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Abstract

Haptophytes are biogeochemically and industrially important protists with underexplored genomic diversity. We present a nuclear

genome assembly for the class Pavlovales, which was assembled with PacBio long-read data into highly contiguous sequences. We

sequenced strain Diacronema lutheri NIVA-4/92, formerly known as Pavlova lutheri, because it has established roles in aquaculture

and has been a key organism for studying microalgal lipid biosynthesis. Our data show that D. lutheri has the smallest and most

streamlined haptophycean genome assembled to date, with an assembly size of 43.503 Mb and 14,446 protein-coding genes.

Together with its high nuclear GC content, Diacronema is an important genus for investigating selective pressures on haptophyte

genome evolution, contrasting with the much larger and more repetitive genome of the coccolithophore Emiliania huxleyi. The D.

lutheri genome will be a valuable resource for resolving the genetic basis of algal lipid biosynthesis and metabolic remodeling that

takes place during adaptation and stress response in natural and engineered environments.

Key words: protist, haptophyte, lipid metabolism, biotechnology, PacBio sequencing.

Introduction

Haptophytes comprise a major proportion of the phytoplank-

ton community that globally have large-scale impacts on car-

bon cycling and ocean biogeochemistry (Liu et al. 2009;

Gutowska et al. 2017; Heureux et al. 2017). They include

over 300 characterized species, with hundreds more strains

detected in ocean metabarcoding studies (Kim et al. 2011;

Gran-Stadnicze~nko et al. 2017). The genus Tisochrysis and

Pavlova (Diacronema) are especially valuable for the

aquaculture and biotechnology industries, where they supply

food and essential lipids for farmed fish and shellfish (Shah et

al. 2018). Further developments in large-scale microalgae cul-

tivation could expand the production of sustainable foods,

oils, and plastic replacement materials in the future (Cottrell

et al. 2020; Naduthodi et al. 2021).

Despite their impact and their intriguing evolutionary his-

tory, high-quality haptophyte genome sequences remain

scarce, and the available data do not reflect their diversity
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or new discoveries (Burki et al. 2012; Sibbald and Archibald

2017; Kawachi et al. 2021). To bridge this knowledge gap,

we assembled and annotated a high-quality genome for

Diacronema lutheri (Pavlova lutheri), for the purpose of un-

derstanding its architecture, sequence evolution, and capacity

to synthesize diverse natural products, particularly lipids.

The Pavlovales, which include the genus Pavlova,

Diacronema, Rebecca, and Exanthemachrysis, invariably oc-

cupy the outer branches of haptophyte phylogenies, some

considerable evolutionary distance from the coccolithophores,

Chrysochromulina and Phaeocystis clades (Egge et al. 2015;

Edvardsen et al. 2016; Song et al. 2021). Pavlova sp. cells are

about five microns in size with a short haptonema, their swim-

ming motion driven by two flagella of slightly unequal length.

They are unusual among microalgae as a combined source of

eicosapentaenoic acid (20:5n�3) and docosahexaenoic acid

(22:6n�3) that are integrated into different types of structural

and storage lipids (Meireles et al. 2003). Pavlova sp. also syn-

thesize additional betaine lipids including 1,2-diacylglyceryl-3-

O-carboxyhydroxymethylcholine (DGCC) and 1,2-diaclygly-

ceryl-3-O-20-(hydroxmethyl)-(N, N, N-trimethyl)-b-alanine

(DGTA), plus some unusual dihydroxylated sterols (pavlovols)

that are unique to the class (Volkman 2016; Li-Beisson et al.

2019; Marcellin-Gros et al. 2020).

A few studies have amplified and sequenced individual

Pavlova sp. genes (Tonon et al. 2003; Robert et al. 2009),

but the majority of the nuclear genome remains unexplored.

