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Spatial patterns of biodiversity are inextricably linked to their collection methods, yet 
no synthesis of bias patterns or their consequences exists. As such, views of organismal 
distribution and the ecosystems they make up may be incorrect, undermining count-
less ecological and evolutionary studies. Using 742 million records of 374 900 species, 
we explore the global patterns and impacts of biases related to taxonomy, accessibility, 
ecotype and data type across terrestrial and marine systems. Pervasive sampling and 
observation biases exist across animals, with only 6.74% of the globe sampled, and 
disproportionately poor tropical sampling. High elevations and deep seas are particu-
larly unknown. Over 50% of records in most groups account for under 2% of species 
and citizen-science only exacerbates biases. Additional data will be needed to overcome 
many of these biases, but we must increasingly value data publication to bridge this 
gap and better represent species’ distributions from more distant and inaccessible areas, 
and provide the necessary basis for conservation and management.
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Introduction

Human knowledge of biodiversity is based on observations or specimens of different 
species that are used to determine their distributions. Given accessibility biases, models 
are often necessary to improve the limited resolution at which we can map life (Gaston 
2000, Jetz et al. 2012). However, if occurrence records are biased in their collection, 
models may be unrealistic (Beck et al. 2014, Costello et al. 2015a, Qiao et al. 2015). 
Similarly, in correlative studies, trends may actually be reversed when accounting for 
sampling effort versus not (Hughes 2017). The ability to understand and protect life 
on Earth is, in turn, limited by present knowledge of the biases underlying the data, as 
these biases frame resulting perspectives and influence all analytical outcomes.

We must understand the spatial structure of biases to accurately reconstruct large-
scale patterns, but prior studies have focused on specific regions, systems or taxa 
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(Yesson et al. 2007, Mora et al. 2008, Daru et al. 2018). 
Whilst former analyses have explored some of these analy-
ses, including geographic, political and accessibility biases 
(Kadmon et al. 2004, Boakes et al. 2010, Amano and 
Sutherland 2013, Meyer et al. 2016, Moudrý and Devillers 
2020) most of these focus on limited regions or taxa (the 
largest analyzing terrestrial vertebrates only). Although 
countless algorithms have been developed for estimating bio-
diversity patterns (Soberón and Llorente 1993, Colwell and 
Coddington 1994, Gotelli and Colwell 2001, Mora et al. 
2008, Chao et al. 2014, Colwell and Elsensohn 2014, 
Hsieh et al. 2016), the value and applicability of statistical 
method will always be determined by available data. One 
might assume that with millions of newly available records 
we would have improved our spatial knowledge and repre-
sentation of life on the planet, yet progress has not been glob-
ally assessed, and biases have yet to be compared between the 
terrestrial and marine realms (Webb et al. 2010). Further, the 
proximal drivers of biases remain unexplored at the global 
scale. Consequently, it is tremendously difficult to map any 
single group at the global scale, much less all of life, and 
even then many analytical methods may fall short (García-
Roselló et al. 2015, Orr et al. 2021a), except for the best-
known groups such as birds (Rahbek et al. 2007, Jetz et al. 
2012). Here, we explore the bias dynamics of some of the 
‘best-sampled’ animals across terrestrial and marine systems 
to determine how accessibility has shaped our view of the 
natural world.

Whilst former analyses have highlighted that biases within 
globally available datasets mean that commonly used indi-
ces for biodiversity mapping do not reliably recreate richness 
patterns (and risk conflating richness with sampling inten-
sity, and turnover with spatial gaps; Engemann et al. 2015), 
other indices which can reconstruct diversity patterns despite 
these biases are less studied. This analysis represents the first 
comprehensive global analysis representing both marine and 
terrestrial data, analyzing their spatial and taxonomic cover-
age, the biases encountered and the drivers of these biases. 
Prior analyses have unpacked various parts of these trends, 
but a holistic and standardized view across regions and taxa 
was lacking; thus, we selected taxa with both marine and 
terrestrial distributions (or saltwater and freshwater) so rel-
ative coverage could be compared in both contexts within 
taxa. Furthermore, whilst approaches have been developed 
to ‘clean data’ (Zizka et al. 2019, 2021, Jin and Yang 2020) 
these do not provide mechanisms to use existing data better 
to assess global diversity patterns or their completeness. Here, 
we also discuss the limits of effective use of existing data, and 
how gaps might most effectively be targeted.

