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Abstract

Sustainable wildlife harvest is challenging due to the complexity of uncertain social-ecologi-

cal systems, and diverse stakeholder perspectives of sustainability. In these systems, semi-

complex stochastic simulation models can provide heuristics that bridge the gap between

highly simplified theoretical models and highly context-specific case-studies. Such heuris-

tics allow for more nuanced recommendations in low-knowledge contexts, and an improved

understanding of model sensitivity and transferability to novel contexts. We develop semi-

complex Management Strategy Evaluation (MSE) models capturing dynamics and variabil-

ity in ecological processes, monitoring, decision-making, and harvest implementation,

under a diverse range of contexts. Results reveal the fundamental challenges of achieving

sustainability in wildlife harvest. Environmental contexts were important in determining opti-

mal harvest parameters, but overall, evaluation contexts more strongly influenced perceived

outcomes, optimal harvest parameters and optimal harvest strategies. Importantly, simple

composite metrics popular in the theoretical literature (e.g. focusing on maximizing yield and

population persistence only) often diverged from more holistic composite metrics that

include a wider range of population and harvest objectives, and better reflect the trade-offs

in real world applied contexts. While adaptive harvest strategies were most frequently pre-

ferred, particularly for more complex environmental contexts (e.g. high uncertainty or vari-

ability), our simulations map out cases where these heuristics may not hold. Despite not

always being the optimal solution, overall adaptive harvest strategies resulted in the least

value forgone, and are likely to give the best outcomes under future climatic variability and

uncertainty. This demonstrates the potential value of heuristics for guiding applied

management.

Introduction

Harvest is one of the most common forms of management for many wildlife species [1, 2].

Wildlife harvest is important socially, culturally and economically, both for creating direct

benefits (e.g. meat, income, recreation, tradition) and to avoid costs due to human-wildlife

conflicts (e.g. vehicle collisions, predation on domestic animals, and competition or pathogen
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spread between wild and domestic stock) [1, 3–5]. Because of their socio-economic and eco-

logical importance, wildlife-harvest systems are typically managed with an overarching aim of

sustainability [6]. Yet ‘sustainability’ is a multi-faceted, ill-defined, and evolving term: whilst

the early optimal harvest literature focused on ensuring persistence of the species and maximal

harvests, contemporary perspectives on sustainability encompass diverse economic and social

concepts, ecological, habitat, and ecosystem-based criteria, and precaution under uncertainty

[7, 8]. This includes an increasing appreciation of diverse stakeholder perspectives (i.e. social

equity) [9, 10], animal welfare, animal rights, and ‘compassionate’ conservation [11, 12].

Under the lens of these complexities and stakeholder conflicts, it is no surprise that con-

cepts of sustainability are often poorly applied in wildlife harvest systems [6]. Established the-

ory on optimal harvest strategies can often seem highly abstract through a focus on limited

objectives, typically maximization of harvest volumes without sacrificing population persis-

tence [13–16]. More recently, theoretical objectives have included variability of population

sizes and harvest [17]. While some highly detailed applied models exist [e.g. 2, 5, 18–21], in

many cases these are unavailable: many wildlife management systems lack all but the most

rudimental parameters, due to limited resources and poorly developed institutional frame-

works [6, 22]. In practice determining quotas in terrestrial systems is often an inexact, adaptive

science at best [23]. Further, even in the best studied cases, important elements of the social-

ecological system remain uncertain or contested [24–28], and there is a trend away from defin-

ing single ‘best’ harvest strategies, in order to avoid over-reliance on models with assumptions

that may not hold in reality [29].

Heuristics are practical and accessible guidelines designed to give good ‘rules-of-thumb’,

e.g. management recommendations that lead to good outcomes over a wide range of cases and

contexts [30]. In a wildlife management context, heuristics developed from semi-complex case

studies can bridge the gap between highly simplified models developed to demonstrate theory,

and highly context-specific case studies [31]. Benefits to addressing this space are three-fold.

First, more nuanced heuristics can be developed for application in knowledge-poor contexts

[30]. This is required in wildlife harvest because in most cases the socio-ecological contexts are

more complex than those addressed by existing theoretical models. From an implementation

perspective, managers are also more likely to accept and utilize evidence that is more specific

to their context [32–34]. Second, heuristics can help to guide sensitivity analyses in knowl-

edge-rich contexts, where complex case-study models can be developed, but the range of

parameters is too great for a meaningful development or interpretation of a global sensitivity

analysis [35]. Third, heuristics can improve the understanding of context comparability.

Causal inference, i.e. where specific causal impacts can be robustly identified (e.g. through

analysis of pairwise comparisons in which only the variable of interest changes) is challenged

in complex socio-ecological contexts such as wildlife harvest due to the low number of compa-

rable empirical examples to study [36], and this often results in comparisons across contexts

[33]. Heuristics at semi-complex levels can give us knowledge on the potential comparability

of different contexts, and thereby inform the appropriate transfer of causal inference estimates

across different contexts [37].