Nosenko et al. (2007) used pulsed-field electrophoresis to es-

timate a modest genome size of 20.7 and 28.7 Mb for

Diacronema sp. and Pavlova gyrans, respectively, so we

expected a comparable result. Here, we assembled the ge-

nome of strain “Pavlova sp. NIVA-4/92,” which we identify as

D. lutheri (synonymous with P. lutheri) based on its mitochon-

drial, plastid, and 18S sequences (Hulatt et al. 2020). We pri-

marily used long PacBio reads at high coverage with the aim

to comprehensively unravel key biosynthetic pathways, re-

solve evolutionary relationships among genes, and determine

mechanisms controlling triacylglycerol biosynthesis and adap-

tive lipid remodeling (Ca~navate et al. 2017; Wei et al. 2017).

Our data will also be valuable for applied studies of genome-

informed strain improvement and models of cell metabolic

flux.

Results and Discussion

Genome Size and Quality

The D. lutheri nuclear genome assembly is 43,502,671 bp in

size and contains 14,446 annotated protein-coding genes,

making it the most compact among sequenced haptophytes

(table 1). The assembly consists of 103 contigs, with approx-

imately half of the total sequence length contained in 16

contigs. These high-contiguity sequences reflect the advances

in long-read sequencing technology compared with earlier

Illumina and 454-based methods. The theoretical coverage of

the PacBio reads is�368, and in practice the nuclear genome

coverage is most commonly about�315. The genome size is

1.5–2 times larger than that previously predicted for other

related Pavlovales, but the contig lengths are within the

expected chromosome size range of 0.18–4 Mb (Nosenko

et al. 2007). Analysis of the genome sequence with BUSCO

v.4 identified 80.8% of core eukaryotic genes were complete

and only 0.4% of these were duplicated (table 1). Compared

with the other haptophyte assemblies, these scores support a

rather complete genome with minimal sequence duplication.

The D. lutheri nuclear genome assembly has a high

73.25% GC content that is reflected in the raw PacBio sub-

reads and in the Illumina reads (supplementary figs. 1 and 2,

Supplementary Material online). It surpasses that of the coc-

colithophore Emiliania huxleyi (65.67%) and is among the

highest observed in eukaryotic cells. Understanding the selec-

tive mechanisms driving this elevated GC skew might help

explain patterns in haptophyte evolution, and could also sup-

port detection of cryptic picoplanktonic haptophytes in meta-

genomes (Liu et al. 2009; Edvardsen et al. 2016).

Repetitive Elements

Approximately 22.9% of the D. lutheri genome is repetitive,

substantially less than the E. huxleyi genome, of which 64%

was classified as repeats (Read et al. 2013). Long-terminal

repeats (LTRs) and secondarily long-interspersed terminal

repeats (LINEs) comprised the majority of the annotated re-

peat elements in D. lutheri, representing 32.7% and 3.8% of

masked bases, respectively (supplementary table 1,

Supplementary Material online).

Gene Annotations

The total length of protein-coding nucleotides is 26.62 Mb

which represents 61.2% of the genome. The gene length

and exon counts of D. lutheri were compared with the struc-

tural annotations of E. huxleyi and Chrysochromulina tobin

(fig. 1A and B). Single-exon genes account for 45% of the

D. lutheri coding sequences, with fewer genes containing a

single intron (21%) or multiple introns (34%). The C. tobin

genome encodes fewer single-exon genes whereas E. huxleyi,

with the largest sequenced genome, encodes only 27%

single-exon genes, with 50% of genes containing two or

more introns. Such variation raises questions on patterns of

genome-wide intron gain and loss in haptophytes, and the

extent to which posttranscriptional regulation by alternative

splicing is prevalent across different clades.

In total 9,498 of the 14,446 protein-coding genes received

at least one gene ontology (GO) identification. An initial sur-

vey of genes related to lipid metabolism identified 25 proteins

with annotated desaturase activity, six with elongase activity,

and 54 with acyltransferase functions. Thirty-seven tRNAs

Hulatt et al. GBE

2 Genome Biol. Evol. 13(8) doi:10.1093/gbe/evab178 Advance Access publication 3 August 2021

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/13/8/evab178/6337978 by guest on 24 N

ovem
ber 2021

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab178#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab178#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab178#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evab178#supplementary-data


decoding the standard 20 amino acids were annotated by

tRNAscan-SE, and an additional 42 ncRNAs were annotated

by Infernal/Rfam.

