitesimal characters with the commutator bracket [φ, ψ ] =
φ ? ψ − ψ ? φ.

(ii) G(H, B) is a BCH–Lie group which is exponential, i.e. the expo-
nential map is a global K-analytic diffeomorphism and is given by
the exponential series.

(iii) The model space of G(H, B) is a Fréchet space whenever H is of
countable dimension (e.g. a Hopf algebra of finite type) and B is a
Fréchet space (e.g. B is finite-dimensional or a Banach algebra).
In the special case that B is a weakly complete algebra, the mod-

elling space g(H, B) is weakly complete as well.
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Proof. — The locally convex algebra A = HomK(H, B) is densely graded.
Hence, by Lemma B.5, the exponential series converges on the closed vector
subspace IA and defines a CωK -diffeomorphism:

expA : IA → 1A + IA, φ 7→ exp[φ].

This implies that the closed vector subspace g(H, B) is mapped to a closed
analytic submanifold of 1A + IA ⊆ A. By Lemma B.10, we obtain a com-
mutative diagram

(2.4)

IA
expA // 1A + IA

g(H, B)

⊆

OO

Exp:=expA |
G(H,B)
g(H,B)

// G(H, B)

⊆

OO

which shows that the group G(H, B) is a closed analytic submanifold of
1A + IA ⊆ A.

The group multiplication is a restriction of the continuous bilinear map
? : A × A → A to the analytic submanifold G(H, B) × G(H, B) and since
the range space G(H, B) ⊆ A is closed this ensures that the restriction is
analytic as well. Inversion in G(H, B) is composition with the antipode map
G(H, B) → G(H, B), φ 7→ φ ◦ S (see Lemma 2.3). This is a restriction of
the continuous linear (and hence analytic) map A→ A, φ 7→ φ◦S to closed
submanifolds in the domain and range and hence inversion is analytic as
well. This shows that G(H, B) is an analytic Lie group.

(i) The map Exp: g(H, B) → G(H, B), φ 7→ expA(φ) is an analytic
diffeomorphism. Hence, we take the tangent map at point 0 in the
diagram (2.4) to obtain:

IA
T0 expA // IA

g(H, B)

⊆

OO

T0Exp
// T1A(G(H, B))

⊆

OO

By Lemma B.6(b) we know that T0 expA = idA which implies
T0Exp = idg(H,B). Hence as locally convex spaces L(G(H, B)) =
T1A(G(H, B)) = g(H, B). It remains to show that the Lie bracket
on T1A(G(H, B)) induced by the Lie group structure is the commu-
tator bracket on g(H, B). This is what we will show in the following:
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For a fixed φ ∈ G(H, B), the inner automorphism

cφ : G(H, B)→ G(H, B), ψ 7→ φ ? ψ ? (φ ◦ S)

is a restriction of continuous linear map on the ambient space A.
Taking the derivative of cφ we obtain the usual formula for the
adjoint action

L(cφ) = Ad(φ) : g(H, B)→ g(H, B), ψ 7→ φ ? ψ ? (φ ◦ S).

For fixed ψ ∈ g(H, B), this formula can be considered as a re-
striction of a continuous polynomial in φ. We then define ad :=
T1AAd(·).ψ (cf. [30, Example II.3.9]) which yields the Lie bracket
of φ and ψ in g(H, B):

(2.5) [φ, ψ] = ad(φ).ψ = φ ? ψ + ψ ? (φ ◦ S).

Recall that the antipode is an anti-coalgebra morphism by [25,
Proposition 1.3.1]. Thus the map A → A, f 7→ f ◦ S is an anti-
algebra morphism which is continuous with respect to the topology
of pointwise convergence. We conclude for an infinitesimal character
φ that expA(φ ◦ S) = expA(φ) ◦ S = (expA(φ))−1, i.e. expA(φ ◦ S)
is the inverse of expA(φ) with respect to ?. As expA restricts to a
bijection from g(H, B) to G(H, B) we derive from Lemma B.6(a)
that φ ◦ S = −φ. This implies together with (2.5) that [φ, ψ ] =
φ ? ψ − ψ ? φ.

(ii) We already know that the exponential series defines an analytic
diffeomorphism Exp: g(H, B)→ G(H, B) between Lie algebra and
Lie group. It only remains to show that Exp is the exponential
function of the Lie group. To this end let φ ∈ g(H, B) be given.
The analytic curve

γφ : (R,+)→ G(H, B), t 7→ Exp(tφ)

is a group homomorphism by Lemma B.6(a) and we have γ′φ(0) = φ

by Lemma B.6(b). By definition of a Lie group exponential function
(see [30, Definition II.5.1]) we have exp(φ) = γφ(1) = Exp(φ).

(iii) Assume that the underlying vector space of the algebra H is of
countable dimension. The Lie algebra g(H, B) is a closed vector sub-
space of A, the latter is Fréchet by Lemma 1.6(b). Hence, g(H, B)
is Fréchet as well.

If B is weakly complete then g(H,K) is a closed vector subspace
of a weakly complete space by Lemma 1.6(a). Since closed subspaces
of weakly complete spaces are again weakly complete (e.g. [18, The-
orem A2.11]), the assertion follows. �
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Remark 2.8.
(a) Character groups of (graded and connected)

Hopf algebras with values in locally convex algebras arise naturally
in application in physics. Namely, in renormalisation of quantum
field theories one considers characters of the Hopf algebra of Feyn-
man graphs with values in algebras of polynomials or the algebra
of germs of meromorphic functions (see e.g. [26, 10]).

(b) In Theorem 2.7 we did not need to assume that the Hopf algebra
is of finite type, i.e. that the steps of the grading are all finite-
dimensional. Moreover, the Lie group structure does not depend on
the grading on the Hopf algebra H, i.e. if H admits two connected
gradings, then the Lie group structures induced by Theorem 2.7
coincide. Note that the Hopf algebra of Feynman graphs admits
two connected gradings which are natural and of interest in physics
(cf. [10, Proposition 1.30] and [31]).

Remark 2.9. — Consider the special case of a K-Hopf algebra H which
is graded, connected and commutative. Recall that an affine group scheme
is a covariant representable functor from the category CommAlgK of com-
mutative algebras over K to the category of groups. The functor

G(H, ·) : CommAlgK −→ Groups,

which sends K-algebras to their associated character groups and an algebra
morphism f : A → B to G(H, f) : G(H, A) → G(H, B), φ 7→ f ◦ φ, is an
affine group scheme (cf. e.g. [34, 1.4]). In this case, [29, Proposition 4.13]
implies that the group G(H, B) is a projective limit (in Groups) of linear
affine groups (see also [34]). We will encounter a similar phenomenon (albeit
in the case of an arbitrary Hopf algebra) in Section 5.

Assume further that the Hopf algebra H is of finite type. Then the
Milnor–Moore Theorem [29, Theorem 5.18] asserts that H can be recov-
ered as the graded dual of the universal enveloping algebra of a dense Lie
subalgebra of g(H,K). Hence the affine group scheme is completely deter-
mined by the Lie algebra of infinitesimal characters (cf. [10, p. 76–77] for
a full account).(2) However, we remark that our results do not rely on the
Milnor–Moore Theorem or techniques for affine group schemes.

(2) In general, the Lie algebra encountered in the Milnor–Moore Theorem is not the full
Lie algebra of infinitesimal characters (a fact which is somewhat opaque in [10]). This
is due to the fact that one needs to take the restricted dual, i.e. the direct sum of the
duals of the finite-dimensional steps of the grading. The Lie algebra obtained from the
restricted dual is a dense subalgebra of the infinitesimal characters which are contained
in the full dual, cf. Lemma 1.7.
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We now turn to the question whether the Lie group constructed in The-
orem 2.7 is a regular Lie group. To derive the regularity condition, we need
to restrict our choice of target algebras to Mackey complete algebras. Let
us note first the following result.

Lemma 2.10. — Let H be a graded and connected Hopf algebra and
B be a commutative locally convex algebra. Then G(H, B) and g(H, B)
are contained in a closed subalgebra of A = (HomK(H, B), ?) which is a
densely graded continuous inverse algebra.

Proof. — Consider the closed subalgebra Λ := (K1A0) ×∏n∈NAn. By
Lemma B.8 this algebra is densely graded (with respect to the grading
induced by A) and a continuous inverse algebra. Note that IA = kerπ0
and π0(1A+IA) = 1A imply that IA and 1A+IA are contained in Λ. Thus
Remark 2.6 shows that Λ contains G(H, B) and g(H, B). �
Theorem 2.11. — Let H be a graded and connected Hopf algebra and

B be a Mackey complete locally convex algebra.
(a) The Lie group G(H, B) is C1-regular.
(b) If in addition, B is sequentially complete, then G(H, B) is even

C0-regular.
In both cases, the associated evolution map is even a K-analytic map.

Proof. — We have seen in Lemma 2.10 that G(H, B) and g(H, B) are
contained in a closed subalgebra Λ of A = (HomK(H, B), ?). By construc-
tion Λ is a densely graded CIA. Note that Λ inherits all completeness prop-
erties from B since it is closed in A and this space inherits its completeness
properties from B by Lemma 1.6. Combine Lemma 2.3 and Lemma B.7(a)
to see that G(H, B) is a closed subgroup of the group of units of the CIA Λ.
Theorem 2.7 and Lemma A.6 show that Λ× and G(H, B) are BCH–Lie
groups and thus [30, Theorem IV.3.3] entails that G(H, B) is a closed Lie
subgroup of Λ×.

Since Λ0 ∼= K (cf. Lemma B.8) is a commutative CIA, we deduce from
Lemma A.8 that Λ0 has the (GN)-property. Hence Lemma 1.10 shows that
also Λ has the (GN)-property. We deduce from Lemma A.9 that the unit
group Λ× is a C1-regular Lie group which is even C0-regular if B is se-
quentially complete. For the rest of this proof, fix k ∈ {0, 1} and let B be
sequentially complete if k = 0.

Our first goal is to show that G(H, B) is Ck-semiregular, i.e. that ev-
ery Ck-curve into the Lie algebra g(H, B) admits a Ck+1-evolution in the
character group (cf. [15]). To this end, let us recall the explicit regularity
condition for the unit group.
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Step 1: The initial value problem for Ck-regularity in the group
Λ×. The Lie group Λ× is open in the CIA Λ. Take the canonical iden-
tification TΛ× ∼= Λ× × Λ. Recall that the group operation of Λ× is the
restriction of the bilinear convolution ? : Λ × Λ → Λ. Consider for θ ∈ Λ×
the left translation λθ(h) := θ ? h, h ∈ Λ×. Then the identification of the
tangent spaces yields T1Λλθ(X) = θ ? X for all X ∈ T1ΛΛ× = Λ. Summing
up, the initial value problem associated to Ck-regularity of Λ× becomes

(2.6)
{
η′(t) = η(t).γ(t) = T1Λλη(t)(γ(t)) = η(t) ? γ(t) t ∈ [0, 1],
η(0) = 1Λ

where γ ∈ Ck([0, 1],Λ).
Fix γ ∈ Ck([0, 1], g(H, B)). Now g(H, B) ⊆ Λ holds and Λ× is Ck-

regular. Thus γ admits a Ck+1-evolution η in Λ×, i.e. η : [0, 1] → Λ× is of
class Ck+1 and solves (2.6) with respect to γ. We will now show that η
takes its values in G(H, B).

