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The validation of the use of primary cell lines from non-lethal matrixes of feathers and blood
of nestlings of a wild bird species, the tawny owl (Strix aluco) is described. Tawny Owl
Feather Fibroblast (TOFF) cells and peripheral blood mononuclear cells (PBMCs) were
isolated and cultured from the pulp of the secondary wing feathers and whole blood
respectively from free-living tawny owl nestlings. Cell growth was registered up until 48 h
for both the PBMC cells and the TOFFs. The validation of these primary cell lines in free-
living birds has the potential to advance the assessment of immunotoxicological effects in
wildlife via non-lethal manner. They provide a key tool with which to study cell toxicity and
responses to environmental stressors on a cellular level in wild bird species of interest.
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INTRODUCTION

Measuring the toxicological impact of pollutants and multiple stressors on free-living wildlife via
non-lethal methods is logistically challenging. Utilising in vitro tools such as primary and secondary
cell lines can make it possible to study the cellular responses to stressors in wildlife via a non-
destructive manner. For example, in vitro studies on blood primary cell lines of peripheral blood
mononuclear cells (PBMCs) have shown to be good substitutes for exposure experiments in live
animals since they represent an attractive tissue source in molecular and immunologic studies
(Acosta Davila and Hernandez De Los Rios, 2019). They can serve as sentinel tissue for monitoring
physiological responses due to environmental stressors. The PBMC cellular model includes T and
B cells (~80%), natural killer cells (~10%) and monocytes (~10%) (Autissier et al., 2010). There are
also several studies that describes how secondary cell lines have been used to study immunological
responses to viral infection and pollutant exposure for e.g. the effects of PFOS and PCBs on chicken
fibroblasts (Waugh et al., 2018; Castaño-Ortiz et al., 2019; Badry et al., 2020a), and p,p-DDE
exposure on immortalised humpback whale fibroblast cell lines isolated from the dermal connective
tissue of skin biopsies (Burkard et al., 2015).

Primary cell lines, however, are a more biologically relevant option when compared to secondary
(or immortalized) cell lines that have lost the true characteristics of the original tissue from which
they are isolated. Serial passaging is known to cause genotypic and phenotypic variation in cell lines.
Variation can often be so far from that of the original tissue to where they do not adequately mimic
the in vivo environment. Primary cells can be of two types–adherent or suspension. Adherent cells
require attachment for growth, usually derived from tissues of organs. Suspension cells do not require
attachment for growth and are mostly isolated from the blood system. Although primary cells have a
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limited lifespan, they offer many advantages compared to
secondary cell lines. When performing primary cell culture,
there is the opportunity to study individuals and not just cells.
Several factors such as age, sex, health status can then be
considered when building an experimental model. Such
individual variability and tissue complexity can only be
achieved with the use of primary cells and are difficult to
replicate with cell lines that are systematic and uniform in
nature and do not capture the true diversity of a living tissue.

Validating the use of primary cell lines from wildlife to study
multiple stressors in ecosystems is therefore warranted. Blood
samples are the obvious first matrix choice. PBMCs are already
routinely isolated and cultured in vitro for many validated
downstream applications from personalised medicine to
veterinary medicine, and wildlife research. However, taking
blood samples from live animals can be logistically challenging
and requires specialised expertise in the handling and extracting
of blood. The amount of blood that can be taken from an
individual to minimise adverse outcomes is also limited,
especially in smaller species. Other non-destructive matrixes
could then be explored for example skin biopsies from free-
swimming humpback whales (Burkard et al., 2015), and wing
punches from bats (Yohe et al., 2019) have both been used to
produce cell lines.

