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Abstract
1. Aggregated species occurrence and abundance data from disparate sources are 

increasingly accessible to ecologists for the analysis of temporal trends in bio-
diversity. However, sampling biases relevant to any given research question are 
often poorly explored and infrequently reported; this can undermine statistical 
inference. In other disciplines, it is common for researchers to complete ‘risk- of- 
bias’ assessments to expose and document the potential for biases to undermine 
conclusions. The huge growth in available data, and recent controversies sur-
rounding their use to infer temporal trends, indicate that similar assessments are 
urgently needed in ecology.

2. We introduce ROBITT, a structured tool for assessing the ‘Risk- Of- Bias In studies 
of Temporal Trends in ecology’. ROBITT has a similar format to its counterparts 
in other disciplines: it comprises signalling questions designed to elicit informa-
tion on the potential for bias in key study domains. In answering these, users 
will define study inferential goal(s) and relevant statistical target populations. 
This information is used to assess potential sampling biases across domains rel-
evant to the research question (e.g. geography, taxonomy, environment), and 
how these vary through time. If assessments indicate biases, then users must 
clearly describe them and/or explain what mitigating action will be taken.

3. Everything that users need to complete a ROBITT assessment is provided: the 
tool, a guidance document and a worked example. Following other disciplines, the 
tool and guidance document were developed through a consensus- forming pro-
cess across experts working in relevant areas of ecology and evidence synthesis.
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1  |  INTRODUC TION

Species occupancy and abundance are fundamental state variables in 
ecology. Understanding the rates at which these variables are chang-
ing is required to monitor progress towards biodiversity targets and 
the effects of conservation interventions. Ultimately, this information 
comes from data documenting the detection of one or more individu-
als of some taxon; that is, species occurrence data, or, in some coun-
tries, ‘biological records’ (note that here we also use these terms to 
cover abundance data, as such information may be considered an oc-
currence attribute). Species occurrence data from disparate sources 
are often combined and analysed statistically to derive the measures 
of biodiversity over large taxonomic, spatial and temporal extents (e.g. 
Gregory et al., 2005). Indeed, this is the premise of species population 
‘essential biodiversity variables’ (Jetz et al., 2019; Kissling et al., 2018; 
Pereira et al., 2013). The temporal component of these data products 
may be averaged over spatial and taxonomic domains to produce in-
dicators (GEO BON, 2015); these have become a key source of infor-
mation on ecological change for policymakers (Navarro et al., 2017). 
Frequently then, evidence of temporal trends in biodiversity is de-
rived through the statistical analysis of species occurrence data.

Species occurrence data vary widely in terms of why and how 
they were recorded, and the information that they provide. Presence- 
only data document the sighting of some species, with information 
on where and when the sighting occurred. These data are derived 
from a variety of sources, including natural history collections in mu-
seums and herbaria, surveys by professional biologists and various 
types of data collected by volunteer naturalists (Collen et al., 2013). 
Presence– absence data provide additional information on sampling 
events which did not yield a detection of the focal taxon. These 
data are most likely to be collected through structured monitor-
ing schemes using specific protocols (but see Sullivan et al., 2014). 
Abundance data can provide more information still: they document 
the number (or other quantity) of individuals detected. All of these 
data can be used to provide information on trends in biodiversity.

In recent years, species occurrence data have increased in volume 
and accessibility. This can be ascribed to several initiatives: the digiti-
sation of historic biological records (Page et al., 2015); the proliferation 
and growth of citizen science monitoring initiatives (Spear et al., 2017); 
the launch of online data aggregators such as GBIF and similar regional 
portals (Nelson & Ellis, 2019); and the compilation of more special-
ist databases focused on particular types of ecological community 
(Dengler et al., 2011), monitoring data (Dornelas et al., 2018) or other 
evidence types (Hudson et al., 2017). Thanks to these initiatives, it is 
now straightforward for ecologists to access large quantities of data, 
and to use them for research. However, data quantity does not neces-
sarily equal quality of scientific insight, and there have been import-
ant questions raised concerning the suitability of some biodiversity 
data for drawing reliable inferences about change over time (e.g. Ball- 
Damerow et al., 2019; Cardinale et al., 2018; Pescott et al., 2019).

