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Winter Problems on Mountain Passes 

- Implications for Cost-Benefit Analysis 

 

 

Abstract 

Cost-benefit analysis is a tool in government decision-making for determining the consequences of 

alternative uses of society’s scarce resources. Such a systematic process of comparing benefits and 

costs was adopted in early years for transportation projects and it has been the subject of much 

refining over the years. There are still some flaws, however, in the application of the method. In this 

article we have studied the impact of weather conditions on traffic speed on low traffic roads often 

exposed to adverse weather. This is an issue not currently considered in the cost-benefit analysis of 

road projects. By using two analytical approaches—structural equation modelling and classification 

and regression tree analysis—the impact of the weather indicators temperature, wind speed, and 

precipitation on traffic speed has been quantified. The data relates to three winter months on the 

European Route 6 road over the mountain pass Saltfjellet in Norway. Increase in wind speed, increase 

in precipitation and temperatures around freezing point all caused significant decrease in traffic speed 

in the case studied. If actions were taken to reduce the impact of adverse weather on traffic (e.g. by 

building a tunnel through the mountain) this study indicates that the road users would gain a total 

benefit of approximately 2,348,000 NOK (282,000 EUR) each winter at Saltfjellet if all the weather 

related benefits were included. We argue that this is a significant number that is highly relevant to 

include in CBAs. This applies both to the CBAs of new transportation projects as well as when resources 

are allocated for operation, maintenance, and monitoring of the existing transport systems. Including 

the weather related benefits would improve the application of CBA as a decision-making tool for policy 

makers. 
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1. Introduction 

Mountain passes are often exposed to rough weather, especially during the winter. The Norwegian 

Public Roads Administration (NPRA) has identified strong wind, snow and driving conditions around 

freezing point as problematic for traffic on mountain passes (NPRA, 2012). The importance of these 

weather variables for traffic is supported by previous research on this topic (see e.g. Agarwal, Maze, & 

Souleyrette, 2005; Al Hassan & Barker, 1999; Cools, Moons, & Wets, 2010; Nosal & Miranda-Moreno, 

2014). Adverse weather1 may impact driving conditions on mountain pass roads in several ways. First, 

the combination of wind and snow causes snowdrifts either because the wind moves snow already 

lying on the ground, or because there is wind and snowfall at the same time. Snowdrifts reduce 

visibility and block the roads (NPRA, 2012). Second, the wind speed is sometimes so great that there is 

a risk of vehicles being blown off the road. Finally, driving conditions around freezing point cause the 

roads to be slippery and the risk of accidents increases. It is challenging and costly to operate mountain 

passes during the winter because of the problems created by adverse weather. Sometimes the 

operating crews have to close the roads or traffic is led in convoys because it is not safe to allow the 

free flow of traffic (NPRA, 2012). 

It is not only the operation of mountain passes that is costly; road users also experience increased 

travel costs because of problematic traffic conditions in adverse weather on mountain passes. There 

are costs related to delays and unreliable travel times, increased risk of accidents, and extra material 

costs due to the use of spiked tires and chains (Hagen & Engebretsen, 1999). Much research has been 

conducted addressing the problems with delays and unreliable travel times caused by adverse 

weather, and the conclusions are that these problems can be extensive and that people are willing to 

pay to avoid them (see e.g. Bates, Polak, Jones, & Cook, 2001; de Jong, Kouwenhoven, Kroes, Rietveld, 

& Warffemius, 2009; Li, Hensher, & Rose, 2010; Sikka & Hanley, 2013; Tseng & Verhoef, 2008). The 

extensiveness of the problem can be illustrated by the Oak Ridge National Laboratory study, which 

estimated the delay experienced by American drivers due to adverse weather conditions in 1999 to be 

46 million hours (cited in Rakha et al., 2007). 

All road projects in Norway are subject to cost-benefit analysis (CBA). The Norwegian Public Roads 

Administration (NPRA) states that the aim of the CBA is to systematically consider all relevant benefits 

and costs that a road project will impose on society (NPRA, 2006). Yet despite the harsh climate and 

the fact that many important road sections are exposed to adverse weather, adverse weather impact 

on traffic is not considered in CBAs of road projects. As mentioned above, research reveals that people 

                                                           
1 In this context, adverse weather is defined as “atmospheric conditions at a specific time and place that are 
unfavourable to optimal traffic conditions” (El Faouzi, Billot, Nurmi, & Nowotny, 2010). 
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are willing to pay for both travel time savings and reliable travel times (see e.g. Asensio & Matas, 2008; 

Bates et al., 2001; Carrion & Levinson, 2012; de Jong et al., 2009; Li et al., 2010; Sikka & Hanley, 2013). 

Travel time savings typically produce 60 percent of the traditionally quantified user benefits in the CBA 

of new road projects (Hensher, 2001). However, travel time savings related to the avoidance of delays 

and uncertainty caused by adverse weather is not included, and the value of increasing the reliability 

of travel times is often not included at all. In a recent study, Peer, Koopmans and Verhoef (2012) show 

how travel time variability can be predicted for use in CBAs. They point out that in order to be able to 

include in CBAs the benefits associated with measures increasing travel time reliability, it is necessary 

both to know the extent of unreliability in the transport system today and the driver’s valuation of 

unreliable travel times. This also applies to delays. 

Thorough work has been done to put monetary values on travel time savings (NPRA, 2006), but to 

what extent adverse weather causes delays and unreliability at mountain passes is poorly covered. 

This makes it impossible to include these effects in CBAs, which again means that the net benefits of 

projects aimed at reducing the problems are valued too low, and projects may lose priority to other 

projects with higher net benefits. The building of a tunnel through a mountain in order to avoid a 

challenging mountain pass is an example of a project which would reduce the impact of adverse 

weather on traffic and hence result in both travel time savings and higher travel time reliability. 

Improvement of the road structure (location in the terrain, road width, curvature etc.) is another 

example. Hagen & Engebretsen (1999) conducted a supplementary CBA of two tunnel projects located 

in the county of Nordland, Norway, and estimated an increase in cost-benefit ratio from 0.42 to 

approximately 0.90 when the weather-related benefits of travel time savings, increase in travel time 

reliability and reduction in material costs were included. The results were based on a stated preference 

study among the users of the road. 

Maze, Agarwal & Burchett (2006) have identified three predominant and measurable dimensions of 

the weather’s impact on traffic: traffic demand, traffic safety, and traffic flow relationships. Research 

has focused on all three dimensions for quite a while, and the interest for the topic has increased lately 

in the light of the growing awareness of climate change impact on the transport system (see e.g.,Arana, 

Cabezudo, & Peñalba, 2014; Böcker, Dijst, & Prillwitz, 2013; E. Hooper, Chapman, & Quinn, 2013; 

Khaleghei Ghosheh Balagh, Naderkhani, & Makis, 2014; Asad J. Khattak & De Palma, 1997; Asad J 

Khattak, Kantor, & Council, 1998; Lam, Shao, & Sumalee, 2008).  