Heuristics can be derived by induction from empirical experience, or by deduction from

simulation models [38, 39]. However, it is challenging to robustly derive heuristics from

empirical case studies in wildlife harvest, even with meta-analyses, because of the conceptual,

logistical, and ethical difficulty in conducting systematic experimentation at the scales required

(i.e. while it is theoretically possible, there are practical challenges in collating enough compa-

rable studies for comparisons without confounding factors complicating interpretation) [36,

40]. As a result, mathematical and stochastic simulation models are well established in the con-

servation and wildlife-management literature. Typical simulation models focus on stochastic
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population dynamics, for example applied in population viability analysis [6, 21, 41]. In tradi-

tional harvest models, population dynamics is coupled with harvest to assess how variation in

harvest intensity affects population persistence and harvest off-take [14, 16, 17]. Management

Strategy Evaluation (MSE) models expand from these, encompassing stochastic simulations of

management in socio-ecological systems incorporating a more holistic set of ecological and

social components [42]. MSE models are well established in fisheries [43] and increasingly

used in terrestrial management scenarios, typically as highly detailed case study simulations

[e.g. 2, 5, 18–21]. MSE models have been used to address key knowledge gaps regarding the

implications of uncertainty in the multiple socio-economic facets of wildlife harvest systems

[3], and allow levels of systematic assessment impossible in real-world experiments. From fish-

eries management systems, literature syntheses of MSE case studies that contrast different har-

vest strategies suggest strong context-dependencies of optimal strategies [39]. No such

synthesis has been conducted for terrestrial systems.

To develop heuristics for sustainable terrestrial wildlife harvest, we constructed a semi-

complex MSE framework that allowed us to assess sustainability under a range of environmen-

tal contexts and from diverse socio-ecological perspectives, and thereby identify patterns of

context dependencies over environmental and evaluation contexts. We simulate a set of spe-

cies (moose, Alces alces, roe deer, Capreolus capreolus, and willow ptarmigan, Lagopus lagopus)
from across the fast-slow life-history gradient, a commonly used heuristic for theory develop-

ment in wildlife demography describing patterns of covariation in life-history traits across

body size, longevity, and fecundity [44, 45]. In contrast to most previous harvest system mod-

els that focus on a narrow set of objectives, we evaluate sustainability over 10 evaluation met-

rics reflecting volumes and variability of both population abundance and harvest, combined

into 6 stakeholder perspectives relevant for terrestrial contexts. In this way, our working defi-

nition of sustainability operates at the system level and aims to capture both outcomes and

potential conflicts between stakeholders that may moderate these. To simulate the variability

often inherent in socio-ecological systems, we include multiple types of variability [46] repre-

senting both temporal stochasticity, as well as parameter uncertainty related to monitoring,

management decision, and harvest implementation components. This MSE framework brid-

ges a gap between simplified harvest models with a narrow focus on harvest off-take and highly

context-specific applied case studies, with the intention of producing heuristics that are

directly applicable to real-world settings. We compare the 289,848 simulation models to

uncover: 1) How do wildlife harvest outcomes differ in different contexts? 2) How do different

contexts influence optimal harvest parameters in the different systems? 3) Which harvest sys-

tems are optimal in different contexts? 4) How much can decision-making improve through

integration of environmental and evaluation context-specific heuristics?

Materials and methods

We develop a MSE model that generalises a terrestrial wildlife-harvest system, with compo-

nents of 1) resource dynamics, 2) monitoring observations, 3) quota setting, 4) harvest imple-

mentation, and 5) sustainability evaluation. Simulations occur in yearly time steps (t), across a

time series of 20 years (broadly considered long term for applied management plans), with

multiple replications (i = 1000) per scenario. Full model description and parameter values are

available in S1 Appendix, and summarised here.

MSE framework

The MSE framework developed here consists of five main components (Fig 1), representing

the main components of a socio-ecological harvest system. The resource component simulates
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growth of a population Ni,t, using logistic growth determined by the population’s intrinsic

growth rate, ri,t, and carrying capacity, K. The monitoring component is simulated by a single

variation factor (mi,t) acting on Ni,t, to give an estimate of the population size (N̂i;t ), to be used

as the basis for management decisions. The management-decisions component comprises

two parts. First, a harvest strategy is applied, converting N̂i;t into an initial quota, Qi,t, given a

set of quota parameters. Qi,t is then subject to random variation (qi,t) to simulate variability of

stakeholder influence during the quota setting process, to give a modified quota Q0i;t. The har-

vest implementation component simulates imperfect harvest implementation, effected as var-

iation (hi,t) around Q0i;t to give the realised harvest (Hi,t). This amount is then removed from Ni,

t, before continuing to the next timestep. Stochastic parameters include r, m, q, and h, which

simulate environmental stochasticity, imperfect implementation, and parameter uncertainty.

We assumed that the uncertainty followed a normal distribution, partitioned over years (t)

Fig 1. MSE framework. The Management Strategy Evaluation (MSE) model simulates a wildlife harvest system over a 20 year timeframe, with each environmental and

decision context including 1000 stochastic replications. Evaluation contexts are simulated through combinations of different evaluation metric sets. Species types span a

fast-slow life-history gradient, determining growth rates and carrying capacity, variation levels in growth rates and monitoring variability, and critical thresholds.

Stochastic parameters simulate yearly stochasticity and iteration level uncertainty. A full description of the model and parameter values are specified in S1 Appendix.

https://doi.org/10.1371/journal.pone.0260159.g001
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and replications (i).The evaluation component occurs after each simulation is complete, cal-

culating performance metrics of each iteration over the entire timeframe, and summarising

over replications in the scenario run (see details below and in S1 Appendix).

