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Global land-use intensity and anthropogenic
emissions exhibit symbiotic and explosive behavior

Samuel Asumadu Sarkodie1,2,* and Phebe Asantewaa Owusu1

SUMMARY

The intensification of land use is accelerating and remains a threat to achieving
environmental sustainability. Although prior literature identifies unsustainable
demand for resources as crucial to ecosystem vitality, we highlight explosive
behavior and indicators associated with changing global land-use intensity and
emissions. We assess emission footprints, forestry, and agricultural land-use in-
tensity across income groups. We find that long-term income growth above
US$1005/capita hasmitigation effects on emissions, whereas emissions stimulate
the global expansion of land use for agricultural and forestry activities. Urban
expansion has diminishing effects on agricultural lands in developed countries,
which may alter future agricultural production and food consumption. The het-
erogeneous effects across countries demonstrate the need for domestic context,
including cultural and historical factors, in assessing forest decline, agricultural
expansion, and land-use intensity. The co-benefits of Reducing Emissions from
Deforestation and Forest Degradation (REDD+) in developing economies are
crucial to mitigating emissions while improving forest-dependent livelihoods.

INTRODUCTION

Global land-use intensity is a crucial human cause of land degradation, whichmay pose threat to ecosystem

vitality, leading to loss of natural habitat and changes in landscape (DiSano, 2002; Shukla et al., 2019). Un-

sustainable land use affects ecological composition including productive lands for forestry and agriculture,

which has long-term negative impacts on biodiversity and emissions. Although the global forest cover is

improving compared to historical trends decades ago, agricultural expansion, deforestation, and land

degradation remain a threat to land conservation in developing countries, especially low-income econo-

mies. For example, the global forest area has declined from 32.5% to 30.8% (i.e., 178 million ha) between

1990 and 2020 owing to human-induced changes such as agricultural expansion (FAO, 2020). Although

South America observed an unprecedented decline in forest area spanning from 1990 to 2010, Africa wit-

nessed the highest net loss of forest area between 2010 and 2020, whereas the highest net gain between

2010 and 2020 occurred in Asia (FAO, 2020). Climate change mitigation and adaptation in agriculture,

forestry, and land use are intertwined via feedback mechanisms, synergies, and trade-offs (Krystal Crum-

pler et al., 2021; Smith and Olesen, 2010). This implies sustainable land-use management (agroforestry,

land-basedmitigation options, and integrated landscape approach) is a key adaptation measure to reduce

anthropogenic emissions and climate change vulnerability (Hosonuma et al., 2012; Rosenzweig and Tu-

biello, 2007; Verchot et al., 2007). However, the trilemma existing among agricultural land expansion,

forestry, and GHG emissions is driven by population growth, economic development, and urbanization

(Shukla et al., 2019). The global population is increasing with increasing demand for food and resources

for economic benefit, yet conservation practices require sustainable forest management to limit the rising

levels of emissions. The complex nexus between climate change, socio-economic and ecological systems

require attention owing to the threat of climate change and its impacts on sustainable development (Den-

ton et al., 2014).

While the literature has reported spatial-temporal trends of ecological portfolio, and ecological resources

embodied in trade (Hoang and Kanemoto, 2021), no study has comprehensively assessed the symbiotic re-

lationships existing among land-use intensity, demo-economics, and changes in emission levels. Under-

standing these dynamic relationships are crucial to unearth historical trends useful to develop conceptual

tools for climate change adaptation and mitigation of climate vulnerability. Second, country-specific,

regional, and other global crises including the recent COVID-19 pandemic, and economic recessions
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affected business-as-usual, which shifted production and consumption, leading to explosive behaviors

across countries. The term ‘‘explosive behavior’’ entails unusual trends observed among socio-economic

and environmental variables across time. These episodes that capture extremes are indicative of climate

change and land-use intensity. Besides, this explains unusual events in emission patterns, resources, and

biodiversity exploitation (deforestation, land degradation, ecological footprint, and domestic material

consumption) that often contradict existing fundamental patterns. Yet, global multi-regional input-output

(MRIO) models may fail to capture explosive behaviors that are significant to tilt the balance between pro-

duction and consumption.

Here, we ask the following research questions using 27 years of data: (a) what are the drivers of global

anthropogenic emissions and land-use intensity? (b) what are the feedback mechanisms, synergies, and

trade-offs that underpin emission reduction from agricultural land, forestry, and land use? (c) What are

the current trends of ecosystem dynamics across countries (identifying winners and losers)? We use novel

econometric techniques to examine global symbiotic relationships, and date-stamping explosive behav-

iors existing between land-use intensity, demo-economics, and changes in emissions (See model estima-

tion). Using dynamic panel models that capture cross-section dependence, heterogeneity, nonlinearity,

and chaotic functions account for the complexities of climate change across countries and income groups.

