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 Abstract: Morphology and feature selection are key approaches to address several issues in fisher-
ies science and stock management, such as the hypothesis of admixture of Caspian common carp 
(Cyprinus carpio) and farmed carp stocks in Iran. The present study was performed to investigate 
the population classification of common carp in the southern Caspian basin using data mining al-
gorithms to find the most important characteristic(s) differing between Iranian and farmed common 
carp. A total of 74 individuals were collected from three locations within the southern Caspian basin 
and from one farm between November 2015 and April 2016. A dataset of 26 traditional morphomet-
ric (TMM) attributes and a dataset of 14 geometric landmark points were constructed and then sub-
jected to various machine learning methods. In general, the machine learning methods had a higher 
prediction rate with TMM datasets. The highest decision tree accuracy of 77% was obtained by rule 
and decision tree parallel algorithms, and “head height on eye area” was selected as the best marker 
to distinguish between wild and farmed common carp. Various machine learning algorithms were 
evaluated, and we found that the linear discriminant was the best method, with 81.1% accuracy. 
The results obtained from this novel approach indicate that Darwin’s domestication syndrome is 
observed in common carp. Moreover, they pave the way for automated detection of farmed fish, 
which will be most beneficial to detect escapees and improve restocking programs. 

Keywords: morphometrics; machine learning; fish morphology; domestication; fisheries  
management 
 

1. Introduction 
The Cyprinidae clade has the broadest geographical distribution among fish families, 

with more than 2000 species across four continents [1]. Cyprinids contribute to over 20 
million metric tons of worldwide fish production, which equates to 40% of total global 
aquaculture production, and 70% of total freshwater fish farming [2]. Common carp (Cy-
prinus carpio) is an economically important species of Cyprinidae, originally native to Cen-
tral Asia and introduced worldwide over time [3]. Native common carp is found through-
out all Caspian Sea drainages from north to south and from west to east, as the fish enter 
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the rivers to breed. A dramatic stock reduction has been observed recently due to over-
fishing and dam construction during the last few decades. While the Iranian Fisheries Or-
ganization has practiced semi-artificial fingerling production to boost Caspian Sea fish 
stocks, the capture rate of Caspian carp still shows no improvement. Among several rea-
sons accounting for the unsuccessful recovery programs of Caspian fish species, mixing 
events between wild and farmed populations are of utmost importance.  

Investigation of the diagnostic morphological features has been taken into consider-
ation in fisheries science and ichthyology to identify and define different species and 
strains [4–6]. The farmed stocks of common carp in Iranian farms are from the European 
strain, which has a deeper body form than native common carp from the Caspian Sea. 
Domestication, as a process in which wild animals are adapted to anthropogenic condi-
tions, has been recognized to produce behavioral, molecular, and morphological altera-
tions through generations [7,8]. According to the phenomenon known as Darwin’s do-
mestication syndrome [9], the captive phenotypes show distinctive traits compared with 
their wild conspecifics of similar sizes, such as faster growth and maturity under the nur-
ture conditions and lower reproductive success [10] and reduced swimming performance 
in nature [11]. It has been postulated that the cultured carp strain may have escaped from 
the farms and hybridized with common wild carp in the Caspian Sea [12–14]. In their 
study, Khalili and Amirkolaie [15] found some genotypes of farmed common carp in the 
Caspian Sea. Mixing wild populations and/or hybridization events between farmed and 
native species will reduce the genetic diversity and fitness of the species [16–18]. 

