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Abstract

The utility of species distribution models for applications in invasion and global change biology is critically dependent
on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve
the transferability of presence-only models: density-based occurrence thinning and performance-based predictor
selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and
geographic background on the transferability of a species distribution model between geographic regions. Our
multifactorial experiment focuses on the notorious invasive seaweed Caulerpa cylindracea (previously Caulerpa
racemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that
model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model
complexity and background choice having relatively minor effects. The data shows that, if available, occurrence
records from the native and invaded regions should be combined as this leads to models with high predictive power
while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpa
cylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa
and the south coast of Australia.
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Introduction

Species distribution models (SDMs) help us understand and
map species’ distributions, play a key role in forecasting range
expansion of introduced species and can help us predict the
effects of climate change on species distributions [1-4]. An
SDM characterizes the species’ response to relevant
environmental variables, using either physiological information
from experimental work (mechanistic models) or by relating the
presence and/or absence of the species to environmental
information (correlative models) [5]. This response is
subsequently projected into geographic space using gridded
environmental layers, resulting in a map showing the potential

distribution of the species. Because experimental physiological
work has not been carried out for a great majority of species,
correlative approaches dominate species distribution modeling.
Furthermore, it is quite troublesome to assess the absence of
species from an area while species occurrence data are
abundant in museum databases and the literature. As a
consequence, most SDMs rely on presence-only techniques
[1].

A crucial assumption in using SDMs to forecast the spread of
introduced species or distribution changes in response to
environmental change is that the model is transferable to the
new conditions [6]. In the case of introduced species, models
trained primarily on distribution data from the species’ native
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range need to be transferred to the region where it has been
introduced. This often implies projecting the species response
to climatic conditions that are not present in the native (training)
range, which is an innately difficult task. For such situations, it
is valuable to visualize those areas where extrapolation beyond
observed conditions was required and consider those
distribution predictions as uncertain [7,8]. In addition, the ability
of presence-only methods to capture a species’ ecological
response is affected by the choice of background points [7],
predictor variables [9], model complexity [10,11] and the
geographic spread of occurrence records in relation to
environmental gradients [12,13]. Besides these problems, it is
also possible that biotic interactions limit the utility of models
based on abiotic predictors [14] and, of course, there is always
the possibility that the fundamental niche of the introduced
population has changed due to natural selection [15,16].

This study focuses on the choices made during the modeling
process that affect the transferability and overall predictive
performance of the resulting model. We introduce two new
methods that have the potential to increase the transferability
of correlative SDMs: density-based occurrence thinning and
performance-based predictor selection. As a case study, we
apply these to the highly invasive seaweed species, Caulerpa
cylindracea, in order to assist in assessing the risk of further
spreading as well as predicting areas with suitable
environmental conditions worldwide.

Methods

Experimental Design
The overarching goal of the present study is to examine and

improve the overall performance and the transferability
between regions of maximum entropy (Maxent) presence-only
models of introduced species. The experimental design centers
on the impact of four important choices that have to be made
during the modeling process: (1) the amount of geographic
autocorrelation in occurrence records, (2) the choice of
predictor variables, (3) the complexity of the model, and (4) the
selection of background points.

Because most environmental variables show spatial
autocorrelation, geographically biased sampling of occurrence
records (e.g. heterogeneous accessibility and local expertise)
naturally results in environmental biases in the data used to
train the SDM, leading to model misspecification [12,17] and
issues related to its evaluation [18]. We introduce a method
that thins occurrence records in densely sampled regions to
obtain a more even geographic distribution (details given
below). To examine the effect of this method, models with and
without occurrence thinning are compared.

The choice of predictor variables is arguably one of the most
studied elements affecting the transferability of SDMs, with
several papers showing differences in transferability depending
on which predictor set is used [9,19,20]. This has also led to
the recognition of predictor variables as more conserved or
relaxed, depending on whether they match between native and
invaded species occurrences or not [9,21]. We introduce a
method that surveys the performance of all possible predictor

sets (explained below) and evaluate the transferability between
regions of models built with two different sets of predictors.

The complexity of an SDM is also known to impact on its
predictive performance, with overfitting often leading to poor
transferability [10,22,23]. By default, Maxent determines the
types of features it allows automatically, based on the number
of samples available for model training [24], but this standard
behavior has been reported to result in overfitted models [11].
We compare models with automatically determined model
complexity to models forced to be simple.

Finally, the selection of background points is known to affect
the outcome of presence-only SDMs [7,25,26]. To examine
this, we compare SDMs built with global background points to
models built with a regional background.

Using C. cylindracea as a case study, model transferability
was assessed by training models on samples from either the
native or the invaded range and measuring the overlap of the
two models, as well as by calculating how well they predict
presences in the other range. We also compare the overall
predictive performance of SDMs trained with occurrences from
either range to that of models combining occurrences from both
ranges.

