
 

  

Date: 01.06.2021     Total number of pages: 47 

 

 

Course code: BIO5010    Name: Haakon Brandt Fjeld 

 

Exploring density-habitat relationships and model 

transferability for an alpine bird using abundance models 

 



 

 

Preface  

This thesis is the final step on the road to graduating with a master’s degree in biosciences with 

a specialization in terrestrial ecology and nature management. The education was conducted at 

campus Steinkjer, under the Faculty of Bioscience and Aquaculture at Nord University. 

Through the project Willow ptarmigan ecology in a changing climate (https://lirypa.net/), a 

project led by the Norwegian Institute for Nature Research (NINA) and Nord University, I have 

been privileged to be able to conduct research and a lot of fieldwork on my all-time favorite 

bird, the willow ptarmigan. I wish to thank my supervisor Erlend Birkeland Nilsen (Senior 

research scientist at NINA and Professor II at Nord University) for all the great discussions and 

for introducing me to the world of hierarchical distance sampling. And a big thank you to my 

supervisor Jan Eivind Østens (Associate professor at Nord University) for all the good feedback 

and for helping me through the writing process. I would also like to say a thank you to all the 

volunteer field personnel who have contributed with distance sampling surveys. Last but not 

least, I want to thank my fellow partners in crime (Bubo baro, snowbed stine and Neovison 

martin) who have inhabited the habitat patch known as the master room together with me for 

the last two years. Sadly, a highly invasive species (student debt) has reached us, so we must 

now disperse to new foraging grounds!  

 

Håkon Brandt Fjeld 

Nord University 

June 2021 

https://lirypa.net/


 

 

Abstract 

Spatial predicting of species distribution and density using statistical models have become 

important in ecological studies. However, considerable challenges still exist for such models, 

partly caused by the complexity inherent in the species-habitat relationship. This can be 

addressed by modeling density and detectability as a function of habitat within a hierarchical 

distance sampling framework (HDSM). However, due to a range of biotic and abiotic factors, 

variations in the relationship between density and habitat can vary in time and space. As a 

consequence, models developed on data from a particular time and place might not predict 

accurately or precisely in novel conditions, an issue referred to as model transferability. 

The first step in this thesis was to explore the relationship between willow ptarmigan (Lagopus 

lagopus) density and habitat characteristics through the use of HDSM. Secondly, model 

transferability was assessed in time (across years) and space (across six study areas in central 

Norway). To assess transferability, I established models with environmental covariates from 

two different spatial scales (home range and landscape scale, respectively). At both scales, I 

estimated the habitat-density relationships in six different areas using appropriate data from the 

years 2016-2020 (a total of 2 x 22 models). Transferability was assessed by comparing 

predicted densities (estimated with non-local data) to observed densities (estimated with local 

data) in 500 x 500m grid cells using Pearson’s correlation. Finally, linear regressions were used 

to explore how different variables affected model transferability. In particular, I assessed how 

spatial and temporal distance between or within areas affected transferability. 

 

Considerable variations in the estimated habitat-density relationship and model transferability 

were identified at both spatial scales. Regression analyses revealed that models from both scales 

transferred best between years in the same area compared to transferability among areas. 

Furthermore, there were some support for decreased spatial transferability, as distance between 

areas increased. Regarding spatial scale, models established with landscape covariates 

transferred better to other areas, compared to models established with home range scaled 

covariates. However, the transferability in the same area between years was less affected by 

spatial scale. This thesis demonstrates the benefit of using localized data and calls attention to 

the problem of predicting density/abundance in novel areas, particularly for a bird species with 

a short life span and large inter-annual fluctuations in abundance, such as the willow ptarmigan.  

 

Keywords: Hierarchical distance sampling, transferability, alpine bird, Lagopus lagopus, 

tetraonidae, habitat specific density, abundance models. 



 

 

Sammendrag  

Predikeringer av arters habitatbruk ved hjelp av statistiske modeller har blitt svært vanlig i 

økologiske studier. Som følge av kompleksiteten i arters habitatbruk er det imidlertid betydelige 

utfordringer knyttet til disse modellene. Dette kan delvis løses med bruk av hierarkiske 

avstandsmodeller (HDSM), hvor tetthet og oppdagbarhet blir modellert som en funksjon av 

habitat. Likevel kan økologisk dynamikk skape variasjon i forholdet mellom tetthet og habitat. 

Dette betyr at modeller utviklet med lokal data fra et gitt sted, og et gitt år, ikke nødvendigvis 

predikerer tettheten presist og nøyaktig i andre områder eller under nye forhold. Dette kan bli 

evaluert med et kvantitativt mål, også kjent som modelloverførbarhet.  

 

Det første steget i denne oppgaven var å undersøke sammenhenger mellom habitat og tettheter 

av lirype (Lagopus lagopus) ved bruk av HDSM. I neste steg ble modelloverførbarhet undersøkt 

i tid (mellom år) og rom (mellom seks områder i Midt-Norge). Dette ble gjennomført ved bruk 

av to modeller etablert med kovariater fra to ulike rommelige skalaer (leveområde- og landskap 

modell). Basert på de to modellene ble forholdet mellom habitat og tetthet estimert i seks ulike 

områder ved å benytte egnede takseringsdata fra årene 2016-2020 (Totalt 2 x 22 modeller). 

Modelloverførbarhet ble deretter målt med korrelasjon mellom observerte tettheter (estimert 

med bruk av lokal-data) og predikerte tettheter (estimert med ikke-lokal data) i 500 x 500m 

ruter som dekket de seks ulike områdene. Til slutt ble regresjonsanalyser brukt for å undersøke 

hvordan ulike variabler påvirket modelloverførbarheten.  I den forbindelse ble avstand mellom 

områder, rommeligskala og overførbarhetstype (tid eller rom) brukt som forklaringsvariabler.  

 

Betydelige variasjoner ble identifisert både for modelloverførbarheten og i habitat-tetthet 

forholdet for begge rommelige skalaer. Dette betyr at forholdet mellom habitat og rypetetthetet 

i rutene kan være ulike både mellom områder og år. Regresjonsanalysen viste at modeller fra 

begge rommelige skalaer var lite overførbare mellom ulike områder, sammenlignet med 

overførbarhet innad i samme områder imellom år. Et hovedfunn var at overførbarheten ble 

redusert når avstand mellom områdene økte. I henhold til rommelig skala, var modeller etablert 

med kovariater fra landskapsskala mer overførbare mellom områder enn modeller etablert med 

kovariater fra leveområdeskala. Denne forskjellen var mindre klar for intern overførbarhet i 

samme område mellom år. Resultatene i denne oppgaven viser fordelene med bruk av lokale 

data og påpeker samtidig utfordringer med å predikere tettheter til andre områder uten noe form 

for innsamlede data, spesielt for en alpin art med store populasjonsfluktuasjoner slik som lirype.
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1.0 Introduction   

Ecology can be defined as “the scientific study of the interactions that determine the distribution 

and abundance of organisms” (Kerbs, 1972). Consequently, estimates of abundance are 

fundamental properties in ecology (Buckland et al., 2001). This has led to considerable research 

investment in order to develop models to sample and estimate abundances of species under 

various conditions (e.g. Seber, 1986; Schwarz & Seber, 1999; Wilson & Delahay, 2001). An 

approach that can be applied to particular species in certain habitats is total counts (Talbot & 

Stewart, 1964; Orpin et al., 1985) however, this is in general time-consuming, expensive, and 

often unreliable because of observation errors (Fryxell et al., 2014). Thus, alternative methods 

that specifically model observation or detection probability is generally advocated (Buckland 

et al., 2015). Some of these methods are based on the physical marking of individuals (Borchers 

et al., 2002; Williams et al., 2002), however, in many cases such methods are not attainable due 

to e.g., logistical constraints, creating a demand for methods that do not rely on marked 

individuals but that are still robust to observation uncertainty. One such approach is the distance 

sampling (DS) method (Buckland et al., 2001), which is one of the most widespread 

frameworks for estimating the abundance and/or density of unmarked wildlife populations 

(Williams et al., 2002; Royle et al., 2004; Sillett et al., 2012). The basic principle of DS is to 

describe the detection probability with the use of distances from a point or line to an observed 

individual. Thereafter the relationship between distance and the number of observed individuals 

is used to estimate density (number of individuals/pr unite area) or abundance (total number of 

individuals in an area) (Buckland et al., 2001).  