For birds, where the focus of this study lies, cell lines have
previously been isolated from the pulp of a feather, which is in the
center of a developing feather consisting of living connective
tissue. The pulp consists of fibroblasts and extracellular matrix
including fibronectin and laminin (Davidson et al., 2021). Blood
vessels and nerves enter the pulp via the dermal papilla in the
feather follicle during the growing phase. Through these
connections, nutrition can be provided to the growing feather
follicles (Lin et al., 2013). Fibroblasts are known for repairing the
extracellular matrix (ECM) during wound injuries (Davidson
et al., 2021). These cells are also active in modulating immune
responses in the stage of detecting pathogenic stimuli (Davidson
et al., 2021). Fibroblasts can detect pathogen-associated
molecular patterns, activate signalling pathways to recruited
leukocytes (B- and T-cells) and then regulate their activity
(Davidson et al., 2021). Since the fibroblast’s are so active
during an immune response, they work as excellent cells in
experiments while looking for immunological effects during
pollutant or pathogen exposure. Feathers in the developing
stage will have a greater amount of tissue compared to pulp
from mature feathers (Xi et al., 2003). This means that the pulp
present in the feather is affected by the phase of development of
the feather. Teleoptile feathers, second generation feathers, is
when the feathers are developing the most and are referred to as
juvenile feathers (Yu et al., 2004).

According to the Norwegian Regulations cf. §7, plucked feathers
are classified as a “light stressful attempt,” and are thereby less
invasive than taking blood samples which is classified as a “moderate
stressful attempt.” In addition, feathers are simple to collect, store,
transport and use for analysis without causing damage to the birds,
and they have many advantages that make them excellent non-
destructive tool (Furness and Greenwood, 1993; García-Fernández
et al., 2013; O’Sullivan and Sandau, 2014; Borghesi et al., 2016).

From a toxicological standpoint, wild birds, especially those
high up the food chain, are useful organisms for monitoring long-
term and large-scale changes of pollutants in the biological
environment (Burger, 1993; Furness and Greenwood, 1993;
O’Sullivan and Sandau, 2014). They are easy to observe,
sensitive to environmental changes, and can accumulate large
and harmful amounts of environmental pollutants (Seco Pon
et al., 2011; García-Fernández et al., 2013; Espín et al., 2016).
Birds are mainly exposed to pollutants through ingestion of
contaminated food and water (Seco Pon et al., 2011). Many
pollutants can subsequently bioaccumulate in different body
tissues of birds such as blood, feathers, liver, kidney, brain,
muscle, and bone (Jaspers et al., 2009; Jaspers et al., 2013;
Espín et al., 2016; Løseth et al., 2019).

Biomonitoring of raptors is of particular interest. Since they
often forage at the top of the food chain, theymight be expected to
bioaccumulate high levels of metals and other pollutants (Burger,
1993; Dauwe et al., 2003; Espin et al., 2014; Lohr, 2018;
Hindmarch et al., 2019; Løseth et al., 2019). Historically,
population declines were initially observed in species at the
top of the food chain, and raptors can be vulnerable since bio-
accumulative toxic substances tend to accumulate along their
food chain. Tawny owls (Strix aluco) have recently been identified
as one of the best Pan European biomonitoring bird species for
monitoring the level of environmental pollution (e.g. toxic metals,
anticoagulant rodenticides, pesticides and medicinal products)
(Badry et al., 2020b). Tawny owls inhabit Western Palearctic with
the vast majority of the breeding population in Europe (Holt,
2021). They are medium-sized, chiefly nocturnal owls (Cramp,
1985). All their body feathers are moulted once a year, while the
wing feathers have a multi-annual moulting pattern (Jenni and
Winkler, 2020). The population is large and the population trend
appears stable (BirdLife International, 2022). According to IUCN
Red list of threatened species tawny owls are listed as Least
Concerned (LC) both in Europe and globally (IUCN red list,
2020). Tawny owls are resident species remaining within a
restricted territory throughout the year, with hatching
occurring in cultural landscapes. Their diet consists mainly of
rodents and passerine birds (Cramp, 1985). Resident birds are
completely dependent on the local environment for food, and can
thus be used to monitor contamination in a more local terrestrial
ecosystem (Burger, 1993; Peterson et al., 2019). Due to their
abundancy and widespread distribution, their red list status (LC),
their territoriality and residency, and the fact that non-lethal
samples can easily be obtained from individuals in nest boxes,
they are a key sentinel species for monitoring pollutants in
terrestrial ecosystems across Europe (Debén et al., 2012;
Bustnes et al., 2013; Bustnes et al., 2015; Eriksson et al., 2016;
Seoane et al., 2018; Badry et al., 2020b).