Step 2: An auxiliary map to see that G(H, B) is Ck-semiregular.
Consider

F : [0, 1]×H×H → B, (t, x, y) 7→ η(t)(xy)− η(t)(x)η(t)(y).

If F vanishes identically, the evolution η is multiplicative for each fixed t.
Note that as η is a Ck+1-curve and Λ carries the topology of pointwise
convergence, for each (x, y) ∈ H×H the map Fx,y := F (·, x, y) : [0, 1]→ B

is a Ck+1-map. Furthermore, F (0, ·, ·) ≡ 0 as η(0) = 1Λ ∈ G(H, B). Thus
for each pair (x, y) ∈ H ×H the fundamental theorem of calculus yields

(2.7) F (t, x, y) = Fx,y(t) =
∫ t

0

∂

∂t
Fx,y(t)dt.

In the following formulae, abbreviate ηt := η(t) and γt := γ(t) to shorten
the notation. To evaluate the expression (2.7) we compute the derivative
of Fx,y as

(2.8)
∂

∂t
Fx,y(t) = ∂

∂t
ηt(xy)−

(
∂

∂t
ηt(x)

)
ηt(y)−

(
∂

∂t
ηt(y)

)
ηt(x)

(2.6)= [ηt ? γt](xy)− [ηt ? γt](x)ηt(y)− [ηt ? γt](y)ηt(x).

We use Sweedler’s sigma notation to write ∆H(x) =
∑

(x) x1 ⊗ x2 and
∆H(y) =

∑
(y) y1⊗y2. As ∆H is an algebra homomorphism, the convolution
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in (2.8) can then be rewritten as

(2.9)

∂

∂t
Fx,y(t) =

∑

(x)(y)

ηt(x1y1)γt(x2y2)−
∑

(x)

ηt(x1)γt(x2)ηt(y)

−
∑

(y)

ηt(y1)γt(y2)ηt(x).

Recall that the curve γ takes its values in the infinitesimal characters,
whence we have the identity γt(ab) = ε(a)γt(b) + ε(b)γt(a). Plugging this
into the first summand in (2.9) and using that ηt is linear for all t we obtain
the identity

(2.10)

∑

(x)

∑

(y)

ηt(x1y1)γt(x2y2)

=
∑

(x)

∑

(y)

(ηt(ε(x2)x1y1)γt(y2) + ηt(x1(ε(y2)y1))γt(x2))

=
∑

(y)

ηt(xy1)γt(y2) +
∑

(x)

ηt(x1y)γt(x2).

As B is commutative inserting (2.10) into (2.9) yields

(2.11)

∂

∂t
Fx,y(t) =

∑

(y)

(ηt(xy1)− ηt(x)ηt(y1))γt(y2)

+
∑

(x)

(ηt(x1y)− ηt(x1)ηt(y))γt(x2).

Since ηt is linear for each fixed t it suffices to check that ηt is multiplicative
for all pairs of elements in a set spanning the vector space H. As H is
graded, the homogeneous elements span the vector space H. We will now
use the auxiliary mapping F and its partial derivative to prove that the
evolution ηt is multiplicative on all homogeneous elements in H (whence
on all elements in H).

Step 3: The evolution η(t) is multiplicative on H0 and maps 1H
to 1B. The Hopf algebra H is graded and connected, i.e. H =

⊕
n∈N0

Hn
and H0 = K1H. By construction this entails ∆H(H0) ⊆ H0 ⊗ H0 and
the infinitesimal character γ vanishes on H0. Thus for x, y ∈ H0 we have
∂
∂tFx,y(t) = 0 for all t ∈ [0, 1] by (2.11). We conclude from (2.7) for x, y ∈
H0 the formula

η(t)(xy)− η(t)(x)η(t)(y) = F (t, x, y) = 0 ∀t ∈ [0, 1].

Hence η(t)(xy) = η(t)(x)η(t)(y) for all elements in degree 0. Specialising
to x = 1H = y we see that η(t)(1H) is an idempotent in the CIA B.
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Furthermore, since η(t) ∈ Λ×, we have 1B = 1Λ(1H) = η(t) ? (η(t))−1(1H),
whence η(t)(1H) ∈ B× for all t ∈ [0, 1]. As B× is a group it contains only
one idempotent, i.e. η(t)(1H) = 1B .

Step 4: The evolution η(t) is multiplicative for all homogeneous
elements. As H is connected, ηt is linear and ηt(1H) = 1B holds, we see
that (2.11) vanishes if either x or y are contained in H0. We conclude
from (2.7) that

ηt(xy) = ηt(x)ηt(y) ∀t ∈ [0, 1] if x or y are contained in degree 0
Denote for a homogeneous element x ∈ H by deg x its degree with respect
to the grading. To prove that ηt is multiplicative for elements of higher
degree and t ∈ [0, 1] we proceed by induction on the sum of the degrees of
x and y. Having established multiplicativity of ηt if at least one element is
in H0, we have already dealt with the cases deg x+ deg y ∈ {0, 1}.

Induction step for deg x + deg y > 2. — We assume that for homo-
geneous elements a, b with deg a + deg b 6 deg x + deg y − 1 the formula
ηt(ab) = ηt(a)ηt(b) holds.

Since H is connected, for each z ∈ Hn with n > 1 the coproduct can be
written as

∆H(z) = z ⊗ 1H + 1H ⊗ z + ∆̃(z)
where ∆̃(z) =

∑
(z̃) z̃1 ⊗ z̃2 ∈ ε−1

H (0) ⊗ ε−1
H (0) is the reduced coproduct.

Note that by construction the elements z̃1, z̃2 are homogeneous of degree
strictly larger than 0. Let us plug this formula for the coproduct into (2.11).
We compute for the first sum in (2.11):

(2.12)

∑

(y)

(ηt(xy1)− ηt(x)ηt(y1))γt(y2)

= (ηt(xy)− ηt(x)ηt(y)) γt(1H)︸ ︷︷ ︸
=0

+ (ηt(x1H)− ηt(x)ηt(1H))︸ ︷︷ ︸
=0

γt(y)

+
∑

(̃y)

(ηt(xỹ1)− ηt(x)ηt(ỹ1))γt(ỹ2)

=
∑

(̃y)

(ηt(xỹ1)− ηt(x)ηt(ỹ1))︸ ︷︷ ︸
Cx,ỹ1 :=

γt(ỹ2)

By construction we have deg ỹ1,deg ỹ2 ∈ [1,deg y−1]. Then deg ỹ1 < deg y
implies deg x + deg ỹ1 < deg x + deg y and thus Cx,ỹ1 vanishes by the
induction assumption.

As the two sums in (2.11) are symmetric, interchanging the roles of x and
y together with an analogous argument as above shows that also the second
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sum vanishes. Hence, arguing as in Step 3, we see that ηt(xy) = ηt(x)ηt(y)
holds for all homogeneous elements x, y ∈ H.

In conclusion, the evolution η : [0, 1] → Λ× of γ takes its values in the
closed subgroup G(H, B) and thus G(H, B) is Ck-semiregular.

Step 5: G(H, B) is Ck-regular. Let ι : g(H, B) → Λ be the canonical
inclusion mapping. Consider ι∗ : Ck([0, 1], g(H, B)) → Ck([0, 1],Λ), c 7→
ι ◦ c. As ι is continuous and linear the map ι∗ is continuous and linear
by [16, Lemma 1.2], whence smooth and even K-analytic.

Let evolΛ : Ck([0, 1],Λ) → Λ× be the (smooth) evolution map of the
Ck-regular Lie group Λ×. Then the map

evol : Ck([0, 1], g(H, B))→ Λ×, evolΛ× ◦ ι∗
is K-analytic by Theorem 1.9 and maps a Ck-curve in the Lie algebra of
G(H, B) to its time 1 evolution. As the closed subgroup G(H, B) is Ck-
semiregular by Step 4, evol factors through a K-analytic map

evolG(H,B) : Ck([0, 1], g(H, B))→ G(H, B).
Summing up, G(H, B) is Ck-regular and the evolution map is K-analytic.

�

3. Subgroups associated to Hopf ideals

So far, we were only able to turn the character group of a graded con-
nected Hopf algebra H into a Lie group. In this section, we will show that
the character group of a quotient H/J can be regarded as a closed Lie sub-
group of the character group of H and thus carries a Lie group structure as
well. See Remark 4.10 for examples of Hopf ideals and quotients arising in
renormalisation of quantum field theories. It should be noted that this does
not imply that the character group of every Hopf algebra can be endowed
with a Lie group structure (see Example 4.11).

Definition 3.1 (Hopf ideal). — Let H be a Hopf algebra. We say J ⊆
H is a Hopf ideal if the subset J is

(a) a two-sided (algebra) ideal,
(b) a coideal, i.e. ε(J ) = 0 and ∆(J ) ⊆ J ⊗H+H⊗J and
(c) stable under the antipode, i.e. S(J ) ⊆ J .

Let H be a graded Hopf algebra. Then we call J homogeneous if for all
c ∈ J with c =

∑n
i=1 ci and each ci homogeneous we have ci ∈ J for

1 6 i 6 n.
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Definition 3.2 (Quotient Hopf algebra and the annihilator of an ideal).
Let H be a Hopf algebra and let J ⊆ H be a Hopf ideal.

(a) The quotient vector spaceH/J carries a natural Hopf algebra struc-
ture (see [33, Theorem 4.3.1.]). This structure turns the canonical
quotient map q : H → H/J into a morphism of Hopf algebras.

(b) Let B be a locally convex algebra. Then the algebra HomK(H/J , B)
is canonically isomorphic to the annihilator of J :

Ann(J , B) = {φ ∈ HomK(H, B) | φ(J ) = 0B}

which is a closed unital subalgebra of HomK(H, B).
If H is graded and the ideal J is homogeneous then the grading of H
induces a natural grading on the quotient H/J . However, like the exam-
ple of the universal enveloping algebra as a quotient of the tensor algebra
(see Examples 4.1 and 4.2) shows, there are interesting ideals which occur
naturally but are not homogeneous.

Lemma 3.3. — Let J be a Hopf ideal of the Hopf algebra H with quo-
tient mapping q : H → H/J . Let B be a commutative locally convex al-
gebra. Then Ann(J , B) ∩G(H, B) is a closed subgroup of the topological
group G(H, B). Furthermore it is isomorphic as a topological group to
G(H/J , B) via the following isomorphism:

q∗ : G(H/J , B)→ Ann(J , B) ∩G(H, B), φ 7→ φ ◦ q.