Methods

Detailed methods are given in the Supporting information, 
so here we provide a briefer summary. A representative sample 
of higher taxa of vertebrates and invertebrates was selected for 
based on their distribution within both terrestrial and ocean 

systems. All four major terrestrial vertebrate groups were 
selected (Aves, Amphibia, Mammalia and Reptilia) along with 
a selection of groups found in both realms (Actinopterygii, 
Annelida, Arachnida, Cnidaria, Elasmobranchii, Gastropoda 
and Malacostraca). In total, 742 161 633 records were ana-
lyzed, including 38 313 609 of 57 252 510 potential OBIS 
records for marine systems (80% of animal records, 67% of 
all records) and 703 848 024 of 1.23 billion potential GBIF 
records. Records were filtered for synonyms, then distribu-
tions analyzed to assess the percentage of records in relation 
to roads, cities, shipping routes and coastlines (percentage of 
records at 0–1, 1–2.5, 2.5–5 and over 5 km) in R. We also 
assayed the levels of spatial coverage at different elevations 
(and elevation zones, including above and immediately below 
the treeline), biomes and within protected areas and KBAs.

Results

Global bias patterns

Terrestrial and marine systems are mostly unsampled (based 
on all databased records). At a 5 km resolution, < 7% of 
the Earth’s surface was sampled, only 5% of the ocean and 
11% of land (Fig. 1). A 10 km grid inflates sampling cov-
erage up to three times for most groups (Supporting infor-
mation). If birds are removed (87% of all GBIF and OBIS 
records), coverage drops to 4% for oceans and 7% for land 
(5 km grid; Table 1). Decreasing resolution inflates perceived 
coverage (Supporting information); for example, for ocean 
samples of Actinopterygii coverage changes from 0.21% at a 
0.01° resolution to 47% at 1°, whilst on land coverage shifts 
from 0.24% to 46%. Likewise, mammals shift from 0.22% 
in ocean and 0.45% of land at 0.01° to 52 and 51% at 1°.

Taxonomic biases pervade; for OBIS, just 155/31 859 gen-
era account for 50% of records, whereas in GBIF, 100 bird 
species account for 56% of the records (0.027% of species in 
this analysis) and 38.4% of total animal records. Further, 2% 
of GBIF animal records come from just Anas platyrhynchos 
(mallards) and Sturnus vulgaris (starlings); 11.4% of animal 
records come from ten bird species (Supporting information).

GBIF data fail to represent diversity across groups. For all 
taxa examined, 10% of all records covered < 0.1% of species 
and 25% of records covered < 0.5% of species. Surprisingly, 
the top 50% of records for each taxon represented < 4% of 
species with the exception of Cnidaria (7%). Birds are hugely 
overrepresented; the 85 most-sampled bird species each have 
more records individually than all reptiles. Despite similar 
numbers of species, reptiles have 0.7% of the number of bird 
records (Supporting information). For many taxa, a signifi-
cant proportion of species is represented by a single record, 
while many may have no records (in OBIS, from 4% in 
mammals to 50% in Arachnida – Supporting information). 
This dominance is even more apparent when the percentage 
of observations from birds is explored at different resolutions 
(Supporting information): at high resolutions all terrestrial 
areas are dominated by birds, and at coarser resolutions, 
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whilst developed countries achieve a better representation of 
other taxa, developing countries are still almost exclusively 
birds. Furthermore, even from the subset of areas with data, 
over 80% of samples from most taxa come from under 10% 
of sampled areas, though sampling is more concentrated into 
a smaller percentage of sampled areas in terrestrial than oce-
anic systems (Supporting information). Data are clustered in 
very small regions; for example, at 0.01° (1 km) resolution 
1% of the sampled area includes on averaged 57% of sampled 
ocean species and 51.23% of terrestrial species. However, it 
should be noted that this concentration of data varies and 
can be as high as 77.2% of ocean species and 79.9% of terres-
trial species in just 1% of sampled area (in the case of birds), 
compared to less well sampled groups (invertebrates are often 
under 40% of species, with annelids and arachnids showing 
low values in oceanic and terrestrial systems).