To appreciate the potential challenges associated with the 
analysis of heterogeneous data, it is useful to define some key 
statistical concepts (see Box 1 in Supporting Information 2 for a 
glossary of relevant terms). While there are many possible defini-
tions of statistics (Barnett, 1982), one typical conception is that 
of reasoning under uncertainty and inherent variability, with clas-
sical texts (e.g. Lehmann, 1959) focusing on the use of observed 
data to make inferences concerning unobserved distributions. For 
example, monitoring- type investigations can be appreciated as a 
sample- based approach to understanding features of some broader 
environment; likewise, smaller scale experiments are normally con-
ducted with generalisation in mind. In both these cases, it is rarely 
feasible to census an entire population of interest: researchers use 
samples. This leads to questions concerning the validity of infer-
ences. One assessment of a study's validity is to ask whether these 
inferences are well- supported by the data in hand (internal validity). 
For sample- based results to be generalisable, however, they must 
also be true of the wider population of interest (external validity). A 
study's external validity is likely to be undermined if samples are not 
representative of the population with respect to important features 

4. We propose that researchers should be strongly encouraged to include a 
ROBITT assessment when publishing studies of biodiversity trends, especially 
when using aggregated data. This will help researchers to structure their think-
ing, clearly acknowledge potential sampling issues, highlight where expert con-
sultation is required and provide an opportunity to describe data checks that 
might go unreported. ROBITT will also enable reviewers, editors and readers to 
establish how well research conclusions are supported given a dataset combined 
with some analytical approach. In turn, it should strengthen evidence- based pol-
icy and practice, reduce differing interpretations of data and provide a clearer 
picture of the uncertainties associated with our understanding of reality.

K E Y W O R D S
essential biodiversity variables, indicators, insect declines, risk- of- bias, species occurrence 
data, temporal trends, uncertainty
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for the desired inferences (Meng, 2018); this is often known as ‘sam-
pling bias’ or, sometimes, ‘selection bias’.

To obtain a representative sample, researchers would ideally 
select individual units randomly from the population (probabil-
ity sampling). However, this is often impractical, in which case 
researchers might make use of non- probability samples, such as 
those found in aggregated biodiversity databases; these are sam-
ples that were not necessarily collected to be representative of a 
clearly defined population. Small samples may also be unrepresen-
tative of important features by chance, even if they are probability 
samples. Before researchers can understand a sample's represen-
tativeness, they must first define their research question and sta-
tistical target population.

In studies of biodiversity trends, researchers tend to define 
their statistical populations along the axes of space, time and tax-
onomy (e.g. Dennis et al., 2019; Outhwaite et al., 2019; Powney 
et al., 2019; van Strien et al., 2019). For example, one might be 
interested in trends in bird distributions in North America over 
the period 1950 to the present day. It is also worth noting that, 
although they may not always be defined explicitly, other axes may 
be important for inference. For example, researchers may be more 
interested in whether samples represent all areas of some multi-
dimensional environmental space (e.g. as defined by a set of cli-
matic variables), rather than just being considered representative 
of geographic space. Likewise, for some purposes, representative 
coverage of species' traits may be desired along with, or instead 
of, even phylogenetic coverage. To be representative of such pop-
ulations, data should be representative of all axes. To illustrate this 
point using the above example, data would need to be sampled as 
close to randomly as possible across North America, across all rel-
evant bird species, and evenly between 1950 and the present day. 
Otherwise, it is possible that the data will be unrepresentative of 
the populations of interest. For example, particular geographical 
areas may be over-  or undersampled at particular times, leading to 
a confounding of time and space, and, ultimately, conclusions that 
bear little resemblance to the true state of nature.