Proof. — We first prove that Ann(J , B) ∩ G(H, B) is a closed sub-
group. It is stable under the group product and contains the unit because
Ann(J , B) is a unital subalgebra. To see that it is stable under inversion
recall from Lemma 2.3 that inversion in G(H, B) is given by precompo-
sition with the antipode. Hence for φ ∈ Ann(J , B) ∩ G(H, B) we find
φ−1(J ) = φ ◦S(J ) ⊆ φ(J ) = 0. Finally, Ann(J , B)∩G(H, B) is closed as
a subset of G(H, B) because Ann(J , B) is closed in A, and G(H, B) carries
the subset topology.

The map q∗ : G(H/J , B) → Ann(J , B) ∩G(H, B) is clearly an isomor-
phism of groups. Continuity of q∗ and (q∗)−1 follows from the fact that we
use pointwise convergence on all spaces. �

Theorem 3.4. — Let H be a graded connected Hopf algebra and J ⊆
H be a (not necessarily homogeneous) Hopf ideal. Furthermore, we fix a
commutative locally convex algebra B. Then

(i) G(H/J , B) ∼= Ann(J , B) ∩ G(H, B) ⊆ G(H, B) is a closed Lie
subgroup, and even an exponential BCH–Lie group.
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(ii) Ann(J , B) ∩ g(H, B) ⊆ g(H, B) is a closed Lie subalgebra, and a
BCH–Lie algebra.

(iii) The map exp restricts to a global K-analytic diffeomorphism
Ann(J , B) ∩ g(H, B)→ Ann(J , B) ∩G(H, B).

(iv) If J is homogeneous then the Lie group structure on Ann(J , B) ∩
G(H, B) agrees with the one already obtained on G(H/J , B).

Proof.
(ii) Ann(J , B)∩g(H, B) is a Lie subalgebra because [φ, ψ] = φ?ψ−ψ?φ

and Ann(J , B) is stable under convolution. It is closed because
Ann(J , B) is closed in A. As a closed Lie subalgebra of a BCH–Lie
algebra, Ann(J , B) ∩ g(H, B) is also a BCH–Lie algebra.

(iii) From Theorem 2.7 we deduce that it suffices to prove that exp re-
stricts to a bijection Ann(J , B)∩g(H, B)→ Ann(J , B)∩G(H, B).

Recall from Theorem 2.7 that the Lie group exponential map of
G(H,J ) is a global diffeomorphism which is given on g(H, B) ⊆ IA
by a convergent power series. Hence exp maps elements in a closed
unital subalgebra into the subalgebra, i.e. exp(φ) ∈ Ann(J , B) for
each φ ∈ Ann(J , B) ∩ IA and thus

exp(Ann(J , B) ∩ g(H, B)) ⊆ Ann(J , B) ∩G(H, B).

The logarithm log on G(H, B) ⊆ (1A+IA) is also given by a power
series which converges on Ann(J , B) ∩ G(H, B) and by the same
argument, we obtain:

log(Ann(J , B) ∩G(H, B)) ⊆ Ann(J , B) ∩ g(H, B).

In conclusion, exp restricts to a bijection Ann(J , B) ∩ g(H, B) →
Ann(J , B) ∩G(H, B) as desired.

(i) It now follows from (ii), (iii) and [30, Theorem IV.3.3] that the group
Ann(J , B)∩G(H, B) is a closed Lie subgroup, and an exponential
BCH–Lie group.

(iv) We have already seen that G(H/J , B) and Ann(J , B) ∩ G(H, B)
are isomorphic as topological groups and that G(H/J , B) and also
Ann(J , B) ∩ G(H, B) are Baker–Campbell–Hausdorff–Lie groups.
The Automatic Smoothness Theorem [30, Theorem IV.1.18] implies
that we have in fact (K-analytic) Lie group isomorphisms. �

Note that when J is homogeneous and B is Mackey complete, it follows
from Theorem 3.4(iv) that the Lie subgroup Ann(J , B)∩G(H, B) is again
a regular Lie group. Namely, with Theorem 2.11 we obtain a regularity
result:
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Corollary 3.5. — Let H be a graded connected Hopf algebra and B
be a commutative and Mackey complete locally convex algebra. Further-
more, let J ⊆ H be a homogeneous Hopf ideal, then the Lie subgroup
Ann(J , B)∩G(H, B) is a C1-regular Lie group. If B is in addition sequen-
tially complete, then Ann(J , B) ∩G(H, B) is C0-regular.

Note that we have not established the regularity condition of Ann(J , B)∩
G(H, B) for non-homogeneous J . Hence, we pose the following problem:

Problem. — Let H be a graded and connected Hopf algebra and B

be a commutative and Mackey complete locally convex algebra. Is the Lie
group Ann(J , B)∩G(H, B) Ck-regular (with k ∈ N0∪{∞}) if J is a non-
homogeneous Hopf Ideal? It suffices to prove that Ann(J , B)∩G(H, B) is
a semiregular Lie subgroup of G(H, B). However, the idea used to prove
Theorem 2.11 seems to carry over only to homogeneous ideals.

In the special case that B is a weakly complete algebra (e.g. a finite-
dimensional algebra) we deduce from Remark 5.8(c) the following corollary.

Corollary 3.6. — LetH be a connected graded Hopf algebra andB be
a commutative and weakly complete locally convex algebra. Furthermore,
let J ⊆ H be a Hopf ideal. Then the Lie subgroup Ann(J , B) ∩ G(H, B)
is regular.

4. (Counter-)examples for Lie groups arising as Hopf
algebra characters

In this section we give several examples for Lie groups arising from the
construction in the last section. In the literature many examples for graded
and connected Hopf algebras are studied (we refer the reader to [5] and
the references and examples therein). In particular, the so called combi-
natorial Hopf algebras provide a main class of examples for graded and
connected Hopf algebras (see [24] for an overview). A prime example for
a combinatorial Hopf algebra is the famous Connes–Kreimer Hopf algebra
of rooted trees. Its character group corresponds to the Butcher group from
numerical analysis and we discuss it as our main example below. Further-
more, we discuss several (counter-)examples to statements in Theorem 2.7
for characters of Hopf algebras which are not graded.
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Tensor algebras and universal enveloping algebras

Example 4.1 (Tensor algebra). — Consider an abstract vector space V.
Then the tensor algebra

T (V) :=
∞⊕

n=0
V⊗n with V⊗n := V ⊗ · · · ⊗ V︸ ︷︷ ︸

n

has a natural structure of a graded connected Hopf algebra which we denote
by (T (V),⊗, u,∆, ε, S) where

∆(v) = 1⊗ v + v ⊗ 1 and S(v) = −v for v ∈ V.
By Theorem 2.7 the character group of T (V) is a BCH–Lie group. This
group can be described explicitly.

Every linear functional on V has a unique extension to a character of the
Hopf algebra T (V), yielding a bijection to the algebraic dual V∗:

Φ: G(T (V),K)→ V∗, φ 7→ φ|V .
We claim that Φ is a group isomorphism (where we view V∗ as a group
with respect to its additive structure). Let v ∈ V and φ, ψ ∈ G(T (V),K)
be given, then

(φ ? ψ)(v) = mK ◦ (φ⊗ ψ)(∆(v)) = mK(φ⊗ ψ)(v ⊗ 1 + 1⊗ v)
= φ(v)ψ(1) + φ(1)ψ(v) = φ(v) + ψ(v).

Thus, the group (G(T (V),K), ?) is isomorphic to the additive group (V∗,+).
As V∗ is endowed with the weak*-topology, it is easy to check that Φ and
Φ−1 are both continuous, hence Φ is also an isomorphism of topological
groups. Since both Lie groups are known to be BCH–Lie groups, the the
Automatic Smoothness Theorem [30, Theorem IV.1.18.] guarantees that Φ
is also an analytic diffeomorphism, hence an isomorphism in the category
of analytic Lie groups.

Example 4.2 (Universal enveloping algebra). — The universal envelop-
ing algebra U(g) of an abstract non-graded Lie algebra g can be constructed
as a quotient of the connected graded Hopf algebra T (g) and hence, its
character group is a Lie group by Theorem 3.4. Note that we cannot use
Theorem 2.7 directly since in general U(g) does not possess a natural con-
nected grading (the grading of the tensor algebra induces only a filtration
on U(g), see [20, Theorem V.2.5]). If g is abelian, the universal enveloping
algebra U(g) coincides with the symmetric algebra S(g) (cf. [20, V.2 Exam-
ple 1]). It is possible to give an explicit description of the group G(U(g),K):
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Every character of φ ∈ G(U(g),K) corresponds to a Lie algebra homomor-
phism φ|g : g → K which in turn factors naturally through a linear map
φ∼ : g/(g′)→ K, yielding a bijection

Φ: G(U(g),K)→
(
(g/g′)∗,+

)
, φ 7→

(
φ∼ : v + g′ 7→ φ(v)

)
.

Like in the case of the tensor algebra and the symmetric algebra, one easily
verifies that this is an isomorphism of topological groups and since both Lie
groups G(U(g),K) and

(
(g/g′)∗,+

)
are BCH–Lie groups, we use again the

Automatic Smoothness Theorem [30, Theorem IV.1.18.] to see that they
are also isomorphic as analytic Lie groups.

In particular, this shows that the character group of U(g) only sees the
abelian part of g and is therefore not very useful for studying the Lie
algebra g.

Remark 4.3 (Universal enveloping algebra of a graded Lie algebra). —
We remark that there is a notion of a graded Lie algebra which differs
from the usual notion of a Lie algebra. Here the Lie bracket of the graded
Lie algebra g =

⊕
p∈N0

gp satisfies the Koszul sign convention, i.e. [x, y ] =
(−1)pq+1[y, x ] for x ∈ gp and y ∈ gq. Such graded Lie algebras also admit a
universal enveloping algebra which inherits a grading from the Lie algebra
grading. We refer to [29, 5.] for definitions and more details. (Note that
the gradings encountered so far can be seen as even gradings with respect
to the Koszul sign convention, cf. [10, Remark 1.24].) Then, the universal
enveloping algebra becomes a graded and connected Hopf algebra.

Characters of the Hopf algebra of rooted trees

We examine the Hopf algebra of rooted trees which arises naturally
in numerical analysis, renormalisation of quantum field theories and non-
commutative geometry (see [4] for a survey). To construct the Hopf algebra,
recall some notation first.

Notation 4.4.
(1) A rooted tree is a connected finite graph without cycles with a

distinguished node called the root. We identify rooted trees if they
are graph isomorphic via a root preserving isomorphism.
Let T be the set of all rooted trees and write T0 := T ∪ {∅}

where ∅ denotes the empty tree. The order |τ | of a tree τ ∈ T0 is
its number of vertices.
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(2) An ordered subtree(3) of τ ∈ T0 is a subset s of all vertices of τ
which satisfies
(i) s is connected by edges of the tree τ ,
(ii) if s is non-empty, it contains the root of τ .
The set of all ordered subtrees of τ is denoted by OST(τ). Associ-
ated to an ordered subtree s ∈ OST(τ) are the following objects:
• A forest (collection of rooted trees) denoted as τ \s. The forest
τ \ s is obtained by removing the subtree s together with its
adjacent edges from τ . We denote by #(τ \ s) the number of
trees in the forest τ \ s.