The aim of this study has been twofold. First, two analytical approaches—structural equation 

modelling (SEM) and classification and regression tree (CART) analysis—have been applied in order to 

be able to quantify how weather influences traffic flow (here represented by traffic speed) on 
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mountain passes. Second, the results from the analysis have been used to quantify the economic 

consequences of the impact of adverse weather on traffic flow.  

The use of speed as an endogenous variable in the analysis is supported by Koetse and Rietveld (2009), 

who identified speed choice as one of several possible behavioural reactions to adverse weather (for 

further details on behavioural reactions in transport, see de Dios Ortúzar and Willumsen (2011)). 

Difficult driving conditions caused by adverse weather represent only one factor determining speed 

choice. The literature has identified several other factors determining speed choice:  

- speed limit, cost of fines, and the risk of being caught driving too fast (Rietveld & Shefer, 1998); 

- individual characteristics of the driver, such as age, gender, and income (Rietveld & Shefer, 

1998); 

- information about the transport system and previously acquired knowledge and experience 

(Dia, 2002); 

- perception of driving conditions and risk (Dia, 2002; Fuller, 2005); 

- frequency and severity of accidents, characteristics of the road and type of vehicle (De Luca, 

Lamberti, & Dell’Acqua, 2012; Liu, 2007); 

- costs of arriving late (Rietveld & Shefer, 1998). 

Keeping task difficulty within selected boundaries has been suggested as a key sub-goal in speed choice 

(Fuller, 2005). Different levels of task difficulty are thought to be produced in the dynamic interaction 

between the determinants of task demand and driver capability (Fuller, 2005). Hence, in adverse 

weather drivers reduce vehicle speed to varying extents. 

The context of our study has been the European Route 6 road over the mountain pass Saltfjellet in 

Norway. Much of the research has been conducted to reveal the impact of weather on traffic, but a 

common feature of previous literature is the focus on studies in densely populated areas where 

congestion and road capacity is an issue. Little research has been conducted to quantify the influence 

of weather on traffic in rural areas (Böcker et al., 2013). One important characteristic of rural 

environments, which distinguishes them from densely populated areas, is the lack of or limited access 

to alternative routes (Laird & Mackie, 2009). Reliability of the transport system, for example, may have 

a large impact on scheduling costs and broader economic benefits in rural areas (Laird & Mackie, 2009). 

Interruptions in the transport system may impact competition in both the product and service markets 

as well as the labour market (Laird & Mackie, 2009). The drawback of closed roads during the winter 

in Norway has been identified by Meersman and Van De Voorde (2001) as a barrier to interconnectivity 

in European transport. 
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Böcker et al.’s (2013) review of existing literature on the topic of interest also found the variance in 

climate regimes covered by the reviewed studies to be limited. Almost all of the studies were located 

in North-West Europe, North America and Australia. According to the authors, polar climate regions 

are virtually uncovered. All mountain passes in Norway are defined as polar climate regions according 

to the Köppen-Geiger classification (cited in Böcker et al. (2013)). 

The article is structured as follows: the case, traffic data, and weather data, are described in Chapter 

2. Chapter 3 presents the two analytical approaches for determining the impact of weather conditions 

on traffic speed—structural equation modelling (SEM) and classification and regression tree (CART). In 

Chapter 4, the results from the SEM and the CART analyses are presented and discussed, while a 

calculation of benefits related to reducing winter problems on the mountain pass in question is 

presented in Chapter 5. Finally, some concluding remarks are made in Chapter 6. 

2. Saltfjellet 

2.1 Case description  

The empirical data is collected from the mountain pass Saltfjellet in Norway (see Figure 1). EV6, the 

main transport corridor from the southern regions to the northern regions of Norway, runs across this 

mountain pass, which is located at the Arctic Circle and is often exposed to harsh weather conditions. 

There are two alternative routes for road transport. One of these runs through Sweden and implies 

increased transport distance. The other, along the coast of Nordland, is characterised by poor road 

quality and several ferries. In this study, we have chosen Saltfjellet as our case, but there are several 

other mountain passes in the northern parts of Europe, both further north and south, that are exposed 

to the same type of winter problems as Saltfjellet. 
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Figure 1: The Saltfjellet mountain region, Norway. 

Weather-related traffic problems on Saltfjellet are particularly prominent during the winter season. 

During this time of year, drivers can expect roads to be covered with snow and ice.2 The data in this 

study relates to the time period traditionally classified as winter, which ranges from December 1 to 

February 29. The data relates to the 2011–2012 winter season, with additional statistics on traffic for 

the whole year of 2012 (NPRA, 2013b). 

Table 1 presents some descriptive statistics of the traffic on Saltfjellet (the data relates to traffic in 

both the northbound and southbound direction). The traffic density on Saltfjellet varies widely 

throughout the year with the highest traffic density in July and the lowest in January. Due to adverse 

weather, the number of days with closures and convoys in the studied period (December 2011–

February 2012) was 9 and 18, respectively. 

  

                                                           
2 In northern parts of Norway, car drivers are allowed to use winter tires with spikes from October 16 to May 1 
(Lovdata, 2014). 
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Table 1: Descriptive statistics of the traffic at Saltfjellet (NPRA, 2013b) 

Traffic statistics  

Average total daily traffic, 2012 934 vehicles 

Average daily traffic July, 2012 2289 vehicles 

Average daily traffic, summer 2012 (Jun, July, Aug) 1797 vehicles 

Average daily traffic, January 2012 433 vehicles 

 
Average daily traffic, winter 2012 (Dec 2011, Jan and Feb 2012) 459 vehicles 

Average proportion of heavy vehicles in 2012 (vehicles ≥ 5.6 m) 28.6% 

Average proportion of heavy vehicles, winter 2012 (Dec 2011–Feb 2012) 

 

40.0 % 

Days with closures December 2011–February 2012 9 days 

Days with convoys December 2011–February 2012 18 days 

2.2 Data collection 

The empirical data relies on two sources. Data on traffic flow was provided by the Norwegian Public 

Road Administration (NPRA). The data was collected by an electronic counter (inductive loops in the 

asphalt covering (NPRA, 2011)) at the traffic station Sørelva on Saltfjellet. This is a measuring point 

operating at the most detailed level, and traffic volume and speed are measured continuously. The 

positioning of the electronic counter follows the NPRA’s guidelines (2011). The speed limit at this 

measuring point is 80 km/h; however, 150 metres further south, the speed limit increases to 90 km/h. 