Gene Orthology Comparative Genomics

The amino acid sequences from the whole genome of D.

lutheri were compared with those of three available hapto-

phyte data sets, and with eight further data sets from more

distantly related red-plastid bearing species, using

OrthoFinder2 (Emms & Kelly 2019). From the four haptophyte

sequence sets and a total of 89,703 genes, 749 orthogroups

contained single-copy genes, whereas 3,438 orthogroups

contained at least one gene ortholog from each species. For

the expanded 12 species set of amino acid sequences, a total

of 213,864 genes were distributed among 25,757

orthogroups, of which 1,152 orthogroups were common to

all 12 genomes, but only five were single-copy orthologs

found in all organisms. Figure 1C displays the species-tree

using the amino acid sequences from the 12 genomes.

Conclusions

We assembled a new haptophyte genome for the class

Pavlovales with long PacBio reads to build high contiguity

sequences. The genome size, gene, and GC content of D.

lutheri places the Pavlovales as an important clade for under-

standing selective processes and genome streamlining among

ecologically and biogeochemically important haptophytes.

Our results will be more fully exploited through investigation

of lipid metabolism, metabolic modeling, and strain improve-

ment for industrial bioprocesses.

Materials and Methods

Cell Culture Preparation

Strain “Pavlova sp. NIVA-4/92” was obtained from the

Norwegian Culture Collection of Algae (NORCCA). This spe-

cies reportedly originates from Oslofjord, Norway, and has

been held in culture since 1989. Cells were cultivated in f/2

medium (Guillard and Ryther 1962) using 0.2mm filtered and

autoclaved seawater containing the antibiotics ampicillin,

kanamycin, and streptomycin. Clonal cultures were obtained

by cell-sorting with an Astrios EQ flow cytometer (University

of Colorado Cancer Center, Denver, CO). Cell cultures were

prepared in 500 ml bioreactors bubbled with filtered air con-

taining 1% CO2. In the late exponential phase, the cells were

collected and pelleted by centrifugation, then flash-frozen in

liquid N2 and stored at �80 �C.

DNA Sequencing

High molecular weight DNA was extracted from cells and the

fragments were size selected at over 30 kb by Arizona

Genomics Institute (Tucson, AZ). After SMRTbell library prep-

aration, sequencing was performed on a PacBio Sequel sys-

tem using three 1M SMRT cells with v2.1 chemistry and 10 h

movies. The raw data were processed with the command line

tools from SMRTLink v.5.1 and the total yield was 993,273

subreads (16.6 Gb) with N50 length 23.458 kb. The longest

Table 1.

Comparison of Four Published Haptophyte Genomes with Diacronema lutheri NIVA-4/92.

Diacronema

lutheri

Tisochrysis

lutea

Chrysochromulina

tobin

Chrysochromulina

parva

Emiliania

huxleyi

JAGTXO010000000 TisoV1 GCA_001275005.1 GCA_002887195.1 GCF_000372725.1

Assembly length (contigs) (Mb) 43.503 57.719 59.073 65.765 155.931

Total number contigs 103 9,930 3,412 8,362 16,921

Scaffolds — 7,695 — — 7,795

Contig N50 16 1,970 798 1,243 1,314

Contig L50 (kb) 852.26 8.07 24.11 16.05 29.72

Longest contig 3.042 Mb 726.925 kb 121.428 kb 101.752 kb 299.609 kb

GC content (6 contig) 73.25% 58.67% 63.37% 63.58% 65.67%

61.34% 62.95% 62.74% 63.99% 64.13%

Method PacBioþ Illumina Illumina Illuminaþ 454 Illumina Sanger

Complete (%) 80.80 68.30 62.00 72.90 51.80

Complete, single copy (%) 80.40 65.90 61.60 72.50 37.30

Complete, duplicated (%) 0.40 2.40 0.40 0.40 14.50

Fragmented (%) 6.30 11.40 7.50 7.10 16.10

Missing 12.90% 20.30% 30.50% 20.00% 32.10%

Genesa 14,446 20,582 16,777 28,138 30,569

Annotation method BRAKER2 MAKER2 MAKER2 MAKER2 JGI Annotation Pipeline

Reference This study Carrier et al. (2018) Hovde et al. (2015) Hovde et al. (2019) Read et al. (2013)