  

The abundance or density of a wild species is not homogenous in time and space (Buckland et 

al., 2001; Guisan et al., 2017). It is rather shaped by the environment through a complex and 

dynamic interplay with biotic factors such as competition and predation, or abiotic variables 

such as climate, soil, and bedrock (Woodward & Williams, 1987; Chamberlain & Fuller, 1999; 

Wisz et al., 2013; Guisan et al., 2017). To illustrate this, Sillett et al. (2012) provided an 

example of how the distribution and density of the island scrub-jay (Aphelocoma insularis) 

increased as a response to the removal of domesticated herbivores and the recovery of native 

vegetation. In addition, human impacts often play a major role in shaping distributions and 

density since disturbance effects or habitat fragmentation can reduce the access to areas that 

otherwise would have been exploited (Lens et al., 2002; Gill, 2007; Brøseth & Pedersen, 2010; 

Fryxell et al., 2014). The interaction between species and their environments creates a challenge 



 

2 

 

for the traditional DS and other statistical methods used to estimate the size of a population 

(Royle et al., 2004; Chandler et al., 2011; Sillett et al., 2012). One method that acknowledges 

the relationship between the density of a species and its environment, and simultaneously 

accounts for variation in detection probability, is an extension of the traditional DS termed 

hierarchical distance sampling models (hereafter HDSM) (Royle et al., 2004). A practical 

application of HDSM is the possibility to produce spatial predictions of species density within 

grid cells in a focal area as a function of environmental covariates (land cover, vegetation 

height, vegetation composition, etc.) (Sillett et al., 2012; Roach et al., 2017; Furnas et al., 

2019). 

 

Predictive modeling is a process that seeks to predict the unknown, for instance the state of a 

system (ecological or otherwise) in an area or time of interest and beyond the area for which 

utilized for model fitting (Mouquet et al., 2015; Yates et al., 2018). Predictive models can 

provide valuable knowledge for decision-making through mapping of species density, 

distribution, population trends, or the risk of biological invasions (e.g., Sillett et al., 2012; 

Mouquet et al., 2015; Urban et al., 2016). However, the complexity in ecological processes 

implies that predictive models developed with local data from a particular time and place 

(training data), might not predict accurately or precisely into novel conditions. This issue is 

often referred to as model transferability (Sequeira et al., 2018; Yates et al., 2018). Several 

factors have been highlighted as possible reasons for poor transferability, including species 

traits, sampling biases, biological interactions, non-stationarity, and the degree of 

environmental dissimilarity between reference and target areas (e.g., habitat availability) (Yates 

et al., 2018).  

 

In order to develop a spatial model of species distributions or habitat-density relationships with 

high predictive power, and effective spatial and temporal transferability, covariates need to have 

ecological relevance while avoiding location-specific relationships that are not consistent 

across time and space (Guisan & Thuiller, 2005). This is a difficult task as there might be a lack 

of knowledge of relevant predictor covariates, and yearly and site-specific variation in 

ecological processes is common (Guisan & Zimmermann, 2000; Yates et al., 2018; Avgar et 

al., 2020). For instance, some species experience variance in the degree of top-down control 

from predation (Breisjøberget et al., 2018). Variation in habitat availability can also 

compromise the utility of a predictive model, because species can change preference for a given 
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type of habitat as a response to habitat availability (known as a functional response in habitat 

use;  (Mysterud & Ims, 1998)). Variations in habitat use can also be explained by density 

dependence (Avgar et al., 2020). This is often illustrated with the theoretical concept known as 

ideal free distribution (Fretwell, 1969), where species select habitats with different suitability 

as a response to their density. This implies that the transferability of predictive abundance 

models might be questionable for species with a high variance in demography. As an example, 

Gray et al. (2009) reported that differences in breeding density of a tropical bird, the bengal 

florican (Houbaropsis bengalensis), most likely affected the transferability of a species 

distribution model. 

 

When assessing and including covariates, the spatial scale must be considered both in relation 

to grain (sampling resolution) and/or extent (range of study area) (Turner et al., 2001). This is 

important because habitat selection can occur on several spatial scales (Johnson, 1980; Mayor 

et al., 2009). Often the researcher knows where a species normally occurs on a landscape scale, 

known as the “the no elephants in the artic effect” (Lobo et al., 2010; Loe et al., 2012). In 

contrast, there is often more uncertainty related to how species are distributed on a finer spatial 

scale (Loe et al., 2012). For example, on a home range scale, individuals must select for 

different habitat components within a landscape that fulfill demands in relation to food, shelter, 

breeding sites, and so on (Burt, 1943). For this reason, there is often a trade-off between good 

model transferability and accuracy  (Gottschalk et al., 2011; Loe et al., 2012; Manzoor et al., 

2018). An example of such a trade-off can be found in Loe et al. (2012), who shows how a 

species distribution model of red deer (Cervus elaphus) performed best on a landscape scale 

compared to a home range scale, explained by a trivial and already recognized effect of 

avoidance of barren mountain habitats.  

 

Assessment of transferability is complex, but nonetheless important since the transfer of an 

inaccurate predictive model to areas with no sampling data might lead to biased population 

estimates, poor habitat assessments (Roach et al., 2017), and unsustainable management 

decisions (Muscatello et al., 2020). In this thesis, HDSM with environmental covariates is 

developed for willow ptarmigan (Lagopus lagopus) populations in different areas of central 

Norway, in order to assess the transferability of habitat-abundance models in time and space. 

The willow ptarmigan is a medium-sized bird, with a short lifespan, inhabiting alpine 

ecosystems, often with high-multi annual cycles in population density (Myrberget, 1988; Steen 
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& Erikstad, 1996). Previous knowledge suggests that willow ptarmigans prefer open habitats 

with shrubs and that they usually avoid denser forests at lower altitudes and barren habitats at 

higher altitudes (Hannon et al., 1998; Potapov & Sale, 2013). On a home range scale, vegetation 

consisting of willow species (Salix spp.) and dwarf birch (Betula nana) are described as 

important components affecting the presence of willow ptarmigan (Andersen et al., 1984; Steen 

et al., 1985; Kastdalen et al., 2003; Henden et al., 2011; Ehrich et al., 2012). There is also 

evidence that the willow ptarmigan avoids lichen-rich heathlands and usually selects herb-

dominated areas and bogs (Andersen et al., 1984; Kvasnes et al., 2017; Kvasnes et al., 2018). 

Additionally, ptarmigan habitat-use can in certain cases be affected by disturbance effects 

(Brøseth & Pedersen, 2010). Based on this knowledge, environmental covariates from different 

spatial scales were included in the HDSM’s. and models were used to explore habitat-density 

relationships and possible transferability issues. This was approached through three objectives:  

 

• The first objective was to estimate habitat-density relationships in six areas with data spanning 

from 2016-2020 with the use of a model with home range scaled covariates and a model with 

landscape scaled covariates (in total 2x22 models). Based on these models, the consistency of 

the habitat-density relationship was assessed.  

 

• The second objective was to assess model transferability among years and areas. Transferability 

was assessed by comparing predicted density calculated with out of sample predictions (to novel 

areas or between areas) with observed densities calculated with the focal models (2x22 models).   

 

• The last objective was to explore factors that could contribute to variation in model 

transferability. In particular, I assessed how distance between areas, spatial scale, and 

type(spatial/temporal) of transferability affected the measured model transferability. 

 

 

 

 

 

 

 



 

5 

 

2.0 Material and methods 

2.1 Study areas 

Six sampling areas were selected from a grouse species (tetraonidae spp.) monitoring program 

covering a large proportion of alpine areas in Norway, called Hønsefuglportalen (https:// 

honsefugl.nina.no/). The areas included in the study were selected on the basis of east-west and 

north-south gradients across central parts of Norway (Figure 1). The intention of this study 

design was to assess model transferability within this region by simultaneously including areas 

with both variation and similarities in climate, vegetation, and the amount of infrastructure 

(Appendix A1 and A2). Central Norway was used as the focal region in this study because it is 

an important region for recreational hunters in Norway (Pedersen & Storaas, 2013). 

Consequently, an evaluation of the application of an HDSM might be valuable for the local 

management. Additionally, the selection of areas was assumed to be sufficient to explore and 

present possible results concerning variation in habitat-density relationships, and model 

transferability that is also relevant for other regions. 