The data on traffic flow relates to registration of traffic purely in the northbound lane. Because the 

average speed in the northbound and southbound lanes slightly differs3, only one lane was chosen for 

further analysis. 

Information on temperatures and wind speeds was obtained from the Norwegian Public Road 

Administration (NPRA). This data was collected at Sørelva (see Figure 1). Information on precipitation 

was collected by the Norwegian Meteorological Institute (2014) and are publicly available at the 

website eklima.no. Precipitation relates to a measuring point located approximately 30 km south of 

the Sørelva traffic station – on the south side of Saltfjellet. Considering the local variances in 

precipitation, it is not optimal that the data on precipitation is not collected at the exact same location 

as the traffic data, but we consider the measuring point to be close enough to produce data with 

sufficient quality for our study. There were various weather variables available. The decision of which 

weather variables to include in the analyses was based on previous literature’s identification of 

                                                           
3 The northbound lane has a somewhat higher average speed than traffic going in the southbound direction 
because traffic in the northbound direction comes from a zone with a speed limit of 90 km/h and the road has 
a slight downward slope, whereas traffic in the southbound direction comes from a zone with a speed limit of 
80 km/h and travelling vehicles have just passed a curved and upward sloping road section. 
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important weather variables influencing traffic (see e.g. Agarwal et al., 2005; Al Hassan & Barker, 1999; 

Cools et al., 2010; NPRA, 2012). 

2.3 Data characteristics 

The time period studied (1 Dec 2011–29 Feb 2012) included 91 days, providing a total of 2184 possible 

observations. Due to missing data and some observations being intentionally omitted, the data set 

contains 1176 observations. Observations were omitted when no vehicles had passed the counter and 

when the road was closed due to adverse weather conditions. Data examination did not reveal any 

other patterns in the missing observations. 

The weather variables were measured as follows: 

- Air temperature was measured in degrees Celsius every 10 minutes and averaged for each 

hour. A bivariate profiling of the relationship between temperature and traffic speed showed 

a considerably higher variation in traffic speed in the temperature interval [-2, 2] °C, while 

lower and higher temperatures seemed to have little influence. The descriptive statistics in 

Table 2 show that maximum temperature in the studied time period was 2.2 °C and the median 

temperature was -5.0 °C. Most of the time temperatures were either in the interval [-2, 2] °C 

or below with a minimum temperature measured at -25.9 °C. To our knowledge there exist no 

literature suggesting that variation in temperatures between -2 and -25.9 °C should influence 

traffic speed. However, literature has revealed that cold temperature affects traffic demand 

(see e.g.Cools et al., 2010; Datla & Sharma, 2008). NPRA (2013a) defines driving conditions 

around freezing point to be in the interval [-2, 2] °C. This temperature interval is associated 

with slippery roads. A dummy variable, holding the value 1 if the temperature was within the 

interval [-2, 2] °C, otherwise 0, was introduced to capture this effect. 

- Precipitation was measured as total millimetres of rain (or snow) each hour. When 

precipitation appeared in the form of snow, the snow was melted and measured as mm melted 

snow (Norwegian Meteorological Institute, 2013).  

- Wind speed was measured in metres per second, 10 metres above ground. Wind speed was 

recorded every 10 minutes and averaged per hour.   

Traffic speed was measured in km/h as an average speed of all vehicles passing the electronic counter 

each hour. The electronic counter records types of vehicles passing according to their length. In 

accordance with the NPRA’s definition of vehicle classes, private cars and heavy vehicles were defined 

as vehicles shorter than 5.6 metres and larger than or equal to 5.6 metres, respectively (NPRA, 2013b). 

The analysis showed no significant difference in the number of vehicles on workdays and weekends, 
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but the proportion of heavy vehicles was higher on workdays than at the weekends. A continuous 

variable representing the proportion of heavy vehicles was included to capture this variation in traffic 

characteristics. Large vehicles hold, on average, a lower speed than private motor vehicles. 

According to the guidelines of the NPRA (2012), the following situations call for actions to regulate 

traffic in adverse weather: snow causing poor visibility and snowdrifts and/or strong wind creating a 

danger for vehicles to be pushed off the road. There are no exact limits, but traffic is normally led in 

convoys when visibility is less than 50–100 metres, while it is closed when it drops below 20 metres. 

For wind speeds above 20 m/s, the guidelines recommend considering closure. When traffic is led in 

convoy, traffic must follow a leading vehicle (usually a specially designed lorry with a plough), and 

speed is restricted to a maximum 40 km/h (NPRA, 2012). A dummy variable was used to control for 

the effect of traffic being led in convoys. 

Descriptive statistics and definitions of the variable names are presented in Table 2. All variables are 

metric except for the variables X1 and Y3, which are dummy variables for temperatures around freezing 

point and convoy, respectively, holding the value 1 if true or 0 if otherwise. Average traffic speed was 

approximately 78 km/h, which is slightly lower than the speed limit of 80 km/h. The variation in 

precipitation was characterised by a majority of the 0 value observations and a few large observations. 

It is worth noting that the average value of precipitation of 0.1 mm/hour translates to 2.4 mm per day. 

If we consider only the observations with precipitation, then the average value was 0.5 mm/hour. The 

mean values for traffic speed, wind speed, and proportion of heavy vehicles had only minor deviations 

from the median value. It is further shown that 59% of the observations had temperatures around 

freezing point (𝑋1 = 1). Convoy restraint was imposed on approximately 5% of the observations.  

Table 2: Descriptive statistics (N=1176) 

Variable description Symbol Mean Std. dev. Min. Max. Median 

Traffic speed (km/h) Y1 78 12 17 130 80 

Temperature (°C)  -7.7 5.8 -25.9 2.2 -5.0 

Temperatures [-2, 2] °C (yes=1)  X1 0.59 0.49 0 1 1 

Wind speed (m/s) X2 5.7 3.6 0.4 19.1 5.3 

Precipitation (mm/h) X3 0.1 0.4 0 4.5 0 

Proportion of heavy vehicles Y2 0.40 0.26 0 1 0.37 

Traffic led in convoy (yes=1)  Y3 0.05 0.22 0 1 0 
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Table 3 shows pair-wise correlations between the variables of interest. All variables were significantly 

correlated with traffic speed. The magnitude of multicollinearity between the exogenous variables 

was relatively small and should not interfere with our analysis (Hair, 2010). Table 3: Pair-wise 

correlations (N=1176)  

Variable Y1 X1 X2 X3 Y2 Y3 

Y1 1      

X1 -0.24a 1     

X2 -0.37 a 0.31 a 1    

X3 -0.31 a 0.18 a 0.24 a 1   

Y2  -0.28 a 0.07 a 0.08 a 0.12 a 1  

Y3 -0.33 a 0.17 a 0.23 a 0.27 a 0.05 1 
a Indicates significance at the 5% level.  