Although raptors are highlighted as excellent biomonitoring
species, there are currently no validated and standardised
methods to study toxicological effects via non-lethal methods.
Therefore, this study aimed to validate in vitro techniques for the
initiation of cell lines from non-lethal matrixes of feathers and
blood of nestlings of a wild bird species. The matrixes chosen
represents one adherent primary cell line (i.e., TOFFs) and one
non-adherent cell line (PBMCs). They were chosen because they
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are both: 1) easily accessed without using lethal methods; 2)
represent cells with immunological importance (which will be the
focus of our downstream applications). Overall, a standardised
tool to assess immunotoxicology in free-living birds is lacking, yet
very timely given the increase in epidemics such as avian
influenzas (Adlhoch et al., 2021).

MATERIALS AND METHODS

Sample Collection
This study was carried out in the northeast region of
Trondheimsfjorden (64°N, 11°E) in central Norway. A nest
box with three tawny owl nestlings was visited on the 26th of
May 2021, 3 weeks after hatching. Blood samples (approx.
1–1.5 ml) were taken from the wing vein from each of the
three nestlings using a pre-heparinized sterile 2 ml BD
PlastiPak syringe with a 0.6 × 25 mm BD Microlance 3 23G
no.16 and transferred to a heparinized tube. One secondary wing
feather was taken from each of the nestlings and stored in zip
bags. Samples were transported to the laboratory facilities within
1 h of collection. Samples were collected as part of a larger
ongoing project (animal ethics approval numbers from the
Norwegian Food Safety Authority, FOTS ID 23120).

TOFF (Tawny Owl Feather Fibroblasts) Cell
Lines From Secondary Wing Feathers
All the following steps were completed within 24 h of feather
sampling. Feather samples from each individual was stored in
separate plastic bags in the cooler or fridge (4°C) from sampling
until the culturing was performed. The calamus was separated
from the rest of the wing feather (Figure 1A) using a pair of sterile
dissection scissors and swabbed with 70% ethanol for

approximately 2–3 s in a petri-dish using sterile tweezers.
Further, the calamus was rinsed with Dulbecco’s phosphate-
buffered-saline with 2% foetal bovine serum (DPBS, Stemcell
Technologies) in a petri-dish for 2–3 s. Then the calamus was
rinsed with Dulbecco’s modified Eagle’s medium (DMEM,
Thermo Scientific) added 5% foetal calf serum (FCS, Sigma,
Oslo, Norway) and 1% of Pen-Strep, 100 U/ml Penicillin and
100 μg/ml Streptomycin (cell culture media) in a petri-dish for
2–3 s. At each step, a new sterile petri-dish was used. The calamus
was then cut open vertically using a sterile scalpel and/or
dissection scissors (Figure 1B). The pulp (cells) was separated
from the calamus using sterile scalpel and tweezers in the petri-
dish with cell culture media and after separation the pulp was
placed in a new petri dish with new cell culture media. The pulp
was diced into smaller pieces with the scalpel (Figure 1C) and the
content with the cells were further transferred to a T-25 cell flask
and added 10 ml cell culture media. Cells were then plated out
into 96 well plates to allow for viewing under the microscope.
Finally, the cells were incubated in a CO2 incubator at 38°C and
5% CO2 gas for 30 days.