Study Species and Environmental Data
This study focuses on the introduced and highly invasive

seaweed species Caulerpa cylindracea Sonder [27].
Specimens of the Caulerpa genus are well known for their
rampant morphological plasticity that, due to the inconsistent
use of varieties and forms amongst taxonomists, has resulted
in a confusing nomenclature. Most of this confusion has existed
around the C. racemosa/peltata complex that has more than 30
described varieties and forms [28]. Until recently this included
C. cylindracea, which, although originally described as an
independent species, had long been considered a form of C.
racemosa var. laetevirens until it was raised to varietal status
[29] and it is now due to be reinstated as an independent
species [28].

Since the early 1990s C. cylindracea has rapidly and
aggressively spread in the Mediterranean Sea and Canary
Islands, representing one of the most dramatic marine
invasions in terms of establishment and ecological dominance
[30,31]. The species has been reported from all kinds of
substrata and depths, as part of a variety of benthic
assemblages, and thrives in disturbed habitats of the heavily
urbanized Mediterranean coastlines [30,32]. Invasive
populations of C. cylindracea establish dense and compact
monospecific stands, which easily overgrow and outcompete
and/or negatively impact other seaweed [33,34], seagrass [35]
and invertebrate species [36,37] leading to biotic
homogenization [38] and an overall decrease of species
diversity in affected areas [30]. To date only partial recovery of
the assemblages could be observed after eradication of C.
cylindracea in Italy and France [33,39].

Unlike C. taxifolia, which was accidentally introduced from a
public aquarium [40], the vector of introduction of C.
cylindracea to the Mediterranean Sea is unknown. It was
initially hypothesized to be a Lessepssian immigrant [41,42], or
a hybrid between C. racemosa var. turbinata and an unknown
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tropical variety [43], until molecular investigations identified a
potential source population in southwestern Australia [29].
However, recent findings indicate that the native range of C.
cylindracea is much larger than previously thought (extending
from Western Australia around northern Australia into the Great
Barrier Reef and New Caledonia), and that the source of the
invasive C. cylindracea populations in the Mediterranean Sea
is not known with certainty [44].

Whatever the vector and source population, C. cylindracea is
spreading rapidly with reports of its presence in 12
Mediterranean countries including all the large islands [29,45],
and has more recently been reported from two locations on the
southern coast of Australia (Adelaide, SA and Portland, VIC,
e.g. references 46,47 and unpublished data GSB). As C.
cylindracea is only found near shipping ports and had not been
reported from this area prior to 2003 [48], it is most likely that
this species is a recent introduction. The rapid spread of this
species through the European invaded range makes it a
suitable case study for the question at hand.

A total of 191 distribution records were assembled from the
native range in and around Australia (65 records), the invaded
range in Europe (111) and the recently invaded areas in
southern Australia (15). The data sources for these records
are: Australia Virtual Herbarium (http://chah.gov.au/avh/), new
collections from Victoria by GSB deposited in the AD
herbarium, the data gathered by FM for the ERC FP5 ALIENS
project, and the literature [31,41,44,48-60]. The absence of the
species in various DNA bar coding surveys of Caulerpa from
some other parts of the Indo-Pacific (Philippines, Japan,
Tanzania, Red Sea) suggests that the native range may be
limited to Australia and some closeby locations (unpublished
data: Stefano Draisma, Thomas Sauvage, Heroen
Verbruggen).

We used the Bio-ORACLE dataset [61] as a source of
marine environmental grids (90° N–90ºS, real values). To make
the distribution records compatible with the grids, occurrence
coordinates situated on land according to the Bio-ORACLE
grids were moved to the closest cell in the ocean. When
multiple records were situated in the same Bio-ORACLE grid
cell, a single record was retained and as a result, the dataset
reduced to 95 distribution records.

Occurrence Thinning
Geographical biases in the occurrence records were

dampened by thinning the distribution points with
OccurrenceThinner 1.03 [62]. We developed this program to
filter occurrence records using a probability-based procedure.
The probability that any specific occurrence record is removed
is proportional to the density of occurrence records in the area
as defined by a kernel density grid. The two-dimensional
binned kernel density grid used in this procedure was
computed from the occurrence records with the bkde2D
function in the R package KernSmooth v.2.23-7 [63,64], with a
bandwidth of 3.0. The thinning procedure with thresholds t1=0.5
and t2=1.0 was repeated 10 times, resulting in 10 occurrence-
thinned datasets. These datasets had on average 25 records
from the native range, 46 from the European invaded range,
and three from the southern Australian invasive populations.

To evaluate whether occurrence thinning influences model
transferability and performance, we compared Maxent models
based on a thinned subset of samples with models using all
occurrence records (but limited to one per cell as mentioned
above).