There are many situations in which occurrence data are unlikely 
to be representative of the statistical populations implied in studies 
of biodiversity trends. Data collected opportunistically are highly 
likely to be non- random along the key axes of space, time and tax-
onomy (or other important dimensions). Volunteer naturalists, for 
example, tend to preferentially sample accessible and attractive lo-
cations, and interesting species (Barends et al., 2020; Prendergast 
et al., 1993). Structured data, collected according to some sam-
pling design, may well be representative of some set of domains; 
however, when multiple datasets, with different aims, extents and 
protocols, are aggregated (e.g. as on GBIF), then the target popula-
tion to which these data pertain becomes unclear. To illustrate this 
point, imagine several datasets, each derived from structured mon-
itoring of some taxon in some spatial unit at regular time intervals. 
These data might be very informative about change in those units 
(but see Gonzalez et al., 2016), but there is no reason to suppose 
that they can be combined and used to draw robust inferences 

about some wider geographic domain, unless the samples happen 
to resemble a probability sample of the broader population(s) of in-
terest (Cardinale et al., 2018). The problem of a mismatch between 
sample and population could be reduced or avoided if researchers 
first assessed their data to inform readers of their choice of popu-
lation and the scope of their inferences.

The frequent mismatch between sample and statistical target 
population in studies of biodiversity trends has not gone unnoticed; 
indeed, it is a common subject for critical comments on studies in the 
literature. For example, Sánchez- Bayo and Wyckhuys (2019) and van 
Klink et al. (2020) were criticised for extrapolating their claims of in-
sect declines beyond the taxonomic and geographical limits of their 
data (Desquilbet et al., 2020; Jähnig et al., 2021; Saunders et al., 2020; 
Simmons et al., 2019). Vellend et al. (2013) and Dornelas et al. (2014) 
were criticised for concluding that local species richness is not in de-
cline globally from meta- analyses of studies that were geographically 
biased in relation to human disturbance and species richness itself 
(Cardinale et al., 2018; Gonzalez et al., 2016). Crossley et al. (2020) and 
van Klink et al. (2020), on the other hand, were taxonomically selective 
when reporting their conclusions: both sets of authors included non- 
insect groups in their analyses, but restricted their conclusions (and 
paper titles) to insects (Desquilbet et al., 2020, 2021). Other studies 
of insect trends have been criticised with regard to whether particular 
modelling approaches have appropriately dealt with temporal biases 
in the data. For example, both Lister and Garcia (2018) and Soroye 
et al. (2020) have been criticised in this regard (Anon., 2020; Guzman 
et al., 2021; Willig et al., 2019). This brief overview of some recent 
disagreements highlights a fundamental problem: potential biases are 
rarely communicated to the reader in sufficient detail; instead, they 
are often addressed with a passing comment, if at all.

In other disciplines, strategies have developed to assist re-
searchers in avoiding potentially inappropriate inferential claims. 
In medicine and related areas, inclusion of a study in a systematic 
review often requires that the original publication is subject to a 
‘risk- of- bias’ (RoB) assessment. Several tools have been developed 
to conduct RoB assessments, each focusing on a particular type 
of study and data (see Supporting Information 5). While many 
of these tools were designed for use in systematic reviews, oth-
ers were designed for use at the primary research stage or both 
(Supporting Information 5). Regardless, the function of these tools 
is essentially the same: to clearly expose threats to the validity of 
a study's conclusions arising from potential biases in the under-
lying data. RoB tools in medicine have been described as reflect-
ing a ‘shift in focus from methodological quality to risk of bias’ 
(Sterne et al., 2016)— a shift that has yet to take place in ecology, 
despite efforts to provide structured approaches to documenting 
methodological choices in some areas (e.g. Grimm et al., 2010). It 
is easy to appreciate why this shift was needed in medicine: one 
would not want to approve some pharmaceutical product which 
had only been demonstrated to be safe in some population sub-
set, for example. We argue that the increasing policy relevance 
of inferences about trends in biodiversity necessitates a similar 
transition in ecology.
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In this paper we introduce ROBITT, a tool for assessing the ‘Risk- 
Of- Bias In studies of Temporal Trends in ecology’. The tool has a 
similar format to its counterparts in other fields: it comprises a num-
ber of ‘signalling’ questions (Sterne et al., 2016) designed to elicit in-
formation on the potential for bias in a study. Users are first asked to 
define the statistical target population about which they intend to 
make inferences, and then to assess whether their data are likely to 
be representative of this population in the geographic, temporal, en-
vironmental and taxonomic domains as relevant (the latter defined 
broadly as covering any organismal space that might be important 
for inference). If the data are found to be potentially biased, then 
the user is asked to explain how they will mitigate those biases, or 
how they will be clearly and appropriately communicated. Below we 
describe the development of the tool, provide an overview, describe 
its sections and refer the reader to the Supporting Information for 
the tool itself, a guidance document and a worked example. Finally, 
we discuss the potential value of ROBITT for ecology and propose 
its inclusion as Supporting Information for all studies of biodiversity 
trends based on species occurrence data— particularly where those 
data are obtained from aggregated databases.

