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Mitigating spread of contamination 
in meat supply chain management 
using deep learning
Mohammad Amin Amani1* & Samuel Asumadu Sarkodie2

Industry 4.0 recommends a paradigm shift from traditional manufacturing to automated industrial 
practices, especially in different parts of supply chain management. Besides, the Sustainable 
Development Goal (SDG) 12 underscores the urgency of ensuring a sustainable supply chain with 
novel technologies including Artificial Intelligence to decrease food loss, which has the potential of 
mitigating food waste. These new technologies can increase productivity, especially in perishable 
products of the supply chain by reducing expenses, increasing the accuracy of operations, accelerating 
processes, and decreasing the carbon footprint of food. Artificial intelligence techniques such as 
deep learning can be utilized in various sections of meat supply chain management––where highly 
perishable products like spoiled meat need to be separated from wholesome ones to prevent cross-
contamination with food-borne pathogens. Therefore, to automate this process and prevent meat 
spoilage and/or improve meat shelf life which is crucial to consumer meat preferences and sustainable 
consumption, a classification model was trained by the DCNN and PSO algorithms with 100% 
accuracy, which discerns wholesome meat from spoiled ones.

Supply chain management (SCM) remains one of the most critical factors in the development of various indus-
tries. Perishable product supply chain management has attracted scientific attention in the last two decades 
due to the rising demands for perishable products. It is estimated that 1.3 billion tons (i.e., economic value of 
over $1 trillion) of produced food is wasted annually, of which 25% of this wasted food can feed the 795 million 
malnourished people in the  world1. Meat is a highly perishable product that accounts for 13% of food  waste2. 
Besides, meat spoilage contributes to one-third of emissions (i.e., the greenhouse gas emissions like CO2) and 
75% of land area used by wasted  food3. Although traditional techniques which are prone to human errors, such 
as manually monitoring and controlling or utilizing non-intelligent systems, are still employed in meat supply 
chain management across countries, especially in developing  economies4. However, the industry 4.0 paradigm 
recommends the automation of processes using novel  technologies5 and new technologies such as artificial 
intelligence to enhance sustainable performance. Artificial intelligence can be employed to increase productiv-
ity while decreasing expenses and improving responsible production and consumption, as expounded in the 
Sustainable Development Goal (SDG)  126,7.

The SDG12 indicates efficient utilization of resources, developing energy productivity, sustainable infrastruc-
ture, green works, and guaranteeing a good  life8. The SDG12 outlines multiple targets, including sustainable 
management and food waste reduction during production and supply  chain9. Yet, the risk is unavoidable in per-
ishable product supply chain management. The rising chemical and biological risk of contamination associated 
with highly perishable meat products increases meat spoilage, hence, affecting the sustainability of perishable 
products in the supply  chain10. Meat has a short life, and its value decreases over time due to exposure to rot and 
damage during logistics, transport, and storage––which indicates the susceptibility, complexity, and uncertainty 
of meat and other perishable products in the supply  chain11,12.

Several factors affect the perishability dynamics of meat, namely pre-slaughter operations, the welfare of ani-
mals on the farm (including quality of food given to livestock), during transportation to a slaughterhouse, age of 
livestock in the slaughtering  process13, and good hygienic practice (GHP) in the slaughtering process can avoid 
bacteria  infection14. Moreover, other drivers that are effective in the perishability and shelf life of meat products 
include proper packaging (i.e., vacuum or modified atmosphere packaging (MAP)), handling techniques during 
slaughtering, optimal temperature control during transportation, retail, and consumer sections, distribution 
conditions (i.e., time, temperature, and type of vehicles), preservation techniques, and  storage15–17. The proxim-
ity of spoiled meat to wholesome meat is one critical factor of meat spoilage––where bacteria (i.e., Brochothrix 
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thermosphacta, Carnobacterium spp., Enterobacteriaceae, Lactococcus lactis, Lactobacillus spp., Leuconostoc spp., 
Pseudomonas spp, and Shewanella putrefaciens) can grow and spread to the meat by extrinsic factors, processes 
(transporting and packaging) and environmental conditions (such as changing humidity and temperature)18,19. 
Therefore, controlling and monitoring meat production during the various stages of the supply chain to manage 
this risk is crucial to achieving food  safety20. Thus, new intelligent technologies such as smart containers, artificial 
intelligence, or IoT methods are required to mitigate post-harvest losses, decrease lead times, and control the 
perishability dynamics in meat supply chain  management12.