Environmental context and decision variable parameters

In our modelling framework, species life-history, level of environmental variability and param-

eter uncertainty, and starting population scenarios collectively represent the environmental

context within which the simulation takes place. We simulate three species spanning a slow-

fast life-history gradient of common game species (S1.1 Table in S1 Appendix). The species are

based on wildlife harvested in a Norwegian context, but with global relevance. The moose

(Alces alces) is a large ungulate, with a relatively low growth rate, carrying capacity, monitoring

variation, and critical thresholds for evaluating population size. The roe deer (Capreolus
capreolus) is a small ungulate with a moderate growth rate, carrying capacity, monitoring vari-

ation, and critical thresholds. The willow ptarmigan (Lagopus lagopus) is a game bird with a

large potential growth rate, carrying capacity, monitoring variation, and critical thresholds.

For each species, variability and starting population scenario combinations are identified

numerically (SID 1–6) defined in Fig 1. We simulated two variability scenarios, where variabil-

ity in r, m, q, and h was either all low (SID 1,3,5) or all high (SID 2,4,6), to represent systems

with different extremes of variability and parameter uncertainty. Each of these species -vari-

ability scenarios were coupled with three distinct scenarios for the population size at the start

of the simulation period: 1) moderate (best case), i.e. the midpoint of low and high critical

thresholds (SID 1,2), 2) quasi-extinction (SID 3,4), and 3) overabundance (SID 5,6). Alternative

starting populations test the robustness of the harvest strategies to extreme perturbations in

population size, as well as being relevant for special management cases (e.g. overabundant spe-

cies, or recovery of endangered species into harvestable populations). In total, we evaluated 3

species × 2 variability × 3 starting population size scenarios, yielding a total of 18 environmen-

tal contexts.

For each of these environmental scenarios, we evaluated a range of harvest alternatives. The

4 harvest strategies and their respective range of harvest parameters together represent decision

variables. We define the harvest strategy to include constant harvest (a set number of individu-

als harvested yearly), proportional harvest (a set proportion of the population harvested yearly),

threshold-proportional harvest (a set proportion of the population taken yearly, provided the

population is above a certain threshold), and a no harvest baseline. Harvest parameters define

the intensity of harvesting under a given harvest strategy. For example, for constant harvest,

the ‘constant’ parameter specifies the fixed annual quota size, and for proportional harvest the

‘proportion’ parameter specifies the harvest fractions. We searched across a wide range of con-

stants, proportions, and thresholds in order to identify and compare optimal strategies across

a diversity of potential objectives. Constants were varied in increments of 1% of the respective

species ‘moderate’ population sizes, proportions were varied in 1% increments, and thresholds

also in 1% increments ranging from the respective species ‘quasi-extinction’ population

threshold, to a ‘moderate’ population size (see S1.2 Table in S1 Appendix). Within one simula-

tion, the harvest strategies and parameters remain consistent throughout the timeframe,

although the simulated harvests themselves vary due to variability in quota setting, available

population size, and harvest imperfections. Thus, the 18 environmental contexts were each

subject to 4 harvest strategies, totalling 72 environment × harvest strategy cases. Overall, we

simulated 289, 848 different environment × harvest strategy × harvest parameter models, each

with 1000 iterations.
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Evaluation contexts

In our MSE framework, evaluation contexts are designed to reflect different stakeholder val-

ues and perspectives relevant to terrestrial wildlife harvest scenarios. We first define 10 individ-
ual metrics representing different stakeholder objectives over various socio-ecological and

harvest-based sustainability objectives (Table 1), and then combine them into six composite
scores representing alternative evaluation contexts with different emphases (Table 2). While we

aimed to include as broad a range of sustainability metrics as possible, these may not be ade-

quately representative of ecological or socio-economic objectives that are not a function of vol-

umes or variability of either harvest or population sizes, for example spatial, sex, and age

distribution of individuals and consequent effects on ecological functions and equity of oppor-

tunity. We standardise each individual metric so that 0 represents the worst score (e.g. zero

years of stable population, a mean harvest of zero, or the maximum observed harvest variabil-

ity), and 100 represents the most desirable expected outcome possible (e.g. all years with stable

population, zero harvest variability, or the largest observed harvest) over all replications and

decision variables for each respective environmental context. Full details and summaries of

raw and transformed scores are provided in S1 Appendix.

Evaluation contexts are represented by the composite scores via the individual metrics con-

tributing to the composite score. These range from a complete set including all metrics, to a

classic set that includes metrics most commonly included in the classic theoretical literature,

namely maximize harvest and population persistence. Other sets represent particular contexts,

such as a focus only on population or harvest related metrics. Composite metrics are the mean

Table 1. Individual sustainability metrics.

Objective

group

Objective Criteria Code

Persistence Avoiding extinctions. A fundamental objective of ecological and

economic sustainability.

For individual replications, this is a binary score (0 = extinction,

1 = persistence of the population over the time frame). This is

averaged over replications as a probability.

persistence

Population Population stability. Avoiding population extremes. Number of years population remains between high and low
critical thresholds

stable
population

Avoiding low or functionally extinct populations. To provide

adequate populations for harvest, ecological functionality, and

buffer against extinctions.

Number of years population remains above the quasi-extinction
critical threshold

above quasi-
extinct

Number of years population remains above the low critical

threshold

above low

Avoiding high and overabundant populations. To minimize

wildlife conflict and ecological damage from overabundant

populations. Note, this may not be a concern for small game

species.

Number of years population remains below high critical

threshold

below high

Number of years population remains below the overabundance
critical threshold

below
overabundant

Harvest Mean annual harvest. To provide the maximum opportunity for

economic and social benefits of harvest.

Mean yearly harvest harvest mean

Minimum harvest experienced across the timeframe. To maximize

harvest opportunity over every point in the timeframe.