2  |  ROBIT T TOOL

2.1  |  Development

ROBITT was developed through a consensus- forming process in-
volving experts across relevant areas of ecology and evidence syn-
thesis (the authors; see Supporting Information 3 for details).

2.2  |  Overview

ROBITT comprises 17 questions designed to elicit information on a 
study's potential for bias. The user may answer the questions using 
text and/or figures. The first section, the ‘research statement and pre- 
bias assessment’, comprises four questions concerning the scope of 
the research and related issues; the remainder constitutes the bias as-
sessment itself. See Figure 1 for an overview of the tool. The ROBITT 
tool and supporting guidance document can be found in Supporting 
Informations 1 and 2. The guidance follows the PRISMA model (Page 
et al., 2021): that is, an explanation of the rationale for each question 
is given, followed by a summary of the expected response. Worked 
examples of ROBITT are provided in Supporting Information 4.

2.3  |  Tool sections

2.3.1  |  Research statement and pre- bias assessment

The purpose of this section is to assemble the information needed 
to assess a study's RoB. The first step is to define the target pop-
ulation about which inferences are desired. This must include a 

specification of the extents of any relevant domains (e.g. geo-
graphic, temporal, taxonomic, environmental). It must also include 
a statement of the resolutions at which analyses will be conducted 
(e.g. 1 km grid cells, annual increments etc.). This is important be-
cause the scale at which a research question is formulated can 
influence data availability and the nature of, and potential for, bi-
ases (e.g. Pescott et al., 2019). The next step is to state the infer-
ential goal; for example, ‘to estimate temporal trends in species' 
occupancy’. In the remainder of this section, the user must docu-
ment data provenances and explain and justify any steps that were 
taken to modify or clean data.

2.3.2  |  Bias assessment

The main section of ROBITT is the bias assessment. This begins with a 
specification of the geographic, temporal and taxonomic resolutions 
(grain sizes) at which the assessment will be conducted. Generally, 
these should match the resolutions at which inferences are desired 
(as specified in the research statement section). It would likely be 
inappropriate, for example, to assess data in decadal time periods 
and 100 km grid cells, and then conclude that they were unbiased for 
making yearly inferences at the 1 km resolution. We note that there 
may be limited exceptions to this: for example, it is not possible to 
assess sampling biases at the species level using presence- only data 
because these say nothing about sampling effort where the focal 
species was not observed.