PBMCCell Lines of Blood Samples From the
Tawny Owl Nestlings
All the following steps were performed with blood samples stored
within 24 h after blood sampling. The blood samples were stored
in a dark area at room temperature. Approximately 2 ml of whole
blood was transferred into a 15 ml sterile tube. The same amount
of Dulbecco’s phosphate-buffered-saline with 2% foetal bovine
serum (DPBS, Stemcell Technologies) was also transferred to the
tube. The blood/DPBS mixture was then added to a separation
tube (SepMate™ -15 (IVD), Stemcell Technologies) that
contained 4.5 ml density gradient media (Lymphoprep™,
Stemcell Technologies) and 80 µl Lymphocyte Enrichment

FIGURE 1 | The process of separating cells from the calamus of feathers from Tawny Owls. (A) The calamus after being separated from the rest of the feather. (B)
The calamus is cut open and the pulp is visible. (C) The pulp is separated from the rest of the calamus and diced into smaller pieces in cell culture media.
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Cocktail (RosetteSep™, Stemcell Technologies) to enrich
lymphocytes from the whole blood samples. The separation
tube was then centrifuged at 1200 g for 10 min for samples
that were treated within 12 h, or 20 min for samples that were
treated within 12–24 h, with the break on. The supernatant with
the PBMCs containing the white blood cells (WBCs) was poured
off into a new 15 ml tube. The WBC suspension was then washed
with the same amount of DPBS with 2% FBS and centrifuged at
300 g for 10 min. The supernatant was discarded, and the pellet
was resuspended. The cells resuspension was added into 10 ml
Dulbecco’s modified Eagle’s medium (DMEM, Thermo
Scientific) added 5% foetal calf serum (FCS, Sigma, Oslo,
Norway) and 1% of Pen-Strep, 100 U/ml Penicillin and
100 μg/ml Streptomycin (cell culture media) in T-25 flasks. A
subset of cells was then plated out into 96 well plates to allow for

viewing under the microscope. Cells were incubated in a CO2

incubator at 38°C and 5% CO2 gas for 30 days.

Cell Growth and Maintenance
Cells in the 96 well plates were checked daily and photographed
weekly. Cell culture media was added to the cell cultures
approximately once a week. Photos were taken either with an
apple iPhone through the lens of a Leica DM1000/DM3000
microscope or on the EVOS XL Core image software.

RESULTS

Growth of PBMCs and TOFFs were registered in the 96 well
plates after 5 days (Figures 2A,B, respectively). The PBMCs and

FIGURE 2 | Cell growth after 5 days of incubation at 38°C and 5% CO2 of (A) Peripheral Blood Mononuclear Cells (PBMCs) isolated from the whole blood of free-
living Tawny Owl nestlings and (B) Tawny Owl Feather Fibroblasts (TOFFs) isolated from the secondary wing feather of free-living tawny owl nestlings. Photo taken with
iPhone 11 PRO down the lens of Leica DM1000 microscope.

FIGURE 3 | Cell growth after 30 days of incubation at 38°C and 5% CO2 of (A) Peripheral Blood Mononuclear Cells (PBMCs) isolated from the whole blood of free-
living TawnyOwl nestlings and (B) Tawny Owl Feather Fibroblasts (TOFFs) isolated from the secondary wing feather of free-living Tawny Owl nestlings. Photo takenwith a
Leica camera attached to a DM3000 microscope.
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TOFFs continued to proliferate in the 96 well plates until day 30
when the experiment was terminated (Figures 3A,B,
respectively). At each time point (once a week) some cells
(100 µl) were transferred to a microscope slide and stained
with (100 µl) trypan blue to determine viability.

DISCUSSION

Non-lethal methods for studying the immunological health from
a toxicological perspective of wildlife species are lacking. Here we
have validated the use of primary cell lines from feathers
(fibroblasts) and blood (PBMCs) from a free-living raptor
species, the tawny owl for this purpose. Fibroblasts and
PBMCs have key immunological properties (Waugh et al.,
2018; Acosta Davila and Hernandez De Los Rios, 2019),
therefore, there are many future implications for the
advancement of assessing the immunotoxicological effects in
wildlife in non-lethal manner.