 

Areas 1, 3, 5, and 6, are located 

in continental areas with low 

humidity and cold winters, area 

2 is located at the coast with 

high humidity and warmer 

winters, while area 4 is located 

in a transitional zone with a 

relatively humid climate and 

warm winters (Moen et al., 

1998). This variation in climate 

forms the foundation for the 

heterogeneous landscape in the 

region. Which is characterized by valleys, boreal forests, agricultural areas, bogs/swamps, 

developed areas, and mountains. All six study areas have alpine habitats at higher altitudes, 

typically with moderately steep and rugged terrain, with a landscape consisting of a mosaic of 

bogs, forests, and alpine vegetation dominated by dwarf birch (Betula nana), Salix spp. and 

Ericaceous spp. Around the tree line the vegetation consists mostly of birch (Betula spp.) and/or 

a mosaic of pine (Pinus sylvestris) and spruce (Picea abies).  

Figure 1: The location of central Norway (top left) and the six study areas 

(1 = Forollhogna, 2 = Aafjorden, 3 = Rooyrvik, 4 = Steinkjer, 5 = Lierne 

west, 6 = Lierne east). 

 



 

6 

 

2.2 Field data  

Sampling data used to fit HDSM’s were collected through the monitoring program 

Hønsefuglportalen, which is based on line-transect surveys and DS (Buckland et al., 2001; 

Kvasnes et al., 2019). The transects were surveyed annually in August, by a team of two or 

more volunteers. Not all or the same transects were surveyed every year because of practical 

reasons. The field personnel followed pre-defined transects using a field protocol. In most cases, 

the transects were distributed systematically following a map grid with 500m intervals, and 

often in north-south or east-west direction (Appendix B1). Free-running, trained dogs was used 

to search for birds on both sides of the transect (Pedersen et al., 2004; Warren & Baines, 2011; 

Kvasnes et al., 2015). Both single ptarmigan individuals and clutches with several birds were 

reported as an observation (Buckland et al., 2001). For each of those observations the number 

of birds in the clutch, GPS coordinates, and the perpendicular distances from the transect line 

to the observation were recorded. In addition, the length, and position of the transect were 

recorded. Data from monitoring programs for tetraonidae spp. across Norway are available 

through www.gbif.com (Nilsen et al., 2020 a; Nilsen et al., 2020 b).  

 

2.3 Data preparations  

Data from surveys with equal study design (no curved or angled line-transects) from the period 

of 2016-2020 were used in the analyses. All transects (n = 207) were divided into 500m long 

segments (n = 1223). Some of the lines had lengths that did not match the interval, hence the 

last segment at the end of these lines was less than 500m, these end segments were removed, 

so that all segments had an equal size. A buffer of 250m was added on each side of the segment, 

resulting in 500 x 500m segments (Appendix B2). These were all given a unique id. This 

process was done to be able to include environmental covariates at the desired level (Miller et 

al., 2013) and to simplify spatial predictions for the entire study area. The observations of 

ptarmigans were linked to the segments using the segment id and year (Table 1), and only 

observations of ptarmigans recorded within the 250m buffer were kept for further analyses (n 

= 2565). Finally, the perpendicular distances from observations to the line was pulled into 25 

meters intervals, making it possible to use the data in the distsamp function in the R package; 

unmarked (Royle et al., 2004; Fiske & Chandler, 2011; Sillett et al., 2012; Le Moullec et al., 

2017). The choice of segment size was based on several ideas, first, the segments needed to be 

large enough to contain several observations with different perpendicular distances to the 

transect line. In addition, it was beneficial to have enough segments per line, to increase the 

http://www.gbif.com/
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ability to detect the effects of habitat heterogeneity (Le Moullec et al., 2017). Furthermore, 

Miller et al. (2013) proposed segments to be sized in a way that neither density of objects, nor 

covariate values are significantly different from each other. Miller et al. (2013), also states that 

making segments 2w × w2, where w is the truncation distance should be sufficient. The use of 

500 x 500m segments in this thesis was an attempt to meet some of these elements. However, 

I did not assess further how the habitat-density relationships presented in this thesis are affected 

by the segment size. It is therefore advisable to approach the habitat-density relationship 

presented in this thesis with some caution.  

 

Table 1: The total number of 500 x 500m segments used to establish hierarchical distance sampling models. In 

addition, the total number of observations (ptarmigan clutches or single individuals) and segments with at least 

one observation is included. Surveys with a different study design were left out and are marked n/a.  

   

Survey years  Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 

2016 
Number of segments: 206 n/a n/a n/a n/a n/a 

Segments with at least one observation: 103 n/a n/a n/a n/a n/a 

Total number of observations: 146 n/a n/a n/a n/a n/a 

2017 

Number of segments: 206 n/a n/a 76 297 177 

Segments with at least one observation: 110 n/a n/a 28 81 46 

Total number of observations: 190 n/a n/a 33 106 64 

2018 

Number of segments: 206 n/a 92 74 296 177 

Segments with at least one observation: 140 n/a 37 32 92 45 

Total number of observations: 283 n/a 74 47 137 62 

2019 

Number of segments: 206 232 117 76 296 174 

Segments with at least one observation: 130 59 72 32 102 68 

Total number of observations: 286 79 114 41 150 114 

2020 

Number of segments: 197 236 106 76 272 168 

Segments with at least one observation: 110 59 43 30 99 55 

Total number of observations: 212 82 81 46 138 80 

 

2.4 Environmental covariates   

To process categorical and numerical covariates used to establish HDSM’s, ArcGIS pro version 

2.6.0 was used. All the covariates used in the study were derived from raster datasets with the 

same cell size (30 x 30m) and the same spatial reference (WGS 1984 / UTM sone 33). 
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2.4.1 Landcover data  

The percentage coverage of different vegetation types in each segment was extracted from a 30 

x 30m digital-raster map that covers all of Norway (satVeg). SatVeg is a freely available land 

cover map derived from satellite images and ground surveys and is available for download 

through the Norwegian environmental agency: https://kartkatalog.miljodirektoratet.no/. The 

satellite imagery (Scenes from 1988-2006) used in satVeg are obtained from Landsat 5/TM and 

Landsat 7/ETM+ (Johansen B. E, 2009; Johansen et al., 2009). The original classification 

consisted of 25 different vegetation categories. To simplify the model selection procedure and 

in an attempt to use categories that are ecological meaningful, the 25 original categories were 

reclassified. Five of these categories were irrelevant for the study and were removed (Appendix 

C1). The remaining 21 categories were used to produce two different raster maps used in two 

different analyses. The two maps had different spatial scales in relation to sampling resolution, 

hereby referred to as landscape scale (LS) and home range scale (HR). In the LS map, the 21 

SatVeg categories were grouped in forested areas (FA) and open areas (OA), similar to the 

classification done by Brøseth and Pedersen (2010).  Secondly, the 21 SatVeg categories in the 

HR map  were categorized into seven groups: mountain birch forests (MB), swamps and bogs 

with sparse field layer (BSF), bogs with dense field layer (BDF), open areas with sparse field 

layer (OSF), open areas with dense field layer (ODF), snowbed vegetation (SB) and 

lowland/boreal forests (LF), similar to the classification in Kvasnes et al. (2017).   

 

2.4.2 Topography   

For each 500 x 500m segment, the mean 

elevation (meters above sea level) was 

extracted from a 30 x 30m digital elevation 

model (DEM) using all the DEM cells within 

the segments (Figure 2). This data was 

downloaded from the Norwegian Mapping 

Authority (https://kartkatalog.geonorge.no/).  

The same DEM model was also used to create 

a digital-raster map of the slope. The mean 

slope value (in degrees) was then calculated 

and extracted for each unique segment using 

the same procedure as for the mean elevation. 

Figure 2: map A) 30 x 30m digital elevation map 

(DEM) and 500 x 500 segments. Map B) The mean 

value in meters extracted from the DEM to the 

segments. 

 

https://kartkatalog.miljodirektoratet.no/
https://kartkatalog.geonorge.no/
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2.4.3 NDVI  

Measures of vegetation greenness were included using the normalized difference vegetation 

index (NDVI). NDVI is a spectral index based on the ratio between regions of the 

electromagnetic spectrum: 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷 

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 , where NIR and RED are the amounts of near-

infrared and red light, reflected by vegetation and captured by sensors (Pettorelli et al., 2005). 

The NDVI is presented with values ranging from -1 to 1, where negative values correspond to 

an absence of vegetation (Myneni et al., 1995). Seven 10 x 10m satellite photos taken by 

Sentinel-2A were downloaded from https://earthexplorer.usgs.gov/. The cloud cover was less 

than 20 % for all images, and only august images were used to match the month when the 

distance sampling surveys were conducted. However, the year of the images differed from 2016 

to 2020. The 10m resolution images were used because these had NIR and RED values. After 

calculating the NDVI, the raster was resampled to 30 x 30m, with a bilinear technique suitable 

for continuous data (Baboo & Devi, 2010). The 30 x 30m raster was then used to calculate the 

mean NDVI for each unique segment, using the same approach as done for the topography 

datasets (Chapter 2.4.1).  