The next three subsections denote our three main domains of 
potential bias: geographic, environmental and taxonomic (or other 
organismal axis, such as functional group). Temporal biases are dealt 
with each of these three sections (see below). In each subsection, 
the user must answer three questions: the first two are designed 
to reveal potential biases relative to the research question (i.e. 
the inferential goal). The first question asks whether the data are 
representative of that domain; that is to say, do the data cover the 
whole domain evenly (ideally randomly)? The second question asks 
whether the same portion of the focal domain has been sampled 
over time; that is, is there any indication of temporal changes in cov-
erage? The answers to this second question are crucial for assessing 
the suitability of the data for estimating temporal trends. To illus-
trate this, imagine that species data are collected from one location 
in one time period, and then from another in the next. Using these 
data to estimate changes in species' distributions or abundances 
between time periods will likely be problematic, because shifts in 
space are confounded with shifts in time. In one sense, the distinc-
tion between the first and second questions can be considered 
equivalent to the distinction between external and internal validity: 
a study might have low external validity if it is not representative of 
some domain overall; however, for a subset of that domain (e.g. a 
well- sampled portion of geographic space), the data might be very 
informative about change (i.e. high internal validity). The answers to 
these first two questions in each domain have important implica-
tions for how one answers the third.
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The third question in each domain subsection asks the user to 
state how they will mitigate potential biases indicated by the pre-
ceding two questions. There are several ways in which one might 
go about mitigating biases, which we review in the Discussion. 
There will be cases in which it is unnecessary to mitigate for a 
lack of coverage or inconsistent sampling over time because these 
are not relevant to the inferential goal. For example, even cover-
age in environmental space may be inappropriate if environmen-
tal change is expected over time for the geographic extent of the 
analysis. Users are not required to explain poor coverage in any 
domain if it is irrelevant to their inferences. There could also be 
situations in which a bias is deemed relevant but mitigation is not 
feasible. In this case, the resultant trends should be appropriately 
and clearly caveated.

The final subsection is ‘Other potential biases’. This is different to 
the previous three in that it does not relate to a single domain; rather, 
it provides an opportunity for the user to consider additional biases 
that might affect their research. The first question asks whether there 
are any temporal biases that do not relate to the ecological states of 
interest. Often these biases will relate to observation error or the 

estimation of some parameter in a model related to this. For exam-
ple, site occupancy models are sometimes used to estimate trends 
in species' occupancies (Kéry & Royle, 2016). These models normally 
require data from replicate visits to sites within short spaces of time to 
estimate detection probabilities (thus correcting for imperfect detec-
tion). Where these models are used, analysts should consider whether 
there is variation in the quantity and type of repeat visits that could 
result in biased estimates of these parameters (Royle, 2006).

The second question in the ‘other biases’ section asks the user 
to consider whether there are any other biases not covered by the 
preceding questions. Examples include biases relating to phenology, 
such as a mismatch between sampling dates and a species' flight 
period; temporal baselines; and changes in the portion of one do-
main that has been sampled over some other domain, such as geo-
graphic variation in taxonomic coverage. Like earlier sections, the 
final question asks users to explain how they plan to mitigate biases 
revealed in their answers to the two preceding questions. See the 
guidance document in Supporting Information 2 for details on the 
expected content of responses to the ROBITT questions and other 
background information.

F I G U R E  1  A conceptual overview of ROBITT with brief details about what is required at each stage. Black arrows indicate the order 
in which users should proceed through a ROBITT assessment. Purple arrows indicate that completing a ROBITT form can be an iterative 
process: if the data are found to be unrepresentative of any domain, then they may be necessary to return to step 1.1 and redefine the 
extent and/or resolution of the statistical population accordingly
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2.1 Define target sta�s�cal popula�on
Specify extents and resoluons in the 
geographic, temporal, taxonomic, and 
environmental domains.

2.2 Define inferen�al goal(s)
State what you intend to infer about the 
stascal populaon.

2.3 Describe data provenance
Explain where the data come from, the 
data types (presence-only, abundance, 
etc.) and any other features that may be 
important.

2.4 Describe data cleaning steps
Describe any steps that were taken to 
clean or otherwise modify the data.

3.1 State assessment resolu�on (grain size)
State the resoluons at which you will conduct the bias 
assessment. Generally, these should match the resoluons of 
the stascal populaon.

3.2 Geographic biases
Assess whether the data are representave of geographic space, and 
whether the same poron of geographical space has been sampled over 
me. If the answers reveal biases, explain how you will migate them (if 
feasible).

3.3 Environmental biases
Assess whether the data are representave of environmental space, and whether the 
same poron of environmental space has been sampled over me etc.

3.4 Taxonomic biases
Assess whether the data are representave of taxonomic (or 
other organismal) space, and whether the same poron of that 
space has been sampled over me etc.