Globally, huge spatial biases exist (Supporting informa-
tion); 79% of GBIF data comes from ten countries, 37% 
from USA. When terrestrial political areas < 100 km2 
are excluded, sampling coverage and GDP per capita are 
strongly related (y = 0.2967x + 2.8446, R2 = 0.2511), with 
higher-GDP countries better covered. The GDP-per-capita 
of territories also influences sampling coverage, with devel-
oping countries less known despite many more species in 
tropical areas (via Exclusive Economic Zones; Supporting 
information).

Country centroid and gridding of points were less impact-
ful. Gridding was largely from genuinely-gridded plant sur-
veys (572 datasets accounting for 8.1% of all records, with 
the largest at 20 999 334 records), and only 0.01% of all 
non-plant records were located in country centroids, 0.02% 
at country or province.

Figure 1. Areas with high numbers of records in GBIF and OBIS databases. Black 1–50 records, Yellow-red > 50 records at a 5 km 
resolution.

Table 1. Percentage global coverage for terrestrial (including freshwater) and ocean areas at a 5 km resolution per-taxon. Coverage of areas 
500 m under the treeline (TL500), above the treeline (Nival) and top global quartile (quart) and deep-sea (DS) sampling coverage.

Ocean Terrestrial TL500 Nival Quart DS 1000–1800 DS > 1800

Actinopterygii 1.58 2.4 0.44 1.69 0.32  
Amphibia 0 2.02 0.48 1.39 0.39 0 0
Annelida 0.36 0.42 0.37 1.48 0.12 0.1 0.01
Arachnida 0.01 1.17 1.88 4.49 0.68 0 0
Aves 1.93 8.04 1.05 2.74 0.23 0.6 0.02
Cnidaria 0.54 0.21 0.03 0.05 0 0.42 0.01
Elasmobranchii 0.61 0.07 0.42 0.25 0.02 0.49 0.02
Gastropoda 0.61 1.41 3.87 8.96 1.24  
Malacostraca 1.48 0.8 0.12 0.47 0.02 0.1 0.01
Mammalia 1.2 3.35 0.42 1.35 0.17 0 0
Reptilia 0.18 2.59 0.19 0.67 0.03 0.4 0.02
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Trends in accessibility

High mountains and deep seas
Sampling is limited by elevation/depth and ecosystem 
(Supporting information), with most roads and therefore sam-
pling at lower elevations (Supporting information). When high 
elevations are examined, coverage for all groups is low, at < 
1% coverage for most in the area abutting treeline (nival zone) 
and for most groups, except birds, above the treeline (Table 1, 
Supporting information); the top quartile of global elevations 
also has < 1% coverage for all groups except birds (1.24%), typi-
cally with just 1–5% of each taxon’s records there.

Coverage is notably lower in marine systems overall, 
though deep-sea areas are particularly unsampled, with  
< 0.6% coverage for all groups between 1000 and 1800 m, 
and < 0.02% at depths below 1800 m for all groups. However, 
between 1000 and 1800 m contains 5.1% of records for spe-
cific groups (Cnidaria, Table 1).

Accessibility
Spatial biases are high across taxa, ranging from 41% 
(Actinopterygii) to 65% (Elasmobranchia) of non-marine 
records within 1 km of roads, with a further 40% within 2.5 
km of roads (Fig. 2). At least of 80% of records were within 
2.5 km of roads for each taxon independently. If genus aver-
ages are examined, the average percentage of localities > 5 
km from roads increases across groups (Supporting informa-
tion), as large numbers of rarely-recorded genera are found 
farther from roads. However, when examined separately, the 

proportion of some extinct genera (e.g. reptiles) away from 
roads increases, indicating that targeted sampling can over-
come accessibility biases.