Computational approaches such as machine learning, decision trees, and attribute 
weighting have been used in biological data processing to determine evolutionary solu-
tions of pattern identification, classification, and prediction [19–23]. Decision tree models 
find the best possible decision from serial decisions made in uncertain conditions [24–28]. 
These robust models can be used on different sets of biological (e.g., phenotypic) data. 
Guisande et al. [29] successfully identified 847 marine and freshwater fish species using a 
machine-learning-based system (IPez) and supportably a high accuracy and fast predic-
tion for fish classification based on machine learning techniques reported by Hnin and 
Lynn [30]. Genetic/genomic data provide helpful information on the assignment of fish 
populations, but morphometric data have advantages compared with molecular data, 
since they are relatively easier, cheaper, and faster to obtain. The application of morpho-
metric data in robust machine-learning-based algorithms is expected to provide fast, reli-
able, and accurate detection in fish animals compared with traditional methods [31]. 
Hence, the present study was conducted to investigate the potential of machine learning 
to (i) identify morph variability of common carp in different habitats, and to (ii) introduce 
the diagnostic morphometric feature(s) to distinguish wild Caspian carp population from 
their farmed counterparts.  

2. Materials and Methods 
2.1. Sampling 

Sixty specimens were taken from three locations in the southern Caspian basin, in-
cluding Gomishan (E: 53°29′, N: 37°51′), Miankaleh (E: 53°30′, N: 36°52′), and Anzali (E: 
49°26′, N: 37°25′) (Figure 1) from November 2015 to April 2016. In addition, 14 specimens 
of farmed common carp were obtained from a fish farm at Sijoval (E: 54°07′, N: 36°53′) in 
Golestan province. Fish were anesthetized immediately by immersion in a 200 ppm solu-
tion of clove powder, weighed, and a photo from the left side of each fish was taken. The 
number of annuli in scales or otoliths was not determined but, based on fish size, their age 
range can be estimated from one to three years. 
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Figure 1. Sampling locations of common carp across the southern coasts of the Caspian Sea. Gomis-
han (E: 53°29′, N: 37°51′), Miankaleh (E: 53°30′, N: 36°52′), Anzali (E: 49°26′, N: 37°25′), and farm 
center at Sijoval (E: 54°07′, N: 36°53′). 

2.2. Data Preparation 
The traditional morphometric (TMM) data, including 26 features (Figure 2), were ex-

tracted using the ImageJ Software Version 1.45s, Bethesda, MD, USA [32]. To minimize 
the effect of fish size on the measured morphometric characters, the allometric method of 
the PAST Software Version 2.17c, Oslo, Norway [33] was used on the raw morphometric 
data [34]. 𝑀  𝑀 𝐿𝑠𝐿𝑜  (1)

 
Figure 2. TMM characters defined in common carp. The key is as follows: 1: TL—total length; 2: 
FL—fork length; 3: SL—standard length; 4: HL—head length; 5: HH1—maximum head height; 6: 
HH2—head height on the eye area; 7: BD—body depth; 8: ED—eye diameter; 9: POL—post-orbital 
length; 10: ML—mouth length; 11: CPL—caudal peduncle length; 12: CPH—caudal peduncle 
height; 13: DBL—dorsal fin base length; 14: DH—dorsal fin height; 15: ABL—anal fin base length; 
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16: A.H.—anal fin height; 17: PBL—pectoral fin base length; 18: P.H.—pectoral fin height; 19: pelvic 
fin height; 20: pre-pectoral length; 21: pre-dorsal length; 22: post-dorsal length; 23: pre-anal length; 
24: post-anal length; 25: dorsal anal length; 26: EDFAL—distance between the endpoint of dorsal fin 
and start point of the anal fin. 

Madj is the adjusted measurement of size, M is the observed length of each character, 
and Ls is the overall average size of standard length. Lo stands for standard height for 
each sample, and b is related to the allometric growth coefficient. All measurements can 
be found in Supplementary Materials Table S1. 

In order to investigate the body form variations of common carp understudy, 14 land-
mark points were digitized on the left side of each specimens using tpsDig2 Version 2.16 
(Figure 3). 