3.5 Other biases
State any addional biases not covered in what came before etc.

1.1 Itera�on number
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2.3.3  |  Completing the assessment

While the assessment questions require individual answers, it may 
be that researchers prefer to provide responses in the main text of 
a report. As a point of comparison, PRISMA (Page et al., 2021) pro-
vides a checklist format that allows researchers to direct the reader 
to the answer to any given question. This could also be the case here; 
for example, paper subheadings could be provided in response to a 
question, provided the text referenced was a complete answer to it.

Users may go about answering the questions in the bias assess-
ment section in the best ways they see fit. However, we have found 
the use of ‘heuristics’ that indicate the potential for bias to be of 
value. We use the term ‘heuristic’ to acknowledge that it is generally 
not possible to determine the exact extent of bias without a prob-
ability sample for comparison. Many heuristics have been used to 
screen biodiversity data for biases in the literature; we briefly review 
these in Table S1 in Supporting Information 2. The most common 
example is a map of the density of records across geographic space; 
such maps could provide evidence of geographic representative-
ness (or lack thereof). Taking this further, one could produce several 
maps, each pertaining to some time period; these could be used to 
assess temporal variation in geographic coverage. To obtain a more 
formal, quasi- statistical measure of geographic representativeness, 
one could compare the nearest neighbour distances of their data to 

those of a simulated random distribution (Clark & Evans, 1954). This 
gives an index indicating the extent to which the data depart from 
a random distribution geographically. In Figure 2, we present three 
example heuristics that could be used to screen data for geographic 
biases. In these examples, the heuristics are applied to hummingbird 
(Trochilidae) records collected between 1950 and 2019 in Ecuador 
and Colombia. While heuristics of this type will be useful, it is im-
portant to remember that a ROBITT assessment is not intended 
to be a contextless set of numbers or figures: bias can strictly only 
be defined in relation to some inferential goal. The central point of 
ROBITT is that assessments of bias are clearly linked to a research 
question, and assessed in the context of this and any analytical tools 
being used to answer that question.

In some cases, completing a ROBITT assessment will be an it-
erative process. For example, researchers might complete a first it-
eration of the tool and find that data coverage is not sufficient in 
portions of their geographic domain of interest. In this case, they 
might decide to redefine this domain to exclude poorly sampled 
regions; this would mean completing a second iteration of ROBITT 
using an appropriate subset (Figure S1, see Supporting Information 
4). Where a ROBITT assessment is iterative, the user should clearly 
version control (i.e. track and record changes over time) their doc-
uments and provide this history as supporting information to their 
work.

F I G U R E  2  Three ‘heuristics’ indicating the potential for geographic biases in data on hummingbird occurrences collected in Ecuador and 
Colombia from 1950 to 2019. These data were downloaded from GBIF (see Supporting Information 3 for full details of the provenance of 
these data). In these examples, the data are assessed in seven decadal time periods (p1 = 1950– 1959, p2 = 1960– 1969, etc.) and in 1° grid 
cells. Panel (a) shows the nearest neighbour index for each decade; values further from 1 indicate a greater departure from a simulated 
random distribution. The shaded band denotes uncertainty derived by bootstrapping. Panel (b) is a map showing the number of decades 
in which records are available for each grid cell. This is a simple measure of how the spatial distribution of sampling has changed over time. 
Panel (c) shows the density of records in each grid cell for each decade on a log10 scale. See Boyd et al. (2021) for further details
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3  |  DISCUSSION

Sampling biases have long been recognised as a challenge for infer-
ence in ecology (e.g. Peters, 1991); however, unlike in other disci-
plines, no formal tools for assessing these have been produced. We 
have designed and introduced ROBITT, a tool for assessing the po-
tential ‘Risk- Of- Bias in studies of Temporal Trends in ecology’. The 
tool comprises a number of questions, each designed to clearly elicit 
the potential for bias in the study under assessment. In answering 
these, users will define their research question and target popula-
tion across relevant domains, and then assess the degree to which 
their data are likely to be representative of these. We propose that 
researchers be strongly encouraged to include a ROBITT assess-
ment as supporting information when publishing studies of temporal 
trends in biodiversity, especially when using aggregated data. We 
expect that this will support scientists in writing clear method sec-
tions; strengthen evidence- based policy and practice; help resolve 
scientific controversies around biodiversity trends; assist editors, 
reviewers and readers; and, ultimately, highlight the uncertainty as-
sociated with our understanding of ecological reality. Accumulated 
over studies, ROBITT assessments will also highlight where data 
are required to address pressing questions concerning biodiversity 
change.