Minimum harvest size across the timeframe harvest
minimum

Avoiding years experiencing zero harvest. To provide consistency

of harvest experience and income for harvesters and associated

economies.

Number of years harvest is not zero harvest non-
zeros

Limiting harvest variability. While some variability may be

accepted as an inevitability in variable contexts, consistency of

harvest improves predictability and the consistency of capital

required for its implementation.

0 –Standard deviation of harvests over the timeframe harvest
consistency

Sustainability metrics used in this analysis represent a wide variety of common stakeholder concerns, and include fundamental sustainability objective of persistence, as

well as other population-based and harvest-based metrics. Here they are defined so that, within each metric, higher scores are more desirable.

https://doi.org/10.1371/journal.pone.0260159.t001
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score of the set of individual metrics from which it is comprised. Due to co-dependencies

among individual metrics, composite scores are first calculated for each replicate, before aver-

aging over each harvest scenario. As a side note, this is equivalent to a risk neutral expectation

of a utilitarian ‘aggregate benefit’ ethic, and ensures composite scores remain on a similar scale

when involving different numbers of individual metrics. Composite metric scores therefore

represent outcomes as perceived under specific stakeholder contexts, but simplistically assume

that these individual metrics represent stakeholder utility, that individual metric utilities are

equivalent and substitutable, and that aggregate utility is reflected through the average of the

individual metrics, and that stakeholders display linear preferences.

Comparative analysis, heuristics, and potential improvement in decision-

making

We sought heuristics for a) determining the likely impacts of environmental and evaluation

contextual factors, and b) choosing optimal harvest parameters or strategies, based on the

expected (i.e. average) composite metric scores. This assumes a ‘benevolent decision-maker’

basing their decisions on a rational, risk-neutral optimization of the composite score. Assum-

ing the composite score could be an accurate reflection of social utility, this reflects the poten-

tial for stakeholders to be satisfied with the respective outcome. Use of a semi-complex MSE

model with the same framework across multiple environmental and evaluation contexts allows

a full factorial design in which pairwise comparisons can be made between models that are the

same in every way except for the variable of interest. Overall, we compared 18 environmental

contexts × 4 harvest strategies × a custom range of harvest parameters × 6 evaluation contexts,

totalling 108 environmental × evaluation contexts, 432 environmental × harvest

strategy × evaluation contexts, selecting optimal harvest parameters and strategies or each of

the evaluation contexts from the 289,848 environmental × decision variable (i.e. harvest strat-

egy and parameters) contexts.

If more information is known (e.g. the environmental context, or the evaluation context),

decision-makers are likely to be able to make more appropriate decisions within that context.

This is not always the case, however, for example if the same strategy is chosen regardless of

the availability of the information. We quantify potential improvement in decision making

effected through the use of context-specific heuristics, versus a generalised heuristic, using

both the relative frequency of the chosen strategies being optimal, as well as the average value

forgone. Value forgone represents the difference in composite score value achieved when

Table 2. Composite metrics.

Composite

metric set

Individual metric

Persistence Above quasi-

extinct

Above

low

Stable

population

Below

high

Below

overabundant

Harvest

mean

Harvest

minimum

Harvest non-

zeros

Harvest

consistency

Classic harv. ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✘ ✘ ✘
Classic pop.

+harv.

✓ ✘ ✘ ✓ ✘ ✘ ✓ ✘ ✘ ✘

Population focus ✓ ✓ ✓ ✓ ✓ ✓ ✘ ✘ ✘ ✘
Harvest focus ✓ ✘ ✘ ✘ ✘ ✘ ✓ ✓ ✓ ✓

Complete (small

game)

✓ ✓ ✓ ✘ ✘ ✘ ✓ ✓ ✓ ✓

Complete ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Composite metrics are comprised of six different sets of individual metrics designed to reflect alternative evaluation perspectives. Inclusion in sets is denoted by a tick

(included) or cross (not included); included metrics are averaged to give the composite score.

https://doi.org/10.1371/journal.pone.0260159.t002
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using a (potentially suboptimal) strategy within a specific context, compared to the optimal

strategy for that respective environmental and evaluation context. If a strategy is suboptimal,

potential value forgone can range from negligible, to 100% of the optimised value.

Code and data availability

We constructed the model in R [47], using tidyverse [48] and truncnorm [49], parallelized

with doSNOW [50]. For graphics, we used ggplot2 [51], ggtable [52], cowplot [53], and magick

[54]. For links to all data, code, and results, see data availability statement.

Results

Composite scores

Composite scores show considerable overlaps in outcomes between the various harvest strate-

gies and parameters (Fig 2). In general, suboptimal harvest strategies with optimised harvest

parameters can often perform better than optimal harvest strategies with poorly selected har-

vest parameters (Fig 2). This was even more clear when considering potential variability (S2.1

Section in S2 Appendix). Overall, only 11% of the 432 environmental and evaluation context

combinations had composite metric scores of over 85% (i.e. performing well across all

included metrics), highlighting that poor performances are common, and conflicts between

individual metrics, and thus between stakeholder interests, are likely in terrestrial harvest man-

agement. Contexts resulting in high composite scores were typically related to relatively stable

environments, adaptive harvest strategies (i.e. proportional or threshold proportional), and for

evaluation contexts with a population metric focus. Only 4 cases achieved expected maximum

scores of 100% (Fig 3); these included threshold proportional harvest for moose in SID1 and

SID 2, and roe deer in SID 1, and proportional harvest for moose in SID 1, all based on the pop-
ulation focus evaluation context.