3. Analytical Approach 

Two different analytical approaches were used in the analysis: Structural equation modelling (SEM) 

and classification and regression tree (CART) analysis. The two methods are presented in section 3.1 

and 3.2, respectively. SEM is a confirmatory method where the specification of structural relationships 

is guided by theory (Hair, 2010). The CART analysis is to a larger extent a data driven technique because 

relationships are not specified prior to analysis. However, the choice of which variables to include in 

the analysis was guided by the same theory as for the SEM analysis. The difference between these 

methods was exploited to test the validity of the results. 

The dataset contains time series data characterised by a temporal ordering of the observations, but 

because the aim of the analysis was to model the contemporaneous relationship between the weather 

variables and traffic speed, a “static time series model” was used (Wooldridge, 2013). This is 

appropriate because when traffic speed is adjusted as a response to adverse weather, this is assumed 

to be an immediate response unaffected, for example, by yesterday’s weather. Hence, autocorrelation 

should not be a problem. 

3.1 Structural Equation Modelling (SEM) 

Structural Equation Modelling (SEM) is a powerful technique which can be used to capture causal 

effects of the exogenous variables on the endogenous variables and causal effects of the endogenous 

variables on each other (Golob, 2003). The ability of SEM to handle endogenous variables was 

favourable for this analysis because of the presence of the two endogenous variables 𝑌2 (proportion 

of heavy vehicles) and 𝑌3 (traffic led in convoy). These two variables are influenced by weather 

conditions while at the same time having direct impact on traffic speed. First, the proportion of heavy 

vehicles, 𝑌2, increases in adverse weather because the demand for leisure traffic is more sensitive to 

adverse weather than the demand for commercial traffic here represented by heavy vehicles. Since 
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heavy vehicles on average are running at a lower speed, increase in the proportion of heavy vehicles 

will cause a reduction in average speed. Second, during particularly unfavourable weather conditions, 

convoy, 𝑌3, is initiated imposing restriction in speed limit. See further explanation of the endogenous 

relationships of the variables in section 2.3. The model is assumed to be a recursive path model 

because all the variables are observed (Kline, 2011). In addition, all causal effects in the model are 

unidirectional because theoretically there are no reasons to believe that traffic should be able to affect 

the weather, at least not in the short run. The disturbances are assumed to be uncorrelated. Figure 2 

illustrates the model. The model is overidentified with one degree of freedom. 

 

Figure 2: The model. 𝑋1= temperatures around freezing point, 𝑋2= wind speed, 𝑋3= precipitation, 𝑌2= 
proportion of heavy vehicles, 𝑌3= traffic led in convoy, 𝑌1 = traffic speed, and the corresponding 
disturbance terms are indicated by epsilon. 
 

The model is composed of three simultaneous equations which are estimated concurrently: 

(1)  𝑌1 = 𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2
2+𝛽3𝑋3

2+𝛽4𝑌2+𝛽5𝑌3+𝜀1 

(2) 𝑌2 = α0 + α1𝑋1 + 𝛼2𝑋2
2 + 𝛼3𝑋3

2 + 𝜀2 

(3) 𝑌3 = 𝛾0 + 𝛾1𝑋1 + 𝛾2𝑋2
2 + 𝛾3𝑋3

2 + 𝜀3 

In equations (1), (2) and (3) the endogenous variables traffic speed, 𝑌1, proportion of heavy vehicles, 

𝑌2, and traffic led in convoy, 𝑌3, are explained by temperatures around freezing point, 𝑋1, wind speed, 

𝑋1 

𝑋2
2 

𝑋3
2 

𝑌2 

𝑙𝑛𝑌1 

𝑌3 

𝜀2 

 

𝜀3 
  

𝜀1 
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𝑋2, and precipitation, 𝑋3, which are all exogenous variables. See section 2.3 for further explanations 

of the variables.   

For the variables precipitation and wind speed, it is not reasonable to assume a linear relationship on 

the effect of average traffic speed. This assumption is supported by Böcker et al. (2013), who argue 

that studies often wrongfully assume linear relationships between weather and travel behaviour. The 

effect on traffic speed is negligible for low values of precipitation and wind speed. As the weather 

becomes more adverse, the negative effect increases more than proportionally. To capture the 

nonlinear relationships the endogenous variable traffic speed is log-transformed and quadratic 

transformations of the weather variables wind speed and precipitation are used (see equation (1)). 

Both wind speed and precipitation are assumed to influence traffic speed negatively. It is therefore 

reasonable that  𝛽2, 𝛽3 < 0 gives negative, first-order derivatives (𝜕𝑌1 𝜕𝑋2⁄ , 𝜕𝑌1 𝜕𝑋3⁄ < 0). 

Because, 𝛽2, 𝛽3 < 0, the values of wind speed and precipitation are non-negative, and traffic speed is 

log-transformed, the effects of precipitation and wind speed on traffic speed will be s-shaped. The 

second order derivative for 𝑋2 is 𝜕2𝑌1 𝜕𝑋2
2⁄ = 2𝛽2𝑌1(2𝛽2X2

2 + 1), which changes sign at 𝑋2 = √−
1

2𝛽2
. 

Hence, this is the point where the exogenous variable 𝑋2 has the steepest negative slope and, thereby, 

the greatest influence on the endogenous variable, 𝑌1. The interpretation is similar for 𝑋3. See figure 3 

for an illustration of a simple version of the exponential function in (1) including the inflection point.  

 

Figure 3: Illustration of the exponential function 
 

The specification chosen has the advantages of handling the zero values of the measured variables and 

providing fairly simple interpretations of the estimated coefficients in terms of percentage change in 

the average speed (Hensher & Brewer, 2001). In addition, the log-transformation of traffic speed 
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allows the model to handle interaction between the weather variables. For example, since 𝜕𝑌1 𝜕𝑋2⁄ =

2𝛽2X2𝑒𝛽0+𝛽1𝑋1+𝛽2𝑋2
2+𝛽3𝑋3

2+𝛽4𝑌2+𝛽5𝑌3 , the effect of a change in wind speed on traffic speed depends 

on the level of the other to weather indicators as well. In equation (1), it is assumed that parameter 

𝛽0 is positive, while the sign of all other parameters is expected to be negative. Since all the weather 

indicators are assumed to negatively influence traffic speed, the cross-derivatives will be positive4. This 

implies, e.g., that the negative effect of wind on traffic speed is moderated for higher values of 

precipitation and if temperature is approximately 0°C. Hence, increase in wind speed will have greater 

effect on traffic speed in weather with no precipitation or temperatures around freezing point, than 

would be the case when traffic speed is already reduced by these other weather factors.  