Predictor Sets
The predictor variables were chosen in two steps. The first

step consisted of a priori selection of a set of 8 predictors. This
selection was based on knowledge of the physiological
determinants of seaweed distributions [65], and takes the
structure of the Bio-ORACLE dataset into account by not using
multiple closely correlated predictors. The eight resulting
predictors were mean sea surface temperature (SSTmean), the
range in sea surface temperature (SSTrange) as a measure of
seasonality, mean photosynthetically active radiation
(PARmean), salinity, pH, mean diffuse attenuation (DAmean)
as a measure of water transparency, dissolved oxygen (dissox)
and the phosphate concentration. Nitrate concentration was not
included because it is correlated with the phosphate
concentration [61].

In the second step, the predictive ability of those eight
variables was explored using Maxent Model Surveyor (MMS)
version 1.03 [66]. We developed this software to evaluate the
performance of all possible subsets of variables (28 - 1 = 255
for our eight predictors), using the test AUC (Area Under the
receiver operating characteristic Curve) to measure model
performance [67]. The program was run multiple times: (1) on
samples from native range with global background, (2) on
samples from invaded range with global background, (3) on
samples from both ranges with global background, (4) on
samples from native range with background restricted to native
range, and (5) on samples from invaded range with
background restricted to invaded range. The program used
50% of the samples for training and 50% for testing. It worked
from the thinned set of occurrences and restricted the model
complexity to linear and quadratic features. Each of the five
runs listed above was repeated ten times (i.e., on each of the
ten replicate sets of thinned occurrences). The training and test
data were randomly drawn from the occurrence records and do
not represent a subdivision into the native vs. invaded ranges.
As a consequence, the model performance used to evaluate
predictor combinations does not represent transferability
between regions. From the MMS results, a consensus was
derived as to which variables are most important across the
different runs. We retained only those variables that were
present in more than 60% of the top-scoring models for at least
two out of three regions (native, Europe, combined, i.e.
conditions 1, 2 and 3 described above). The 60% threshold
criterion is essentially arbitrary – we chose it because it halved
the number of predictor variabes from eight to four (specified in
results). Retaining variables important in at least two regions
was done because it would prefer variables of global, rather
than regional, relevance.

In order to evaluate whether this predictor selection
approach can improve the transferability of models across
regions, Maxent models were run with all eight variables listed
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above as well as the subset of four variables generated with
the predictor selection procedure.

Model Complexity
Model complexity was varied to verify its impact on the

predictive power and transferability. The first condition used the
default behavior of Maxent (auto-features), which determines
which features are used based on the number of samples [24].
The second condition forced the use of smooth response
curves by allowing only linear and quadratic features to be
fitted.

Background Selection
Data for background points was extracted from the Bio-

ORACLE grids [61]. Three sets of 10,000 random background
points were created: (1) from the entire globe, (2) from the
native range defined as a box around Australia with latitude
between 5° S and 45° S and longitude between 100° E and 175°

E, and (3) from the invaded range defined as western Europe
extending to Africa and the Mediterranean Sea, between
latitude 20° N and 60° N and longitude 35° W and 40° E. These
boxes roughly correspond to the maps of the native and
invaded ranges presented in the results. In each of these three
cases, the background selection corrected for unequal areas at
different latitudes (i.e. they correspond to random pixel draws
from equal area grids).

To compare the effect of background selection on
transferability, regional models with corresponding regional
backgrounds were compared to regional models with global
background. Models trained with combined samples from the
native and invaded ranges always used the global background.

Niche Model Inference
Niche models were inferred with Maxent 3.3.3f [24,68,69].

The analyses were automated via a Perl script and carried out
on a multicore linux server. All analyses were run with 10,000
random background points as specified above. The training,
test and background points, were provided as SWD files and
the resulting models were projected onto the Bio-ORACLE grid
[61]. Maxent’s jackknife function was activated and samples
were not added to the background to avoid complicating model
comparisons. The models resulting from the ten replicate
occurrence-thinned training sets were averaged for
visualization but other interpretations were based on the
individual models.

Downstream Analyses
Models were compared to identify which choices lead to

better-performing models. In order to evaluate the
transferability of models, we compared models built on the
native and invaded ranges in a pairwise fashion, using the
Schoener’s D niche similarity measure [70] and reciprocal test
AUC (i.e. native training samples with test samples in invaded
range and vice versa). The overall predictive power of models
was compared with the test AUC, taking care to only compare
models built with identical geographic background datasets.

Results

Exploration of new methods
We implemented two methods that tackle issues related to

the overall quality and transferability of niche models. The first
of these, occurrence thinning, clearly reduced the geographic
sampling bias present in the occurrence points, as indicated by
the kernel density plots before and after occurrence thinning
(Figure 1). In this figure, the red blob with dense sampling
along the French Riviera and nearby localities disappears
entirely after the thinning procedure (Figure 1A-B). Geographic
sampling bias was less of a problem in the native range (Figure
1C-D).