We hope that the completion of ROBITT will become a stan-
dard requirement where researchers estimate trends from ag-
gregated species occurrence data. The tools listed in Supporting 
Information 5 have set similar precedents in other disciplines; 
many are endorsed by journals and uptake is generally high. While 
some reporting tools for various subdisciplines of ecology already 
exist, they do not focus on RoB. These include the ODD (Grimm 
et al., 2006, 2010) and TRACE (Schmolke et al., 2010) protocols 
for describing and documenting individual- based models, and the 
ODMAP (Zurell et al., 2020) protocol for documenting the use of 
species distribution models. In medicine, some reporting tools 
have evolved from a general focus on methodology to a more spe-
cific, and arguably more in- depth, focus on the impacts of bias on 
inference (Sterne et al., 2016). There is no doubt a place for both 
in ecology (indeed, some tools in medicine combine these aspects, 
e.g. Page et al., 2021); however, we agree with Sterne et al. (2016) 
that in- depth, qualitative, assessments of RoB across relevant do-
mains are more useful and revealing than simply checking method-
ological items off a list.

We suggest that researchers will get the greatest benefit from 
our tool if they use it to structure their research. ROBITT contains 
questions that researchers should be asking themselves already; in-
deed, it provides an opportunity to demonstrate the large amount 
of work that goes into studies of temporal trends in biodiversity, but 
which may go unreported. An interesting possibility is that ROBITT 
assessments could be supplied as part of the pre- registration pro-
cess, which is becoming increasingly common in ecology (e.g. 
https://besjo urnals.onlin elibr ary.wiley.com/hub/journ al/26888 
319/regis tered - repor ts- autho r- guide lines). If, on the other hand, a 
ROBITT form is completed just before the submission of an article 

for publication, then it may reveal problems that could have been 
dealt with earlier. Completing the form during the research process 
has the potential to save researchers' time, by providing a framework 
for structuring thought and decision- making.

Much of the RoB literature in other disciplines has focused on 
the effects of interventions (see Supporting Information 5). In this 
type of research, the questions asked are causal because the desired 
inference concerns whether some action results in some outcome. 
This has also been the standard focus of evidence- based conserva-
tion (e.g. Lortie et al., 2015). ROBITT, on the other hand, is primarily 
focused on descriptive inference of the type that is often used for 
ecological indicators (e.g. Gregory et al., 2005) or the EBV literature 
(e.g. Jetz et al., 2019). However, this distinction is not absolute, and 
there are many examples of ecological studies that use aggregated 
species occurrence data in attempts to reach causal conclusions. For 
example, Woodcock et al. (2016) divided wild bee data for Britain 
into two subsets based on insecticide use, assessing trends in occu-
pancy for taxa in each subset. While this type of assessment is cor-
relative, there is often a causal motivation (e.g. the title of Woodcock 
et al., 2016 implies causality). While the ROBITT tool has not been 
explicitly designed to deal with these situations, we suggest that it 
will still be useful when attempting to make causal inferences from 
observational data. In the example of Woodcock et al. (2016), the 
domain representativeness of the data in the two subsets could have 
been assessed separately to investigate the potential for confound-
ing; additionally, the full dataset could have been assessed for its 
external validity.

One key issue with RoB assessments is that, while it might 
be easy to define a target population, in some cases it will not be 
straightforward to determine whether any given sample is repre-
sentative of that population. For example, a researcher might define 
their population as wild bees in Chile in the 2010s. Mapping the data 
might reveal that available data are not randomly distributed across 
the country, but does this reflect the true distribution of wild bees 
in Chile, or does it reflect non- random sampling? The user might also 
want to establish whether they have data for all known species of 
wild bee in Chile: how do they know whether this is the case? The 
answers to these questions will vary.