Industry 4.0 proposes a paradigm shift from traditional manufacturing to automated industrial operations 
by utilizing novel technologies, including artificial  intelligence21. The provision of food to meet demand due to 
the ever-increasing population has become a global  issue22. However, traditional agricultural supply chains may 
fail to meet global demand unless they are optimized by embedding intelligent technologies in the production 
 function6. Enterprises can address clients’ new demands and supply challenges while maintaining expectations 
in efficiency such as inter alia, online-enabled transparency, easy access to a multitude of options, and constant 
changes in stock-keeping unit (SKU) portfolio. The efficiency of a supply chain is amplified by automating both 
physical tasks and  planning23. Machine learning is a method widely implemented to find patterns and linear 
and non-linear relationships between different variables, and it has various subcategories such as Classification, 
Regression, or  Clustering24–26, which can be employed to analyze and help make  decisions27. Machine learn-
ing and deep learning, which are subcategories of artificial intelligence, facilitate the generation of actionable 
intelligence by processing gathered data to improve manufacturing productivity without substantially altering 
recommended  resources28.

The use of artificial intelligence in the management of perishable products in the supply chain has received 
much attention. Shahbazi and  Byun29 employed novel technologies, including blockchain, machine learning, 
and fuzzy logic to develop a better traceability system in the supply chain that addresses several factors of the 
perishable food supply chain, including evaporation, weight, warehouse transactions, or shipping time, which 
enhances the shelf life of perishable foods. Alfian,  Syafrudin30 proposed the radio frequency identification (RFID) 
technology for traceability of perishable foods, machine learning to detect the direction of passive RFID tags, 
and IoT to control temperature and humidity during storage and transportation, which this integration between 
these technologies enhance the efficiency of the traceability system. Barbon,  Barbin31 used machine learning 
algorithms to predict the quality of chicken based on near-infrared (NIR) spectra data by analyzing chicken.

Deep learning techniques such as deep convolutional neural networks are utilized to automate food manu-
facturing and supply chain management tasks based on the industry 4.0 paradigm. Al-Sarayreh32 proposed an 
integrated system of hyperspectral imaging and deep learning techniques to assess the quality of various food 
products such as meat.  Zhang33 presented a convolutional neural networks (CNN) model for vibrational spectral 
analysis, which measures specific chemical bonds of atoms and molecules. The estimated model achieved 99.01% 
accuracy (better performance than other theoretical techniques) on a meat dataset that consists of chicken, pork, 
and turkey. Al-Sarayreh34 employed the CNN algorithm to build a model for detecting lamb, beef, and pork meat 
adulteration (i.e., adding another type of meat that has a lower price to the meat pack). The model classified 
meats with 94.4% accuracy.  Liu35 utilized a CNN model to detect and analyze the complex matrices of various 
foods such as meat products, aquatic products, cereal products, fruits, and vegetables.

In contrast, existing literature that detects and mitigates the potential spread of contamination among perish-
able foods is limited. Here, due to the effect of bacteria-driven meat spoilage in spreading from rotten meat into 
healthy meats and leading to contamination, this study employs artificial intelligence based on industry 4.0 and 
SDG12 paradigms to automate the controlling and monitoring process of meat production by detecting spoiled 
meats at various stages of the meat supply chain management. This is useful for improving the meat shelf life, 
reducing harm and health-related risk to consumers, and mitigating food and economic waste. Therefore, a deep 
convolutional neural network is employed as a classifier to increase productivity and reduce costs, whereas the 
PSO algorithm tunes the classifier hyperparameters.