 

2.4.4 Human disturbance    

Spatial data of roads and buildings were obtained from the N50 dataset, available for download 

at the Norwegian Mapping Authority;  https://kartkatalog.geonorge.no/. The road data consist 

of lines with gravel roads, private roads, and public roads. For the building data, a selection was 

made so only recreational buildings (cabins, tourist cabins, etc.) were used further. For both 

sets of spatial data a multiple ring buffer with 200m intervals was added and thereafter 

processed to two independent 30 x 30m rasters. Finally, the mean distance (meters) from roads 

and cabins was calculated using the cell values from the two independent rasters, for each of 

the unique segments, using the same approach as done above (Chapter 2.4.1).  

 

2.5 Statistical analyses and model selection  

HDSM’s were established with the distsamp function available in the R-package unmarked 

(Royle et al., 2004; Fiske & Chandler, 2011), through the use of RStudio (R Core Team, 2021). 

Before building model candidates, a spearman’s rank correlation was employed to test for 

multicollinearity among all the environmental covariates (Appendix D1 and D2). Covariates 

with a negative or positive correlation larger than 0,55 (spearman’s rho) were not implemented 

https://earthexplorer.usgs.gov/
https://kartkatalog.geonorge.no/
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in the same sub-model. Different combinations of the covariates were then used to compute 

sub-models for detection (σ) and density (λ) simultaneously. To avoid over-parameterization, 

a maximum of 6 parameters (4 covariates, detection parameter, and density parameter) were 

included in each model, as proposed by Le Moullec et al. (2017). The half-normal detection 

function was used for all the models, with the assumption that the detection probability 

decreases monotonically as the distance from the transects increases (Buckland et al., 2001) 

(Appendix E1).  

 

To identify important covariates affecting density, survey data from a random reference area 

(area 5 in 2017) was used to fit model candidates. Two model selection procedures using the 

Akaike information criterion (AIC) (Akaike, 1974), was then conducted; one for home range 

model candidates (n = 40), and one for landscape model candidates (n = 4) (Appendix F1). Both 

linear and quadratic terms were used to model the covariate effect on the density parameter (λ). 

For the detection parameter (σ), I assumed that the proportion of open areas with dense field 

layer (ODF) were important in the home range models. For the landscape models, I assumed 

that the proportion of forested areas (FA) had the strongest effect on the detectability (Appendix 

G1 and G2). The models with the most support from the two model selection procedures were 

used further to assess model transferability in time and space.  

 

Before assessing transferability a test of model accuracy was conducted for all the candidate 

models fitted on the reference area, using k-fold cross-validation with the crossval function 

available in the unmarked package (Fiske & Chandler, 2011). In this process 3-folds were used, 

meaning that the survey data was split into three groups (folds), where one of the folds was then 

used as a training set and the remaining three were kept for validation. This process was 

repeated so that all three folds were used as a training set. The mean absolute errors (MAE) 

between the training and validation sets were then used to rank the models. The MAE is more 

precisely the mean value of all the individual differences between the predictions in the training 

set and the observations in the validation set (residuals) (Mayer & Butler, 1993).   
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To assess transferability of the predictive HDSM’s, correlation tests were performed between 

observed and predicted ptarmigan densities. The following approach was used:  

 

 

• Raster maps for each study area with 500 x 500 m grid cells were prepared (study area 

raster’s). The percentage of landcover and the mean values of numerical covariates were 

calculated for each of the cells in the study area raster’s, following the same procedure as 

for the segments (chapter 2.4).  

 

 
• Next, the predict function in the R-package; unmarked (Fiske & Chandler, 2011) was used 

to estimate the number of ptarmigans in each of the grid cells in the study area rasters. This 

was done by using survey data for the given study area for the given year (local data) in the 

models with the most support in the reference area (Herby referred to as observed density). 

 

 
• Also, estimations of the number of ptarmigans in each of the grid cells in the study area 

rasters were estimated using predictive models established with external non-local data 

from the different years and study areas (herby referred to as the predicted density).  

 

 
• To assess the overall spatial and temporal model transferability, Pearsons correlation tests 

were performed between all the combinations of observed and predicted densities between 

study areas (external transferability) or the same study area in different years (internal 

transferability) (See appendix H1 for an example). 

 

 
• In the final step, distances in kilometers (km) between the center of the study areas were 

calculated. This was then implemented in multiple linear regressions using the lm function 

in the R-package: R-stats  (R Core Team, 2021). The transferability (raster correlations) 

was used as the response variable while distances, spatial scale (home range or landscape), 

and the type of transferability (spatial/temporal) were used as explanatory variables. 
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3.0 Results  

3.1 Home range models 

At the home range scale, one of the models applied to the reference area (area 5 in 2017) was 

within ΔAIC < 2 (Table 2, Appendix I1). This model (model 20) had two covariates affecting 

density (λ): open sparse field layer (ODF) and bogs with sparse field layer (BSF). Model 

accuracy from the 3-fold cross-validation were in general good. With only small variations in 

MAE-values and standard deviation (SD) between all candidate models fitted to data from the 

reference area, with MAE ranging from 0.19 to 0.34 (Appendix F1). The highest-ranking model 

was among the least accurate models, with a mean difference of 0.32 (SD ± 0.003) 

ptarmigans/per grid cell between the training and validation set. 

 

Table 2: Akaike information criterion (AIC) values for the null model, and the five highest-ranked home range 

model candidates. Covariates that affect the shape parameter for a half-normal detection function (σ) and density 

(λ) are presented.  

 

Home range models   Covariates Parameters (n) AIC ΔAIC AICwt.  Cum. Wt. 

Model 20: ODF (σ) ~ OSF + BSF (λ) 5 3713.34 0.00 0.91 0.91 

Model 16: ODF (σ) ~ OSF + slope 2 (λ) 6 3719.90 6.56 0.03 0.95 

Model 19: ODF (σ) ~ OSF + BDF (λ) 5 3720.76 7.42 0.02 0.97 

Model 28: ODF (σ) ~ OSF2 (λ) 5 3722.04 8.70 0.01 0.98 

Model 4: ODF (σ) ~ OSF (λ) 4 3722.10 8.76     0.01 0.99 

Model 1:  (σ) ~ (λ) 2 3760.84 47.50  < 0.01 1.00 

 

3.2 Landscape models  

One landscape model applied to the reference area (area 5 in 2017), were within ΔAIC < 2 

(Model 44). The density parameter for this model (Table 3, Appendix I2) had a quadratic term 

for forested areas (FA), Implying a non-linear relationship. In the case of model accuracy, the 

MAE was equal for the five landscape model candidates, with only a small difference in the 

standard deviation (Appendix F1) (model 44: MAE = 0.32, ± 0.01). 

 

Table 3: Akaike information criterion (AIC) values for the null model, and all the landscape model candidates.  

Covariates affecting the shape parameter for a half-normal detection function (σ) and density (λ) are presented.  

 

Landscape models: Covariates Parameters AIC ΔAIC AICwt. Cum. Wt. 

Model 44: FA (σ) ~ FA 2 (λ) 5 3734.08 0.00 1.00 1.00 

Model 43: FA (σ) ~ OA2 (λ) 5 3745.11 11.03 0.00 1.00 

Model 41: FA (σ) ~ OA (λ) 4 3753.33 19.25 0.00 1.00 

Model 42: FA (σ) ~ FA (λ) 4 3754.98 20.90 0.00 1.00 

Model 1:  (σ) ~ (λ) 2 3760.84 26.76 0.00 1.00 
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3.3 Variation in covariate-effects across time and space (home range scale)  

Based on the home range model with the strongest support from the procedure above, I next 

estimated covariate effects (for model 20) using sampling data from all six study areas. There 

was a substantial variation in covariate effects (Figure 3). The responses were for some areas 

more conclusive, e.g., a clear significant negative response was observed for area 1 in all years 

included. Significant negative responses in density were also observed in area 3. In contrast to 

this, positive responses were observed in areas 2, 4, 5, and 6. Nevertheless, some of the response 

curves only showed slight changes, as the percentage coverage of OSF changed, for instance in 

the years 2017 and 2019 in area 6.   