While it will not always be easy to establish whether a sample 
is representative of a population, we propose some simple criteria. 
First, subject- matter experts should be consulted; experts may be 
able to separate sampling biases from biological phenomena. For 
example, an expert might know, or suspect, that a species or taxon 
group occupies areas where it has not been recorded; this is likely to 
be a strong indication of sampling bias. Second, it might be possible 
to supplement expert advice with published information. Regional 
or national floras etc. may list (undigitised) specimens, or provide in-
formation on regional occurrences at some coarse spatio- temporal 
level. Third, when using presence- only data for a reasonably large 
number of species in the same group (e.g. bees, birds), it may be ac-
ceptable to assume that the combined distribution of records for all 
species approximates the sampling distribution (Dudík et al., 2005; 
Phillips et al., 2009). In this case, the combined data would ideally be 

https://besjournals.onlinelibrary.wiley.com/hub/journal/26888319/registered-reports-author-guidelines
https://besjournals.onlinelibrary.wiley.com/hub/journal/26888319/registered-reports-author-guidelines
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randomly distributed across the geographical domain. Fourth, pres-
ence/absence and abundance data may be a direct reflection of the 
distribution of sampling (i.e. a species might not be detected but a 
record is still made of the event), therefore such data may provide re-
liable information on the distribution of sampling in space and time. 
If the basis of sampling is known (e.g. random, systematic- random 
etc.), then data may be representative, at least within the bounds of 
the original survey. However, even here, such a sample may still be 
unrepresentative of an analyst's target population if that population 
pertains to a different spatio- temporal- taxonomic domain to the 
survey. We can see very few scenarios where it will not be possible 
to at least approximate the degree to which a dataset is represen-
tative of a given population using all the knowledge that could be 
brought to bear. Indeed, this is the rationale behind qualitative RoB 
tools based on expert assessments (Supporting Information 5).

If analysts cannot reach an informed conclusion with regard to 
the likely representativeness of a sample, then broader inference 
is not likely to be meaningful; simple descriptive statistics could be 
used instead, and this limitation acknowledged, with paper titles, ab-
stracts etc. all reflecting this. This may seem a negative conclusion 
for an analyst to reach, but we argue that this is likely to be the most 
honest, and scientific, endpoint for a dataset whose representative-
ness cannot be clearly assessed.

Four of the questions in ROBITT provide researchers with an 
opportunity to consider whether and how they can mitigate biases 
revealed elsewhere in the tool. It is not possible to review here all 
possible measures that could be taken by researchers; a full treat-
ment of adjustments and models for dealing with bias would have to 
cover many topics within statistics and ecological data. However, we 
note three general approaches. The first is to modify the data in some 
way (e.g. thinning; Inman et al., 2021). The second is to model the bi-
ases; typically, this will involve incorporation of variables thought to 
capture the biasing mechanism in some form of regression analysis 
(e.g. van Strien et al., 2019), although other approaches are possible 
(Ahmad Suhaimi et al., 2021). Third, we suspect that in many cases 
ROBITT will reveal the need to restrict the extent of researchers' 
inferences. This might include redefining the spatial extent of an 
analysis to reflect the fact that data are scarcely available in some 
portion of geographic space, or coarsening the temporal resolution 
to ‘smooth over’ temporal biases in geographic or taxonomic cov-
erage (Pescott et al., 2019). Any modifications to the extents of the 
statistical population should be reflected in paper titles, abstracts, 
etc. We note that it will often be prudent for researchers to assess 
the sensitivity of their conclusions to the choice of bias mitigation 
strategy: some statistical ‘fixes’ can make aspects of inference worse 
(Gelman, 2007; Lele, 2010). Nevertheless, we suspect that by using 
these general bias mitigation strategies, researchers will usually be 
able to proceed with their analyses, even if those analyses relate to 
more limited statistical populations than initially envisioned.

The problem of inference from biased samples is difficult, and 
quick fixes do not exist. ROBITT represents a first attempt to en-
courage more thoughtful assessment of the potential for bias to un-
dermine the robust estimation of temporal trends in ecology. We 

intend to update the tool over time and welcome feedback from 
users.
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