• sτ , the rooted tree given by vertices of s with root and edges
induced by that of the tree τ .

Notation 4.5. — A partition p of a tree τ ∈ T0 is a subset of edges of the
tree. We denote by P(τ) the set of all partitions of τ (including the empty
partition). Associated to a partition p ∈ P(τ) are the following objects

• A forest τ \ p which is defined as the forest that remains when
the edges of p are removed from the tree τ . Write #(τ \ p) for the
number of trees in τ \ p.

• The skeleton pτ , is the tree obtained by contracting each tree of
τ \ p to a single vertex and by re-establishing the edges of p.

Example 4.6 (The Connes–Kreimer Hopf algebra of rooted trees [7]). —
Consider the algebra HK

CK := K[T ] of polynomials which is generated
by the trees in T . We denote the structure maps of this algebra by m

(multiplication) and u (unit). Indeed HK
CK becomes a bialgebra with the

coproduct

∆: HK
CK → HK

CK ⊗HK
CK , τ 7→

∑

s∈OST(τ)

(τ \ s)⊗ sτ

and the counit ε : HK
CK → K defined via ε(1HK

CK
) = 1 and ε(τ) = 0 for all

τ ∈ T . Furthermore, one can define an antipode S via

S : HK
CK → HK

CK , τ 7→
∑

p∈P(τ)

(−1)|pτ |(τ \ p)

such that HK
CK = (HK

CK ,m, u,∆, ε, S) is a K-Hopf algebra (see [6, 5.1] for
more details and references).

(3)The term “ordered” refers to that the subtree remembers from which part of the tree
it was cut.
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Furthermore, the Hopf algebra HK
CK is graded as a Hopf algebra by the

number of nodes grading: For each n ∈ N0 we define the nth degree via

For τi ∈ T , 1 6 i 6 k, k ∈ N0 τ1 · τ2 · . . . · τk ∈ (HK
CK)n ⇐⇒

k∑

r=1
|τk| = n

Clearly, HK
CK is connected with respect to the number of nodes grading

and we identify (HK
CK)0 with K∅. Thus we can apply Theorem 2.7 for

every commutative CIA B to see that the B valued characters G(HK
CK , B)

form an exponential BCH–Lie group.

It turns out that the K-valued characters of the Connes–Kreimer Hopf
algebra HK

CK can be identified with the Butcher group from numerical
analysis.

Example 4.7 (The Butcher Group). — Let us recall the definition of the
(K-)Butcher group. As a set the (K-)Butcher group is the set of tree maps

GK
TM := {a : T0 → K | a(∅) = 1}

together with the group operation

a · b(τ) :=
∑

s∈OST(τ)

b(sτ )a(τ \ s) with a(τ \ s) :=
∏

θ∈τ\s
a(θ).

In [3] we have constructed a Lie group structure for the (K-)Butcher group
as follows: Identify GK

TM with the closed affine subspace e + KT = {a ∈
T0 | a(∅) = 1} of KT0 with the topology of pointwise convergence. Then
the subspace topology turns GK

TM into a BCH–Lie group modelled on the
Fréchet space KT .

Note that the group operation of the Butcher group is closely related
to the coproduct of the Hopf algebra of rooted trees. Indeed the obvious
morphism

Φ: G(HK
CK ,K)→ GK

TM, ϕ 7→ (τ 7→ ϕ(τ))
is an isomorphism of (abstract) groups (see also [6, Eq. 38]). Moreover, it
turns out that Φ is an isomorphism of Lie groups if we endow these groups
with the Lie group structures discussed in Example 4.6 and Example 4.7.

Lemma 4.8. — The group isomorphism Φ: G(HK
CK ,K) → GK

TM is an
isomorphism of K-analytic Lie groups.

Proof. — We already know that Φ is an isomorphism of abstract groups
whose inverse is given by Φ−1(a) = ϕa where ϕa is the algebra homomor-
phism defined via

ϕa(1HK
CK

) = 1 and ϕa(τ) = a(τ)
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Recall from Lemma A.6 that the Lie groups A× := HomK(HK
CK ,K)× and

G(HK
CK ,K) ⊆ A× carry the subspace topology with respect to the topol-

ogy of pointwise convergence on the space HomK(HK
CK ,K). Furthermore,

the topology on GK
TM is subspace topology with respect to the topology of

pointwise convergence on KT0 . Hence a straight forward computation shows
that Φ and Φ−1 are continuous, i.e. they are isomorphisms of topological
groups. Since both G(HK

CK ,K) and GK
TM are BCH–Lie groups, the Auto-

matic Smoothness Theorem [30, Theorem IV.1.18] asserts that Φ and Φ−1

are smooth (even real analytic). Thus Φ is an isomorphism of (K-analytic)
Lie groups. �

So far we have seen that our Theorem 2.7 generalises the construction
of the Lie group structure of the Butcher group from [3]. In loc. cit. we
have also endowed the subgroup of symplectic tree maps with a Lie group
structure. This can be seen as a special case of the construction given in
Theorem 3.4 as the next example shows. Thus the results from [3] are com-
pletely subsumed in the more general framework developed in the present
paper.

Example 4.9 (The subgroup of symplectic tree maps). — In [3, Theo-
rem 5.8], it was shown that the subgroup of symplectic tree maps SK

TM ⊆
GK

TM is a closed Lie subgroup of the Butcher group and that the subgroup
is itself an exponential Baker–Campbell–Hausdorff Lie group.

The symplectic tree maps are defined as those a ∈ GK
TM such that

a(τ ◦ υ) + a(υ ◦ τ) = a(τ)a(υ) for all τ, υ ∈ T ,
where τ ◦ υ denotes the rooted tree obtained by connecting τ and υ with
an edge between the roots of τ and υ, and where the root of τ is the root
of τ ◦ υ (4) .

To cast [3, Theorem 5.8] in the context of Theorem 3.4, let J ⊆ HCK be
the algebra ideal generated by the elements {τ ◦ υ+ υ ◦ τ − τυ}τ,υ∈T . Note
that by definition of the Butcher product we have |τ ◦ υ| = |υ ◦ τ | = |τυ|.
Hence the generating elements of J are homogeneous elements with respect
to the number of nodes grading (see Example 4.6). Consequently J is a
homogeneous (algebra) ideal. It is possible to show that J is also a co-ideal
and stable under the antipode.

If a ∈ SK
TM, then ϕa = Φ−1(a) ∈ Ann(J , B) ∩ G(H,K), since ϕa is

an algebra morphism and zero on the generators of J . The inverse im-
plication also holds. Therefore, the restriction of Φ is a bijection between

(4)This is known as the Butcher product and should not be confused with the product
in the Butcher group (cf. [3, Remark 5.1]).
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SK
TM and Ann(J , B)∩G(H,K). By Theorem 3.4, Ann(J , B)∩G(H,K) ⊆
G(H,K) is a closed Lie subgroup and an exponential BCH–Lie group. Us-
ing Lemma 4.8, we can show that this structure is isomorphic to the Lie
group structure SK

TM ⊆ GK
TM constructed in [3, Theorem 5.8].

In addition to the Lie group structure on SK
TM already constructed in [3,

Theorem 5.8] we derive from Corollary 3.5 that the Lie group SK
TM is C0-

regular.

Finally, let us mention certain character groups connected to Hopf ideals
arising in the renormalisation of quantum field theories. Note that these
Hopf ideals are not contained in the Hopf algebra of rooted trees, but
instead in the larger Hopf algebra of Feynman graphs. The definition of
these ideals and the ambient Hopf algebra is rather involved, whence we
refer to the references given in the next remark for details.

Remark 4.10. — The Connes–Kreimer theory of renormalisation allows
one to formulate renormalisation of quantum field theories in the language
of (characters of) the Hopf algebra of Feynman graphs (cf. e.g. [7]). In [31]
this idea is used to study the combinatorics of the renormalisation of gauge
theories. Namely, loc. cit. proves that certain identities from physics, the so
called “Ward–Takahashi” and “Slavnov–Taylor” identities, generate Hopf
ideals in the Hopf algebra of Feynman graphs. Then in [32] character groups
related to the quotient Hopf algebras associated to these Hopf ideals are
studied.

Characters of Hopf algebras without connected grading

For the rest of this section let us investigate the case of a Hopf algebra
H without a connected grading. It will turn out that the results achieved
for graded connected Hopf algebras (and quotients thereof) do not hold for
Hopf algebras without grading. It should be noted however, that for scalar
valued characters, we can show that they still form a so called pro-Lie group
(see Theorem 5.6)

Let H be a Hopf algebra without a grading then the dual space A :=
H∗ = HomK(H,K) is still a locally convex algebra (see Lemma 1.4). How-
ever, in general, neither its unit group will be an open subset, nor will the
group of characters G(H,K) be a Lie group modelled on a locally convex
space. We give two examples for this behaviour.

Example 4.11. — Let Γ be an abstract group. Then the group algebra
KΓ carries the structure of a cocommutative Hopf algebra by [20, III.3
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Example 2]. The algebraic dual A := (KΓ)∗ is isomorphic to the direct
product algebra KΓ consisting of all functions on the group with pointwise
multiplication. Its unit group (K \ {0})Γ is a topological group (as a direct
product of the topological group K \ {0} with itself). However, in general,
it will not be open:

(a) Let Γ be an infinite group, then the unit group A× = (K×)Γ is
not open in KΓ. Hence, A is not a CIA and in particular, the unit
group A× does not inherit a Lie group structure from Lemma A.6
or Proposition 1.8, respectively.

Furthermore, the universal property of the group algebra KΓ (see [20, III.2
Example 2]) implies that a linear map φ : KΓ → K is a character if and
only if the map φ|Γ : Γ→ K× is a group homomorphism.

Thus, the group G(KΓ,K) is (as a topological group) isomorphic to the
group of group homomorphisms from Γ to K× with the topology of point-
wise convergence.

(b) Let Γ = (Z(I),+) be a free abelian of countable infinite rank. Then
it is easy to see that G(KΓ,K) is topologically isomorphic to the
infinite product (K×)I . This topological group is not locally con-
tractible, hence it can not be (locally) homeomorphic to a topolog-
ical vector space and thus cannot carry a locally convex manifold
structure. In particular, Theorem 2.7 does not generalise to the
character group of KZ(I).