 

 

Figure 3: Willow ptarmigan density (birds/per 500x500m grid cell) as a function of the percentage coverage of 

open areas with sparse field layer (OSF) in six different study areas in different years. Estimated values (solid 

line) are plotted with a 95 % confidence interval (grey fill). The p-value for the OSF parameter estimate is included 

in the labels.   
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Similar to the covariate effect of OSF, the relationship between estimated ptarmigan density 

and the percentage coverage of bogs with sparse field layer (BSF) was heterogenous between 

areas and years (Figure 4). More precisely, in most areas and years, there were only small 

changes (positive and negative) in density as the coverage of BSF increased. In spite of this, 

some areas also had steep increases/decreases in density as a response to coverage change of 

BSF. For instance, area 1 in 2020 and area 4 in 2017.  

 

 

 

 

Figure 4: Density (ptarmigans/per 500x500 m grid cells) as a function of the percentage coverage of bogs with 

sparse field layer (BSF) in six different study areas in different years. Estimated values (solid line) are plotted with 

95 % confidence intervals (grey fill). The p-value for the OSF parameter estimate is included in the labels.   
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3.4 Variation in covariate-effects across time and space (landscape scale)   

Based on the landscape model with the strongest support (model 44) in the model selection 

procedure, I estimated covariate effects using model 44 and sampled data from all six study 

areas (Figure 5). The pattern in the response plots had some variation between the different 

study areas in the years included. In most cases, the estimated ptarmigan density was highest 

from around 30 to 60 % coverage of FA in the areas with an inverted u-shape relationship 

between FA and density. Nonetheless, there were also areas with no clear top in the density as 

a function of FA. On the contrary area 4 in 2019 had a u-shape relationship, with a lower peak 

of around 30 % coverage. The same pattern was also seen in area 5 in 2018 and 2020, but only 

with a small changes of density as the coverage increased.   

 

 

Figure 5: Density (ptarmigans/per 500x500 m grid cell) as a function of the percentage of forested areas (FA), in 

the six different study areas in different years. Estimated values (solid line) are plotted with 95 % confidence 

intervals (grey fill). 
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3.5 Transferability  

Based on the home range model with the most support (model 20) I measured external (between 

areas) and internal (the same areas in different years) transferability for the years and areas 

available, This resulted in 462 possible combinations of predicted (density estimates derived 

from external data) and observed (density estimates derived using local data) densities 

(ptarmigans/per 500x500 grid cell) among the six areas. The landscape scale model with the 

most support (model 44) was used to measure transferability following the same procedure as 

above. These two analyses resulted in a total of 924 measurements of internal (n = 128) and 

external transferability (n = 796). The results unfolded a considerable variation in the measured 

transferability among areas. This variation was observed for both external transferability and 

internal transferability at both spatial scales (Figure 6). 
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Figure 6: Internal and external transferability (Pearson`s correlation) from home range models (HR) to the left 

and landscape models (LS) to the right, established with local data from the different areas (stated in the 

headlines). Mean values are included (black dot). 
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Models established with local data from the six study areas had a low average transferability to 

other areas (external transferability) at both a landscape scale and home range scale (Figure 7). 

The highest average external transferability on a home range scale was achieved when using  

local data from area 2 (mean = 0.16, Figure 7). At a landscape scale the highest average was 

achieved when using local data from area 6 (mean = 0.35, Figure 6). 

 

 

Figure 7: Average external transferability (Pearson`s correlation) from focal areas (area 1 to area 6) with home 

range models (HR) to the left and landscape models (LS) to the right., mean values are included (black dot). 

 

 

3.6 Factors affecting transferability  

To assess factors that affected external model transferability (transferability between areas), I 

used linear regression with i) distance (km) between the areas and ii) spatial scale (HR and LS) 

as explanatory variables. In general, I found that the transferability decreased with increasing 

distance between the study sites at both scales and that the landscape models were more 

transferable to other areas (F2,793 = 14.27, p < 0.05, R2 = 0.03) (Figure 8a, Appendix J1). 

Moreover, a regression was fitted to assess how model transferability was affected by an 

interaction between the explanatory variables i) type of transferability (internal/external) and 

ii) spatial scale (HR and LS). In general, the internal transferability was higher than external, 

however, this difference between internal and external was not consistent across spatial scales, 

as there were indications of a slightly higher internal transferability for home range models 

compared to landscape models (F 3,920 = 34.54, p < 0.05, R2 = 0.10) (appendix J2, Figure 8b).   
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Figure 8: a) Scatterplot (data points) with the corresponding relationship (solid line) between distance (km) and 

transferability (Pearson`s correlation) at the spatial scales home range (HR) and landscape (LS), estimated using 

a regression fitted with 796 data points (Red=home range, blue=Landscape). The transparent fill shows the 

standard error. b) Comparison of the external and internal transferability (Pearson`s correlation), at a home 

range scale (HR) to the left and landscape scale (LS) to the right. Mean values included (black dot). 
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4.0 Discussion  

The main findings in this thesis were: i) covariates at a home range scale had highly 

heterogeneous relationships with density, both in time and space, ii) covariates at a landscape 

scale showed less variation in the density relationship compared to home range covariates, iii) 

models with landscape covariates were more transferable to other areas. iv) models transferred 

best when predicting density internally within areas across years, and v) external transferability 

decreased at both spatial scales when the distance between the internal and external area 

increased. Together, these results are indicative of relatively low transferability of models for 

density-habitat relationships between areas for willow ptarmigan in a central part of their 

distributional range. In the remaining of this discussion, I will discuss the validity, potential 

causes, and implications of my results.  

 

4.1 Variations in covariate effects  

The observed heterogeneous habitat-density relationship between the study areas resulted in 

poor external transferability. Similar issues are often reported from studies focusing on the 

transferability of predictive habitat suitability models (Yates et al., 2018). In contrast to habitat 

suitability modeling, few studies have evaluated the transferability of habitat-density models. 

Nevertheless, some studies are in line with my findings. For instance, Schaub et al. (2011) 

reported that models of territory density for 10 farmland bird species in Switzerland were not 

transferable in space because of a non-constant habitat-density relationship. Similar issues have 

also been reported for 11 different farmland birds in Britain (Whittingham et al., 2007). There 

are at least three possible ecological processes that can be of relevance when discussing 

explanations of an observed non-consistent habitat-density relationship.  

 

Firstly, one might expect that the observed response in density is correlated with habitat 

selection, as species presumably select for areas that give benefits to their fitness. A common 

assumption is therefore that individuals will concentrate in the most favorable habitats, 

especially if intraspecific competition is limited (Fretwell, 1969; Van Horne, 1983; Fryxell et 

al., 2014). Habitat selection could therefore explain some of the observed habitat-density 

relationships in the grid cells covering the study areas. For instance, the negative response in 

density as a result of an increase in OSF and BSF observed in area 1, coincides with a habitat 

selection study conducted by Kastdalen et al. (2003) in the same area (area 1). He reported that 

willow ptarmigan avoided large open, dry, and poor areas like heath. Similarly, in subarctic 
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tundra areas there is evidence for a negative effect in occupancy of willow ptarmigan, as the 

coverage of willow decreases (Henden et al., 2011; Ehrich et al., 2012). Such avoidance is also 

supported by Kvasnes et al. (2018) who modeled willow ptarmigan habitat suitability across 

Norway and found that they tend to avoid vegetation with sparse field layer. In general, willow 

ptarmigan often avoids open areas with sparse vegetation in habitat selection studies. 

Comparable findings were also observed for the density-habitat relationship at a landscape 

scale; willow ptarmigan density generally peaked when the grid cells covering the study area 

were neither completely open, nor completely covered by forests. Such areas are typically close 

to the treeline. This observed pattern on a landscape scale is in line with well-established 

literature, stating that ptarmigans are mainly distributed close to the treeline (Kastdalen et al., 

2003; Kvasnes et al., 2017; Kvasnes et al., 2018), as a consequence of niche differentiation 

between ecologically similar grouse species (Swenson & Angelstam, 1993; Pedersen. et al., 

2014). Furthermore, the proportion of forest in the cells may be important as shelter habitats, 

while the proportion of open areas might be used for foraging (Brøseth & Pedersen, 2010).   

 

Secondly, density-dependent responses might create seemingly inconsistent relationships 

between habitat variables and density, as found in this thesis. When populations show large 

fluctuations in abundance, spatial and temporal variation in the density-habitat relationship is 

expected (Kvasnes et al., 2017; Avgar et al., 2020). Studies of several bird populations show 

evidence of density-dependent habitat relationships. A classic example is a study performed by 

Brown (1969) which showed that great tits (Parus major) primarily nested in woodland habitats 

in years with low densities, but expanded into hedgerow habitats in years with higher densities. 