The results of the second method, which surveyed all
combinations of predictor combinations, is summarized in
Figure 2. As could be anticipated from previous studies, the
representation frequency of variables among the top-scoring
models is sensitive to whether the analysis was done on the
native range, the invaded range, or both combined. Using local
or global background points resulted in qualitatively similar
results (Figure S1). The consensus made across the three
boxes in Figure 2, including only variables that are likely to be
of global significance (present in at least 60% of the top-scoring
models for at least 2 out of 3 regions), consisted of 4
predictors: DAmean, phosphate, salinity and SSTmean.

The effect of these two methods on model performance was
evaluated by including them as factors in our experimental
design. So all Maxent analyses were run with all samples and
thinned samples. Similarly, models were run with all eight
variables included and with only the four consensus variables
selected from the survey.

Transferability as a function of modeling choices
Our multifactorial experiment showed that reducing the

number of predictors, based on our surveying method, yielded
much better models with higher test AUCs (Figure 3A) and
Schoener’s D (Figure 3B) than models with the full set of eight
predictors. This is clearly visible in both figures: the leftmost
two columns of both panels of the figure have warmer colors
than the rightmost two columns. A Wilcoxon signed-rank test
(WSRT) indicated that the difference in test AUC and
Schoener’s D between matching models is significant (p =
0.0078 in both cases, N = 8).

With test AUC as the measure of transferability (Figure 3A),
the two upper rows had warmer colors than the lower two rows,
suggesting better performance of models that use global
background samples compared to models in which background
samples are restricted to the region in which the model is
trained. This pattern was not present in the Schoener’s D
values (Figure 3B), where models with global background and
auto-features had remarkably low values of D, and the WSRT
outcomes conflicted strongly (p = 0.0078 for AUC, p = 0.9453
for Schoener’s D, N = 8). The higher AUC with global
backgrounds may thus be a consequence of the sensitivity of
AUC to background choice rather than an actual increase in
predictive power with global backgrounds.

Model complexity and occurrence thinning did not have a
large effect on transferability between regions. However, the
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second row in Figure 3B shows substantially lower Schoener’s
D for a set of models with auto-features compared to the same
set of models with enforced simple models (the row above).
This difference was not present for the regional background
case (3rd vs. 4th row).

Overall predictive performance of SDMs
Models built with occurrences from throughout the native and

invaded ranges have considerably higher predictive power than
models trained on one range and projected onto the other
(WSRT, p = 0.0156 and 0.0078 for AUCglobal vs. AUCnative→invaded

and AUCglobal vs. AUCinvaded→native respectively, N = 8, for pairs
with global background only). These models’ test AUC values,
calculated on 50% random test occurrences from throughout
the range, are all close to 1 (Table 1), indicating strong overall
predictive power. The predictive performance of models based
on pooled occurrences from native and invaded regions barely
differ between conditions, indicating that models built with
occurrences from both ranges are less sensitive to choices
made during the modeling process (Table 1).

An SDM for Caulerpa Cylindracea.  The various SDMs with
high predictive power were visually similar, and we present
environmental suitability maps of one of the top-scoring models
in Figure 4. The global map, which uses a threshold to indicate
predicted suitable areas, clearly highlights large parts of the
coasts of Australia (native region) and the Mediterranean Sea
(invaded region) as having suitable macroecological conditions.
In addition, the model predicts suitable environmental
conditions along the East Coast of the USA, parts of the
Caribbean region, the tropical to warm-temperate coast of
Brazil, parts of the coasts of Madagascar and Southeast Africa,
as well as Taiwan and the main Japanese islands.

Within the native region (Australia, Figure 4B), the model
predicts suitable macroecological conditions along almost the
entire coast of southern Australia, including northern Tasmania,
the west and east Australian coasts except for a region in SE
Queensland, and parts of the north coast, where some regions
had intermediate predicted suitability. These predictions are a
considerable extension of the presently known range of the
species (Figure 1C), and high environmental suitability is
predicted in the various embayments of southern Australia
where the species has recently established and become a

Figure 1.  Effect of occurrence thinning on geographical sample bias.  The colors on the map represent the regional sampling
density, warmer colors indicating higher sample densities. Occurrence thinning substantially reduces the geographic sampling bias,
as illustrated by the disappearance of the red blob along the French Riviera and closeby localities (panel A → B). There is less
geographic sampling bias in the native range, so occurrence thinning does not have a big influence on the kernel density maps of
that region (panel C → D). Note that the slightly elevated density close to the Spanish-French border in the Bay of Biscay (panels A
and B) is caused by samples in the Mediterranean of which the kernel extends across land; there are no occurrences of C.
cylindracea known from that area.
doi: 10.1371/journal.pone.0068337.g001
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conspicuous member of the benthic community. The
multivariate environmental similarity surface (MESS) map is
positive in almost the entire range (Figure 4D, blue colors),
which indicates that the conditions present in the region were
observed in the training data and gives extra credibility to the

model prediction. Given that the MESS map is mostly positive
the "most dissimilar" (MoD) variable map is nearly blank
(Figure 4F).