In oceans, coastal records (within 5 km) make up 30–50% 
of records for most taxa, but exceptions in the best-studied 
groups bias relative sampling levels and, thus, the mean pat-
terns when points are aggregated. For example, in marine 
mammals and elasmobranchs, 4% of genera distributed near 
coastlines comprise 66% of records. Thus, these few, well-
studied groups change overall patterns if considering only 
sample numbers (Supporting information).

The busiest shipping routes in the ocean only cover 2% 
of ocean area, but contain 18% of records and 41% of spe-
cies. These include millions of records from the century-old 
Continuous Plankton Recorder surveys, where sampling 
nets are towed behind commercial ships (Reid et al. 2003). 
Other shipping routes contain 50% of ocean records, whilst 
covering 32% of the ocean and the open ocean has 32% of 
records, despite covering > 65% of the ocean (Supporting 
information).

In terrestrial systems, sampling increases > 5 km from 
coasts, except on islands (Supporting information). Sampling 
is also closely-associated with cities, with 22% (mammal) 
to 47% (arachnid) of records found within 1 km of cities 
(Supporting information). The average number of records 
per genus near cities increases for certain groups (birds, 
Supporting information), indicating that some genera are 
seen almost entirely near cities, especially in arid countries 
with limited agriculture (Supporting information).

Figure 2. Map of global OBIS and GBIF data for selected taxa (yellow) with roads and shipping routes (black) and cities (green). Species 
data fall almost exclusively on these access routes, (barplot) with most distribution data within 2.5 km of roads on land, or either on the 
coast or a shipping route on the ocean. Regional spatial biases are also clear.
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Observation type
How and by whom data were collected strongly impacts 
biases where citizen observations are popular. Thus, countries 
with more human observations and fewer specimen records 
have a higher percentage of records within 2.5 km of roads 
for birds (Supporting information, other groups showing lit-
tle consistent impact). Consequently, the number of records 
relative to the richness within each group varies dramatically, 
with high numbers of easily-observed, common species such 
as ducks and rabbits (Supporting information). Observation 
type also relates to GDP, with most higher-GDP-c countries 
holding larger proportions of human-observed records, espe-
cially birds (birds: y = 429.82x – 13 634, R2 = 0.1165; overall: 
y = 431.64x − 8611.4, R2 = 0.211, p < 0.001). Additionally, 
annual tourist records suggest that countries with low GDPs 
and high proportions of human-observation data relate to 
greater tourism (Supporting information), whereas smaller 
proportions of human-observed records relate to low GDP 
and tourism, such as in central Africa and most Pacific islands.

Biomes and realms

Terrestrial biomes are unevenly sampled, and 22% of the area 
within 2.5 km of roads falls in temperate broadleaf forests, 
containing over > 50% of mammal records and almost 50% 
of bird and amphibian records, despite representing 9% of 
land (Fig. 1). This biome has a mean of 200 (reptiles) to 57 
074 (birds) records per genus recorded, in contrast with man-
groves at 14 and 360 records per genus recorded, respectively. 
Biome sampling biases link to inaccessibility, with some of the 
most-diverse biomes (i.e. tropical) undersampled versus tem-
perate biomes. Natural grasslands are even worse sampled, 
Montane grassland has one mammal record approximately 
every 32 km2, whereas moist tropical forest has 1/15 km2 and 
temperate forest 1/1 km2. If sampling is plotted as a carto-
gram (Fig. 3A), a bimodal latitudinal gradient in sampling 
results, showing how under-represented tropical biomes are 
globally (Fig. 3B). Marine realms show similar biases, with 
just two of 30 marine realms comprising 47% of records, yet 
only 10% of genera, while the two richest realms (17% of 
genera) include 9% of records (Supporting information).