Historically, cell lines have been based on domestic species like
the domestic chicken (Gallus gallus domesticus) or quail
(Coturnix coturnix) (Xi et al., 2003; Cardoso et al., 2020). By
validating the use of primary cultures from blood and feather
cells, in vitro studies can be further expanded into wildlife, instead
of model species. This non-lethal method of a primary cultures
creates possibilities of expanding the number of species and
individuals to look for pollutant effects and investigate
biological processes rather than the sacrificing of one
individual to immortalize a secondary cell line; which are not
as biological relevant as primary cell lines. Which in turn, create
possibilities of making an environment of cell exposure for
specific species that are suffering from pollution exposure in
the wild. By using cell lines from wildlife species of interest, the
results have the potential to have less inter-species bias (both
between different wild bird species and between domesticated vs
wild bird species).

The next step in this procedure will be to utilise Tawny Owl
PBMCs and TOFFs for immunotoxicology studies by exposing
the cells to environmentally relevant levels of pollutants (e.g., in
our case, to study the immune responses to heavy metals, PFASs
and rodenticides on a cellular level). PBMCs can be used for
classic lymphocyte proliferation assays, which makes it feasible to
measure toxicity of the cells. The assay discovers the compound’s
ability to block or cause biological activity without having toxic
effects on cells (Creative Bioarray, 2022), which makes it possible
to investigate the pollutant levels in the cells before further in vitro
experiments. TOFF cells can be used for infection/exposure
studies with pollutants and pathogens of choice (Waugh et al.,
2018; Castaño-Ortiz et al., 2019; Badry et al., 2020a)). Previous
studies performed on domestic chicken secondary cell lines have
already demonstrated the beneficial use of cell lines in exposure
studies where cell cultures have been exposed to environmentally
relevant concentrations of pollutants such as PFOS and PCBs,
and infected with DNA- and RNA viruses to investigate the
downstream immunological responses (e.g. the expression
pattern for mir-155, pro-inflammatory TNFα and IL-8,
transcription factor NF-κB1, and anti-inflammatory IL-4) on a

cellular level (Waugh et al., 2018; Castaño-Ortiz et al., 2019;
Badry et al., 2020a). These studies all showed concerning
modulations in the immunological responses after exposure to
different pollutants (PFOS and PCB). Validating the use of
primary cell lines (TOFFs and PBMCs) is an integral step
towards performing more biologically relevant in vitro
experiments (e.g., pollutant exposure and/or pathogen
infections to investigate the toxicological and immunological
responses) on a cellular level of any wild bird species of
interest. For further studies, it is also possible to increase the
levels of pollutants in the in-vitro studies compared to the current
environmental concentrations to simulate how future
contamination levels will affect the immune response.

Current anthropogenic threats makes raptors more vulnerable
to toxicants as they are susceptible to bioaccumulate high levels of
metals and other pollutants (Burger, 1993; Dauwe et al., 2003).
Further, their prey, which includes migratory passerines, could
also transfer infections such as avian influenzas. Indeed, raptors
have been recently experiencing increasing incidents of high
pathogenic avian influenza virus (HPAIV) infections
associated with neurological diseases, necrosis in essential
organs (heart, pancreas, lung and brain), and death around
the globe (Krone et al., 2018; Shearn-Bochsler et al., 2019;
OIE, 2021; NVI, 2022). Since top predators might experience
harmful concentrations of pollutants as well as pathogen
infections, it is especially important to focus on how they will
respond to the multiple stress of a new infection when already
immunocompromised via pollution levels. However, care must
be taken when interpreting the results on cell lines because they
cannot completely replace or reflect the whole complexity of the
physiological processes that takes place in an entire organism
(Kaur and Dufour, 2012). However, they can still provide helpful
information about important biological processes and responses,
especially for wildlife species where it is often considered
unethical and counterintuitive to the aims of saving a species
if it is used for lethal toxicology studies.
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