In equation (2), it is assumed that all parameters are positive. Literature supports the assumption that 

demand for freight transport is less vulnerable to adverse weather than the demand for passenger 

transport (Button, 2010), therefore the proportion of heavy vehicles is assumed to increase in adverse 

weather. The constant term in equation (3) is assumed to be negative, otherwise the parameters are 

assumed to be positive. 

In order to estimate SEM, covariance analysis methods are used which are based on minimising the 

difference between the sample covariance and the model implied covariance matrices (de Oña, de 

Oña, Eboli, & Mazzulla, 2013). In our analysis a standard linear SEM was used and the parameters were 

estimated by the Maximum Likelihood method (ML)5. This is the most frequently used estimation 

method (de Oña et al., 2013; Golob, 2003). Although the linear SEM with ML estimation assumes 

normally distributed variables, the method has proven to be robust to non-normality in the variables 

if the sample size is large enough (Golob, 2003). Large samples are also favourable when the data is 

kurtotic, as in our example. Various suggestions have been proposed for what sample sizes can be 

regarded as sufficient (Golob, 2003). Since there are only 6 observed variables and 20 free parameters 

to be estimated, our sample size of 1176 is well beyond the proposed sizes for being adequate. 

 

                                                           
4 The impact of precipitation on the relationship between wind and average speed is given by 𝜕2𝑌1 𝜕𝑋2𝜕𝑋3⁄ =
4𝛽2𝛽3𝑋2𝑋3𝑌1 > 0. Hence, when 𝑋2 and 𝑋3 represents wind and precipitation, respectively, then more 

precipitation would reduce the negative influence of wind on speed. The elasticity, 𝐸𝐿𝑌1
𝑋2 = 2𝛽2𝑋2

2, becomes 

more negative when the value of 𝑋2 increases. The interpretation is similar for the elasticity with respect to 𝑋3. 
5 The presence of nonlinear relationships suggests the use of a generalized model. However, estimating the 
model by generalized SEM gave estimation results very close to the results obtained by linear SEM with ML (all 
coefficients obtained by generalized SEM were within the 95% confidence interval of the linear SEM estimates). 
Because of the similarity in results, our large sample size, and the fact that the standard linear SEM is most 
frequently applied, at least within transportation research, we will present the results from the standard linear 
SEM. 
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3.2 Classification and Regression Tree (CART) 

Classification and Regression Trees (CART) is a methodology well suited to deal with large data sets, 

nonlinear relationships, high-order interactions, and missing values (De'Ath & Fabricius, 2000). A single 

response variable is explained by repeatedly splitting the data into more homogenous groups, using 

combinations of explanatory variables (De'Ath & Fabricius, 2000). When the response variable is 

numerical, like speed in this study, the procedure is known as regression tree, while it is known as 

classification tree when the response variable is categorical (Questier, Put, Coomans, Walczak, & 

Heyden, 2005). 

CART is a statistical technique that can select from a large number of explanatory variables (x) those 

that are most important in determining the response variable (y) (Questier et al., 2005). It is a form of 

binary recursive partitioning procedure (Lewis, 2000). The steps in the analysis can be summarized as 

follows: First, all objects are assigned to a root node (Questier et al., 2005). Second, the CART software 

finds the best possible variable to split the node into two child nodes. In order to find the best variable, 

all possible splitting variables and all possible values of the variables are checked (Lewis, 2000). The 

variable and split point with the highest reduction of impurity of the node is selected (Questier et al., 

2005). The impurity of the node can be defined as the total sum of squares of the response values 

around the mean of the node. For a node with n objects, the impurity is then defined as (Questier et 

al., 2005): 

(4) 𝑖𝑚𝑝𝑢𝑟𝑖𝑡𝑦 = ∑ (𝑦𝑖 − 𝑦) 2𝑛
𝑖=1  

After the parent node is split into the two child nodes, these two child nodes each become new parent 

nodes, and split according to the same procedure above. The procedure is repeated until the tree has 

maximum size (Questier et al., 2005). The tree is represented graphically which makes the 

interpretation of the result relatively easy.  

There are different ways of stopping the tree building (Lewis, 2000). In this study, an external limit has 

been set to include only the levels where the split of the nodes creates groups that differ significantly 

at the 5% level, and the process is stopped at the fourth level. 

In general, the CART analysis has not been widely used. This is possibly due to poor implementation in 

the leading statistical packages Lewis (2000). However, some examples of the use of the CART 

methodology in transportation research exist. Stewart (1996) applied this method to a highway safety 

analysis. For this study the ability of CART of dealing with large number of independent variables and 

identifying complex interactions among the variables affecting highway safety, was exploited. Abdel-

Aty et al. (2005) used the CART methodology to study the different factors that affect crashes at 
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signalized intersections. The methodology was adopted because of its ability to cope with 

multicollinearity between variables, missing observations, and the fact that the true model form was 

unknown (Abdel-Aty et al., 2005).  

Particularly two characteristics of this study make the CART methodology suitable as an analytical tool. 

First, we are dealing with nonlinear relationships, and second, the true model of the relationship 

between the independent variables and the dependent variable is unknown. 

4. Results and discussion 

4.1 Structural Equation Modelling 

In Table 4 goodness-of-fit statistics for the chosen SEM model are listed. The Chi-Square statistics 

indicates that we cannot, at a 5% level, reject that the model fits as well as the saturated model. The 

RMSEA has a value of 0.000 which indicates good fit. Values up to 0.07 are normally considered to be 

satisfactory (D. Hooper, Coughlan, & Mullen, 2008). Finally, a CFI equal to 1.000 and a SRMR well below 

0.05 also indicates good model fit. All together, the goodness-of-fit statistics supports that the SEM 

model is appropriate. 

Table 4: Goodness-of-fit statistics 

Goodness-of-fit statistics Value Description 

Likelihood ratio   

               Chi2(1) 0.280 Model vs. saturated model 

               p > chi2 0.596  

Population error   

              RMSEA 0.000 Root mean squared error of approximation 

              90 % conf.int., lower bound 0.000  

                                        upper bound 0.062  

Baseline comparison   

             CFI 1.000 Comparative fit index 

Size of residuals   

             SRMR 0.004 Standardized root mean squared residuals 

 

The results from the estimation of the model are presented in Table 5. All coefficients have signs 

according to the a priori assumptions. All the direct effects of the weather variables, proportion of 

heavy vehicles, and convoy, on traffic speed, were significant at the 1% level for all coefficients except 

temperatures around freezing point which was significant at the 5% level. The effects of the weather 

variables on convoy were, as expected, all significant at the 1% level, while the results indicate that the 

weather variables do not influence the proportion of heavy vehicles that strongly. Only the effect of 

precipitation was significant at the 5% level. 
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According to the model, wind speed of 19.6 m/s has the greatest marginal effect on traffic speed (the 

inflection point illustrated in Figure 3). From the descriptive statistics in Table 2, we see that the 

maximum wind speed measured in the studied time period was 19.1 m/s. This measurement indicates 

that wind speed had an increasing effect on traffic speed in all the observations in our study. Similarly, 

precipitation at the level of 5.3 mm/h had the greatest marginal effect on traffic speed. This level is 

also above the maximum precipitation of 4.5 mm/h measured in our study (see Table 2). 