To determine the impact of environmental (i.e. species, variability and starting population

size) and evaluation context factors (composite metric types), we assessed the pairwise con-

trasts between simulations varying only in terms of each specific factor respectively (Fig 4).

For the majority of the pairwise contrasts, faster life history species, extreme starting popula-

tion sizes, and higher variability scenarios result in lower composite metric scores, indicating

either irresolvable poor scores and/or stronger conflicts between objectives. However, there

are exceptions to these general patterns for most contrasts (Fig 4). Contrasts between evalua-

tion contexts are less predictable, as these scores reflect the number of metrics included, as

well as their themes. More complex composite metrics that include more individual metrics

were often higher scoring than simpler metrics. For example, the Complete set typically scored

higher than Classic pop.+harv. (true for 94% of the pairwise contrasts). This occurs because the

majority of the additional metrics in more complete sets were often less conflicting than those

included in the classical sets. Overall, the Population focus set was the highest scoring in the

majority of pairwise contrasts, likely reflecting the lack of conflict with harvest objectives.

Optimum harvest parameters

Optimum harvest parameters (that maximize the composite metric score) varied across envi-

ronmental and evaluation contexts (S2 Appendix). Within a given harvest strategy, different

environmental and evaluation contexts had most influence on optimal parameter values (Fig

5). For instance, starting population size was the most universally important determinant for

the score within constant harvest strategies (Fig 5A). Higher variability typically decreased the

optimal constant harvest rate, whereas optimal constant harvest rates did not vary much
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between evaluation contexts. For proportional harvest strategies, differences in optimal harvest

proportions were most definitively linked to species life history, with higher proportion opti-

mal for faster species. While larger initial population sizes tended to allow larger proportions,

this was not always the case (Fig 5B). In contrast to the constant harvest strategy, there were

also clear differences between the different evaluation contexts in term of optimal harvest

rates. For the threshold-proportional harvest strategy, optimal harvest parameters (both

thresholds and proportions) showed substantial sensitivity to all environmental and evaluation

factor contrasts (Fig 5C and 5D). This likely reflects the flexibility of this strategy to be tailored

to different (conflicting) stakeholder interests, in contrast with the constant harvest strategy

Fig 2. Composite scores across harvest strategies and parameters. Composite scores (y-axis) for each composite metric set (panel rows), under each harvest strategy

(panel column) and harvest parameter (x-axis). For the constant harvest strategy (second column), the x-axis shows the constant scaled by the maximum constant per

species. For the threshold proportional strategy (fourth column), the x-axis shows the proportion, and multiple lines per species show selected thresholds from across the

range of thresholds tested. Species are indicated by line colour, and are here shown for the environmental context with high variability/uncertainty and moderate starting-

population sizes (SID 2). Results for other scenarios and including variability are in S2.1 Section in S2 Appendix.

https://doi.org/10.1371/journal.pone.0260159.g002
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which has a relatively narrow sustainable operating range that is primarily environmentally

determined, leaving low flexibility to cater for social preferences.

Optimum harvest strategies

After optimizing the harvest parameters for each strategy and context, our simulations show

that there was no universally optimum harvest strategy across all environmental and evalua-

tion contexts (Fig 6). In fact, all harvest strategies could be perceived as an optimal choice in at

least one environmental and evaluation context (Fig 6). However, in the evaluation contexts

Population focus, Classic pop.+harv., and Classic harv. a constant harvest strategy is never iden-

tified as optimal. In contrast, for Harvest focus, Complete (small game) and Complete composite

set contexts, constant harvests are identified as optimal in 10 of the respective 18

environmental × evaluation cases for moose, as well as 2 cases in roe deer and once for ptarmi-

gan (Figs 6 and 7).

Fig 3. Composite scores across harvest strategies and contexts. Composite scores (colour) for each environmental (x-axis, and panel

rows) and evaluation context (y-axis), under each harvest strategy (panel column), assuming harvest parameters are optimised under

each harvest strategy. Environmental contexts (SID) codes are provided in Fig 1. Score classes (symbols) highlight where scores are

maximal (i.e. 100, achieving the highest theoretically possible scores across all included metrics). This figure shows how scores are

typically higher for slower life history species (e.g. moose) than faster life history species (e.g. ptarmigan), and for more complex harvest

strategies (e.g. threshold proportional) than simpler strategies (e.g. constant harvest), but also that few maximal scores were found across

the simulated contexts. Differences are further summarised in text and the following figures.

https://doi.org/10.1371/journal.pone.0260159.g003
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Overall, the most optimal harvest strategy was threshold proportional, which was optimal in

55.6% of the 108 species × environment × evaluation cases (and intermediate otherwise; Fig 6,

comparing across panel columns). Proportional strategies were most often intermediate

(57.4% of cases, with the remainder as best). In contrast, constant harvest strategies were opti-

mal in only 12% of cases, and worst in 14.8%, while no harvest was an optimal choice in only 2

cases, and the poorest choice in 85.2% of cases.

Pairwise contrasts in environmental factors show that more complex harvest strategies are

generally more preferable with faster life history species and higher variability scenarios (S2.4

Fig in S2 Appendix). For the more extreme starting populations, there were preferences

towards both simpler and more complex harvest strategies, although most did not change.

Pairwise contrasts between evaluation contexts show more definitive trends for many compar-

isons (S2.4 Fig in S2 Appendix).