The remaining sections of this paper are organized as follows—"Methodology " proposes a deep convolutional 
neural network model and a PSO algorithm utilized for hyperparameter tuning. The experimental results are 
presented in "Data acquisition", whereas the discussion and conclusion are presented in "Particle swarm opti-
mization algorithm" and "Deep convolutional neural networks", respectively.

Methodology
This section describes a popular optimization algorithm, which is employed to adjust the hyperparameters in 
the deep learning model. Moreover, the deep convolutional neural network and its layers are presented herein.

Data acquisition. The dataset utilized in this study was adopted from previous  research36. This dataset con-
tains two classes, wholesome and spoiled red meat samples collected from a supermarket in Turkey. The dataset 
has 1896 images in total, with 948 per class gathered via an IP camera with an image resolution of 1280 × 720.

Particle swarm optimization algorithm. Particle Swarm Optimization (PSO) is a population-based 
stochastic optimization algorithm that is inspired by the bird’s swarm social behavior. This algorithm is a mem-
ber of the Swarm Intelligence (SI) that arises from research based on creatures living as a group. This group 
members have little or no insight but can operate complicated works by interacting with each  other37.

In this algorithm, a population of random particles is first determined, and each of the individuals is assigned 
a velocity and position. The historical behavior of each particle and its neighbors, while they move through 
the search area, adjusts the paces. The new position is updated by the accelerations of the next step and the 
current situation. Therefore, the particles move towards the suitable search space along the searching process 
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and consequently closer to the optimum spot. Each particle that has its position, acceleration, and fitness value 
displays a solution in search space. Every particle goes to its best place and best position of particle swarm at 
each iteration. The movement of particles depends on the speed change calculated using Eq. (1), expressed as:

where −→V ij(t + 1) is particle i speed on the jth dimension at t + 1 iteration, −→V ij(t) is particle i speed on the jth 
dimension at t iteration, −→x ij(t) is particle i position on the jth dimension at t iteration, r1 and r2 are random 
numbers between (0,1), W is a constant, ϕ1 and ϕ2 are constants that are known as velocity coefficients, −→p ij(t) 
is the best position of a particle, and −→p gi(t) is the best position of the particle swarm. The new position of a 
particle is calculated using Eq. (2).

Figure 1 illustrates the PSO optimization algorithm flowchart. This paper employs the PSO algorithm to tune 
the hyperparameters in the deep convolutional neural network model.

Deep convolutional neural networks. Deep learning is a subcategory of machine learning algorithms 
with various architectures, such as, inter alia, deep neural networks (DNNs), CNNs, and recurrent neural net-
works (RNNs). CNN is one of the common algorithms utilized for image classification and recognition. Input, 
hidden, and fully connected layers are elements of a CNN’s construction. Figure  2 illustrates the deep con-
volutional neural networks (DCNN) image classification process utilized herein. The hidden layers comprise 
convolutional and pooling layers. In this algorithm, the pixel values of the image are turned to an array as input 
for CNN.

The convolutional layers are the basis of CNN, which are employed as the feature extractor in this algorithm 
that these features discern images from each other. The neurons in these layers are arranged into feature maps. 
Neurons have a receptive field in a feature map connected to a neurons’ neighborhood in the previous  layer38. 
Figure 3 illustrates the outputs of the first convolutional layer in the proposed DCNN model by extracting the 
features of the image, leading to training an appropriate DCNN model.

Rectified linear unit (ReLU) is an activation function that applies non-linearity to the network, which this 
non-linearity helps produce the non-linearity boundaries. The introduction of this non-linearity to networks 
makes CNN an accurate algorithm. ReLU activation function is formulated in Eq. (3), and the output of a con-
volutional layer and ReLU is calculated using Eq. (4).