Similarly, Krebs (1971) removed great tits from woodland habits, which resulted in unoccupied 

space in the woodlands, hedgerow birds then moved to the woodlands. Another example of 

density dependence for a grouse species is presented by Blomberg et al. (2017), who found that 

female birds had a lower probability to initiate a nest, at high population sizes. Because of 

density-dependent responses, one can imagine that the habitat-density relationship is dynamic, 

resulting in poor model transferability when overall density differs between areas used to 

estimate model parameters and the area for which a prediction is made.  

 

Thirdly, differences in habitat availability between areas might be a reason for the observed 

variation in the density-habitat relationships. Such spatial variation in habitat use has previously 

been observed for ptarmigan populations in subarctic tundra areas, where responses in habitat 
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use in respect to habitat availability (i.e. a functional response in habitat use – see inn Mysterud 

and Ims (1998)) were reported (Ehrich et al., 2012). Thus, a functional response in habitat use 

might be the reason for better internal transferability (between years) compared to 

transferability between areas. For instance, ptarmigan density in the grid cells covering area 1 

appeared to be negatively affected when there was an increase in the coverage of OSF and BSF. 

Interestingly, area 1 also has a low percentage of OSF and BSF available compared to the other 

five areas. For instance, area 4 has more OSF and BSF available, and positive responses in 

density were observed when OSF and BSF increased in the grid cells covering area 4 (Figure 

3, Figure 4, Appendix A1).   

 

In addition to the three concepts above (habitat selection, density-dependent responses, and 

functional response in habitat use), it should be emphasized that density in the different grid 

cells do not necessarily correlate with habitat quality, as a wide range of other ecological 

mechanisms, like predation, stochastic events, overwinter survival, etc. can affect the density-

habitat relationship (Van Horne, 1983). Willow ptarmigans are embedded in a dynamic food 

web and other mechanisms than the habitat composition are affecting their population dynamics 

and abundance (Henden et al., 2017). For instance, predation rates can alter the survival rates 

of grouse species, independently of habitat structure (Marcstrom et al., 1988). Furthermore, the 

top-down effects of predation on willow ptarmigan populations are assumed to be linked to 

inter-annual small rodent fluctuations (alternative prey hypothesis) (Hagen, 1989; Breisjøberget 

et al., 2018), and recent research has shown that such predator mediated interactions increase 

along a climate harshness gradient (Bowler et al., 2020). Social interactions between 

individuals should also be considered (Van Horne, 1982, 1983), and there are indications that 

social behavior and conspecific attraction is affecting settlement decisions in willow ptarmigan 

(Kvasnes et al., 2015). In addition, harvest management regimes might differ between areas, 

and can thus cause variation in ptarmigan abundance between years and areas (Sandercock et 

al., 2011; Kvasnes et al., 2017). The mechanisms above are undoubtedly problematic for model 

transferability, as other essential covariates than habitat and human disturbance affect the 

abundance and density of willow ptarmigans in time and space.  

 

It should also be mentioned that the satellite imagery used to develop land cover classifications 

in SatVeg, stems from 1988-2006, note that this is at least a 10-year difference from the first 

survey used in this thesis (2016). During this period it is likely that there have been increases 
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in shrubs and trees as a consequence of climate change and less grazing from domesticated 

herbivores (Rundqvist et al., 2011). Utilizing remote sensing data with acquisition dates that 

match the surveys and have a higher spatial resolution, would increase the quality of the 

landcover classification, and should be considered in further work. For instance, world-view3 

images or light detection/ranging technology (LIDAR) could be used, which all have sown 

promising results regarding habitat analyses (Hyde et al., 2005; Jacquin et al., 2005; Wu et al., 

2019). In addition, it could be beneficial to combine remote sensed data and field data which 

also have shown to increase model transferability (Latif et al., 2016). 

 

4.2 Variations in model transferability  

There is no surprise that model transferability varied in time and space, as the habitat-density 

relationships for ptarmigan is shaped by a variety of ecological and behavioral attributes (see 

above). This is particularly likely because willow ptarmigan has a short life span and large inter-

annual fluctuations in abundance (Andersen et al., 1984; Erikstad, 1985; Fuglei et al., 2019). 

To my knowledge, there are no previous studies highlighting the problems of poor 

transferability in abundance/density models for willow ptarmigan as a consequence of spatial 

and temporal variation in covariate effects. However, a similar study with the use of HDSM by 

Roach et al. (2017) reported problems of model transferability between to areas for clapper rails 

(Rallus crepitans). These birds are using coastal marsh habitat, and transferability was low 

because of different habitat-use between areas. Latif et al. (2016) also reported that varying 

resource selection patterns likely influenced model transferability for two woodpecker species. 

In the context of human interventions, Gray et al. (2009) presented evidence for poor 

transferability of a distribution model, because of differences in conservation efforts between 

areas.  

 

The finding of decreasing transferability at both spatial scales when the distance between the 

internal and external area increased, are to my knowledge, and as stated by Houlahan et al. 

(2017), not been emphasized with empirical evidence in previous studies related to habitat 

models. However, Yates et al. (2018) discuss that distance does not matter as much as 

environmental dissimilarity. Dissimilarities in the environment could undoubtedly also be of 

significance for the relationship between transferability and distance in this thesis. For instance, 

the transferability among area 1 and 3 seemed in general better compared to several other areas 

(Figure 6). These two areas also have the longest distance between themselves compared to the 
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other combinations of the six study areas (Figure 1). In attention to spatial scale, models 

established with the landscape covariates had an overall better external transferability compared 

to the home range models. Similar findings concerning model accuracy and precision are 

common in habitat studies that use more coarsely scaled explanatory variables to predict novel 

areas (Melles et al., 2003; Fischer et al., 2004; Graf et al., 2005; Loe et al., 2012). This implies 

that the use of covariates with more coarse spatial scales contributes to better external model 

transferability. 

 

Another subject that can be addressed, is the possibility that habitat-density relationships are 

not an appropriate measurement in predictive modeling, especially for a species with large inter-

annual fluctuations in abundance. An alternative could be to replace the estimated density with 

a measurement of the carrying capacity, which does not need to be related to density (Hobbs & 

Hanley, 1990). To illustrate this, one could imagine a habitat patch with high density as a result 

of low predation that particular year however, food quantity is too low to sustain the high 

density, and birth rates decrease, and mortality rates climb until they reach an equilibrium.  This 

equilibrium would be steadier, regardless of the actual density. Hence measurements of the 

actual carrying capacity for different habitats would be more transferable in time and space.  

 

5.0 Management implications and concluding remarks. 

This thesis demonstrates the potential of establishing HDSM`s with data from a nationwide 

monitoring program (Hønsefuglportalen) to estimate the abundance/density of grouse species 

in space (Appendix K1 and L1). Spatially explicit predictions of population density can be 

useful tools in small game harvest management, as the predictions can shed light on how the 

density is distributed within the management areas in addition to estimates of total abundance 

within the management area. Areas of high density can function as source areas, thus, withstand 

a higher local harvest rate, and might be particularly important to protect from land use 

development. My findings also highlight the large heterogeneity in the habitat-density 

relationship and model transferability among areas in central Norway. It is therefore in general 

advisable to be conservative when interpreting predictions done to novel conditions, as the 

consequences can be profound if using biased models in decision making (Muscatello et al., 

2020). Furthermore, local management should strive to use local data, when making decisions 

concerning willow ptarmigan and density-habitat relationships estimated with HDSM`s. 
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Appendices  

Appendix A 

Appendix A1: The percentage (labels) of different landcover (habitat) in the six different study areas. To the left 

are landcover types on a home range scale, to the right landscape scale. (BDF = bogs with dense field layer, BSF 

= bogs with sparse field layer, LF = low land forest, MB = mountain birch, ODF = open areas with dense field 

layer, OSF = Open areas with sparse field layer, SB = snow bed vegetation, FA = forested areas, OA = open 

areas, NH = non-habitat). See chapter 2.4 and appendix B for further details regarding the landcover types.  

 

 

 

Appendix A2: Plots presenting the mean value of five different environmental covariates in the six study areas 

with error bars (± standard deviation). (NDVI=normalized vegetation index, masl = meters above sea level).  
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Appendix B 

 

Appendix B1: Example of the distribution and position of transects in study area 5 and 6, 

used in distance sampling surveys in the years 2019-2020. 

 

 
 

 

Appendix B2: Line transects (left), and line transects with 500 x 500m segments. 

From study area 5. The GPS occurrences of willow ptarmigan clutches are from the  

distance sampling survey done in 2019.   
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Appendix C 

Appendix C1: The original 25 vegetation types classified in the Satveg dataset with the original raster values 

(Johansen et al., 2009). And an overview of which of the original classes included in the two new reclassified 

raster datasets. Similar classifications can be found in Kvasnes et al. (2017) and Brøseth and Pedersen (2010).   