Protection and KBAs

Key biodiversity areas have 27% area sampling coverage for 
land and 18% for oceans. Marine protected areas (MPAs) 
have lower sampling coverage (10%) than terrestrial pro-
tected areas (16%). Some large MPAs in the open ocean are 
consequently undersampled, ranging from 0.02% area cover-
age in Arachnida (largely mites) to 5% in birds (Supporting 
information). Unsurprisingly, birds have the greatest terres-
trial coverage (16%), nearly double that of the next-highest 
group (mammals, 8%), quadrupling the best-sampled inver-
tebrates (Gastropoda at 3%), reflecting both the numerosity 
of bird records and the emphasis on birds in KBA designation. 
Marine KBAs have lower coverage at 7% for birds and also 

lower coverage for all other groups (Supporting information). 
Within protected areas, 7% fewer records were located within 
2.5 km of roads than outside protected areas on average  
per genus.

Discussion

Overview

The digital revolution has transformed the sciences. 
Ecologists, once limited to single-site studies, are now chal-
lenged by sheer data volume. However, these data represent a 
tiny proportion of the planet, and are unrepresentative across 
space and the tree of life. Though surveys have been con-
ducted globally, a lack of institutional support, recognition 
and capacity exacerbates existing trends on data availability, 
leading to the biased global databases, providing a coverage of 
under 7% of the world’s surface at even a moderate resolution 
(5 km) and under 1% for most taxa at higher resolutions. 
Whilst some of these patterns have been explored previously, 
even some of the most comprehensive (Meyer et al. 2015) 
only includes 21% of the data and 5.6% of species in our 
study, and significant effort has been made to improve the 
quality of GBIF data and correct bias in the intervening years 
(Moudrý and Devillers 2020) based upon recommendations 
to improve accuracy and usability of the data (Anderson et al. 
2015). Sampling is universally poor at < 11% for terrestrial 
and ~5% for marine areas, barely touching deep sea or high 
elevations. Regional biases are well-known (Supporting infor-
mation; Martin et al. 2012); the US alone represents 44% of 
available terrestrial vertebrate records. The top ten countries 
have 82% of records; yet, this is limited to Europe, USA, 
Australia and South Africa, leaving 18% to the remaining 240 
(96%) of countries. In addition, whilst coarse (1-degree) cells 
show that over 50% of the planet is sampled, this reduces to 
under 1% when 1 km cells are used as a basis, and to under-
stand community dynamics (especially in heterogeneous 
landscapes) high resolutions are necessary to avoid conflating 
richness with turnover.

Although birds are better sampled than other vertebrates, 
invertebrates pale in comparison to vertebrates despite com-
prising the vast majority of all named species (Costello et al. 
2013a), showing that both regional and taxon-specific efforts 
are necessary to improve our view of the natural world. 
Whilst these taxonomic biases have been documented previ-
ously (Troudet et al. 2017), increasing data availability has 
actually exacerbated this disparity. However, even these basic 
coverage statistics can be misleading, as changing grain-size 
dramatically alters area coverage estimates two- or three-fold. 
Many macroecological studies (Tittensor et al. 2010) make 
BAD (best-available-data) arguments and use coarse resolu-
tions to explore ecological patterns, yet unaccounted-for top-
ographic and climatic heterogeneity limit the meaningfulness 
of such analyses.
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Though publicly-available distribution data provide useful 
temporal (seasonal change) data for birds, coarse resolution data 
cannot be used for any form of regional assessment for most 
areas (La Sorte and Somveille 2019). In groups like mammals, 
this may be not only due to the lack of tropical data, but the 
need for specialist skills for key, understudied groups like bats, 
which often have the highest mammalian diversity in tropical 
regions. For other vertebrates and virtually all invertebrates, 
analysis on biodiversity would prove challenging. Taxonomic 
coverage is also a challenge, with 50% of records limited to < 
2% of species within any given taxon for most groups.