Fig 4. Influence of environmental and evaluation factors on composite scores. Differences in composite score outcomes (x-axis) due

to differences in environmental and evaluation factors (y-axis), with all other factors held at equivalent levels for each pairwise contrast.

Contrasts are given as change in the left-hand level vs. right-hand level, for example, moose typically result in a higher composite metric

score than roe deer, all other factors equivalent. Violins show the data distributions (i.e. the values of pairwise contrasts, across all

environmental and evaluation factors such as composite metric sets, that are not the focus of the pairwise contrast), with the colour

indicating the median. Boxplots show the median, the first and third quartiles, and the whiskers extend to the smallest or largest value no

further than 1.5 times the inter-quartile range from the hinge, with outliers plotted as points. Proportions of the observations below or

above zero difference are given on the left and right grey panels respectively (and may not sum to one if some cases do not differ).

https://doi.org/10.1371/journal.pone.0260159.g004
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Fig 5. Influence of environmental and evaluation factors on optimal harvest parameters. Thumbnail figure (full figures given in the

S2.3 Section in S2 Appendix) showing pairwise differences in optimal harvest parameters (i.e. those parameters giving the highest

composite metric scores in each respective context) given environmental and evaluation factor contrasts, for a) constant, b)

proportional, and c) and d) threshold proportional harvest strategies (proportion in c) and threshold in d) respectively). For further plot

description, including colour legend, see Fig 4. The � indicates that the constant and threshold are scaled by the number of individuals

considered as a ‘moderate’ population size for each of the species (i.e Moose = 600, Roe Deer = 6950, Ptarmigan = 17500). This overview

figure shows how harvest parameter decisions are influenced relatively more by evaluation contexts in more complex harvest strategies

(e.g. threshold proportional), compared with a simple ‘constant harvest’ strategy.

https://doi.org/10.1371/journal.pone.0260159.g005
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Improvement in decision-making through use of environmental and

evaluation context-specific heuristics

Without consideration of the environmental or evaluation contexts, the best choice for harvest

strategy was threshold proportional. This would be the correct optimal choice in 55.6% of the

108 species × environment × evaluation cases, and result in an expected value forgone of

1.19% (Figs 6 and 7). Proportional, constant, and no harvest strategies would result in a mean

value forgone of 2.75%, 12.2%, and 27.0% respectively.

Information on environmental contexts resulted in few improvements over the baseline of

no contextual information. Use of species information resulted in an optimal decision in

59.3% of cases (with expected value forgone of 0.92%), selecting proportional for moose (opti-

mal in 47.2% of cases, with expected value forgone of 1.64%), and threshold proportional for

roe deer and ptarmigan (optimal in 61.1% and 69.4% of cases, with and expected value forgone

Fig 6. Optimal strategy, and value forgone through choice of harvest strategy, across environmental and evaluation contexts.

Harvest strategy optimality (symbol), and value forgone (tile colour) by using the harvest strategy in each environmental and evaluation

context, instead of the optimal strategy for the respective environmental and evaluation context. Harvest strategies (panel columns) are

represented by their optimal harvest parameter outcomes. Environmental contexts are combinations of species type (panel rows), and

starting population and variability (SID codes are described in Fig 1; x-axis). Strategies are compared for optimality only within

equivalent species x environmental x evaluation comparisons. This figure shows how proportional and threshold proportional strategies

are typically the most optimal, and typically result in lower value forgone when not. Differences are further summarised in text and the

following figures.

https://doi.org/10.1371/journal.pone.0260159.g006
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of 0.58 and 0.54% respectively). Starting population information also improved decisions in

3.7% of cases compared to no information (expected value forgone 1.17%), and suggested pro-
portional when population sizes are initially very low (at quasi-extinction; optimal in 52.8% of

these cases, expected value forgone of 2.58%), and threshold proportional otherwise (optimal in

63.9% of cases with moderate starting population sizes, and 61.1% of cases with overabundant
starting population sizes, with expected value forgone of 0.39% and 0.56% respectively). Infor-

mation on variability level did not result in a change in strategy choice. Threshold proportional
was optimal in 59.3% of low variability cases, and 51.9% of high variability cases, with expected

value forgone of 1.53% and 0.86% respectively.

If all environmental context information was considered (i.e. decisions made based on spe-

cies and environmental context, but not evaluation context), optimal decisions could be made

in 63.9% of cases, with an expected value forgone of 0.57%. A constant strategy was selected for

a third of the moose contexts (specifically, for moderate or overabundant starting populations,

with low variability only), however this would be optimal in only half the cases within, and a

threshold proportional strategy was preferable for the latter when aiming to minimise value for-

gone. Proportional was selected for moose contexts starting at quasi-extinction (optimal in

66.7% and 83.3% of cases for the low and high variability scenarios, respectively), and was

selected as jointly optimal for 2/6 of the roe deer contexts, and one ptarmigan context (and

therefore optimal in only half the cases within). Threshold proportional was optimal in all cases

for roe deer with moderate starting populations and low variability, and for ptarmigan with

overabundant starting populations and low variability, but for the remaining cases would

Fig 7. Optimal strategy across environmental and evaluation contexts. Relative frequency of optimal harvest strategy (or jointly

optimal strategies) by environmental and evaluation context factors (y-axis). Each bar summarises the simulations including the factor

specified on the y-axis. Optimal strategies are determined by ranking their respective best performing harvest parameter levels across

harvest strategies. Pairwise comparisons between contexts are given in S2.4 Section in S2 Appendix.

https://doi.org/10.1371/journal.pone.0260159.g007
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provide between 50–66.7% optimality. Decision-making based on minimising value forgone

dropped proportional and threshold proportional from being jointly preferable in three and

two environmental contexts, respectively.