If a non-graded Hopf algebra H is finite-dimensional, then A = H∗ is a
finite-dimensional algebra and hence it is automatically a CIA. The group of
characters will then be a (finite-dimensional) Lie group. However, by [34,
2.2] the characters are linearly independent whence this Lie group will
always be finite. Hence there cannot be a bijection between the character
group and the Lie algebra of infinitesimal characters (which in this case will
be 0-dimensional). This shows that even whenG(H,K) is a Lie group it may
fail to be exponential. We consider a concrete example of this behaviour:

Example 4.12. — Take a finite non trivial group Γ and consider the
finite-dimensional algebra H := KΓ of functions on the group with values
in K together with the pointwise operations. There is a suitable coalgebra
structure and antipode (see [25, Example 1.5.2]) which turns algebra KΓ

into a Hopf algebra. Furthermore, we can identify its dual with the group
algebra KΓ of Γ (as [20, III. Example 3] shows).

With this identification we can identify G(H,K) with the group Γ (with
the discrete topology). Obviously, there is no bijection between the group
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of characters and the K-Lie algebra of infinitesimal characters (which in
this case is trivial).

5. Character groups as pro-Lie groups

In this section, we show that the group of characters of an abstract Hopf
algebra (graded or not) can always be considered as a projective limit of
finite-dimensional Lie groups, i.e. the group of characters is a pro-Lie group.
The range space B has to the ground field K ∈ {R,C} or a commutative
weakly complete algebra (see Lemma 5.3).

The category of pro-Lie groups admits a very powerful structure theory
which is similar to the theory of finite-dimensional Lie groups (see [18]).
This should provide Lie theoretic tools to work with character groups,
even in the examples where the methods of locally convex Lie groups do
not apply (like Examples 4.11 and 4.12). It should be noted, however, that
the concept of a pro-Lie group is of purely topological nature and involves
no differential calculus. See [17] for an article dedicated to the problem
of determining which pro-Lie groups do admit a locally convex differential
structure and which do not.

Definition 5.1 (pro-Lie group). — A topological group G is called pro-
Lie group if one of the following equivalent conditions holds:

(a) G is isomorphic (as a topological group) to a closed subgroup of a
product of finite-dimensional (real) Lie groups.

(b) G is the projective limit of a directed system of finite-dimensional
(real) Lie groups (taken in the category of topological groups)

(c) G is complete and each identity neighbourhood contains a closed
normal subgroup N such that G/N is a finite-dimensional (real)
Lie group.

The fact that these conditions are equivalent is surprisingly complicated
to show and can be found in [14] or in [18, Theorem 3.39]. The class of
pro-Lie groups contains all compact groups (see e.g. [19, Corollary 2.29])
and all connected locally compact groups (Yamabe’s Theorem, see [35]).
However, this does not imply that all pro-Lie groups are locally compact.
In fact, the pro-Lie groups constructed in this paper will almost never be
locally compact.

In absence of a differential structure we cannot define a Lie algebra as a
tangent space. However, it is still possible to define a Lie functor.
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Definition 5.2 (The pro-Lie algebra of a pro-Lie group). — Let G be
a pro-Lie group. Consider the space L(G) of all continuous G-valued one-
parameter subgroups, endowed with the compact-open topology.

(a) The space L(G) is the projective limit of finite-dimensional Lie al-
gebras and hence, carries a natural structure of a locally convex
topological Lie algebra over R (see [18, Definition 2.11]). As a topo-
logical vector space, L(G) is weakly complete, i.e. isomorphic to RI
for an index set I (see also Definition C.1).

(b) Assigning the pro-Lie algebra to a pro-Lie group yields a functor:
Assign to a morphism of pro-Lie groups, i.e. a continuous group
homomorphism φ : G → H, a morphism of topological real Lie al-
gebras L(φ) : L(G)→ L(H), γ 7→ γ◦φ. We thus obtain the so called
pro-Lie functor.

For more information on pro-Lie groups, pro-Lie algebras and the pro-Lie
functor, see [18, Chapter 3].

Many pro-Lie groups arise as groups of invertible elements of topological
algebras:

Lemma 5.3 (Fundamental lemma of weakly complete algebras). — For
a topological K-algebra A, the following are equivalent:

(a) The underlying topological vector space A is (forgetting the multi-
plicative structure) weakly complete, i.e. isomorphic to KI for an
index set I.

(b) There is an abstract K-coalgebra (C,∆C , εC) such that A is isomor-
phic to (Hom(C,K), ?).

(c) The topological algebra A is the projective limit of a directed system
of finite-dimensional K-algebras (taken in the category of topolog-
ical K-algebras)

A topological algebra with these properties is called weakly complete alge-
bra.

Proof.
(a)⇒(b) The category of weakly complete topological vector spaces over K

and the category of abstractK-vector spaces are dual. This implies
that A = KI is the algebraic dual space of the vector space C :=
K(I) of finite supported functions. The continuous multiplication
µA : A×A→ A dualises to an abstract comultiplication ∆C : C →
C ⊗ C. (see [27, Theorem 4.4] or Appendix C for details of this
duality.)
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(b)⇒(c) This is a direct consequence of the Fundamental Theorem of Coal-
gebras ([27, Theorem 4.12]) stating that C is the directed union of
finite-dimensional coalgebras. Dualising this, yields a projective
limit of topological algebras.

(c)⇒(a) The projective limit of finite-dimensional K-vector spaces is al-
ways topologically isomorphic to KI . (see Appendix C) �

Proposition 5.4 (The group of units of a weakly complete algebra is a
pro-Lie group). — Let A be a weakly complete K-algebra as in Lemma 5.3.
Then the group of units A× is a pro-Lie group. Its pro-Lie algebra L(A) is
(as a real Lie algebra) canonically isomorphic to (A, [ · , · ]) via the isomor-
phism

A→ L(A×), x 7→ γx : (t 7→ exp(tx)),
where exp: A → A× denotes the usual exponential series which converges
on A.

Proof. — Let A = lim←Aα with finite-dimensional K-algebras Aα (by
Lemma 5.3). Then the unit group is given by

A× = lim
←
A×α

in the category of topological groups. Each group A×α is a finite-dimensional
(linear) real Lie group. Hence, A× is a pro-Lie group and in particular,
inversion is continuous, which is not obvious for unit groups of topological
algebras.

The exponential series converges on each algebra Aα and hence on the
projective limit A. The correspondence between continuous one-parameter
subgroups γ ∈ L(A×) and elements in A holds in each Aα and hence it
holds on A. �

Remark 5.5. — As Example 4.11 shows, the group of units A× of a
weakly complete algebra need not be an open subset of A, nor will the
exponential series be local homeomorphism around 0.

Theorem 5.6 (The character group of a Hopf algebra is a pro-Lie
group). — Let H be an abstract Hopf algebra and B be a commutative
weakly complete K-algebra (e.g. B := K or B = K[[X]]). Then the group
of B-valued characters G(H, B) endowed with the topology of pointwise
convergence is pro-Lie group.

Its pro-Lie algebra is isomorphic to the locally convex Lie algebra g(H, B)
of infinitesimal characters via the canonical isomorphism

g(H, B)→ L(G(H, B)), φ 7→ (t 7→ exp(tφ)),
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Remark 5.7. — The pro-Lie algebra L(G) of a pro-Lie groupG is a priori
only a real Lie algebra(5) However, since we already know that g(H, B) is
a complex Lie algebra if K = C (Lemma 2.5), we may use the isomorphism
given in the theorem above to endow the real Lie algebra structure with a
complex one.

Proof of Theorem 5.6. — The space A := HomK(H, B) is a topological
algebra by Lemma 1.4. The underlying topological vector space is isomor-
phic to BI by Lemma 1.6. Thus, A is a weakly complete algebra since B
is weakly complete.

By Proposition 5.4, we may conclude that A× is a pro-Lie group. The
group G(H, B) is a closed subgroup of this pro-Lie group by Lemma 2.3.
From part (a) of Definition 5.1 it follows that closed subgroups of pro-Lie
groups are pro-Lie groups. Hence, G(H, B) is a pro-Lie group.

It remains to show that the pro-Lie algebra L(G(H, B)) is isomorphic
to g(H, B). Since G(H, B) is a closed subgroup of A×, every continuous
1-parameter-subgroup γ of G(H, B) is also a 1-parameter subgroup of A×
and (by Proposition 5.4) of the form

γφ : R→ A×, t 7→ exp(tφ)

for a unique element φ ∈ A. It remains to show the following equivalence:

(∀t ∈ R : exp(tφ) ∈ G(H, B)) ⇐⇒ φ ∈ g(H, B).

At the end of the proof of Lemma B.10, there is a chain of equivalences.
While the equivalence of the first line with the second uses the bijectivity
of the exponential function which does not hold in the pro-Lie setting, the
equivalence of the second line with all following lines hold by Remark B.11
also in this setting. Substituting tφ for φ, we obtain the following equiva-
lence:

∀t ∈ R : exp(tφ) ∈ G(H, B)
⇐⇒ expA⊗(tφ ◦mH) = expA⊗(t(φ � 1A + 1A � φ)).

Here the exponential function expA⊗ is taken in A⊗ := HomK(H⊗H, B).
This shows that the 1-parameter subgroups γφ◦mH and γφ�1A+1A�φ agree

and by Proposition 5.4 applied to A⊗, we obtain that

φ ◦mH = φ � 1A + 1A � φ

(5)This is due to the fact that the finite-dimensional real Lie groups form a full sub-
category of the category of topological groups while the finite-dimensional complex Lie
groups do not. In fact, there are infinitely many non-isomorphic complex Lie group struc-
tures (elliptic curves) on the torus (R/Z)2, inducing the same real Lie group structure.
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which is equivalent to φ being an infinitesimal character. This finishes the
proof. �

Remark 5.8.
(1) It is remarkable that Theorem 5.6 holds without any assumption

on the given abstract Hopf algebra (in particular, we do not assume
that it is graded or connected.)

(2) For a weakly complete commutative algebra B (e.g. B = K[[X]] or
B finite-dimensional) and a graded and connected Hopf algebra H
the results of Theorem 2.7 and Theorem 5.6 apply both to G(H, B).
In this case, the infinite-dimensional Lie group G(H, B) inher-

its additional structural properties as a projective limit of finite-
dimensional Lie groups. In particular, the regularity of G(H, B)
(cf. Theorem 2.11) then follows from [17].
For example, these observations apply to the Connes–Kreimer

Hopf algebra HK
CK and the Butcher group G(HK

CK ,K) (see Ex-
ample 4.7). In fact, the structure as a pro-Lie group (implicitely)
enabled some of the computations made in [3] to treat the Lie the-
oretic properties of the Butcher group.

Furthermore, in the Connes–Kreimer theory of renormalisation
of quantum field theories, the pro-Lie group structure of certain
character groups has been exploited. See e.g. [10, Proofs of Propo-
sition 1.52 and Lemma 1.54] for explicit examples of results relying
on this structure.

Appendix A. Locally convex differential calculus and
manifolds

See [12, 21] for references on differential calculus in locally convex spaces.