 
Figure 3. Landmark points defined on Caspian and farmed common carp for body shape data ex-
traction. 1: anterior-most point of the snout tip on the upper jaw; 2: center of the eye; 3: dorsal edge 
of the head perpendicular to the center of eye; 4: maximum head height perpendicular to the oper-
culum; 5: origin of the dorsal fin; 6: end point of dorsal fin; 7: postero-dorsal end of the caudal pe-
duncle at its connection to caudal fin; 8: posteroventral end of the caudal peduncle at its connection 
to caudal fin; 9: insertion point of the anal fin; 10: origin point of the anal fin; 11: the ventral fin 
origin; 12: the pectoral fin origin; 13: ventral end of the operculum; 14: ventral edge of the head 
perpendicular to the center of eye. 

2.3. Data Analysis 
Regarding the TMM, a dataset containing 76 samples (14 from Anzali, 27 from 

Gomishan, 19 from Miankaleh, and 14 from farmed population) with 26 measured fea-
tures were imported into RapidMiner software Version 7.0 (Rapid-I, GmbH, Dortmund, 
Germany), shuffled, and missing data were handled, and the output cleaned file was 
named as FCDB (final cleaned database). A one-way ANOVA was performed on the mor-
phometric data to assess the level of variability of each trait among different locations. In 
order to remove the effects of non-shape data, including scale, direction, and position on 
geometric morphometric data, a generalized Procrustes analysis (GPA) was performed on 
the landmark-obtained data using Morpho J version 1.02 [35]. After normalization, the 
consensus shape variations of Caspian and farmed common carp were visualized using 
the wireframe graphs in Morpho J. Then, the following steps of data mining analysis were 
performed on the FCDB datasets of both TMM and geomorph data. 

2.3.1. Attribute Weighting 
Attribute weighting is a unique method to illustrate the impact of each feature on the 

target or label attribute [36,37]. Ten attribute weighting algorithms, namely PCA, SVM, 
relief, uncertainty, Gini index, chi-squared, deviation, rule, information gain, and infor-
mation gain ratio, were applied to the FCDB. Each attribute weighting method or feature 



Life 2022, 12, 957 5 of 15 
 

 

selection model gives a weighted score between 0.0 and 1.0 for each attribute based on 
their impact on the population target feature. The attributes with a weighted score greater 
than 0.70 in all algorithms were considered important features. Generally speaking, the 
relevance of a feature to each weighting model is calculated based on the class distribu-
tion, as follows [38]. 
Information gain: The relevance of an attribute is evaluated by computing the information 
gain. 
Information gain ratio: Calculates the correlation of a feature by computing the infor-
mation gain ratio. 
Weight by rule: The operator calculates the relation of a feature through computing the 
error rate of a model on the dataset without this attribute. 
Weight by deviation: Weights from the standard deviations of all the features are used by 
this operator. 
Weight by Chi Squared statistic: This operator quantifies the correlation of a feature by 
computing for each attribute of the input dataset the value of the chi-squared statistic con-
sidering the class attribute. 
Weight by Gini Index: The relevance of a feature is determined by computing the Gini 
index of the class distribution. 
Weight by Uncertainty: This operator uses the connection of an attribute by measuring 
the symmetrical uncertainty considering the class distribution. 
Weight by Relief: This operator calculates the relevance of the attributes by relief. The key 
idea of relief is to estimate the quality of features according to how well their values dis-
tinguish between the instances of the same and different classes that are near each other. 
Weight by Support Vector Machine (SVM): The coefficients of the normal vector of a linear 
SVM are considered as weights of the features. 
Weight by PCA: Factors of the first principal component are used to weight features. 

2.3.2. Machine Learning Prediction of Target Populations 
The original FCDB and the ten datasets from the attribute weighting models above 

were then used to develop machine-based prediction systems. The performance of each 
model on each dataset was measured based on their accuracy [38]. 

Tree Induction 
Tree induction is an efficient and popular method in the classification of populations. 