Drivers of bias

The majority of records for all non-marine groups fell within 
2.5 km of a road (averaging 47–56% within 1 km, and a fur-
ther 36% between 1 and 2.5 km), and these biases become 
particularly pronounced where citizen observations domi-
nate (Fig. 2, Supporting information). For birds, citizen sci-
ence exacerbates biases while scientific surveys reduce them 
in terms of biome as well as road proximity bias. Further, 
the percentage of records made through human observation 
shows a strong relationship with GDP/capita, exacerbating 

Figure 3. (A) Area cartograms for sampling and species richness per-biome using GBIF (left) and OBIS (right) data. Areas are resized based 
on relative species numbers (top) and sampling density (bottom). Diversity varies from pale yellow (low diversity) through red-black for 
increasing diversity. (B) Change in size relative to sampling density-terrestrial areas oversampled more than average relative to size are 
coloured orange-red-black, those undersampled green-blue. Graph shows relative size change based on increases or decreases relative to 
average sampling latitudinally per unit area.
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global and regional biases as countries with lower GDP 
may have lower research capacity and access to resources. 
Consequently, high sampling coverage is almost exclusive to 
developed countries (Fig. 1), this is in part responsible for 
the bimodal gradient in global terrestrial sampling (Fig. 3), 
which has also been documented in marine environments 
(Menegotto and Rangel 2018).

Roads provide access to land, rivers and lakes, yet for the 
ocean a much smaller area is easily accessible and citizen sci-
ence is thereby limited. Regardless, disproportionate sam-
pling falls within the immediate vicinity of roads, coasts and 
shipping routes, restricting sampling to a subset of systems 
and species. This limits our knowledge of species distribu-
tions to disturbed, sub-optimal habitats where common, 
human-associated species thrive. These differences fall in 
no small part to the inputs of citizen scientists, exacerbat-
ing biases and vastly increasing the representation of certain 
groups of ‘supertramps’ such as ducks and rabbits (Supporting 
information).

We do not seek to dismiss the use of citizen science data 
for understanding biological patterns (Amano et al. 2016), 
and although biases that can exist in such data have been 
acknowledged (Isaac and Pocock 2015), its impact on global 
diversity mapping is less well described. Our results highlight 
the need for comparable data from less-accessible areas where 
citizen science approaches are insufficient; this is possible 
through museum specimen digitization and data sharing, 
but such efforts are limited by poor funding and academic 
models that fail to recognize or reward generating and shar-
ing distributional data (Costello 2009). Data for the most 
popular taxa in both terrestrial and marine realms (i.e. birds, 
cetaceans, elasmobranchs, primates) show the lowest prox-
imity bias to roads, seaways and coasts, demonstrating that 
popularity (and funding) enables more-representative data.

The consequences of biased data

The consequences of lacking data from more-diverse, intact 
ecosystems and their species are manifold (Fahrig and 
Rytwinski 2009). This shifts the understanding of species 
requirements to the most-disturbed, often least-optimal areas, 
impeding knowledge of their optimal habitats and tolerances. 
Global maps now show the extent of anthropogenic impacts 
for a range of drivers (Bowler et al. 2020), but the information 
on what species and habitats are being impacted is highly-
biased. Species distribution models failing to include addi-
tional records from intact habitat cannot generate accurate 
species ranges or biodiversity patterns, even when compen-
sating with sophisticated statistical techniques (Graham et al. 
2004, Qiao et al. 2017). Consequently, biodiversity in intact 
areas may be underestimated, undervaluing their conserva-
tion status. Thus, though studies have frequently found that 
carefully-used data can be highly informative for understand-
ing patterns (García-Roselló et al. 2015), additional data are 
needed to address current biases in representation of vari-
ous environmental facets even at smaller, regional scales for 
poorly-known areas, as resolution is critically important in 

deciding analysis outcomes (Peterson and Watson 1998, 
Stockwell and Peterson 2003, Rahbek 2005, Hurlbert and 
Jetz 2007, Lira-Noriega et al. 2007). Though statistical and 
model-based approaches are often applied to attempt to cor-
rect for data shortfalls and biases, even the best of interpola-
tions and extrapolations need to be verified and calibrated 
by observations. Science advances based on records of the 
real world and our analyses illustrate that circumspection is 
needed about any generalities in spatial and temporal trends 
in biodiversity for most of the world.