In the invaded region (Figure 4C), the model also predicted
beyond the known occurrences of the species (Figure 1A),

Figure 2.  Results of the surveying procedure to identify the predictors present in top-scoring models.  Each box contains
the results of the survey for occurrence records from the native range, the invaded European range, or both ranges combined. Each
column within a box represents a single survey carried out on one set of thinned coordinates. The circle diameter represents how
often the variable in question occurred in the top 10 highest-scoring models (test AUC) for that set of thinned occurrences. The
representation of each predictor in the top 10 is also summarized across columns (percentage indicates how many of the top 10
models had the predictor), and the consensus predictor set across ranges is indicated in the box on the right.
doi: 10.1371/journal.pone.0068337.g002

Figure 3.  Impact of modeling choices on the transferability of SDMs.  The transferability of models is approximated by test
AUC (panel A) and the global niche overlap (Schoener’s D, panel B). Columns and rows represent the combinations of the four
factors that were varied in our experimental design and are identical in both panels. The values are also plotted as colors along a
color gradient to permit rapid visual assessment of the important factors, with warmer colors indicating higher values. Each AUC
value in panel A represent the average of the AUCnative-invaded and AUCinvaded-native for the corresponding condition.
doi: 10.1371/journal.pone.0068337.g003
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including Portugal, the NW of Spain and the NW of Africa. In
the East, suitable macroecological conditions were inferred for
the northern Red Sea, although the MESS map indicates that
there is extrapolation beyond observed environmental
conditions (Figure 4E), with the MoD map highlighting the
(high) salinity occurring in the northern Red Sea as the most
dissimilar variable.

The entire Maxent run including input data and all outputs is
available for examination on FigShare (http://dx.doi.org/
10.6084/m9.figshare.681723). Besides showing the main
results presented here in more detail, this resource also allows
examining limiting factors and exploring the components of the
prediction for particular sites with Maxent’s explain tool.

Discussion

Our results have implications for the invasion biology of
Caulerpa cylindracea as well as the more general question of
how best to model the distribution of species introduced
outside their native range. We will first highlight the effects of
the different distribution modeling practices on model
transferability and performance, as well as some limitations of
the procedures described here. Then we will discuss the
meaning of our SDMs for the spread of C. cylindracea in
Europe and Australia.

Building more reliable SDMs of introduced species
Niche conservatism is a central assumption when

extrapolating correlative SDMs of introduced species to an
area outside the bounds of training occurrences. The poor
predictive power of SDMs trained in the native range and
projected onto the invaded range that has been observed in
many studies led to the conclusions that ecological niches can
shift in association with introductions outside of the native
range (e.g. [19,21,71-73], but see 6). In interpreting such niche
shifts, it is important to realize that correlative models estimate
a species’ realized niche and that, as a consequence,
observed niche shifts do not necessarily reflect physiological

changes (i.e., modifications of the fundamental niche). In other
words, the perceived niche shift can result from two different
realizations of the same fundamental niche in different areas,
and it has been argued that this scenario is more parsimonious
than that in which the fundamental niche changes [9,74].
However, changes in the fundamental niche of introduced
species are certainly possible [4,15].

Regardless of whether niche shifts observed in correlative
SDMs are a consequence of changes in the realized or
fundamental niche, it would certainly be useful to have a set of
procedures that improve the predictive power of SDMs outside
the training range in order to inform conservation planning and
decision making. The methods used here were applied hoping
they would improve the transferability of the SDMs of
introduced species built using the popular presence-only
method Maxent. We found that reducing the number of
predictor variables drastically improved the transferability of our
SDMs. Limiting the model complexity, reducing geographic
sampling bias by occurrence thinning and choosing a global
background had comparably small effects.

The effect of the choice of predictors has long been known to
have a drastic effect on the transferability of SDMs of
introduced species (e.g., [4,9,19,20,21]). The method used
here, which surveys all combinations of variables for the native
as well as the invaded region, attempts to identify variables that
are likely to be of global rather than regional significance.
Models based on the set of variables identified by this
approach were more transferable than models with a more
comprehensive set of variables, irrespective of whether
reciprocal test AUC or Schoener’s D were used to measure
transferability. Although the use of procedures to select
predictors and model complexity in an automated manner is
common practice in many types of modeling including niche
modeling [75-77], to our knowledge such approaches have not
been used commonly in combination with Maxent. However,
we do acknowledge that such predictor selection methods are
no substitute for physiological knowledge of the organism [78],
and here they were used to further refine a set of predictors
that was already reduced from the full Bio-ORACLE dataset
based on what we know are important factors determining algal
growth.