In order to make decision trees, four different induction algorithms (decision tree, random 
forest, decision tree parallel, and decision stump) were applied to all 11 datasets (the 
FCDB and 10 generated datasets from attribute weighting models, including only the im-
portant features that scored higher than 0.70; Supplementary Materials Table S1). Each 
tree induction algorithm was run with four other criteria (gain ratio, information gain, 
Gini index, and accuracy) using a 10-fold cross-validation based on our previously pub-
lished papers and default parameters for a local random seed and stratified sampling type 
[39–43]. Hence, a total of 176 trees were generated. 

Naïve Bayes 
The naïve Bayes classifier is an effective classification method even if the dataset is 

not very large [44]. This classifier is based on the hypothesis of Bayes conditional proba-
bility rule performed by two algorithms (naïve Bayes and naïve Bayes kernel) on all 11 
prepared datasets (FCDB and 10 generated from attribute selection processes). 

2.3.3. Linear Discriminant Analysis (LDA)  
The LDA method [44] tries to separate two or more target classes by linear features. 

The resulting linear classifier made of combination features is used to discriminate varia-
bles between two or more naturally occurring groups, whether with a descriptive or a 
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predictive objective. The same 11 datasets mentioned above were fed into this model and 
calculated its accuracy performance. The LDA on geomorph data was per-192 formed us-
ing the Morpho J software version 1.02.  

3. Results 
3.1. Attribute Weighting (Feature Selection) Models 

One-way ANOVA on morphometric data showed that 24 out of 26 investigated mor-
phometric traits were significantly different from each other (p < 0.05), the exceptions be-
ing caudal peduncle length and anal fin base length. In traditional morphometric (TMM) 
data, 80% of attribute weighting models allocated weights greater than 0.7–HH1 (maxi-
mum head height); Gini index, info gain, and info gain ratio models computed the highest 
possible weights of 1.0 to this feature. A proportion of 70% of the attribute weighting 
models assigned weights greater than 0.7 to PelH (pelvic fin height) feature while POL 
(postorbital length), HL (head length), and PH (pectoral fin height) were identified by 50% 
of the models with weights above 0.7 (Table 1). The complete attribute weighting results 
are available in Supplementary Materials Table S2. In attribute weighting models using 
the geomorph dataset, landmark point 12 (related to the pectoral fin position) was recog-
nized by 70% of the models to have weight higher than 0.7 and after that landmark point 
5 (close to the beginning position of dorsal fin) was supported by 50% of models with 
weight above 0.7 (Table 2). 

Table 1. Top 6 attribute weighting models based on morphometric data from common carp. 

PCA SVM Relief Uncertainty Gini Index Chi-
Squared 

Deviation Rule Info Gain 
Ratio 

Info Gain Attribute 
Count 

Weights > 
0.7 

0.85 0.45 0.87 0.83 1.00 0.76 0.76 0.42 1.00 1.00 HH1 8 
0.44 0.49 0.91 0.82 0.77 0.91 0.43 1.00 0.81 0.73 PelH 7 
0.54 0.36 1.00 1.00 0.76 1.00 0.42 0.04 0.68 0.98 POL 5 
1.00 0.08 0.55 0.77 0.70 0.75 1.00 0.31 0.54 0.76 HL 5 
0.48 0.23 0.47 0.70 0.77 0.70 0.62 1.00 0.81 0.65 PH 5 
0.23 0.33 0.70 0.67 0.78 0.65 0.15 0.46 0.79 0.80 CPH 3 

Table 2. Applied attribute weighting models on the geomorph data of Caspian and farmed common 
carp. 

Attribute 
(Land-
marks) 