Pervasive biases inhibit the ability to predict and prevent 
biodiversity loss to global changes, and even ‘key biodiversity 
areas’ lack data for most taxa for comparable analysis within 
or between regions. Put simply, if one does not know the true 
past or present state of habitat, they cannot reasonably know 
its future, regardless of the methods used. Montane areas are 
regarded to be at great ecological risk from climate change, 
but our analyses show that they are some of the worst-sam-
pled. High-elevation areas are sampled as poorly as the deep 
sea, making it impossible to map most species sensibly. These 
biases may also hinder assessments of fragmentation or edge 
effects by obscuring the negative impacts of disturbance via 
over-inflated richness in such areas. In the oceans, where the 
impact of sound and vibration are increasingly well-known 
(Nagelkerken et al. 2019), data are similarly almost entirely 
from the most-disturbed areas, with the greatest ship-traffic 
(coasts and seaways). This dramatically limits an understand-
ing of the wider impacts of disturbance, because the animals 
in these systems have been exposed to such disturbances for 
decades, with more sensitive species already extirpated. These 
habitats are no longer what they were even when early expe-
ditions took place, making what few data are available, in 
many cases, unrepresentative.

Unfortunately, the resources presently available are not yet 
fit for the purpose of understanding and protecting global 
biodiversity, although many researchers attempt to do this. 
In common practice, current views of the natural world are 
limited either to ‘expert opinion’ IUCN maps, where inher-
ent knowledge gaps have huge consequences of data use, 
including persistent administrative-area biases (Hughes et al. 
2021), or a coverage completeness for < 6.74% of the planet, 
based on terrestrial, temperate lowlands near roads and cit-
ies in developed countries and their coastal regions. Neither 
data set is currently sufficient for truly global analyses, and 
efforts must be made to better integrate these data, such that 
they may help alleviate the weaknesses and biases of each 
other. A major failing of expert-opinion maps is that source 
data are rarely available so neither the spatial nor temporal 
evidence behind the map is known, preventing uncertainty 
analysis. These maps may be improved by modelling the geo-
graphic ranges of species based on the relationship of field 
observations to environmental variables, such as developed 
by AquaMaps for 25 000 aquatic species (Kaschner et al. 
2019). While point samples suffer from errors of omission, 
as demonstrated here, species range maps have errors of com-
mission. Species are unlikely to be present at every location 
within their geographic range due to local habitat suitability, 
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fluctuating abundance and variable detectability and only 
recent field records can detect changes in species’ abundances. 
Furthermore, whilst approaches such as species distribution 
models are a popular way to overcome such biases and recon-
struct species ranges, less than 1% of the planet has records 
available at the 1 km resolution that is most popular for  
such analysis.

Overcoming current biased data

Our biased worldview cannot be rectified by further data that 
build upon these access-driven biases, through citizen science 
or other means, requiring involvement of the global scientific 
community, and further efforts to mobilise existing inacces-
sible data, such as GBIF’s BIFA and BID initiatives. Thus, 
simply sampling more may as much perpetuate biases as 
address them. A strategic approach to share data and fill gaps 
is needed. We do not suggest that everywhere and every taxon 
needs regular sampling, because some assumptions allow fill-
ing of gaps in species distributions. Rather, a stratified sam-
pling may be more representative and cost-efficient than 
the present idiosyncratic approach, as suggested for oceans 
based on environmental heterogeneity (Costello et al. 2018). 
However, an important first step will be to know what data 
exist in useable form, as if we judge data biases on only pub-
lic data then we may prioritize the wrong regions (Orr et al. 
2021a).

Part of the reluctance to share data in ecology comes from 
this discipline having evolved on a local level, before access 
to data became a fundamental necessity to understand and 
manage global diversity (Costello 2009, Stork 2018). Unlike 
molecular biology, where resources are generally archived 
on the singular repository GenBank, data are more diffuse 
in other biological fields. The late recognition of the need 
for such standardization has led to the fragmentation of 
knowledge and data in many forms in the literature, and 
hundreds of online, unlinked databases, precluding easy 
analysis (Poisot et al. 2019). Established regional databases 
may also prohibit access by international researchers, such as 
the Malaysian Mybis database, preventing even the analysis 
of ranges for endemic or small-ranged species with much 
of their range extending between Malaysia and neighbor-
ing countries. Similar lacking data for most taxa in China, 
Russia, India and others may also prove problematic. In 
general, Africa and Asia will likely require the most effort 
to mobilize sufficient data for reliable biodiversity mapping 
and management, which have been major focuses of GBIF 
data mobilization efforts. Understanding global biodiversity 
patterns will require not simply the generation of new data, 
but the liberation and improvement of existing data which 
may be online on platforms like Dryad or the literature, in 
museum collections, on computer hard-drives, or is available 
in partially complete formats. Many data exist which have 
essentially ‘leaked’ out of the mobilization pipeline, such as 
at the stage of georeferencing, and this is a major challenge to 
leveraging databased specimen records (Soberón and Peterson 