Previous studies have also shown that reducing the
complexity of models to fit smoother responses yields the best
correspondence to physiological knowledge and as such, the
models achieve better overall performance and have higher
transferability [7,10,11,79]. For these reasons, the use of
simple environmental response surfaces to avoid overfitting
has been recommended for SDMs of invasive species [4,7,11].
Generally, the complexity of maximum entropy models is
adjusted by using L1 regularization [68], which varies along a
continuous scale and has been used in other studies aimed at
improving the performance of Maxent SDMs [10]. We chose to
use a simple dichotomy between Maxent’s auto-features
versus the use of only linear and quadratic features to keep the
experimental setup simple. Our results did not show a
meaningful difference between the transferability of models
built under both conditions and thus we did not observe the
improvement of predictions with simpler models that other

Table 1. Predictive performance of models built with
occurrences from native and invaded ranges as a function
of choices made in the modeling process.

occurrence
thinning predictor selection model complexity

performance (test
AUC)

yes no simple 0.975
yes no auto 0.990
yes yes simple 0.982
yes yes auto 0.988
no no simple 0.972
no no auto 0.991
no yes simple 0.974
no yes auto 0.992

The overall predictive performance, as measured by the test AUC, is very high and
the factors have only a minor influence on the outcome. All models compared in
this table use the same set of 10,000 background points (global, equal area).
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studies have [7,10]. This can probably be attributed to the fact
that model complexity does not differ much between the two
conditions in our experimental setup: the auto-features
condition only differed in having hinge features in addition to
the linear and quadratic features used in the "simple" condition.
Nonetheless, we follow previous authors in their conclusion
that correlative models with smooth responses will generally
outperform those with complex responses. This is especially
true if the number of occurrence points used to build models is
large, because this increases the potential for overfitting. Since
the identification of suitable predictors and an appropriate level
of model complexity are related to one another, it may be
advisable to integrate these two into a single procedure as
commonly done in classical model selection procedures [75].

The use of thinned occurrences generally resulted in SDMs
with better transferability, but the effect was not significant in a
Wilcoxon signed-rank test and small compared to that obtained
from predictor selection. Nonetheless, we anticipate that this
approach may be useful in situations where the geographical
bias is stronger than in our dataset and/or in situations with
stronger spatial autocorrelation in the environmental grids.
Other approaches that have been proposed to deal with
geographic bias in occurrence records are to introduce the
same sort of bias in the background points by specifying a
target-group background, using bias grids in Maxent, or
through application of trend surface analysis [7,25,26]. Various
statistical approaches to address spatial autocorrelation have
also been used [13]. In our case study, the background

Figure 4.  Species distribution model for Caulerpa cylindracea.  Panel A shows global areas predicted to have suitable
macroecological conditions for the species. This map uses a threshold for Maxent’s logistic suitability corresponding to the 10%
training presences (threshold = 0.053) and predictions are plotted only for coastal areas (less than 7 pixels from shore), with
predictions in the open ocean masked. Panels B and C show the continuous logistic model output for the native and invaded
ranges, respectively. The corresponding multivariate environmental similarity surface (MESS) maps are shown in panels D and E,
and the most dissimilar (MoD) variables in those areas that require extrapolation are shown in panels F and G.
doi: 10.1371/journal.pone.0068337.g004
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selection had a rather limited effect on the transferability of
SDMs and in this context, it is worth noting that there were
differences between the transferability results depending on
whether they were measured as test AUC or as Schoener’s D.
The difference was most pronounced for models with global
backgrounds and auto-features (compare second row in Figure
3A with second row in Figure 3B). It is well known that AUC is
sensitive to background choice, with larger backgrounds
inflating AUC values while not yielding more informative
models [26,80,81]. Our observation of higher AUC values for
global backgrounds compared to regional backgrounds, which
was not paralleled in Schoener’s D, is completely in line with
this. As such, for comparisons of the transferability of models
built with different backgrounds, we suggest the use of
Schoener’s D rather than test AUC. Regarding the
transferability of models as a function of the background
selection, a previous study concluded that using background in
reachable areas provides a "less risky prediction space" [7].
Our experiments did not confirm this conclusion but suggested
that transferability (as measured by Schoener’s D) is indifferent
to the choice of background.