Weight_ 
Info Gain 

Weight_Info 
Gain Ratio 

Weight
_Rule 

Weight_
Deviation 

Weight_Chi
Squared 

Weight_Gini 
Index 

Weight_ 
Uncertainty 

Weight_
Relief 

Weight_
SVM 

Weight_
PCA 

Count 
Weights 

> 0.7 
L12 1.0 1.0 0 0.6 1.0 1.0 1.0 1.0 1.0 0.6 7 
L5 0.7 0.3 1.0 1.0 0.9 0.6 0.9 0.4 0.5 1.0 5 

L13 0.8 0.7 1.0 0.4 0.6 0.7 0.6 0.5 0.8 0.4 4 
L7 0.4 0.9 1.0 0.4 0.5 0.4 0.4 0.4 0.4 0.4 2 
L1 0.4 0.4 1.0 0.5 0.5 0.5 0.6 0.5 0 0.4 1 
L8 0.3 0.3 1.0 0.4 0.1 0.2 0.2 0.2 0.4 0.3 1 
L3 0.4 0.4 1.0 0.0 0.2 0.4 0.3 0.2 0.2 0.1 1 
L2 0.4 0.2 1.0 0.0 0.2 0.4 0.2 0.1 0.5 0 1 
L9 0.2 0.1 1.0 0.3 0.1 0.2 0.1 0.3 0.5 0 1 
L4 0.1 0.1 1.0 0.4 0.1 0.1 0.2 0 0.1 0.3 1 

L11 0.1 0.3 0 0.6 0.1 0.1 0.2 0.1 0.4 0 0 
L10 0 0 1.0 0.2 0 0 0 0 0.6 0 1 
L14 0.1 0.5 1.0 0.1 0.1 0.1 0 0 0.1 0 1 
L6 0.1 0.1 0 0.4 0 0.2 0 0.1 0.4 0.1 0 

3.2. Predictions Based on Machine-Learning Algorithms 
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The overall performance of the 16 different tree induction models applied on 11 da-
tasets was less than 60% in most cases. The best performance (77%) on the basis of TMM 
approach was obtained when the decision tree parallel model ran on the rule dataset with 
accuracy criterion. The best performance of the decision tree stump model was 59%; under 
the decision tree model, the performance went up to 0.72 (see Table 3). The Gini index 
criterion showed the best performance on the Gini Index database was for the random 
forest algorithm. 

Based on the visualized induced tree with the highest performance on TMM (Figure 
4A), the HH1 (head height) trait was recognized as the best feature of the tree’s root to 
identify common carp populations. When HH1 was greater than 8.079, and the value for 
ED feature (eye diameter) was higher than 1.44, the samples belonged to the Anzali pop-
ulation; otherwise, they were from the farmed group. Moreover, when the value of POL 
is > 4.249, carp individuals with HH1 ≤ 7.824 and 7.824 < HH1 ≤ 8.079 originate from Anzali 
and Gomishan populations, respectively. The Miankaleh population includes individuals 
with POL is ≤ 4.249 and HH1 ≤ 6.335. Based on geomorph data, Random Forest with ac-
curacy criterion resulted in a maximum of 61% precision using FCDB dataset (Figure 4B). 
The best performance of the naïve Bayes models on the 11 prepared datasets of each tra-
ditional and geomorph approaches was 0.77 and 0.60, respectively, obtained when the 
naïve Bayes model ran on FCDB (Table 4). 
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Table 3. The accuracy performance of 176 different decision trees based upon 4 main algorithms on 11 datasets of traditional morphometric (TMM) data. 

 Database 
DT Algorithms Chi-Squared Info Gain Deviation Gini Index Info Gain Ratio PCA Relief Rule Uncertainty FCDB SVM 

DT Random Forest Accuracy 0.65 0.56 0.55 0.61 0.54 0.6 0.56 0.48 0.53 0.51 0.52 
DT Random Forest Gain Ratio 0.52 0.64 0.49 0.57 0.51 0.63 0.6 0.55 0.58 0.59 0.4 
DT Random Forest Gini Index 0.59 0.58 0.59 0.71 0.51 0.54 0.53 0.5 0.53 0.56 0.5 
DT Random Forest Info Gain 0.61 0.57 0.54 0.64 0.56 0.51 0.58 0.51 0.61 0.54 0.41 

Max Performance 0.65 0.64 0.59 0.71 0.56 0.63 0.6 0.55 0.61 0.59 0.52 
DT Stump Accuracy 0.53 0.5 0.54 0.5 0.5 0.54 0.53 0.5 0.53 0.5 0.52 