In contrast, information on evaluation context could result in optimal decisions in 74.1% of

cases (with an expected value forgone of 0.49%). This suggested a threshold proportional strat-

egy for Population focus, Classic pop.+harv., and Classic harv. composite metric sets (100%,

88.9%, and 61.1% of the respective cases). For Complete (small game) and Harvest focus com-

posite metric sets, a proportional strategy is preferred, optimal in 72.2% and 66.7% of respec-

tive cases. For the Complete composite metric, either a proportional or threshold proportional
strategy would be optimal in 55.6% of cases, but the threshold proportional strategy would

result in a lower expected value forgone.

Discussion

Aiming to develop heuristics for sustainability in wildlife harvest systems, we ran 289,848 sto-

chastic models simulating harvest management under diverse environmental and evaluation

contexts. The scarcity of contexts across our simulations resulting in high overall composite

metric scores demonstrates the inherent complexity of achieving sustainability in terrestrial

wildlife harvest systems with diverse stakeholders objectives [3, 4]. This large potential for con-

flicts and trade-offs emphasises that wildlife harvest decisions are likely to benefit from tools

designed for decision-making under conflict and complexity. These tools include MSE models

that can be used to evaluate and compare outcomes for multiple models, actions, and metrics

[42, 43, 55], and Structured Decision Making (SDM) tools for management of conflicts

through stakeholder negotiations [5, 56]. Avoiding exacerbating conflicts is endorsed in envi-

ronmental management [57], and our analysis demonstrates how MSE can be used to map out

conflict potential, and thereby contribute to conflict-sensitive stakeholder engagement.

Our results confirm that adaptive harvest systems such as proportional harvest, and particu-

larly threshold-proportional harvests, were generally more likely to deliver good outcomes and

be perceived as more sustainable. Adaptive harvest systems were higher scoring in more varied

contexts, involved a less precipitous risk of population declines compared to constant harvest,

and, result in the lowest levels of value forgone. This supports prior analytical and review com-

parisons showing general preference towards these adaptive strategies [15, 39, 58], including

as a precautionary approach under uncertainty and variability, and importantly, extends sys-

tematic assessment across a diversity of environmental and evaluation contexts likely to be

encountered in applied wildlife harvest management.

We found that no single harvest strategy was optimal across all environmental and evalua-

tion contexts tested, however. Every harvest strategy was optimal in at least one case in every

environmental context (Figs 6 and 7). The overall best strategy, threshold proportional harvest,

was optimal in only 55.6% of cases evaluated. This supports the literature review findings of

Derboa and Bence [39] in that optimal harvest strategies can differ depending on environmen-

tal contexts and evaluation procedures. In our simulations, information on environmental

context (represented in this study as species, variability, and starting population size) could

improve decision-making to be optimal in 63.9% of cases. Information on the evaluation con-

text was more valuable, identifying optimal strategies in 74.1% of cases. There was large varia-

tion in outcomes of the harvest strategies when using different harvest parameters, however,

and optimal parameters for suboptimal strategies can often score higher than suboptimal

parameters for (potentially) optimal strategies (Fig 2). Information on environmental contexts

was particularly influential in determining optimal harvest parameters in constant and propor-

tional harvest strategies, while both environmental and evaluation context information were
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influential for determining thresholds and proportions in a threshold-proportional harvest

strategy (Fig 5). This likely reflects the superior ability of threshold-proportional strategies to

be tailored to stakeholder perspectives, but simultaneously highlights the non-triviality of

accounting for stakeholder perspectives in environmental management [9, 10].

The extent of the differences in outcomes across evaluation contexts suggests that, by focussing

on limited evaluation metrics, prior theoretical analysis present a rather narrow and sometimes

misleading perspective on the outcomes of harvest in socio-economically complex terrestrial wild-

life systems. Differences due to composite metric sets were difficult to characterise, likely due to the

interaction of the number and types of metrics included: more metrics can buffer each other and

thus can increase scores, but can also increase the likelihood of trade-offs and thereby reduce mean

scores. This emphasises the importance of identification and weighting of evaluation metrics in

harvest management [56, 59, 60]. However, two key implications can be drawn from our results:

1) simpler ‘classic’ metrics commonly used in theoretical models may give a false perception of the

magnitude of the benefits of more complex harvest strategies over constant harvests in some cases,

and 2) the formulation of harvest objectives has a strong influence in determining optimal harvest

strategies and parameters. This is particularly important to consider in the context of terrestrial

wildlife harvest, where there is seemingly a widespread tendency for the objective of maximizing

yields to be included, which persists even in cases where extensive stakeholder and manager

engagement do not indicate maximum yields as a universally valued objective, and even while rec-

ognising the strong trade-off between population stability and harvest goals [61, 62]. In all of our

simulated species the critical thresholds for a socio-ecologically desirable population size specified

for management evaluation during expert elicitation were often well below the corresponding the-

oretical maximum sustainable yield levels (S1 Appendix). Inclusion of yield maximization is likely

due to the classic tradition of yield being the sole focus of ‘sustainability’ in wildlife harvest outside

a complementary and low bar objective of persistence (for example in early fisheries ‘maximum

sustainable yield’ models), despite development of more diverse definitions [8]. Perhaps in fisheries

contexts of the past this may have seemed appropriate, but in contemporary, predominantly recre-

ational, terrestrial wildlife harvest there is no a priori reason to value maximizing mean harvests

above or even equally to other objectives, especially given the diversity of human-wildlife conflicts

associated with high density populations of some of the harvested species [4].