From the results discussed above it is clear that the
usefulness (i.e., the predictive power) of reciprocal niche
models is quite variable and strongly depends on the choices
made. While they barely outperform random models under
some conditions (some test AUC < 0.6 in Figure 3A), making
the right choices outlined above improves the predictive power
of models trained in one range and projected onto the other
(0.90 < test AUC < 0.93 for the best models, Figure 3A).
Nevertheless, if distribution data are available from both the
native and invaded ranges, it is advisable to build models from
a combined set of occurrences. For our data, models based on
combined occurrences outperformed reciprocal models (test
AUC > 0.99 for best models). In this case, it is appropriate to
use test AUC to compare performance, as all these models are
built and evaluated using identical background points. Similar
conclusions regarding the better predictive power of models
using combined native-invaded datasets were reached in
studies of other species (e.g., [4,82]). Our results also suggest
that the combined data have the advantage of being more
insensitive to the modeling choices that need to be made, but
this generalization should be verified with other case studies.

Potential limitations
Besides discussing the performance of the various methods

applied, it is also useful to point out their assumptions and
potential caveats.

Firstly, our case study had the advantage of having relatively
large sets of occurrence records for the native as well as the
invaded range. In many cases, however, one will want to build
reliable predictive models for species that were recently
introduced and for which only a few occurrences have been
recorded in the invaded range. How could a suitable set of
predictors be identified in this case? Our approach relied on
having sufficient data to identify those variables with predictive
power in both geographic regions separately and combined. As
an alternative, one could first identify the predictors achieving
predictive power in the native range and subsequently compare

the frequency distribution of those variables between samples
from the native and invaded ranges with the aim of avoiding
variables for which the invaded samples are outside of the
range of values of native samples. It may also be beneficial to
upweight the scarce samples from the invaded range in the
model-building step. It is worth noting that we used an
essentially arbitrary threshold to retain predictor variables, i.e.
they had to be present in 60% or more of the top-scoring
models for at least two out of three regions (Figure 2). This
approach was chosen because variables important in multiple
regions are more likely to be of global importance, and
secondly because the 60% threshold resulted in a halving of
the number of predictors. However, this raises the question of
how these criteria influence the results and whether more
objective criteria could be used. The evaluation of all these
ideas as well as other possible approaches is an attractive
avenue for further research.

Our general approach towards increasing the transferability
of SDM does not make explicit assumptions about whether or
not a niche shift between ranges is present, or if it is, whether it
is situated at the level of the fundamental or the realized niche.
The ideal scenario is that there are no niche shifts between the
populations and transferability is not an issue. However, if a
niche shift is present, our predictor reduction approach will
eliminate those predictors that have poor predictive power in
one or both ranges, regardless of whether any changes in
predictive power between regions are due to differences in the
realized or fundamental niche. While we expect that eliminating
predictors that have regional rather than general relevance will
be sound in a majority of cases, there are scenarios imaginable
where this will not work. For example, if the correlation
structure of predictor variables differs between regions, an
indirect variable (i.e. one that does not affect the distribution
but is correlated with another one that does affect it) may be
identified as important in both regions but have very different
response curves in both areas and thus lead to poor
transferability. Similarly, variables that are directly relevant to
the distribution may differ systematically between regions,
decreasing the transferability of the SDMs built from them [74].

Even though it can be expected that the distance-based
thinning will improve most models, this may not always be the
case. In fact, this procedure may discard useful data when
regions of dense sampling coincide with steep ecological
gradients over short geographic distances. Also, if sampling
reflects population densities, geographic autocorrelation of
records can add a potentially desirable quantitative aspect to
the model. This will, of course depend on the specific goal and
the dataset being studied.

Finally, our evaluation of methods is based on a single case
study, and there are no guarantees that our results will
extrapolate to other introduced species. A logical next step is to
apply these methods to a range of suitable case studies. The
time since the introduction and dispersal potential of the
species should be prime criteria in selecting species to further
test these methods. Species that were introduced a long time
ago and have had the chance to disperse widely in the invaded
range are more likely to have spread through their entire
potential niche and thus make good case studies.

Transferability of Species Distribution Models

PLOS ONE | www.plosone.org 9 June 2013 | Volume 8 | Issue 6 | e68337



An additional approach towards testing the degree to which
these methods can be generalized, as well as to explore the
various other questions raised in the discussion, is to carry out
simulation experiments. Simulation is a powerful tool for testing
the logical consistency of ideas as well as the efficiency and
reliability of methods. They have not been widely used to
evaluate presence-only SDM methods, although there appears
to be a trend towards their increased use in recent years
[17,74,79,83-87]. Besides identifying the circumstances in
which niche modeling algorithms perform well and those in
which they are more likely to fail, simulation is a powerful tool
to assess the effectiveness of procedures such as those
described here. Such insights would obviously be beneficial to
the whole SDM field.