DT Stump Gain Ratio 0.56 0.56 0.59 0.56 0.56 0.56 0.56 0.59 0.56 0.56 0.43 
DT Stump Gini Index 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.51 
DT Stump Info Gain 0.51 0.51 0.54 0.51 0.51 0.51 0.51 0.57 0.51 0.51 0.51 
Max Performance 0.57 0.57 0.59 0.57 0.57 0.57 0.57 0.59 0.57 0.57 0.52 

DT Parallel Accuracy 0.6 0.61 0.74 0.65 0.65 0.62 0.62 0.77 0.74 0.66 0.51 
DT Parallel Gain Ratio 0.65 0.63 0.6 0.59 0.66 0.64 0.65 0.71 0.67 0.61 0.54 
DT Parallel Gini Index 0.66 0.7 0.67 0.65 0.71 0.63 0.62 0.71 0.66 0.65 0.58 
DT Parallel Info Gain 0.68 0.65 0.62 0.74 0.63 0.58 0.63 0.62 0.67 0.73 0.56 
Max Performance 0.68 0.7 0.74 0.74 0.71 0.64 0.65 0.77 0.74 0.73 0.58 

Decision Tree Accuracy 0.65 0.68 0.66 0.68 0.65 0.61 0.66 0.72 0.71 0.74 0.51 
Decision Tree Gain Ratio 0.62 0.59 0.6 0.59 0.64 0.57 0.6 0.57 0.6 0.59 0.42 
Decision Tree Gini Index 0.61 0.66 0.6 0.66 0.56 0.59 0.63 0.7 0.65 0.68 0.44 
Decision Tree Info Gain 0.64 0.56 0.61 0.56 0.59 0.55 0.61 0.58 0.59 0.54 0.41 

Max Performance 0.65 0.68 0.66 0.68 0.65 0.61 0.66 0.72 0.71 0.74 0.51 
DT—decision tree. 
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Figure 4. Decision tree generated models ((A) based on TMM and (B) based on geomorph) showing 
segregation between populations of common carp (A—Anzali lagoon; P—farmed population; M—
Miankaleh; G—Gomishan). 

Table 4. The accuracy prediction obtained from different prepared datasets of morphological data 
from common carp. 

Dataset Geometric Morphometric Traditional Morphometric 

 Bayes Kernel 
Naïve 
Bayes Bayes Kernel 

Naïve 
Bayes 

Rule 0.36 0.43 0.64 0.73 
SVM 0.36 0.53 0.42 0.52 

Uncertainty 0.36 0.46 0.64 0.71 
Relief 0.36 0.47 0.64 0.68 
PCA 0.36 0.47 0.62 0.61 

Info Gain Ratio 0.36 0.54 0.55 0.61 
Info Gain 0.36 0.47 0.63 0.68 

Gini Index 0.36 0.47 0.57 0.64 
Deviation 0.36 0.52 0.64 0.64 

Chi-Squared 0.36 0.46 0.64 0.69 
FCDB 0.40 0.60 0.70 0.77 

3.3. Linear Discriminant Analysis (LDA) 
The overall prediction accuracy of LDA was over 81% with the FCDB of TMM ap-

proach, while the LDA accuracy based on geometric morphometric was only 57.9%. The 
best class prediction was computed for farmed site samples with a precision that reached 
100%. The Anzali class was the second best, predicted with 87.5% accuracy but less preci-
sion (Table 5). The clustering of individual fish in the LDA model showed that the first 
two components of the LD explained 89% of the variation among the populations. The 
farmed populations constituted an utterly separate group according to LD1 and LD2 (Fig-
ure 5). The ANOVA based on LD1 showed significant differences between the popula-
tions of common carp (F-value = 229.5, p < 0.001); the Gomishan and Miankaleh samples 
were the only pairwise comparison that did not show a significant difference (p = 0.266). 
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Table 5. The confusion matrix based on linear discriminant prediction model and TMM approach. 