NOTE.—Assembly statistics are based on contigs for comparability. BUSCO v.4 was run on the genome sequences with the “eukaryote_odb10” data set.
aStructural annotation of genes are as reported in the corresponding manuscripts, which were annotated with different methods.
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subread was 92.675 kb. The GC content of subreads initially

indicated a nuclear genome with a high GC content of�70%

(supplementary fig. 1, Supplementary Material online). Short-

read sequencing was performed with an Illumina MiSeq pro-

ducing 250 bp paired-end reads on one v.2 flow cell, yielding

6.55 Gb of reads. The Illumina sequences were trimmed with

Trimmomatic (Bolger et al. 2014) and quality checked by

FastQC (Babraham Bioinformatics).

RNA Samples and Sequencing

Three independent RNA sequence libraries were obtained

from two different experiments. Experiment 1 comprised a

set of pooled Erlenmeyer flask cultures exposed to six different

stress conditions (control, low-nutrient, low-temperature, low

salinity, darkness, high light) to express the maximum number

of genes. Experiment 2 was a bioreactor study from which

two representative RNA samples (one control and one

phosphorus-limited treatment) were selected. In each case,

RNA was extracted from cell pellets using Trizol reagent and

chloroform, followed by an RNA Clean & Concentrate mini-

column preparation (Zymo Research, Irvine, CA). Illumina se-

quencing was performed by Novogene (Beijing, China) Ltd,

yielding 21.4, 28.4 and 20.0 million cleaned and trimmed

150 bp paired-end strand-specific reads (fragments) from

each of the three libraries, respectively.

Genome Assembly and Polishing

The PacBio data were used for genome assembly, whereas

the Illumina sequences were used only for polishing the as-

sembled contigs. PacBio subreads were assembled with

CANU v.1.7 and the options “minReadLength¼ 3,000”

“corOutCoverage¼ 100” “correctedErrorRate¼ 0.04”

A

C

B

FIG. 1.—(A) Gene transcript length distributions for Diacronema lutheri annotated in this study compared with two other haptophytes, Emiliania huxleyi

and Chrysochromulina tobin. (B) The number of exons per gene for the same three genomes, expressed as a proportion of the total number of annotated

genes. (C) The species tree of 12 protists bearing red alga derived plastids, including four sequenced haptophytes, seven stramenopiles, and one crypto-

monad. The tree is derived from 1,152 orthogroups with at least one gene copy from each species. Branch lengths represent substitutions per site and

support values are derived from the STAG algorithm implemented in OrthoFinder2.
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(Koren et al. 2017). The organelle sequences were identified

and extracted from the whole genome assembly and finished

separately (Hulatt et al. 2020). To minimize errors in the as-

sembled sequences the contigs were polished three times

with the PacBio command line tools in SMRTLink v.5.1

(Pacific Biosciences, Menlo Park, CA), where the raw subreads

were aligned to the contigs with BLASR (Chaisson and Tesler

2012) and polished with the ARROW hidden Markov model

to high consensus accuracy. Next, the 250-bp PE Illumina

reads were used for final polishing to eliminate potential

remaining small indels and single base errors. To do this the

Illumina reads were aligned to the contigs using BWA-MEM

(Li 2013), polished using Pilon for three rounds (Walker et al.

2014), and subsequently polished using FreeBayes (Garrison

and Marth 2012) for three rounds. Genome coverage by the

Illumina data was approximately 150-fold on an average.