Invasion and spread of Caulerpa Cylindracea
The distribution model presented for C. cylindracea predicted

potential expansions in the invaded range along East Atlantic
coastlines of Europe and Africa as well as a substantial
potential expansion along the southern coast of Australia
(Figure 4A). Admittedly, the logistic values in Maxent lack a
clear-cut interpretation [88] and determining thresholds for
presence-only SDMs is not an exact science [89,90]. Based on
several thresholds tested (e.g. 10-percentile training presence,
equal training sensitivity and specificity), the inferred range
boundaries are quite far beyond the known occurrences of the
species (Figure 1 vs. Figure 4A). This suggests that our current
knowledge may underestimate the potential range of this
species in these areas. In the Mediterranean and East Atlantic
region, the species has only been present for only about 20
years and, despite the species’ relatively rapid colonization rate
[91], it is likely that it has not reached its distributional limits yet.
In Australia, the native area of the species, it was known best
from the Western Australian coast [48]. However, the recent
observations of invasive populations of this species along the
southern coast, where it did not previously occur (reference
[46] and pers. obs.), prompted us to generate SDMs for this
species in order to investigate whether the species could
potentially colonize more of the coast. Our models do indeed
suggest that the macroecological conditions are highly
favorable and that C. cylindracea could colonize the entire
southern coastline of Australia. Besides these potential
expansions in regions where the species is present already,
several other coastlines are predicted to be suitable
environment where the species could establish if it were to be
introduced (Figure 4A).

Needless to say our models only incorporate
macroecological predictor variables. Besides this, the
microhabitat, as well as possible biotic interactions, also need
to be favorable for the species to establish itself in the areas
that are predicted to be suitable. In its native range, C.
cylindracea is usually found on rocky substrata close to the
low-tide mark but in more tropical locations (NW Australia and
the Great Barrier Reef) it is typically found growing on sand in
lagoons and around reefs. In the Mediterranean Sea, it has
been found between 1 and 60 meters depth, on all types of
hard and soft substrata and in different communities, with the
only exception being unstable sandy substrata [29]. A number

of studies have studied the microhabitat preferences of the
species in some detail in the Mediterranean, showing that it
thrives on rocky substrata among other macroalgae as well as
in dead seagrass beds [92-94], and that it tolerates near-
bottom orbital velocities below 15 cm s-1 [93]. In summary, the
species occurs in a wide range of common microhabitats, so it
is likely that it could establish in the great majority of areas
predicted by our SDM if there are no biotic interactions
inhibiting its settlement and expansion.

The correlative model from this study can also be used to
inform experimental studies on the physiological tolerances of
C. cylindracea. Even though we have not shown or discussed
detailed response curves in the main paper, these are available
as supplementary materials on FigShare (http://dx.doi.org/
10.6084/m9.figshare.681723). Most correspond to our
expectations based on physiological knowledge of other algae,
including other Caulerpa species [95], but some do not. For
example, the correlative model indicates that the species is
mainly found in phosphate-poor waters with the response curve
rapidly dropping at concentrations over 0.4 µmol L-1. Studies on
other species indicate that macroalgae have an increasing
response curve for macronutrients and that low rather than
high concentrations may be limiting seaweed species in nature
[96-99]. This suggests that our correlative model may be
misled in this case. It is also interesting to note that models
built from occurrences in the native range predicted a much
broader range of suitable temperatures than models from
occurrences in the invaded range. More specifically, the model
from invasive occurrences has a response curve that peaks at
ca. 20°C, dropping off quickly at higher temperatures. The
curve from a model with native occurrences also peaks at ca.
20°C, but drops much more gently at higher temperatures.
Whether this should simply be interpreted as an indication that
warmer areas are yet to be colonized in the invaded range (i.e.
that the model is biased towards colder temperature due to the
current distribution), or that the introduced strain has a reduced
range of temperature tolerance compared to the native
population, remains to be investigated. To further characterize
the most relevant features determining the species’ range, it
would be informative to evaluate the gradients of predictors
occurring across the inferred range boundaries, and put those
to the test in physiological experiments.

Conclusions

In order for Maxent presence-only SDMs to be useful in
predicting and managing introduced and invasive species, a
number of problems related to their accuracy and transferability
have to be overcome. The methods introduced, explored and
evaluated here aim to improve the situation. Reducing the set
of predictors to those anticipated to be of global significance
resulted in a strong improvement of SDM transferability, with
occurrence thinning, model complexity and background choice
having relatively minor effects. If available, occurrences from
the native and invaded regions should be combined, as this
yields the best-performing models and apparently reduces their
sensitivity to choices made in the modeling process. We also
presented an SDM of Caulerpa cylindracea that achieves very
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high predictive power, illustrating the applicability of these
methods in the marine realm for which comparably little niche
modeling has been done [100]. The procedures introduced
here are available for further evaluation with other case and
simulation studies, which should provide further insights into
the degree to which our results can be generalized. We hope
and anticipate that they will form a useful strategy to improve
predictive SDMs and in turn, help to better inform
environmental decision makers.

Supporting Information

Figure S1.  Model surveying results indicating qualitatively
similar results when analyses are carried out with global or
regional backgrounds.
(PDF)
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