 

Original categories Home range scale Landscape scale 

Bilberry-low fern birch forests (6) 

Crowberry birch forests (7) 

Lichen-rich birch forest (8) 

Mountain birch forests 

(MB) 

 

 

 

 

 

Forested 

vegetation 

(FV) 

 

 

Ombrotrophic bog and low-grown lawn 

vegetation (9) 

Tall-grown lawn vegetation (10) 

Bogs with dense field 

layer 

(BDF) 

Coniferous forest-dense canopy layer (1) 

Coniferous and mixed forest- open canopy 

layer (2) 

Lichen riche pine forest (3) 

Low herb forest and broad-leaved 

deciduous forest (4) 

Low herb-tall fern deciduous forest (5) 

 

 

Lowland/boreal forest 

(LF) 

Heather- and grass-rich early snow patch 

community (16) 

Fresh heather and dwarf -shrub 

communities (17) 

Open areas with dense 

field layer 

(ODF) 

 

 

 

 

 

 

 

Open areas (OA) 

Exposed alpine ridges, scree, and rock 

complex (12) 

Graminoid alpine ridge vegetation (13) 

Heather-rich alpine ridge vegetation (14) 

Lichen rich heathland (15) 

Herb-rich meadows (18) 

 

 

Open areas with sparse 

field layer 

(OSF) 

 

Wet mire, sedge swamps and reed beds 

(11) 

Swamps and bogs with 

sparse field layer (BSF) 

Grass and dwarf willow snow-patch 

vegetation (19) 

Bryophyta late snow patch vegetation (20) 

Snowbeds 

(SB) 

Glacier, snow, and wet snow-patch 

vegetation (21) 

Water (22) 

Agricultural areas (23) 

Cities and developed areas (24) 

Unclassified and shadow affected areas 

(25) 

 

 

 

Removed from the dataset 
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Appendix D 

Appendix D1: Example of all covariates as raster maps (30 x 30m) used to extract mean values and percentage 

land cover to the unique segments in area 3 (Dist_b = distance to buildings, Dist_r = distance to roads, HR=home 

range scale, LS=landscape scale).   

 

 
 

Appendix D2: Spearman’s rank correlation matrix, between covariates on a home range scale. And an 

independent correlation matrix for the landscape scale (FA and OA). Values below – 0.55 and above 0.55 are 

highlighted (Dist b = distance to buildings, Dist r = distance to roads) and not used together to model the density 

parameter.   

 

  NDVI DEM slope Dist_b Dist_r OSF ODF BDF BSF MB LF SB OA FA 

NDVI - 0.16 0.22 -0.10 0.14 -0.35 -0.42 0.18 0.12 0.57 0.47 -0.31 - - 

DEM 0.16 - 0.02 0.64 -0.31 0.23 -0.01 0.13 -0.16 -0.15 -0.31 -0.16 - - 

slope 0.22 0.02 - -0.02 -0.03 0.21 0.16 -0.37 -0.41 -0.07 -0.04 0.13 - - 

Dist_b -0.10 0.64 -0.02 - -0.18 0.31 0.11 0.13 -0.18 -0.23 -0.45 -0.09 - - 

Dist_r 0.14 -0.31 -0.03 -0.18 - -0.18 0.08 -0.22 0.02 0.15 0.11 0.24 - - 

OSF -0.35 0.23 0.21 0.31 -0.18 - 0.32 -0.25 -0.40 -0.59 -0.62 0.11 - - 

ODF -0.42 -0.01 0.16 0.11 0.08 0.32 - -0.61 -0.41 -0.58 -0.53 0.59 - - 

BDF 0.18 0.13 -0.37 0.13 -0.22 -0.25 -0.61 - 0.51 0.27 0.12 -0.59 - - 

BSF 0.12 -0.16 -0.41 -0.18 0.02 -0.40 -0.41 0.51 - 0.30 0.32 -0.28 - - 

MB 0.57 -0.15 -0.07 -0.23 0.15 -0.59 -0.58 0.27 0.30 - 0.76 -0.34 - - 

LF 0.47 -0.31 -0.04 -0.45 0.11 -0.62 -0.53 0.12 0.32 0.76 - -0.25 - - 

SB -0.31 -0.16 0.13 -0.09 0.24 0.11 0.59 -0.59 -0.28 -0.34 -0.25 - - - 

OA - - - - - - - - - - - - - -0.99 

FA - - - - - - - - - - - - -0.99 - 
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Appendix E  

Appendix E1: The number of observations of ptarmigan clutches grouped in 25m distance intervals from the 

transect line (histogram). A half-normal detection function (solid line) is included in the plots, with the detection 

probability on the y-axes. 
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Appendix F 

 

Appendix F1: Akaike information criterion (AIC) for all model candidates. Covariates affecting ptarmigan density 

(λ) and covariates affecting the shape parameter for a half-normal detection function (σ). (FA = forested areas, 

OA = open areas, OSF = open areas with sparse field layer, ODF = open areas with dense field layer, BSF = 

bogs with sparse field layer, LF = lowland forest, NDVI = Normalized difference vegetation index. The mean 

absolute error (MAE) with standard deviation (SD) from the 3-folded cross-validation procedure is also included.  

 

Model Covariates AIC MAE ± SD 

Home range models 
Model 20: ODF(σ) ~ OSF + BSF(λ) 3713.34 0.32 ± 0.03 
Model 16: ODF(σ) ~ OSF + slope2(λ) 3719.90 0.32 ± 0.01 
Model 19: ODF(σ) ~ OSF + BDF(λ) 3720.76 0.31 ± 0.04 
Model 28: ODF(σ) ~ OSF2 (λ) 3722.04 0.34 ± 0.02 
Model 4: ODF(σ) ~ OSF(λ) 3722.10 0.31 ± 0.00 
Model 21: ODF(σ) ~ ODF + OSF(λ) 3722.54 0.31 ± 0.02 
Model 26: ODF(σ) ~ BSF + MB + LF(λ) 3734.19 0.32 ± 0.01 
Model 25: ODF(σ) ~ BDF + MB + LF(λ) 3739.12 0.32 ± 0.02 
Model 23: ODF(σ) ~ ODF + LF(λ) 3739.62 0.31 ± 0.03 
Model 8: ODF(σ) ~ LF(λ) 3739.64 0.32 ± 0.01 
Model 30: ODF(σ) ~ slope2 (λ) 3745.57 0.32 ± 0.02 
Model 18: ODF(σ) ~ NDVI + slope2 (λ) 3746.35 0.32 ± 0.01 
Model 17: ODF(σ) ~ ODF + slope2 (λ) 3746.81 0.32 ± 0.02 
Model 11: ODF(σ) ~ slope(λ) 3747.74 0.32 ± 0.00 
Model 7: ODF(σ) ~ MB(λ) 3750.22 0.32 ± 0.03 
Model 2: ODF(σ) ~ NDVI(λ) 3752.85 0.32 ± 0.02 
Model 29: ODF(σ) ~ NDVI2 (λ) 3754.85 0.32 ± 0.03 
Model 24: ODF(σ) ~ ODF + SB(λ) 3754.85 0.32 ± 0.01 
Model 27: ODF(σ) ~ ODF2 (λ) 3757.73 0.32 ± 0.02 
Model 9: ODF(σ) ~ SB(λ) 3757.98 0.32 ± 0.00 
Model 22: ODF(σ) ~ ODF + BSF(λ) 3758.24 0.32 ± 0.02 
Model 31: ODF(σ) ~ meters above sea level2 (λ) 3758.48 0.32 ± 0.01 
Model 5: ODF(σ) ~ BSF(λ) 3760.14 0.31 ± 0.00 
Model 1: (σ) ~ (λ) 3760.84 0.32 ± 0.01 
Model 3: ODF(σ) ~ ODF(λ) 3760.85 0.32 ± 0.01 
Model 6: ODF(σ) ~ BDF(λ) 3762.34 0.32 ± 0.02 
Model 40: ODF(σ) ~ slope + meters above sea level (λ) 3785.36 0.32 ± 0.03 
Model 10: ODF(σ) ~ meters above sea level (λ) 3886.89 0.32 ± 0.02 
Model 34: ODF(σ) ~ OSF + BDF + distance to buildings(λ) 3911.97 0.30 ± 0.07 
Model 38: ODF(σ) ~ ODF + distance to buildings(λ) 4009.74 0.31 ± 0.06 
Model 33: ODF(σ) ~ OSF + BSF + distance to buildings(λ) 4015.83 0.28 ± 0.04 
Model 37: ODF(σ) ~ OSF + distance to buildings(λ) 4016.93 0.32 ± 0.06 
Model 12: ODF(σ) ~ distance to buildings(λ) 4109.93 0.25 ± 0.07 
Model 14: ODF(σ) ~ NDVI + distance to buildings(λ) 4111.93 0.24 ± 0.08 
Model 13: ODF(σ) ~ distance to roads(λ) 5080.74 0.19 ± 0.03 
Model 15: ODF(σ) ~ NDVI + distance to roads(λ) 5082.74 0.19 ± 0.03 
Model 36: ODF(σ) ~ OSF + distance to roads(λ) 5082.74 0.19 ± 0.02 
Model 39: ODF(σ) ~ ODF + distance to roads(λ) 5082.74 0.19 ± 0.05 
Model 32: ODF(σ) ~ OSF + BSF + distance to roads(λ) 5084.74 0.19 ± 0.02 
Model 35: ODF(σ) ~ OSF + BDF + distance to roads(λ) 5084.74 0.19 ± 0.03 