Faster life history species and higher variability contexts (due to stochasticity and uncer-

tainty) were generally associated with reduced scores (Figs 3 and 4), and typically a greater

preference towards more complex, adaptive harvest strategies. Much emphasis within the har-

vest literature has been on variability (stochasticity and uncertainty), typically revealing

reduced sustainability with higher variability [13–16]. In these cases, thresholds can be used as

a buffer from extinction [15, 17]. Our results are in line with these prior studies, but we also

detected some noticeable exceptions. Many of the exceptions in our pairwise comparisons are

due to threshold based evaluation criteria: for example when increased variability allows some

replications to cross desirable threshold criteria (i.e. stochastic resonance [63]), without caus-

ing equivalent crossing of undesirable criteria thresholds. Other exceptions were likely due to

closer alignment of ‘ideal’ population sizes (i.e. socially preferable levels) with populations

sizes delivering maximum yields (as was the case for roe deer in our study), or due to a lack of

perceivable difference in strategy outcomes under more extreme starting population sizes.

Management of slower life-history species was typically easier, and generally yielded relatively

high scores even under simpler harvest strategies. However, the risk of precipitous declines via

choosing suboptimal constant harvest parameters was greater, and the potential to recover from

such low populations should be considered. In faster life history species recovering from extreme

low populations, harvest strategy trades off speed, magnitude, and likelihood of recovery with har-

vest early in the time period, a trade-off likely to depend on the productivity of the population
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[64]. In slower life history species recovery from low population sizes could be lengthy, with very

low possibility of harvest [65]. Overall, this supports adaptive harvest strategies (including propor-

tional and/or thresholds) as a precautionary strategy, providing economic and ecological resil-

ience of harvest under both scientific and environmental uncertainty, and particularly

uncertainty in the face of directional threats such as climate change [65].

Given our aim of developing heuristics across a range of species contexts for a set of harvest

strategies, we developed our model using a consistent but relatively simple population dynam-

ics framework. We specified our MSE models as one closed-population harvested species,

undifferentiated by age, sex, or spatially, with logistic growth and simple characterisations of

uncertainty and variability. We included prey species only, and do not explicitly consider

biotic interactions such as their natural predators (these are assumed as captured within the

variable demographic rates). We applied single decision rules over the whole time frame, and

had no time-discounting or monetary valuation of costs and benefits, and a simplistic transla-

tion of outcomes into stakeholder values and utilities. We discuss these issues as they pertain

to this analysis more in the full model description in the S1 Appendix. Further developments

of the model would be valuable to extend the results to more complex and realistic contexts, in

particular to examine impacts of different distributions and particular sources of uncertainty

and variability (e.g. of population structuring during low abundances and infrequent extreme

events [40, 66–68] and directional biases (e.g. in monitoring, quota setting, and harvest [19,

69]). We also do not consider starting conditions for stakeholders, such as current entitlement

to harvest, which serves to frame outcomes as losses or gains. Current entitlement levels can

severely constrain management decisions in practice [5], for example if Pareto improvements

(no loss for any stakeholder) are emphasised in decision-making. While alternative assump-

tions may change the particulars of results, even the simple assumptions we employed resulted

in many complex trade-offs among the diverse metrics evaluated, and we would expect the

main conclusion of context dependency and importance of evaluation perspective to hold.

Conclusions

Sustainability is a central, but often elusive goal of wildlife harvest management, challenged by

complex socio-ecological systems, with many potential conflicts and uncertainties. Our sto-

chastic simulation analysis provides the first detailed and consistent comparison of multiple

sustainability metrics, across a representative range of common terrestrial wildlife game har-

vest systems. While we conclude, similarly to prior studies, that adaptive harvest systems

including thresholds and proportional harvest were more likely to be perceived as sustainable

in more variable contexts compared to constant harvest, our analysis reveals the many excep-

tions to this heuristic. Indeed, every harvest strategy was found to be optimal in every environ-

mental context under at least one evaluation context. We found that the strongest driver of

outcomes, optimal harvest parameters, and strategies was the evaluation context (i.e. the set of

metrics used), rather than environmental contexts. However, adaptive strategies led to the

least potential value forgone, and are likely a better risk-adverse strategy to employ to avoid

low population sizes, which are likely to give poor outcomes for all stakeholders. Key implica-

tions for applied management are, first, that outcomes based on simplified metrics (e.g. persis-

tence and maximizing mean harvest only) popular in the theoretical literature may give

misleading impressions of the relative benefits of different harvest systems in complex socio-

ecological systems. Second, while a threshold proportional strategy remains the optimal strat-

egy across the majority of cases, both environmental and evaluation contexts have substantial

influences on the optimal harvest parameters within this strategy. Our results highlight that

trade-offs between sustainability objectives are largely inevitable, and, with no single optimum
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strategy, ‘optimal’ harvest systems need to be identified with careful consideration of the

appropriateness of sustainability metrics. Overall, heuristics derived from semi-complex MSE

models such as this provide a useful bridge between over-simplistic theoretical models and

complex context-specific models. We showed the potential of such heuristics to improve

applied decision-making in low information contexts, and they are also likely to prove useful

for guiding context-dependent sensitivity analyses in high information contexts, and the

appropriateness of cross-context empirical comparisons.
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