Table 5: Model results 

  Coefficient Std. Error z P>|𝑧| 

Structural:      

𝑌3 (convoy) < −       

      𝑋2
2  0.00108 0.00012 8.68 0.000 

     𝑋3
2  0.02195 0.00523 4.19 0.000 

        𝑋1  0.03722 0.01265 2.94 0.003 

 Constant -0.02462 0.00990 -2.49 0.013 

𝑌2 (heavy) < −      

 𝑋2
2  0.00024 0.00015 1.54 0.123 

 𝑋3
2  0.01398 0.00649 2.15 0.031 

 𝑋1  0.02577 0.01569 1.64 0.100 

 Constant 0.37063 0.01228 30.18 0.000 

𝑙𝑛𝑌1 (ln-speed) 
< − 

     

 𝑌3  -0.21138 0.02280 -9.27 0.000 

 𝑌2  -0.17441 0.01839 -9.48 0.000 

 𝑋2
2  -0.00133 0.00010 -13.26 0.000 

 𝑋3
2  -0.01771 0.00413 -4.29 0.000 

 𝑋1  -0.02164 0.00994 -2.18 0.029 

 Constant 4.49269 0.01034 434.66 0.000 

Variance:      

 e. 𝑌3 0.04187 0.00173   

 e. 𝑌2 0.06437 0.00265   

 e. 𝑌1 0.02559 0.00106   

 

To illustrate the results from the analysis, Table 6 predicts some traffic speed values under various 

weather conditions. The model predicts wind to have the greatest impact on traffic speed, closely 

followed by precipitation. However, the effect of temperatures around freezing point seemed to be of 

only minor importance in our study. It is not surprising that wind and precipitation had the largest 

effect on traffic speed. Snowdrifts are identified by the NPRA (2012) as the main problem when striving 

to keep the road open for traffic in the winter months. As Table 6 shows, maximum wind alone can 

cause a 43% reduction in traffic speed compared to perfect driving conditions. The model predicts a 

68% reduction in traffic speed in the situation with a combination of maximum wind and precipitation 
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and, in the worst-case scenario with all three weather variables being maximum unfavourable, the 

reduction is 69%. 

Table 6: Predicted impacts of adverse weather conditions on average traffic speed (calculations are 
based on the variable characteristics in Table 2 and model results in Table 5)  

Weather condition 
Average 

traffic speed 

Decrease in average traffic 
speed in relation to perfect 

driving conditions 

Perfect driving conditions 
(X1=0, X2=0, X3=0) 84 km/h  

Maximum wind  

(X1=0, X2=19.1, X3=0) 
48 km/h 43% 

Maximum precipitation  
(X1=0, X2=0, X3=4.5) 54 km/h 36% 

Temperatures at approximately 0 °C  
(X1=1, X2=0, X3=0) 81 km/h 3% 

Maximum wind and maximum precipitation 

(X1=0, X2=19.1, X3=4.5) 27 km/h 68% 

Maximum wind and temperatures at 

approximately 0 °C (X1=1, X2=19.1, X3=0) 
46 km/h 45% 

Maximum precipitation and temperatures at 
approximately 0 °C (X1=1, X2=0, X3=4.5 ) 52 km/h 39% 

Maximum precipitation, maximum wind and 
temperatures at approximately 0°C (X1=1, 
X2=19.1, X3=4.5) 

26 km/h 69% 

4.2 CART analysis 

The CART analysis explained 34% of the variation in average traffic speed. The results from the analysis 

are presented in Figure 4. Starting at the top of the figure we can see that the weather variable that 

best split the root node into two child nodes was wind speed. At the end of each branch in the 

regression tree, the number of vehicles (n) and their average speeds are shown. In 30 of the 

observations the wind speed was equal to or above 13.85 m/s, and for 12 of these observations the 

weather was considered unfit for free movements of vehicles and traffic was then led in convoys. The 

average traffic speed for these vehicles was only 35 km/h. In the remaining 18 observations the 

average speed was 60 km/h.  
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Figure 4: Results from the CART analysis. The average traffic speed is shown at each node endpoint, 

and n equals the number of observations with this average traffic speed. 

For wind speeds below 13.85 m/s, the figure shows that precipitation was the next weather variable 

splitting the node best. When precipitation was equal to or above 0.45 mm/h, the average traffic speed 

was 57 km/h for 26 of the vehicles and 72 km/h for 44 vehicles. We can see that the group of vehicles 

where the proportion of heavy vehicles was large (𝑌2 ≥ 0.63) had the lowest average traffic speed. 

The result indicates that the average traffic speed of heavy vehicles is more vulnerable to precipitation 

than private motor vehicles.  

According to the CART analysis, temperatures around freezing point had but a minor effect on traffic 

speed. If we follow the branch from the right top to the right bottom of the figure (for the observations 

where wind speed was below 13.85 m/s, precipitation was below 0.45 mm/h, and the proportion of 

heavy vehicles was below 0.40), we can see that temperatures around freezing point only caused a 

reduction in average traffic speed of 3 km/h compared to the situation with temperatures above or 

below freezing point. 

4.3 Comparison of the two analytical approaches 

Both the SEM and the CART analysis showed similar results with regard to the effect of the various 

explanatory variables. Wind seems to be the most influential weather indicator on traffic speed with 

precipitation following close behind. A little surprising was the small effect temperatures around 

freezing point had on traffic speed. This may, however, be due to the characteristics of the road section 

at which our traffic counting was conducted. The electronic counter used in the analysis is located at 

a relatively flat and not curved road section. Temperatures around freezing point have been identified 

by road users as creating difficult driving conditions because temperatures around freezing point are 

  

Wind speed (m/s)   

Convoy   Precipitation (mm/h)   

35 km/h   
n=12   

60 km/h   
n=18   

Heavy   

57 km/h   
n=26   

72 km/h   
n=44   

Heavy   

Temperature   

80km/h   
n=324   

83 km/h   
n=259   

67 km/h   
n=35   

78 km/h   
n=459   

Wind speed (m/s)   

X 1 = 1   X 1 = 0   

Y 2 < 0 . 40   Y 2 ≥ 0 . 40   

X 3 < 0 . 45   X 3 ≥ 0 . 45   

Y 2 ≥ 0 . 63   Y 2 < 0 . 63   

X 2 ≥ 0 . 63   X 2 < 0 . 63   

Y 3 = 1   Y 3 = 0   

X 2 ≥ 13 . 85   X 2 < 13 . 85   
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associated with slippery roads (Hagen & Engebretsen, 1999). However, the effect of slippery roads on 

traffic speed is probably most problematic on steep, narrow and winding roads.  