(1)
−→
V ij(t + 1) = ϕ1r1

(−→
p ij(t)−

−→x ij(t)
)
+ ϕ2r2

(−→
p gi(t)−

−→x ij(t)
)
+W

−→
V ij(t)

(2)−→x ij(t + 1) = −→x ij(t)+
−→
V ij(t + 1)

Figure 1.  The PSO optimization algorithm flowchart. Source: Authors’ construction using Powerpoint.
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where Yn is the nth output of feature map, f is activation function, which is ReLU here, x is the input image, Wn is 
the convolutional filter related to the nth feature map, and the multiplication sign refers to the 2D convolutional 
operator.

Pooling layers have various types––decreasing the network’s parameters and computations by reducing the 
network’s spatial extent is the purpose of these layers types. The Batch-Normalization layer applies the batch 
normalization method, which converts the inputs to a mean of zero and a standard deviation of  one39. The DCCN 
model training process is accelerated by this method. Dropout is a technique in which a percentage of randomly 
selected neurons are ignored. In other words, the contribution of these neurons is removed temporally on the 
forward propagation, and weight updating is not applied on the backward  pass40. This technique helps avoid 
overfitting (i.e., the predictive model learns well but cannot predict correctly). The flatten layer transforms a 
three-dimensional input into a one-dimensional vector to prepare it for the fully connected layer. The fully con-
nected is placed after the several convolutional and pooling layers to interpret and represent the features that 
have been  extracted41. There are two classes in the binary classification problem; therefore, the Sigmoid activation 
function is utilized. The sigmoid function is formulated in Eq. (5) as:

Several optimization algorithms were developed based on the stochastic gradient descent (SGD) algorithm, 
such as root means square propagation (RMSProp), adaptive moment estimation (Adam), and adaptive gradi-
ent algorithm (AdaGrad). In other words, these algorithms are extensions of the SGD algorithm. Adam is an 
optimization algorithm roughly combining AdaGrad and RMSProp  algorithms42. Adam takes both algorithms 
superior, which uses the squared gradients to scale the learning rate like RMSProp and utilize the moving average 
of the gradient like AdaGrad. Adam updates the weights in a way formulated in Eq. (6).

(3)ReLU = Max(0, x)

(4)Yn = f (Wn ∗ x)

(5)sigmoid(X) =
1

1+ e−X

mt+1 ← β1mt + (1− β1)∇Ct

vt+1 ← β2vt + (1− β2)(∇Ct)
2

Figure 2.  The DCNN image classification process. Source: Authors’ construction using Powerpoint.

Figure 3.  Some outputs of the first convolutional layer. Source: Authors’ construction using Jupyter Notebook, 
and Python version 3.7.
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where ǫ is a small scalar, m is the first moment (i.e., m is mean), β1 and β2 are hyperparameters, v is the second 
moment (i.e., v is uncentered variance), w is model weight, η is the learning rate (step size), and C is the cost 
function. Adam optimizer helps to strengthen the training efficiency and learning  progress43.

Architecture of the proposed DCNN model. The DCNN model includes feature extraction and clas-
sification. The process starts by resizing the image to 100 × 100 × 3, which 100 × 100 represents the height and 
width whereas × 3 refers to the number of color channels (i.e., Red, Green, and Blue). Figure 4 illustrates some 
samples of the dataset. The dataset contains two classes, which are fresh and rotten meat, which are extracted 
from existing dataset (i.e., Ulucan,  Karakaya36).

The dataset is split into the training set (90%), validation set (5%), and test set (5%), so the training set con-
tains 1706 images, whereas the test set and validation set included 95 photos each. Table 1 shows the number of 
samples assigned to each class used in training. Here, the amounts are unbalanced; therefore, each weight class 
is calculated and employed in the DCNN training process.

The previous section showed the proposed layers that make the DCNN. Table 2 shows the proposed con-
figuration of the model. The PSO optimization process selects the number of filters in convolutional layers and 
the learning rate.

Evaluation metrics. There are various criteria to evaluate the proposed model, such as Precision, Recall, 
F1-score, and Accuracy. The Precision, Recall, F1-score, and Accuracy metrics are formulated in Eqs. (7)–(10) 
as:

m̂ =
mt+1

1− βt+1
1

v̂ =
vt+1

1− βt+1
2

(6)wt+1 ← wt − η
m̂

√
v̂ + ǫ

(7)Precision =
TP

TP + FP

Figure 4.  Samples of the dataset classes. Source: Authors’ construction using Jupyter Notebook, and Python 
version 3.7.