Definition A.1. — Let K ∈ {R,C}, r ∈ N ∪ {∞} and E, F locally
convex K-vector spaces and U ⊆ E open. Moreover we let f : U → F be a
map. If it exists, we define for (x, h) ∈ U × E the directional derivative

df(x, h) := Dhf(x) := lim
t→0

t−1(f(x+ th)− f(x)) (where t ∈ K×)

We say that f is CrK if the iterated directional derivatives

d(k)f(x, y1, . . . , yk) := (DykDyk−1 · · ·Dy1f)(x)
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exist for all k ∈ N0 such that k 6 r, x ∈ U and y1, . . . , yk ∈ E and define
continuous maps d(k)f : U × Ek → F . If it is clear which K is meant, we
simply write Cr for CrK. If f is C∞K we say that f is smooth.(6)

Definition A.2. — Let E, F be real locally convex spaces and f : U →
F defined on an open subset U . We call f real analytic (or CωR ) if f ex-
tends to a C∞C -map f̃ : Ũ → FC on an open neighbourhood Ũ of U in the
complexification EC.

For K ∈ {R,C} and r ∈ N0 ∪ {∞, ω} the composition of CrK-maps (if
possible) is again a CrK-map (cf. [12, Propositions 2.7 and 2.9]).

Definition A.3. — Fix a Hausdorff topological space M and a locally
convex space E over K ∈ {R,C}. An (E-)manifold chart (Uκ, κ) on M is
an open set Uκ ⊆ M together with a homeomorphism κ : Uκ → Vκ ⊆ E

onto an open subset of E. Two such charts are called Cr-compatible for
r ∈ N0 ∪ {∞, ω} if the change of charts map ν−1 ◦ κ : κ(Uκ ∩ Uν) →
ν(Uκ∩Uν) is a Cr-diffeomorphism. A CrK-atlas ofM is a family of pairwise
Cr-compatible manifold charts, whose domains cover M . Two such Cr-
atlases are equivalent if their union is again a Cr-atlas.

A locally convex Cr-manifold M modelled on E is a Hausdorff space M
with an equivalence class of Cr-atlases of (E-)manifold charts.

Direct products of locally convex manifolds, tangent spaces and tangent
bundles as well as Cr-maps of manifolds may be defined as in the finite-
dimensional setting (cf. [30]).

Definition A.4. — A K-analytic Lie group is a group G equipped with
a CωK -manifold structure modelled on a locally convex space, such that the
group operations are K-analytic. For a Lie group G we denote by L(G) the
associated Lie algebra.

Definition A.5 (Baker–Campbell–Hausdorff (BCH-)Lie groups and Lie
algebras).

(a) A Lie algebra g is called Baker–Campbell–Hausdorff–Lie algebra
(BCH–Lie algebra) if there exists an open 0-neighbourhood U ⊆ g

such that for x, y ∈ U the BCH-series
∑∞
n=1Hn(x, y) converges and

defines an analytic function U × U → g. (The Hn are defined as
H1(x, y) = x + y, H2(x, y) = 1

2 [x, y ] and for n > 3 by sums of
iterated brackets, see [30, Definition IV.1.5.].)

(6)A map f is of class C∞
C if and only if it is complex analytic i.e., if f is continuous and

locally given by a series of continuous homogeneous polynomials (cf. [1, Proposition 7.7]).
We then also say that f is of class Cω

C .
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(b) A locally convex Lie group G is called BCH–Lie group if it satisfies
one of the following equivalent conditions (cf. [30, Theorem IV.1.8])
(i) G is a K-analytic Lie group whose Lie group exponential func-

tion is K-analytic and a local diffeomorphism in 0.
(ii) The exponential map of G is a local diffeomorphism in 0 and

L(G) is a BCH–Lie algebra.

Lemma A.6 (Unit groups of CIAs are Lie groups [11, Theorem 5.6]). —
Let A be a Mackey complete CIA. Then the group of units A× is a CωK-
Lie group with the manifold structure endowed from the locally convex
space A. The Lie algebra of the group A× is (A, [·, ·]), where [·, ·] is the
commutator bracket.

Moreover, the group A× is a Baker–Campbell–Hausdorff–Lie group, i.e.
the exponential map is a local CωK -diffeomorphism around 0. This exponen-
tial map is given by the exponential series and its inverse is locally given
by the logarithm series.

To establish regularity of unit groups of CIAs in [16] a sufficient criterion,
called property “(∗)” in ibid., was introduced. We recall this now:

Definition A.7 ((GN)-property). — A locally convex algebra A sat-
isfies the (GN)-property, if for every continuous seminorm p on A, there
exists a continuous seminorm q andM > 0 such that for all n ∈ N, we have∥∥∥µ(n)

A

∥∥∥
p,q

:= sup{p(µ(n)
A (x1, . . . , xn)) | q(xi) 6 1, 1 6 i 6 n} 6Mn.

Here, µ(n)
A : A× · · · ×A→ A, (a1, . . . , an) 7→ a1 · · · an.

Lemma A.8 ([16]). — A locally convex algebra which is either a com-
mutative continuous inverse algebra or locally m-convex has the (GN)-
property.

Lemma A.9 ([16, Proposition 3.4]). — Let A be a CIA with the (GN)-
property.

(a) If A is Mackey complete, then the Lie group A× is C1-regular.
(b) If A is sequentially complete, then A× is C0-regular.

In both cases, the associated evolution map is even K-analytic.

Appendix B. Graded algebra and characters

In this section we recall basic tools from abstract algebra. All results and
definitions given in this appendix are well known (see for example [20, 25,
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29, 33]. However, for the reader’s convenience we recall some details of the
construction and proofs. We assume that the reader is familiar with the
definition of algebras, coalgebras and Hopf algebras.

Definition B.1 (Abstract gradings).
(a) Let V be an abstract K-vector space. A family of vector subspaces

(Vn)n∈N0
is called (abstract) N0-grading (or just grading) of V, if

the canonical linear addition map

Σ:
⊕

n∈N0

Vn → E, (vn)n∈N0
7→
∑

n∈N0

vn

is an isomorphism of K-vector spaces, i.e. is bijective.
(b) By a graded algebra, we mean an abstract K-algebra A, together

with an abstract grading (An)n∈N0
of the underlying vector space

A such that

1A ∈ A0 and An · Am ⊆ An+m for all n,m ∈ N0.

This implies in particular that A0 is a unital subalgebra and that
the projection π0 : A → A0 onto A0 is an algebra homomorphism.

(c) A graded coalgebra is an abstract coalgebra (C,∆C , εC), together
with an abstract grading (Cn)n∈N0

of the underlying vector space C
such that for all n ∈ N0

∆C(Cn) ⊆
⊕

i+j=n
Ci ⊗ Cj and

⊕

n>1
Cn ⊆ ker(εC).

A graded coalgebra is called connected if C0 is one dimensional.
(d) An abstract Hopf algebra (H,mH, uH,∆H, εH) is called graded

Hopf algebra if there is an abstract grading (Hn)n∈N0
of the under-

lying vector space H which is an algebra grading and a coalgebra
grading at the same time. We call a graded Hopf algebra connected
if H0 is one dimensional. An element a ∈ An (with n ∈ N0) is called
homogeneous (of degree n).

Definition B.2 (Dense Gradings).
(a) Let E be a locally convex space. A family of vector subspaces

(En)n∈N0
is called a dense grading of E, if the canonical linear

summation map

Σ:
⊕

n∈N0

En → E, (xn)n∈N0
7→
∑

n∈N0

xn
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extends (uniquely) to an isomorphism of locally convex spaces

Σ:
∏

n∈N0

En → E.

Notice that Each En is closed in E and E is a Fréchet space if and
only if each En is a Fréchet space.

(b) By a densely graded locally convex algebra, we mean a locally con-
vex algebra A, together with a dense grading of the underlying
locally convex space A such that

An ·Am ⊆ An+m for all n,m ∈ N0 and 1A ∈ A0.

This implies that A0 is a closed unital subalgebra and that the
projection π0 : A→ A0 is a continuous algebra homomorphism.

Denote the kernel of π0 by IA := ker(π0) =
⊕

n>1An. The kernel
IA is a closed ideal. Each element in A has a unique decomposition
a = a0 + b with a0 ∈ A0 and b ∈ IA.

For the reader’s convenience we summarise important examples of topo-
logical algebras and some of their properties discussed in this appendix
in the following chart. Here the arrows indicate that a given property is
stronger than another (normal arrow) or that an example possesses the
property (dashed arrow), respectively.

K ∈ {R,C}

finite-
dimensional

algebra

K[[X]]
(Example B.3)

Banach algebra

commutative
CIA

Fréchet algebra

Continuous
inverse

algebra (CIA)

weakly
complete
algebra

complete sequentially
complete

Mackey
complete

locally
m-convex

(GN)-property
(Definition A.7)

Figure B.1. Important properties and examples of locally convex algebras.
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Note that densely graded algebras (see Definition B.2(b)) are not in-
cluded in Diagram B.1 as every locally convex algebra A admits the trivial
grading A0 = A and An = 0 for n > 1.

Example B.3 (Formal power series). — Let K[[X]] be the algebra of
formal power series in one variable. We give this algebra the topology of
pointwise convergence of coefficients, i.e. the initial topology with respect
to the coordinate maps:

κn : K[[X]]→ K,
∞∑

k=0
ckX

k 7→ cn.

As a topological vector space, the algebra K[[X]] is isomorphic to the
Fréchet space KN0 =

∏∞
k=0 K We see that K[[X]] is a densely graded al-

gebra with respect to the grading (KXn = {cXn | c ∈ K})n∈N0
. Note that

K[[X]] is a CIA by Lemma B.7(b).

In the following, we will identify a densely graded locally convex algebra
A with the product space

∏∞
n=0An such that each element a ∈ A is a tuple

(an)n∈N0
.

Lemma B.4 (Functional calculus for densely graded algebras). — Let
A =

∏∞
n=0An be a densely graded locally convex algebra with IA = kerπ0.

Then there exists a unique continuous map

K[[X]]× IA → A, (f, a) 7→ f [a]

such that for all a ∈ IA, we have X[a] = a and the map

K[[X]]→ A, f 7→ f [a]

is a morphism of unital algebras. If f =
∑∞
k=0 ckX

k and a = (an)n∈N0
with

a0 = 0 are given, the following explicit formula holds:

(B.1) f [a] =




n∑

k=0
ck
∑

α∈Nk
|α|=n

aα1 · . . . · aαk




n∈N0

.

Furthermore, the map K[[X]]×IA → A, (f, a) 7→ f [a] is a CωK -map (cf. Ap-
pendix A).

Proof. — First of all, the explicit formula is well-defined and continuous
on K[[X]]×IA since every component is a continuous polynomial in finitely
many evaluations of the spaces K[[X]] and IA. As A is densely graded and
thus isomorphic to the locally convex product of the spaces An, n ∈ N0, this
implies that the map is continuous. In fact, this already implies that the
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map is CωK for K = C. For K = R one has to be a little bit more careful since
there exist maps into products which are not CωR although every component
is CωR (cf. [13, Example 3.1]). However, if each component is a continuous
polynomial, the real case follows from the complex case as real polynomials
complexify to complex polynomials by [2, Theorem 3].