2004, Peterson et al. 2018). Biases in sampling (Supporting 
information) do not represent all data, instead representing 
the combination of genuine gaps and hidden data, as huge, 
inaccessible collections exist globally and the lack of access 
precludes analysis or complete knowledge of which gaps most 
need filling.

These systemic data gaps can be overcome through several 
means. First, strategic inventorying and digitization can pro-
duce less-biased information (Meyer et al. 2016). For exam-
ple, standardized surveys such as the Continuous Plankton 
Recorder and Reef Life Survey, have enabled better sampling 
of plankton and reef fauna across ocean realms although 
biases remain (Costello et al. 2017). Second, existing data 
can be augmented with additional metadata to enable bias 
accounting. GBIF and OBIS recently developed the ‘Event-
Core’ to further standardize data collection events, enabling 
inclusion of sample data as well species records. However, an 
overarching Project-Core framework (De Pooter et al. 2017) 
could enable associated metadata such as the collector effort 
(hours) for a project, its mapped geographic scope, and sam-
pling methods, which could then be compared across projects 
to methodologically and spatially control for collection bias.

Finally, increased funding, institutional and data sharing 
requirements within grants, and career recognition of data 
generation could all greatly enhance data availability for other 
taxa from more-diverse and less-accessible areas and facilitate 
the sharing of the data needed to understand global biodi-
versity patterns (Costello et al. 2013b, 2015b, La Sorte and 
Somveille 2019). Though more difficult than making BAD 
arguments and simply using what data are available, these 
steps will be necessary for scientists to realistically predict and 
prevent biodiversity loss.

Synthesis

The current global view of biodiversity is constrained to what 
can be seen from easily-accessible areas (roads, coast, etc.). 
The most-diverse ecosystems and specialist species are under-
represented, preventing management and conservation of 
diversity or prediction of how ecosystems will be impacted by 
global changes. Before we construct a global, well-organized 
and unbiased database, we must recognize the uncertainty 
of the conclusions that we make via online data sources 
(GBIF/OBIS). We also better acknowledge the limitations of 
knowledge, and ensure that the assumptions most analyses 
include are met to ensure meaningful analysis. Remedying 
these biases is not possible through modelling alone without 
sacrificing the least-known areas and systems. Whilst data 
sharing is now often mandated by journals, the platform is 
often unspecified, leading to a fragmentation of species data, 
from supplements and appendices, as well as online reposito-
ries such as Zenodo, Figshare and Dryad (Guralnick and Hill 
2009, Rüegg et al. 2014), making comprehensive assessment 
impossible. For example, most public bee data are spread 
across five major online repositories, but this does not include 
many single-institution databases and private datasets yet to 
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be shared (Orr et al. 2021a). A standardized, singular plat-
form for data would be ideal (distributional, molecular, mor-
phological, taxonomic, etc.; Orr et al. 2020, 2021b), but it 
may be that the most we can hope for is a better interlinking 
of extant databases, which itself may already prove quite chal-
lenging. Such efforts could be explicitly linked to National 
Biodiversity and Action Plans (NBSAPs) that countries cre-
ate within the framework of the Convention of Biological 
Diversity. Such targets for the post-2020 biodiversity frame-
work are in discussion and would greatly facilitate these 
efforts, as in molecular biology (GenBank), enabling scien-
tists to better mobilize and be recognized for their contri-
butions to protecting global biodiversity, and better analyze 
and target the various data-gaps to provide a more complete 
understanding of the natural world.
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