Table 1.  Number of samples and their weights in the training set.

Class Number of samples Weight

Fresh meat 849 1.01

Rotten meat 857 1
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where True Positive (TP) represents the predictive model predicted positive, and the primary value is positive, 
True Negative (TN) indicates the predictive model predicted negative, and the primary value is negative, False 
Positive (FP) refers to the predictive model predicted positive, but the primary value is negative (Type 1 error), 
and False Negative (FN) demonstrates the predictive model predicted negative, but the primary value is positive 
(Type 2 error).

Numerical results and discussion
In this section, the PSO algorithm adjusts two critical hyperparameters, namely learning rate and number of 
filters in the convolutional layer. The DCNN model is trained, and several evaluation metrics are utilized to 
assess the model performance.

Parameters tuning by PSO algorithm. Learning rate is a significant hyperparameter in deep learning 
models that controls the model changes in response to the estimation error of updating model  weights44. If the 
amount of the learning rate selected is too small, the training process gets extended or even get stuck. In contrast, 
a too large amount will lead to an unstable training process and unproperly weight  updating44. The number of 
different ways of extracting features from an image is determined based on the number of filters in the convo-
lutional  layers45. The more filters, the more features can be extracted, but this rule is not always proper for CNN 
models; therefore, the number of filters must be adjusted. Thus, the PSO algorithm, a popular population-based 
optimization method, is utilized to adjust the number of filters in convolutional layers and the learning rate in 
the proposed DCNN model. The detailed configuration of the proposed DCNN model is denoted in Table 3, in 
which the PSO algorithm achieved the number of filters for the convolutional layers, and the learning rate was 
earned 0.001 among 1, 0.1, 0.01, and 0.001 by the PSO too.

Evaluation of the proposed DCNN model. The classifier model is built based on the configuration 
mentioned in Table 3, the number of filters and the learning rate that the PSO achieved. Figure 5 shows the train-
ing and validation process of the DCNN model.

(8)Recall =
TP

TP + FN

(9)Accuracy =
TP + TN

TP + TN + FP + FN

(10)F1− score =
TP

TP + 1
2
(FP + FN)

Table 2.  The configuration of the proposed model. *n number of neuron.

Layer Receptive field size

Conv2D (ReLU) 3 × 3

BatchNormalization –

Separable Conv2D (ReLU) 3 × 3

MaxPooling2D 2 × 2

BatchNormalization –

Dropout (0.3) –

Separable Conv2D (ReLU) 3 × 3

Separable Conv2D (ReLU) 3 × 3

BatchNormalization –

MaxPooling2D 2 × 2

Dropout (0.4) –

Conv2D (ReLU) 3 × 3

Conv2D (ReLU) 3 × 3

BatchNormalization –

MaxPooling2D 2 × 2

Dropout (0.5) –

Flatten –

Dense (128 n*) (ReLU) –

Dropout (0.3) –

Dense (1 n) (Sigmoid) –
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Some evaluation metrics such as the confusion matrix, Precision, Recall, F1-score, and Accuracy are employed 
to assess the predictive model. Figure 6 illustrates the results of the confusion matrix, whereas other metrics are 
presented in Table 4.

A comparison between the output of this study and existing literature, viz. Ulucan,  Karakaya36 is outlined in 
Table 5, which shows the results achieved in this paper have better performance than previous literature.

Discussion
Our model proposed an intelligence method that is more efficient in reducing human error and losses while 
increasing the accuracy and availability in various sections of the meat supply chain than traditional monitoring 
and control systems that are considered in previous  studies46–49. Moreover, the model has better performance 
than the previous  research36 on deep learning model by utilizing PSO algorithm and proper model architecture. 
This research provided a DCNN and PSO algorithm to train an image classifier system to control and distinguish 

Table 3.  The detailed configuration of the proposed DCNN model. *NF number of filters, RFS receptive field 
size, AF activation function, NN number of neurons, DR dropout rate.