The magnitudes of the decrease in average traffic speed differs slightly in Table 6 (calculations of 

effects of adverse weather on traffic speed based on the regression analysis) and the CART analysis in 

Figure 4, but this is mainly because the values in Table 6 are the result of maximising the weather 

indicators, while the results presented in Figure 4 are average values of traffic speed for several 

observations with similar weather characteristics. 

5. Benefits of reducing winter problems on mountain passes 

In order to illustrate the value of the benefits the road users would experience if the winter problems 

on the mountain pass were reduced, we have made a numerical example (see Table 7). The example 

relates to the 20 km long road section between the road-barriers at each side of the mountain pass 

studied. The road barriers are used to hold traffic when the weather is too severe for the free 

movement of cars. The speed limit is 80 km/h where our study was conducted, while the speed limit 

is 90 km/h between the two road barriers. We have assumed that, in adverse weather, people adjust 

their speed to meet the difficult driver conditions and that the speed limit will have a limited influence 

on speed choice. 

The benefits related to reducing weather problems in our case have been calculated according to the 

NPRA (2008) guidelines for calculating CBAs of new transport projects. The value of travel time savings 

for private motor vehicle transport used (372 NOK/h/ 44.69 EUR/h6)7 is a weighted average value per 

vehicle per hour for business, commuter, and leisure traffic for the average situation related to long 

distance travels (> 100 km). The time dependent transport cost per hour used for heavy vehicles (546 

NOK/h/ 65.59 EUR/h) is a weighted average between lorries and tractor-trailer vehicle combinations8 

in accordance with NPRA suggestions (2008). For simplicity, 40% of the total traffic is considered to be 

heavy vehicles (see descriptive statistics in Table 2) even though the CART analysis indicates that the 

proportion of heavy vehicles differs between the various speed groups (see Figure 4). 

For the numerical example we used the results from the CART analysis presented in the regression tree 

in Figure 4. In the regression tree the observations are grouped with regard to similar weather 

                                                           
6 1 Euro = 8.324 NOK, June 23, 2014 (Norwegian Central Bank, 2014). 
7 Unit prices according to NPRA (2008) ’s guidelines were adjusted to the November 2013 level by the 
consumer price index (SSB, 2013) 
8 The variable Y2 (heavy vehicles) in our study may contain lorries, buses, and tractor-trailer vehicle 
combinations. The proportion of buses is omitted because it is expected to be very low because the time 
period studied is outside the tourist season. 



20 
 

characteristics. We used these groups of observations to calculate the average time cost experienced 

by the vehicles under various weather conditions.  Only the observations with average speed below 

the speed limit of 80 km/h (average speeds equal to 78 km/h or lower in the CART analysis) were 

included in the numerical example. The numbers were adjusted to reflect the total population and 

traffic in both directions and relate purely to the three winter months represented by the empirical 

data. 

Table 7: Time costs between Bolnastua (southern side of Saltfjellet) and Sørelva (Northern side of 
Saltfjellet) (20 km) for vehicles with reduced traffic speed due to adverse weather. The weather 
conditions with corresponding average speed and number of vehicles relate to the CART analysis (see 
Figure 4). 

Weather conditions 
Average 

speed 
(km/h) 

No of 
vehicles 

Time costs 
heavy 

vehicles 
(NOK) 

Time costs 
passenger 

traffic 
(NOK) 

Time costs 
heavy and 
passenger 

vehicles (NOK) 

Prec. < 0.45 mm/h, wind < 10.75 m/s, 
heavy ≥ 0.4 

78 16 289 913 586 932 640 1 846 226 

Prec. ≥ 0.45 mm/h, wind < 13.85 m/s, 
heavy < 0.63 

72 1 561 94 875 96 854 191 729 

Prec. < 0.45 mm/h, wind ≥ 10.75 m/s, 
heavy ≥ 0.4 

67 1 242 81 101 82 792 163 893 

Wind ≥13.85 m/s, not convoy 60 639 46 575 47 546 94 121 
Prec. ≥ 0.45 mm/h, wind ≥ 13.85 m/s, 
heavy ≥ 0.63 

57 923 70 816 72 293 143 108 

Wind ≥13.85 m/s, convoy 35 426 53 229 54 339 107 567 

Total in NOK  21 080 1 260 181 1 286 463 2 546 645 

Total in EUR   151 391 154 549 305 940 

The difference between the time cost experienced by the vehicles in our study (2,546,645 

NOK/305,940 EUR) and the time cost when the vehicles are able to drive by the speed limit (2,071,000 

NOK/248,800 EUR) is defined as the value of the benefit of removing the impact of adverse weather 

on traffic speed. This benefit amounts to 476,000 NOK (57,200 EUR). This calculation only relates to 

the three winter months studied and the 20 km road section at the top of the mountain. These 

estimates could be extended to include the whole winter season (defined as the period from October 

16th to May 1st 2014, see footnote 2) and the entire mountain area. The calculated benefit then 

amounts to 2,348,000 NOK (282,100 EUR) every winter. Consequently, if we could implement 

measures which removed adverse weather impact on traffic flow, the drivers crossing the whole 

mountain area would experience travel time savings valued at 2,348,000 NOK (282,100 EUR) every 

winter. The net benefit of a CBA of such a project would increase approximately 46.5 million NOK (5.59 

million EUR)9 if these travel time savings were included. Examples of such projects in the context of 

this study are: a tunnel through the mountain to avoid the mountain pass, building of road 

                                                           
9 In CBAs of road projects in Norway the costs and benefits are discounted 40 years with a discount rate of 4%. 
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superstructures at particularly exposed areas, improvements of the road structures etc. To state 

explicitly the value of reducing the impact of adverse weather on traffic flow could also ease the 

justification of spending more resources on operating and maintaining the road section. 