Let a ∈ IA be a fixed element. It remains to show that K[[X]]→ A, f 7→
f [a] is an algebra homomorphism. By construction it is clear that f 7→ f [a]
is linear and maps X0 to 1A and X1 to a. Since f is continuous and linear,
it suffices to establish the multiplicativity for series of the form XN , i.e. it
suffices to prove that

(XN [a]) · (XM [a]) = XN+M [a]
which follows from the easily verified fact that XN [a] = aN .

To establish uniqueness of the map obtained, we remark the following: A
continuous map on K[[X]] is determined by its values on the dense space of
polynomials K[X], and an algebra homomorphism on K[X] is determined
by its value on the generator X. Here this value has to be a. �

Lemma B.5 (Exponential and logarithm). — Consider the formal series

exp(X) :=
∞∑

k=0

Xk

k! and log(1 +X) :=
∞∑

k=1
(−1)k+1X

k

k
.

Let A be a densely graded locally convex algebra. The exponential function
restricted to the closed vector subspace IA

expA : IA → 1A + IA, a 7→ exp[a]
is a CωK -diffeomorphism with inverse

logA : 1A + IA → IA, (1A + a) 7→ log(1 +X)[a].

Proof. — The maps are CωK by Lemma B.4. As formal power series
E(X) := exp(X) − 1 and L(X) := log(X + 1) are inverses with respect
to composition of power series. Note that K[[X]] is a densely graded lo-
cally convex algebra with E(X), L(X) ∈ IK[[X]]. Apply functional calculus
(Lemma B.4) to K[[X]] and E(X), L(X). This yields for a ∈ IA the identity

E[L[a]] = (E ◦ L)[a] = X[a] = a.

Similarly L[E[a]] = a, whence expA and logA are mutually inverse. �

Lemma B.6. — Let A =
∏
n∈N0

An be a densely graded locally convex
algebra with exponential map expA. Then the following assertions hold:

(a) For a, b ∈ IA with ab = ba we have expA(a+ b) = expA(a) expA(b).
(b) The derivative of expA at 0 is T0 expA = idIA .
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Proof. — By construction of expA we derive from Lemma B.4 for x ∈ IA
the formula expA(x) = limN→∞

∑N
k=0

xk

k! . The algebra A is densely graded
and we have for every n ∈ N0 a continuous linear projection πn : A→ An.
By definition we have for x ∈ IA that π0(x) = 0. Hence, the definition of a
densely graded algebra implies for x, y ∈ IA that πj(xkyl) = 0 if k+ l > j.

(a) As a and b commute we can compute as follows:

(B.2)

expA(a) expA(b) = lim
N→∞



∑

k+l6N

akbl

k!l! +
∑

l+k>N,
l,k6N

akbl

k!l!

︸ ︷︷ ︸
=:SN




= lim
N→∞

(
N∑

n=0

∑

k+l=n

akbl

k!l! + SN

)
= lim
N→∞

(
N∑

n=0

(a+ b)n
n! + SN

)

The first summand in the lower row converges to expA(a+ b).
Now the definition of SN shows that πj(SN ) = 0 if N > j. Apply

the continuous map πj to both sides of (B.2) for j ∈ N0 to derive

πj(expA(a) expA(b)) = lim
N→∞

(
πj

(
N∑

n=0

(a+ b)n
n!

)
+ πj(SN )

)

On the right hand side the second term vanishes if N > j. Thus in
passing to the limit we obtain πj(expA(a) expA(b)) =πj(expA(a+b))
for all j ∈ N0.

(b) The image of expA is the affine subspace 1A + IA whose tangent
space (as a submanifold of A) is IA. We can thus identify expA
with F : IA → A, a 7→ exp[a] to compute T0 expA as dF (0; ·). The
projections πn, n ∈ N0 are continuous linear, whence it suffices to
compute dπn ◦ F (0; ·) = πndF (0; ·) for all n ∈ N0. Now for n ∈ N0
and a ∈ IA compute the derivative in 0:

πndF (0; a) = dπn ◦ F (0; a) = lim
t→0

t−1(πn ◦ F (ta)− πn ◦ F (0))

(B.1)= lim
t→0

n∑

k=1

1
k!
∑

α∈Nk
|α|=n

tk−1aα1 · . . . · aαk = an = πn ◦ idIA(a) �

Lemma B.7 (Unit groups of densely graded algebras). — Let A =∏∞
n=0An be a densely graded locally convex algebra.
(a) An element a ∈ A with decomposition a = a0 + b is invertible in A

if and only a0 is invertible in A0.
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(b) The algebra A is a CIA if and only if A0 is a CIA. In particular, if
A0 = K, then A is a CIA.

Proof.
(a) The map π0 : A → A0 is an algebra homomorphism. This implies

that invertible elements a ∈ A are mapped to invertible elements
a0 ∈ A0. For the converse, take an element a ∈ A with decompo-
sition a = a0 + b with b ∈ IA and a0 is invertible in A0. Then we
may multiply by a−1

0 from the left and obtain the equality

a−1
0 a = 1 + a−1

0 b.

This shows that a is invertible if we are able to prove that 1 + a−1
0 b

is invertible. Apply the formal power series

(1−X)−1 =
∞∑

k=0
Xk

to the element −a−1
0 b ∈ IA and obtain the inverse of 1 + a−1

0 b.
(b) We have seen in part (a) that the units in the algebra A satisfy

A× = π−1
0 (A×0 )

and hence one of the unit groups is open if and only if the other
one is open. It remains to establish that continuity of inversion in
A×0 implies continuity of inversion in A×. In part (a) we have seen
that inversion of a = a0 + b in A is given by

a−1 =
(
(1−X)−1) [−a−1

0 b
]
· a−1

0

So, the continuity of inversion in A follows from the continuity
of inversion in A0 and the continuity of the functional calculus
(Lemma B.4). �

Lemma B.8. — Let A =
∏
n∈N0

An be a densely graded locally convex
algebra over the field K ∈ {R,C}. Then Λ := K1A0 ×

∏
n∈NAn ⊆ A is a

closed subalgebra of A. Furthermore, Λ is densely graded with respect to
the grading induced by (An)n∈N0 and Λ is a CIA.

Proof. — Clearly Λ is a subalgebra of A and the subspace topology turns
this subalgebra into a locally convex algebra over K. By definition Λ is the
product of the (closed) subspaces (Λn)n∈N0 . Hence Λ is a closed subalgebra
of A with dense grading (Λn)n∈N0 . Finally we have the isomorphism of
locally convex algebras Λ0 = K1A0

∼= K. Hence Λ0 is a CIA and thus Λ is
a CIA by Lemma B.7(b). �
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Auxiliary results concerning characters of Hopf algebras

Fix for this section a K-Hopf algebra H = (H,mH, uH,∆H, εH, SH) and
a commutative locally convex algebra B. Furthermore, we assume that H
is graded and connected, i.e. H =

⊕
n∈N0

H and H0 ∼= K. The aim of this
section is to prove that the exponential map expA of A := HomK(H, B)
restricts to a bijection from the infinitesimal characters to the characters.

Lemma B.9 (Cocomposition with Hopf multiplication). — Let H ⊗ H
be the tensor Hopf algebra (cf. [25, p. 8]). With respect to the topology of
pointwise convergence and the convolution product, the algebras

A := HomK(H, B) A⊗ := HomK(H⊗H, B)

become locally convex algebras (see Lemma 1.4). This structure turns

· ◦mH : HomK(H, B)→ HomK(H⊗H, B), φ 7→ φ ◦mH.

into a continuous algebra homomorphism.

Proof. — From the usual identities for the structure maps of Hopf al-
gebras (cf. [25, p. 7 Fig. 1.3]) it is easy to see that · ◦ mH is an algebra
homomorphism. Clearly · ◦mH is continuous with respect to the topologies
of pointwise convergence. �

Lemma B.10. — The analytic diffeomorphism expA : IA → 1+IA maps
the set of infinitesimal characters g(H, B) bijectively onto the set of char-
acters G(H, B).(7)

Proof. — We regard the tensor productH⊗H as a graded and connected
Hopf algebra with respect to the tensor grading, i.e.

H⊗H =
⊕

n∈N0

(H⊗H)n with (H⊗H)n =
⊕

i+j=n
Hi ⊗Hj for all n ∈ N0.

The set of linear maps A⊗ := HomK(H ⊗H,B) together with the con-
volution product ?A⊗ forms a densely graded locally convex algebra. Let
mB : B ⊗ B → B, b1 ⊗ b2 7→ b1 · b2 be the multiplication in B. Define a
bilinear map

β : A×A→ A⊗, (φ, ψ) 7→ φ � ψ := mB ◦ (φ⊗ ψ).

(7) It is hard to find a complete proof in the literature, whence we chose to include a
proof for the reader’s convenience.
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We prove now that β is continuous. To this end consider a fixed element
c =

∑n
k=1 c1,k ⊗ c2,k ∈ H ⊗ H. We have to prove that φ � ψ(c) depends

continuously on φ and ψ:

(φ � ψ)(c) = m ◦ (φ⊗ ψ) (c) = m ◦ (φ⊗ ψ)
(

n∑

k=1
c1,k ⊗ c2,k

)

=
n∑

k=1
m (φ(c1,k)⊗ ψ(c2,k)) =

n∑

k=1
φ(c1,k) · ψ(c2,k)

This expression is continuous in (φ, ψ) since point evaluations are contin-
uous as well as multiplication in the locally convex algebra B. The convo-
lution in A can be written as ?A = β ◦∆. We obtain

(B.3) (φ1 � ψ1) ?A⊗ (φ2 � ψ2) = (φ1 ?A φ2) � (ψ1 ?A ψ2).

Recall, that 1A := uB ◦ εH is the neutral element of the algebra A. From
equation (B.3), it follows at once, that the continuous linear maps

(B.4)
β(·, 1A) : A→ A⊗, φ 7→ φ � 1A

and β(1A, ·) : A→ A⊗, φ 7→ 1A � φ

are continuous algebra homomorphisms. We will now exploit � to prove
that the bijection expA : IA → 1A + IA (see Lemma B.5) maps the set
g(H,B) onto G(H,B). Let φ ∈ IA be given and recall:

(a) The Hopf algebra product mH maps H0 ⊗ H0 into H0. Now
H0 ⊗ H0 = (H ⊗ H)0 (tensor grading) entails for φ ∈ IA that
φ ◦mH ∈ IA⊗ .

(b) From (B.3) we derive that

(φ � 1A) ?A⊗ (1A � φ) = φ � φ = (1A � φ) ?A⊗ (φ � 1A).

If φ ∈ A is an infinitesimal character then φ◦mH = φ�1A+ 1A �φ.