Layer NF* Padding* RFS* AF* NN* DR*

Conv2D 32 Same 3 × 3 ReLU

BatchNormalization

Separable Conv2D 32 Same 3 × 3 ReLU

MaxPooling2D 2 × 2

BatchNormalization

Dropout 0.3

Separable Conv2D 64 Same 3 × 3 ReLU

Separable Conv2D 64 Same 3 × 3 ReLU

BatchNormalization

MaxPooling2D 2 × 2

Dropout 0.4

Conv2D 128 Same 3 × 3 ReLU

Conv2D 128 Same 3 × 3 ReLU

BatchNormalization

MaxPooling2D 2 × 2

Dropout 0.5

Flatten

Dense 128

Dropout 0.3

Dense Sigmoid 1

Figure 5.  The training and validation process of the DCNN model. Source: Authors’ construction using Jupyter 
Notebook, and Python version 3.7.
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wholesome meats from spoiled ones. The PSO algorithm was utilized to tune two critical features (i.e., learning 
rate and the number of filters in convolutional layers) that significantly affect the performance of DCNN models. 
One of the common problems in image classification problems is overfitting (i.e., model is trained well but cannot 
predict appropriately); therefore, by using the correct architecture and Dropout method, the DCNN model, as 
shown in Fig. 5, appears more robust without this problem. Several metrics, namely accuracy, Precision, Recall, 
and F1-score––which are calculated based on the Confusion matrix, were applied to assess the DCNN model 
performance and indicate the model efficiency. Based on the results outlined in Table 4, the DCNN model with 
100% accuracy has remarkable performance.

The industry 4.0 and SDG12 paradigms recommend utilizing new technologies such as artificial intelligence 
in manufacturing and supply chain management to increase productivity and decrease expenses and losses. 
In this paper, the deep learning model was employed to automate the controlling and separation process of 
wholesome meats from spoiled ones. This system can be utilized in transportation, storage, and retail sections 
in the meat supply chain to control and monitor the meats. This process is necessary to reduce bacteria effects 
in spoiled meat that may contaminate wholesome meats, hence, improving shelf life and saving final customers 
from harmful risks due to food spoilage. This system displaces manual monitoring and controlling; hence, it 
can be active most often and mitigate human errors, leading to enhanced shelf life while decreasing losses and 
increasing productivity, which are the goals of industry 4.0 and SDG12 paradigms.

Conclusion
This paper proposed the application of artificial intelligence in meat supply chain management based on indus-
try 4.0 and SDG12 paradigms. A classifier was trained by the DCNN and PSO algorithms with 100% accuracy, 
which distinguishes wholesome meats from spoiled ones. This model is utilized in various steps of the meat sup-
ply chain, which increases productivity, reduces cost, and avoids the bacteria effects of rotten meats on healthy 
ones by automating the separation process. Besides, by enhancing the meat shelf life, consumer confidence and 
preferences for meat can increase, hence, increasing economic productivity. For future research, this system can 

Figure 6.  The confusion matrix result. Source: Authors’ construction using Jupyter Notebook, and Python 
version 3.7.

Table 4.  The model evaluation result.

Class Precision (%) Recall (%) F1-score (%) Accuracy (%)

Fresh meat 100 100 100 100

Rotten meat 100 100 100 100

Table 5.  Comparison of this paper with the existing literature.

Research Accuracy (%)

This paper 100

Ulucan,  Karakaya36 99.62



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:5037  | https://doi.org/10.1038/s41598-022-08993-5

www.nature.com/scientificreports/

be employed for more perishable products, as well as including other technologies (i.e., IoT) to the proposed 
system to control other factors, including humidity and temperature. Moreover, artificial intelligence techniques 
can be considered for different tasks of supply chain management, for instance, product packaging and demand 
forecasting.

Data availability
Data sets analyzed during the current study are available from the current author on request.
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