 Predicted Anzali 
Predicted Gomis-

han 
Predicted Mi-

ankaleh 
Predicted 
Farmed 

Precision (%) 

Actual Anzali 7 4 2 1 50.0 
Actual Gomishan 1 23 3 0 85.2 
Actual Minkaleh 0 3 16 0 84.2 
Actual Farmed 0 0 0 14 100.0 

Recall (%) 87.5 76.7 76.2 93.3  
Overall Accuracy: 81.1% 

3.4. Geomorph Variations 
The body form variations of common carp showed that the first two components 

represented 89% of the variance (PC1 = 58% and PC2 = 31%) among the populations stud-
ied; landmarks 4, 5, 11, 12, and 13 were the most variable (Figure 5). The CVA scatter plot 
based on the geomorph data illustrated a distribution pattern similar to the TMM ap-
proach, separating the farmed population from the Caspian carp populations (Figure S1). 
Comparison of body shapes between Caspian and farmed common carp populations re-
vealed that they differed in body depth and head size (Figure 6). 

 
Figure 5. Linear discriminant analysis (LDA) scatter plot of common carp individuals based on the 
two first linear discriminants LD1 and LD2. A—Anzali lagoon; G—Gomishan; M—Miankaleh; P—
farmed population. The ellipses were generated showing clustering with 95% confidence interval 
under a normal distribution. 
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Figure 6. Consensus body shape variations of Caspian and farmed common carp. Dark blue line 
represents the farmed population and the pale blue shows the Caspian carp. 

4. Discussion 
The new machine learning tools used in the present study enabled us to accurately 

distinguish farmed common carp from its wild counterparts in the southern Caspian Sea 
using morphometric information. Based on the morphological data obtained in this study, 
we suggest a considerable admixture structure of wild common carp in the south–south-
east of the Caspian Sea, while Anzali in the southwest represented a distinct stock of the 
Caspian common carp. Wild population management is critically dependent on maintain-
ing the populations’ differentiation to stabilize the productivity of ecosystems as a whole 
[45]. Machine learning analysis is well documented in biology [46], but in aquaculture and 
fisheries science, this approach is still in its infancy. This study analyzed the morphomet-
ric data (traditional morphometric and geometric morphometric) taken from common 
carp across the southern Caspian basin using new machine learning analysis methods, 
including attribute weighting, decision tree, and naïve Bayes prediction. The highest ac-
curacy and prediction power were obtained by applying these models on traditional mor-
phometric datasets. The higher accuracy by traditional morphometrics may be due to the 
fact that geometric morphometric data are two-dimensional data and need to be con-
verted to distance-like data in TMM. Based on 10 attribute weighting models, 80% of the 
models identified head height as the key trait contributing to variation among popula-
tions. The farmed population had a larger head height (8.19 ± 0.52 cm) compared with the 
wild forms (Table S3), while amongst the wild Caspian common carp, head height was 
larger in Anzali (7.36 ± 2.13 cm) than in Gomishan (7.03 ± 1.60 cm) and Miankaleh (6.99 ± 
1.18 cm). This phenotype is likely linked to the domestication syndrome in farmed carp 
and to differences in environmental conditions between locations in the case of Anzali (a 
resident form of wild carp in Anzali lagoon) versus Miankaleh and Gomishan populations 
(Caspian carp). Domestication generates morphologic alterations leading to captive phe-
notypes across several generations and is accompanied by epigenetic and genetic changes 
[7,8,47]. Head depth enlargement and deeper caudal peduncle and body profile have been 
observed as typical characteristics of the captive phenotypes in steelhead trout compared 
with the wild counterparts [48]. Body shape variation of common carp based on geo-
morph data also supported a deeper body form and larger head size in farmed population 
compared with the Caspian form of common carp. Hence, head size, especially head 
height, and body depth are the main parameters that distinguish the Iranian stocks of 
common carp from the farmed population. 