Genome Curation

The initial assembly contained 136 contigs with a total length

of 45.09 MB. To objectively identify and remove potentially

erroneous, short or duplicated sequences derived from low-

abundance or contaminant reads, the PurgeHaplotigs pipeline

was applied (Roach et al. 2018). Raw PacBio subreads were

mapped to the genome using Minimap2 with the options “-

ax map-pb” (Li 2018) and spurious contigs were removed by

defining lower, mid, and upper coverage limits. This process

eliminated 33 relatively short sequences of total length

1.6 Mb and average length 48 kb, or about twice the N50

read length. The curated assembly was finally assessed for

possible remaining contamination using BLAST against the

“nt” database followed by manual inspection of top hits,

but no further contigs were removed.

Genome Quality Assessment

Genome quality was monitored through the assembly and

curation process using BUSCO (Seppey et al. 2019) and results

presented in this manuscript are from BUSCO v.4.0.2 and the

“eukaryote_odb10” collection of 255 conserved core eukary-

otic genes. For comparative purposes, BUSCO was run on the

genome sequences of D. lutheri and four other haptophyte

assemblies with the optimized “–long” two-pass option and

otherwise default BLAST settings.

Structural Annotation of Genes

To characterize repetitive regions a custom repeat library was

constructed de novo using REPEATMODELER with all contigs

over 100 kb (Smit et al. 2015a). The genome sequence was

soft-masked using REPEATMASKER with the option “-xsmall”

(Smit et al. 2015b). Gene structural annotation was subse-

quently performed with the BRAKER2 pipeline using RNA-seq

evidence combined with AUGUSTUS and GENEMARK-ES for

gene prediction (Bruna et al. 2021). The three RNA-seq

libraries were aligned individually to the genome using STAR

v.2.7.3a (Dobin et al. 2013) (supplementary table 2,

Supplementary Material online) and the braker.pl pipeline

was provided the RNA-seq read alignments and run with

the “–softmasking” option.

Functional Annotation of Genes

To assign functions to the protein-coding sequences three

different methods were used in parallel and the consensus

results were collected: 1) INTERPROSCAN-5 was used to

search for conserved protein signatures (Jones et al. 2014),

2) Protein sequences were searched with BlastP against the

curated SwissProt database (Boeckmann et al. 2003), and 3)

EGGNOG-MAPPER was used for orthology assignment, run-

ning emapper.py with DIAMOND alignment (Huerta-Cepas et

al. 2017). Transfer RNAs were annotated with tRNAscan-SE

v.2.0.7 with recommended settings for eukaryote genome

annotation (Chan and Lowe 2019). Noncoding RNAs were

annotated with INFERNAL (Nawrocki and Eddy 2013) and

the Rfam library of covariance models (Kalvari et al. 2018).

Genome Sequences and Gene Orthology

Three haptophyte genome data sets were obtained from

NCBI GenBank (E. huxleyi assembly GCA_000372725.1; C.

tobin assembly GCA_001275005.1; Chrysochromulina parva

assembly GCA_002887195.1) and one data set for Tisochrysis

lutea was obtained from SEANOE (assembly v1; https://www.

seanoe.org/data/00361/47171/; last accessed April 6, 2021;

doi:10.17882/47171). Amino acid coding sequences for a

further eight species were obtained from NCBI GenBank

(Thalassiosira pseudonana CCMP1335 GCA_000149405.2;

Phaeodactylum tricornutum GCA_000150955.2;

Aureococcus anophagefferens GCA_000186865.1;

Ectocarpus siliculosus GCA_000310025.1; Guillardia theta

CCMP2712 GCA_000315625.1; Nannochloropsis gaditana

B-31 GCA_000569095.1; Fragilariopsis cylindrus

GCA_001750085.1; Fistulifera solaris GCA_002217885.1).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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Data Availability

The Diacronema lutheri genome assembly is available in NCBI

GenBank via BioProject number PRJNA725470. This Whole

Genome Shotgun project has been deposited at DDBJ/ENA/

GenBank under the accession JAGTXO000000000. The ver-

sion described in this article is version JAGTXO010000000.

DNA sequence reads are deposited in the SRA under

BioSample accession SAMN18879650. The genome assembly

is also hosted at Dryad: https://doi.org/10.5061/

dryad.5qfttdz55.
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