Two effects of adverse weather on traffic not investigated in this study are the effects on travel time 

reliability and material wear. The transport of perishable goods, such as fresh fish (which is an 

important export commodity in this region of Norway), depends on fast and reliable transport 

(Hanssen & Mathisen, 2011). Because of the short selling time frame, a one-day delay can have a large 

impact on the value of fresh fish. Hagen and Engebretsen (1999) estimated the inconvenience costs 

related to delays and uncertainty for freight transport in winters at Korgen10 (a mountain pass a little 

further south of Saltfjellet) to be on average 80 NOK (9.61 EUR) per travel11. When applying these 

estimates to the case of Saltfjellet, the corresponding total inconvenience costs for heavy vehicles for 

the whole 2011/2012 winter season were approximately 3.5 million NOK (421,200 EUR). In addition, 

the winter roads at mountain passes cause extra material costs due to the necessity of using spike tires 

and chains. There is also extra wear on breaks and engines (Hagen & Engebretsen, 1999). In a CBA of 

a project aimed at reducing the winter problems the reduction in inconvenience costs would increase 

the net benefit of the project even further. 

The value of the benefit of reducing adverse weather impact on traffic flow calculated in our numerical 

example is conservative. First, the unit prices used to calculate the value of travel time savings for 

passenger traffic are probably too low. They are average unit prices (NPRA, 2008) which do not 

consider the effect of different driving conditions. Tseng and Verhoef (2008) showed that individuals’ 

willingness to pay for travel time savings is time-dependent. Similarly, there are reasons to believe that 

people perceive the situation of being in a snowstorm on a mountain pass as risky and therefore value 

one hour of saved travel time in a snowstorm on a mountain pass more highly than one hour of saved 

travel time in nice weather. Higher valuation of travel time savings on mountain passes would increase 

the net benefit of projects reducing weather related problems. 

The second reason why we consider the calculated benefit above to be conservative is that we have 

assumed that traffic will normally have an average speed equal to the speed limit when the weather 

is nice. However, the SEM analysis showed that the average speed was 4 km/h above the speed limit 

                                                           
10 Korgen was a mountain pass facing the same kind of winter problems as Saltfjellet, but a new tunnel in 2005 
reduced the problems. The benefits of reduced weather problems were not considered when calculating the 
value of the project. 
11 This cost estimate included the extra time needed to put on chains before crossing the mountain pass. This 
was assumed to be necessary every day in the winter months at Korgen. 
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under perfect driving conditions. This indicates that that the actual difference in time costs in good 

and adverse weather is larger than estimated in our example. 

The road sections on the southern and northern side of Saltfjellet are highly curved, narrow, and steep. 

As discussed earlier, traffic flow on these road sections is likely to be even greater affected by adverse 

weather than revealed at the straight, low gradient road section where our analysis was conducted. 

This is a third reason why we consider the estimated benefit above to be conservative. 

Finally, most climate researchers agree that the climate is changing (Doran & Zimmerman, 2009), and 

research on climatic change predicts increased amounts of precipitation and higher temperatures in 

Norway for the next few decades. Moreover, the frequency of extreme weather incidents is expected 

to increase. Research indicates an increase in number of episodes with strong wind, but because of 

lack of data, these results are uncertain (NOU 2010: 10, 2010). Since temperatures are mostly below 

freezing point during winter at Saltfjellet, the increase in precipitation will take the form of snow and 

there will be more days with temperatures around freezing point at this time of year. Consequently, 

adverse weather impact on traffic flow will probably increase in the future. 

6. Conclusions and implications 

In this paper, we have studied how temperature, wind, and precipitation impact traffic flow, 

represented by traffic speed, on a mountain pass located in Northern Norway. Two different 

methodologies have been applied—structural equation modelling (SEM) and classification and 

regression tree (CART) analysis. According to the results of both analyses traffic speed was significantly 

reduced by weather conditions with strong wind, temperatures around freezing point, and 

precipitation. The two methods supported each other both in the interpretation and validation of the 

impact of weather on traffic flow. 

Adverse weather have large impact on traffic on mountain passes today and the impact will most likely 

increase in the future due to anticipated climate change. Adverse weather impacts traffic flow in two 

important ways. First, when traffic speed is lowered, the vehicles spend more time making the trip, 

and second, the travel times become unreliable. The mountain pass studied, and many similar 

mountain passes in Norway, are defined as major national transport corridors with few or sometimes 

practically no alternatives. Both freight transport and private motor vehicles depending on these 

transport routes would experience great benefits from projects increasing the efficiency and reliability 

of these road sections. A typical example of such a project is to build a tunnel through the mountain 

to avoid a problematic mountain pass. Even though the aim of the CBAs is to consider all benefits and 

costs of projects, the weather-related benefits revealed in this study are not included today. In this 
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study we have shown that these benefits can be significant and we therefore argue that they are highly 

relevant to include. The mountain passes are low traffic roads and when the benefits of projects on 

these roads are calculated in the traditional way, the outcome is often low compared to projects in 

more densely populated area. It is therefore important to include the weather related benefits because 

then the result of the CBAs would give a more exact estimate of the total benefits for society and make 

it easier for decision makers to compare the benefits and costs of different projects. We fear that in 

the fight for scarce resources, initiatives aimed at reducing weather-related problems could lose if the 

benefits they produce are not taken into consideration by the calculation tools.  

Although we have focused this study on traffic problems on mountain passes, other parts of the 

transport system experience similar problems due to adverse weather. Several road sections are 

exposed to the risk of avalanches and mudslides caused by intense precipitation, and the ferries used 

for fjord crossings sometimes have to cancel trips due to adverse weather. This threatens the efficiency 

and reliability of the transport system. Taking into account the expected change in climate, knowledge 

and consideration of adverse weather impact on the transport system is therefore of vital importance 

when planning future transport. Fortunately, there is increasing awareness of how climate change and 

problems related to climate will affect all parts of society, including the transport system. Several 

projects have been conducted with the aim of mapping challenging areas of the transport system in 

order to be able to be more proactive in the response to the expected climate change. One example is 

the interdisciplinary research project InfraRisk (2013) in which the impacts of extreme weather events 

on infrastructure in Norway has been studied. The project concludes that frequent disruptions of the 

transport system have large economic consequences and that economically it is preferable to have a 

proactive approach to the problems rather than a reactive approach. However, it is necessary to 

investigate which measures to initiate and when in order to be sure that resources are used effectively. 

Admittedly, it is a weakness that it has only been possible to study the impact of adverse weather on 

a straight and wide road section because of the location of the electronic counter. A topic for further 

research is to study the effect of adverse weather on traffic flow at narrow road sections with curvature 

and steep hills since these parts of the road are likely to be even greater affected by adverse weather 

than what is revealed in our study. In addition, this study has only studied the impact of adverse 

weather on traffic flow. The literature suggests that adverse weather affects travel behaviour in other 

ways, too. A second suggestion for further research is to study the impact of adverse weather on route 

choice and travel demand as well. 
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