The results obtained from decision trees have categorized the fish groups correctly. 
The comparison between the best-obtained accuracy by decision tree (79%) and naïve 
Bayesian model (77%) indicates no substantial difference between these two methods of 
machine learning analysis in categorizing common carp populations using morphometric 
information. The highest accuracy obtained was 81% by LDA, which could be further im-
proved by increasing the dataset size. Nevertheless, the farmed population was accurately 
identified through the current models. It seems that admixture of the wild stocks has di-
minished the overall accuracy, especially in the southeast population. The wild stocks of 
common carp across the southern coasts of the Caspian Sea have been experiencing mix-
ing between them due to the semi-natural proliferation and restocking program. It should 
be noted that some individuals that have not been correctly categorized based on the lo-
cation of sampling can be related to migration between sites. Several publications have 
mentioned the negative effects of dam constructions on marine life [49,50]. The Caspian 
Sea is a closed lake, and its seawater level has decreased by two meters since 1995 [51]. 
Dam building programs on the main drainages of the Caspian Sea and global warming 
are thought to be the main causes of the lowering sea level, which in turn reduces the 
breeding and feeding grounds of common carp, and makes mixing of wild populations 
more likely than before. Migration events can also be explained by the restocking program 
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since fish are not always released in the location where they had initially been caught for 
reproduction. Based on the classification using cluster analysis, it can be concluded that, 
in the Caspian Sea, there are two phenotypically distinct and geographically separated 
groups of common carp: (i) one population in the west (Anzali) and (ii) a stock including 
Gomishan and Miankaleh populations. This observation is supported by the genomic 
structure investigation of common carp in the Caspian Sea [52]. During the past decade, 
landings of common carp have seen a dramatic reduction, and the LDA plot obtained in 
the present study indicates that the stocks of common carp are experiencing a reduction 
in heterozygosity. Machine-learning- and deep-learning-based analytical toolkits provide 
the most accurate predictions, practical advantages over the basic statistical models, such 
as easily identification of trends and patterns, continued improvement, handling multi-
dimensional and multi-variety data, and a wide range of applications [53]. While popula-
tion and sub-population identification of fish species is of great importance in conserva-
tion ecology and applied ichthyology [54], most studies of novel analytical methods such 
as deep learning on the fish animals have focused their applicability on fish species iden-
tification. In a study performed on commercial carp species, deep-learning-based methods 
were applied and successfully identified four different species of farmed carp [55]. In the 
Triglidae family, three morphologically similar species were recognized based on mor-
phometric data using the deep learning approach [56]. Courtenay et al. [57] have tested 
the potential of deep learning on the processing of morphological data to provide a hybrid 
approach that efficiently overcomes taphonomic equifinality in the archaeological and 
paleontological register.  

5. Conclusions 
To the best of our knowledge, this is the first time that machine learning algorithms 

have been used in fish stock management using both morphometric and geometric–mor-
phometric information. The origin of common carp individuals caught in the southern 
basin of the Caspian Sea was predicted with maximum accuracy by the LDA prediction 
model, which could be further improved using a larger dataset. The present study demon-
strates that machine-learning-based methods can be successfully applied to morphomet-
ric data to accurately assign common carp specimens to farmed or wild populations. Thus, 
machine learning and deep learning methods have enormous potential in aquaculture, 
fisheries, and ecology to identify farmed escapees in wild stocks, manage restocking pro-
grams, and monitor the robustness of fish in aquaculture conditions. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/life12070957/s1, Table S1: 11 different generated datasets us-
ing attribute weighting models on the morphometric traits of common carp, Table S2: The whole 
results of ten attribute weighting models on traditional morphometric data of Caspian carp, Table 
S3: Mean ± SD for each morphometric trait of common carp per each region, Figure S1: The CVA 
scatter plot of farmed and Caspian carp populations based on the first two components using geo-
morph data (A—Anzali lagoon; P—farmed population; M—Miankaleh; G: Gomishan). 
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