Landscape models  

Model 44: FA(σ) ~ FA2 (λ) 3734.08 0.32 ± 0.01 
Model 43: FA(σ) ~ OA2 (λ) 3745.11 0.32 ± 0.01 
Model 41: FA(σ) ~ OA (λ) 3754.33 0.32 ± 0.02 
Model 42: FA(σ) ~ FA (λ) 3754.98 0.32 ± 0.02  
Model 1: (σ) ~ (λ) 3760.84 0.32 ± 0.01 
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Appendix G 

There were no substantial indications that the half normal-detection function was dependent on 

the coverage of open areas with dense field layer (Appendix G1), or forested areas (Appendix 

G2), Because parameter estimates were close to zero, meaning that the detection curve does not 

change considerably as the coverage of the environmental covariate’s changes, still there were 

some exceptions (e.g., Area 1 in 2019).    

 

Appendix G1: Parameter estimates on a log-scale (with p-values in parentheses) from the home range models 

fitted with local data from the six study areas. Detectability (σ) as a function of the percentage coverage of open 

areas with dense field layer (ODF).  

 

 Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 

2016  
ODF (σ): 0.001 

(p = 0.49) 
n/a n/a n/a n/a n/a 

2017  

ODF (σ): - 0.001 
(p = 0.25) 

n/a 0.030 
(p < 0.05) 

n/a 
 

- 0.001 
(p = 0.51) 

0.004 
(p = 0.25) 

2018  
ODF (σ): 0.007 

(p < 0.05) 
n/a 0.013 

(p < 0.05) 
0.001 

(p = 0.47) 
0.002 

(p < 0.01) 
- 0.005 

(p < 0.01) 

2019  

ODF (σ): 0.399 
(p < 0.05) 

0.017 
(p < 0.05) 

0.005 
(p = 0.01) 

0.01 
(p = 0.07) 

0.001 
(p = 0.07) 

0.012 
(p < 0.01)  

2020  

ODF (σ): 0.002 
(p = 0.06) 

0.015 
(p < 0.05) 

- 0.004 
(p = 0.01) 

- 0.004 
(p < 0.05) 

0.004 
(p < 0.05) 

0.006 
(p < 0.05) 

 

Appendix G2: Parameter estimates on a log-scale (with p-values in parentheses) from the landscape models fitted 

with local data from the six study areas. Detectability (σ) as a function of the percentage coverage of forested 

areas (FA).  

 

 Area 1  Area 2 Area 3 Area 4 Area 5 Area 6 

2016 
FA (σ): 

 
0.257 

(p < 0.01) 
n/a n/a n/a n/a n/a 

2017 

FA (σ): 

 
0.002 

(p = 0.01) 
n/a - 0.005 

(p = 0.24) 
n/a 0.002 

(p = 0.88) 
0.004 

(p = 0.02) 

2018 

FA (σ): 

 
0.004 

(p = 0.01) 
n/a - 0.00005 

(p = 0.99) 
0.0003 

(p = 0.85) 
0.002 

(p = 0.02) 
0.014 

(p < 0.01) 

2019 
FA (σ): 

 
- 0.003 

(p = 0.01) 
- 0.021 

(p < 0.01) 
0.0006 

(p = 0.75) 
0.001 

(p = 0.37) 
0.0006 

(p = 0.51) 
- 0.009 

(p <0.01) 

2020 
FA (σ): 

 
0.002 

(p = 0.14) 
- 0.003 

(p = 0.32) 
0.006 

(p < 0.05) 
0.331 

(p < 0.05) 
- 0.001 

(p = 0.76) 
- 0.002 

(p = 0.06) 
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Appendix H 

Appendix H1: Example of raster maps presenting observed density in 500 x 500m grid cells covering area 4 

estimated with local data in area 4 during 2017 and predicted density in 500 x 500 m grid cells covering area 4 

based on a model established with non-local data, from area 5 in 2017. And a plot of the relationship between the 

predicted and the observed density from the distribution maps.  
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Appendix I 

Appendix I1) Parameter estimates on a log-scale from the HDSM (hierarchical distance sampling model) 

established with home range covariates with the most support among the fitted models established with data from 

the reference area (area 5 in 2017).  

 
Formula: ODF(σ) ~ OSF + BSF(λ) 

Density (σ) 

 Estimate SE Z P(>|z|) 

(intercept) 2.2872 0.07545 30.31 7.89e–202  

OSF 0.0172 0.00229 7.54 4.60e-14 

BSF 0.0381 0.01057 3.61 3.12e-04 

Detection (λ) 

 Estimate SE Z P(>|z|) 

(intercept) 4.632194 0.05543 83.571 0.000 

ODF -0.000672 0.00104 -0.647 0.518 

 

 

 

Appendix I2) Parameter estimates on a log-scale from the HDSM (hierarchical distance sampling model) 

established with landscape covariates with the most support among the fitted models established with data from 

the reference area (area 5 in 2017). 

  
Formula: FA(σ) ~ Poly (FA,2) (λ) 

Density (σ) 

 Estimate SE Z P(>|z|) 

(intercept) 2.55 0.589 43.32 0.00e+00 

Poly (FA,2)1 -3.64 1.0725 43.32 6.82e-04 

Poly (FA,2)2 -3.76 0.7883 -4.77 1.81e-06 

Detection (λ) 

 Estimate SE Z P(>|z|) 

(intercept) 4.53717 0.05375 84.41 0.0000 

FA 0.00192 0.00112 1.71 0.0877 
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Appendix J 

Appendix J1) Parameter estimates for the linear regression used to assess if distance and spatial sale affected the 

observed external transferability between the six study areas.  

  
Formula: External transferability ~ distance + scale   

Coefficients:     

 Estimate Std.error t-value P 

(Intercept)  0.06 0.06  1.11 0.27 

Distance -0.00 0.00 -2.90 0.00 

Spatial scale   0.21 0.05  4.48 0.00 

Residual standard error: 0.6739 on 793 degrees of freedom 

Multiple R-squared:  0.03473, Adjusted R-squared:  0.0323  

F-statistic: 14.27 on 2 and 793 DF, p-value: 8.181e-07.  

 

 

Appendix J2) Parameter estimates for the linear regression used to assess how the type of transferability 

(external/internal) and spatial sale affected the observed transferability.  

 
Formula: Transferability ~ type * scale   

Coefficients:     

 Estimate Std.error t-value P 

(Intercept) -0.07 0.03 -2.00 0.05 

Type: Internal  0.73 0.09  8.31 0.00 

Scale: LS   0.21 0.05  4.61 0.00 

TypeInternal: scaleLS -0.34 0.12 -2.73 0.01 

Residual standard error: 0.656 on 920 degrees of freedom 

Multiple R-squared:  0.1012, Adjusted R-squared:  0.09831  

F-statistic: 34.54 on 3 and 920 DF, p-value: < 2.2e-16 
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Appendix K 

Appendix K1: Raster maps presenting estimates of the number of willow ptarmigan in 500 x 500m cells in study 

area 5 in the years 2017, 2018, 2019, and 2020. Maps are derived with local data, using a hierarchical distance 

sampling model with environmental covariates from a home range scale.    
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Appendix L 

Appendix L1: Raster maps presenting estimates of the number of willow ptarmigan in 500 x 500m cells in study 

area 1 in the years 2017, 2018, 2019, and 2020. Maps are derived with local data, using a hierarchical distance 

sampling model with environmental covariates from a landscape scale.    

 

 