Combining (a) and (b) we see that Lemma B.6 is applicable and as a
consequence

(B.5) expA⊗(φ � 1A + 1A � φ) = expA⊗(φ � 1A) ?A⊗ expA⊗(1A � φ).
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Note that it suffices to check multiplicativity of expA(φ) as expA(φ)(1H) =
1B is automatically satisfied. To prove the assertion we establish the fol-
lowing equivalences:

φ ∈ g(H,B) Def⇐⇒ φ ◦mH = φ � 1A + 1A � φ
(a)⇐⇒ expA⊗(φ ◦mH) = expA⊗(φ � 1A + 1A � φ)

(B.5)⇐⇒ expA⊗(φ ◦mH) = expA⊗(φ � 1A) ?A⊗ expA⊗(1A � φ)
(B.4)⇐⇒ expA⊗(φ ◦mH) =

(
expA(φ) � 1A

)
?A⊗

(
1A � expA(φ)

)

(B.3)⇐⇒ expA⊗(φ ◦mH) =
(
expA(φ) ?A 1A

)
�
(
1A ?A expA(φ)

)

⇐⇒ expA⊗(φ ◦mH) = expA(φ) � expA(φ)
B.9⇐⇒ expA(φ) ◦mH = expA(φ) � expA(φ)
Def⇐⇒ expA(φ) ∈ G(H, B) �

Remark B.11. — The chain of equivalences in the proof of Lemma B.10
uses the dense grading of A = HomK(H, B) twice to show that the first to
third lines are equivalent. However, for arbitrary H and weakly complete
B the second and third line are still equivalent: In this case A⊗ is weakly
complete and Lemma 5.3(c) allows us to embed A⊗ into P :=

∏
i∈I Ai

(product of Banach algebras in the category of topological algebras). This
implies that the formula expA⊗(a+ b) = expA⊗(a) expA⊗(b) used in (B.5)
still holds as the power series defining expA converges on P and satisfies
the formula (which is component-wise true in every Banach algebra).

Appendix C. Weakly complete vector spaces and duality

The purpose of this section is to exhibit the duality between the category
of abstract vector spaces and the category of weakly complete topological
vector spaces. Although none of this is needed for the results of this paper,
many ideas of this paper appear to be more natural in this wider setting.

Throughout this section, let K be a fixed Hausdorff topological field.
Although, in this paper, we are only interested in the cases K = R and
K = C, the statements in this appendix hold for an arbitrary Hausdorff
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field of any characteristic, including the discrete ones.(8) We start with a
definition.

Definition C.1. — A topological vector space E over the topologi-
cal field K is called weakly complete topological vector space (or weakly
complete space for short) if one of the following equivalent conditions is
satisfied:

(a) There exists a set I such that E is topologically isomorphic to KI .
(b) There exists an abstract K-vector space V such that E is topologi-

cally isomorphic to V∗ := HomK(V,K) with the weak*-topology
(c) The space E is the projective limit of its finite-dimensional Haus-

dorff quotients, with each n-dimensional quotient being topologi-
cally isomorphic to Kn

For the case K = R or K = C, these conditions are also equivalent to the
following conditions:

(d) The space E is locally convex and is complete with respect to the
weak topology.

(e) The space E is locally convex, it carries its weak topology and is
complete with this topology.

The proof that (a) ⇐⇒ (b) ⇐⇒ (c) can be found in [18, Appendix 2]).
The characterisations (d) and (e) justify the name weakly complete.

Remark C.2. — Part (b) of the preceding definition tells us that the
algebraic dual V∗ of an abstract vector space V becomes a weakly com-
plete topological vector space with respect to the weak*-topology, i.e. the
topology of pointwise convergence.

Conversely, given a weakly complete vector space E, we can consider the
topological dual E′ of all continuous linear functionals. Although there are
many vector space topologies on this topological dual, we will always take
E′ as an abstract vector space.

One of the main problems when working in infinite-dimensional linear
(and multilinear) algebra is that a vector space V is no longer isomorphic to
its bidual (V∗)∗. The main purpose of this section is to convince the reader
that the reason for this bad behaviour of the bidual is due to the fact that
the wrong definition of a bidual is used (at least for infinite-dimensional
spaces).

(8) In functional analysis, usually only R and C with their usual field topologies are
considered, where in algebra usually an arbitrary field with the discrete topology is
considered. Our setup includes both cases (and many more, e.g. the p-adic numbers,
etc.).
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If we start with an abstract vector space V, then its dual is a weakly
complete space V∗ and consequently, one should not take the algebraic
dual (V∗)∗ but the topological dual (V∗)′ which is the natural choice. For a
finite-dimensional space the construction coincides with the usual definition
of the bidual. In the general case however, the so obtained bidual is now
canonically isomorphic to the original space as the following proposition
shows:

Proposition C.3 (Duality and Reflexivity). — Let E be a weakly com-
plete space and let V be an abstract vector space. There are natural iso-
morphisms

ηE : E −→ (E′)∗
x 7−→ (ηE(x) := φx : E′ → K, λ 7→ λ(x))

and
ηV : V −→ (V∗)′

v 7−→ (ηV(v) := λv : V∗ → K, φ 7→ φ(v)).

Proof (Sketch). — Let E be a weakly complete vector space. We may
assume that E = KI for a set I. Then each projection map πi : KI → K on
the i-th component is an element in E′. It is easy to see that (πi)i∈I is in
fact a basis of the abstract vector space E′. This means that the algebraic
dual of E′ is topologically isomorphic to KI . Using this identification, one
can check that the map ηE is the identity.

Similarly, let V be an abstract vector space. By Zorn’s Lemma, pick a
basis (bi)i∈I . Then the dual space V∗ is isomorphic to KI . And therefore,
the dual of that one (V∗)′ has a basis (πi)i∈I . Under this identification, the
linear map ηV is the identity. �

Definition C.4 (The weakly complete tensor product). — One way to
understand Proposition C.3 is that every element x in a weakly complete
space E can be identified with a linear functional φx = ηE(x) ∈ (E′)∗ on
the abstract vector space E′. This enables us to define a tensor product of
two elements x ∈ E and y ∈ F as the tensor product of the corresponding
linear functionals

x⊗ y := φx ⊗ φy : E′ ⊗ F ′ −→ K
λ⊗ µ 7−→ φx(λ) · φy(µ) = λ(x) · µ(y).

This element x⊗ y is now a linear functional on the abstract vector space
E′ ⊗ F ′ which motivates the definition:

E ⊗̃ F := (E′ ⊗ F ′)∗.
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If the spaces E and F are of the form E = KI and F = KJ , it is easy to
verify that the space KI ⊗̃ KJ = (E′ ⊗ F ′)∗ is canonically isomorphic to
KI×J . This could have been taken as the definition of the weakly complete
tensor product in the first place. However, the definition we chose has the
advantage that is independent of the choice of coordinates, i.e. the specific
isomorphisms E ∼= KI and F ∼= KJ , respectively.

Proposition C.5 (The universal property of the weakly complete tensor
product). — Let E,F,H be weakly complete spaces and let β : E×F → H

be a continuous bilinear map. Then there exists a unique continuous linear
map β∼ : E ⊗̃ F → H such that the following diagram commutes:

E × F β //

⊗
��

H

E ⊗̃ F

β∼

77

For the case K = R or K = C, this universal property also holds for arbi-
trary complete locally convex spaces H, showing that this weakly complete
tensor product is just a special case of the usual projective tensor product
for locally convex vector spaces.

Definition C.6 (The monoidal categories WCVSK and VSK).
(i) Denote the category of weakly complete spaces and continuous lin-

ear maps by WCVSK. Together with the weakly complete tensor
product and the ground field K as unit object, we obtain a monoidal
category (WCVSK, ⊗̃ ,K).

(ii) Denote the monoidal category of abstract vector spaces, abstract
linear maps, the usual abstract tensor product and the ground field
as unit object by (VSK,⊗,K).

The two categories WCVSK and VSK are dual to each other. The du-
alities are given by the contravariant monoidal functors algebraic dual

(·)∗ : VSK −→WCVSK
V 7−→ V∗

(Φ: V → W) 7−→ (Φ∗ : W∗ → V∗, φ 7→ φ ◦ Φ)

and topological dual

(·)′ : WCVSK −→ VSK
E 7−→ E′

(T : E → F ) 7−→ (T ′ : F ′ → E′, λ 7→ λ ◦ T )
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(cf. Proposition C.3). The duality interchanges direct sums in the ab-
stract category with direct products in the weakly complete category, hence
graded vector spaces (Definition B.1) are assigned to densely graded vector
spaces (Definition B.2). For more information about this duality, we refer
to [27, p. 679] and to [18, Appendix 2].

We can naturally define weakly complete algebras, weakly complete coal-
gebras, weakly complete bialgebras and weakly complete Hopf algebras us-
ing the weakly complete tensor product in (WCVSK, ⊗̃ ,K). By duality,
we get the correspondence:

Abstract world Weakly complete world
(VSK,⊗,K) (WCVSK, ⊗̃,K)
abstract vector space weakly complete vector space
linear map continuous linear map
graded vector space densely graded weakly complete

vector space
abstract coalgebra weakly complete algebra
abstract algebra weakly complete coalgebra
abstract bialgebra weakly complete bialgebra
abstract Hopf algebra weakly complete Hopf algebra
characters group like elements
infinitesimal characters primitive elements

Remark C.7. — Note that while a weakly complete algebra is an algebra
with additional structure (namely a topology), a weakly complete coalge-
bra is in general not a coalgebra. This is due to the fact that the weakly
complete comultiplication ∆: C → C ⊗̃ C takes values in the completion
C ⊗̃ C, while for a coalgebra it would be necessary that it takes its values
in C ⊗ C and the canonical inclusion map C ⊗ C 7→ C ⊗̃ C goes into the
wrong direction (see also [27, p. 680]). In particular, a Hopf algebra in the
weakly complete category is not a Hopf algebra in general.

Using the duality, we may translate theorems from the abstract category
to the weakly complete category, for example the Fundamental Lemma of
weakly complete algebras (Lemma 5.3) follows directly from the the funda-
mental theorem of coalgebras, stating that every abstract coalgebra is the
direct union of its finite-dimensional subcoalgebras. It should be mentioned
that one of the first proofs of the fundamental theorem of coalgebras by
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Larson [23, Prop. 2.5] used this duality and worked in the framework of
topological algebras to show the result about abstract coalgebras.

Let H be an abstract Hopf algebra and H := H∗ the corresponding
weakly complete Hopf algebra. Then the characters of H are exactly the
group like elements in H, while the infinitesimal characters of H are exactly
the primitive elements of H. This allows us to rephrase the scalar valued
case of Theorem 2.7.

Theorem C.8 (Group like elements in a weakly complete Hopf algebra).
Let H be a densely graded weakly complete Hopf algebra over R or C with
H0 = K. Then the group like elements of H form a closed Lie subgroup
of the open unit group H×. The Lie algebra of this group is the weakly
complete Lie algebra of primitive elements.
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