For example, we employ the convergent cross-mapping technique to assess symbiotic relationships while

accounting for complex dynamics among variables (See model estimation). Besides, this study for the first

time applies the backward supremum right-tail augmented Dickey-Fuller unit root technique based on

recursive window widths to control for such unusual behaviors in demo-economic and ecological variables

while data-stamping episodes (Baum and Otero, 2021; Phillips et al., 2011). Our study identified episodes

of explosive behavior highlighting country-specific events of influx or excesses in emissions, land-use inten-

sity, urban sprawl, and income. The date-stamping explosive behaviors are examined for the top three low-

performing and high-performing countries, and subsequently, validated using the US scenario. We opine

that these unusual periods of extremely low or high trends could have been triggered by country-specific

economic structure and disparities in income distribution.

RESULTS

Current trends of ecosystem dynamics

To assess performance, we use a normalization scale [0, 100] to develop country-specific scores from

average changes in sampled variables over the 27-year period. For comparison, we categorize perfor-

mance scores of countries based on income groups (Figure 1). Although average income level improved

(between 0.13 and 2.25%) in all economies regardless of income group, Iraq, an upper-middle-income

country in the Middle East & North Africa observed the highest gain in income by 2.25%. Niger, a low-in-

come country in Sub-Saharan Africa observed the lowest increase by 0.13%. GHG emissions witnessed an

increase in developing countries typically low-income economies. Niger, Pakistan, Afghanistan, Ethiopia,

and Mozambique are the top five hotspot countries with rising anthropogenic emissions by 1–1.97%

(score = 70.10–100). In contrast, China, India, DR Congo, Germany, and Cameroon saw an average decline

in yearly GHG emissions by 0.49–0.97% (score = 0–16.05). The yearly expansion in agricultural land use by

0.24–0.72% (score = 52.92–100) can be observed in low-income and lower-middle-income economies in

East Asia & the Pacific, and Sub-Saharan Africa. The top five gainers in agricultural land include Vietnam,

Niger, Mali, Indonesia, andMyanmar, whereas the top five losers (i.e., declined by 0.15–0.30%) include Can-

ada, Australia, Poland, Italy, and Iran. The yearly average urban population grew in almost all countries

except Russia, and Poland with stabilized growth (0%), whereas Ukraine, and Romania declined by 0.02–

0.04%. Conspicuously, the rate of urban population growth was higher in Sub-Saharan Africa, occupying

the top five hotspots (i.e., Uganda, Burkina Faso, Angola, Mali, and Tanzania), and 7–15 countries. Yet,

countries (specifically high-income economies) with low urban population growth are located in North

America, Europe, and Central Asia. The top five countries that saw potential deforestation, viz. decline

in forest area by 0.9–2.39% includeMali, Uganda, Nigeria, Algeria, and Pakistan, whereas Niger, Syria, Viet-

nam, China, and Iran observed yearly average improvement/expansion in forest area by 0.34–61.09% (Fig-

ure S1). Niger is singled out in Figure S1 owing to potential explosive behavior observed over the time

period. Although historical trends show a decline in forest area, average yearly change reports otherwise,

owing to unusual decline in 2005 by 106% and sudden rebound effect by 1,780.7% in 2006, hence, showing

a conspicuous behavior requiring attention. The high rate of deforestation (i.e., a decline in forest area) in

low-income economies is driven by poverty, high demand for forestry products, and resources to meet en-

ergy demands for cooking and heating purposes (Koop and Tole, 2001). Fuelwood charcoal and timber
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logging are reported as the main determinants of forest degradation in Africa, whereas timber logging is

the primary driver of forest degradation in subtropical Asia and Latin America (Hosonuma et al., 2012). Be-

sides, agrarian economies often exploit forest resources through legal or illegal trade to improve economic

productivity, especially among poor communities whose livelihood depends on. For example, illegal log-

ging of wood, specifically extinction species such as rosewood has become popular in sub-Saharan Africa

owing to its high price value and demand in international markets (Barrett et al., 2010). Thus, these activities

serve as a conduit for the spillover of emissions and deforestation embodied in trade (Hoang and Kane-

moto, 2021). In contrast, high-income countries are mostly high-tech and service-based economies, hence,

depend less on environmental capital including forestry products (Ewers, 2006).

Date-stamping explosive behavior

The unusual trend observed among variables across time periods reveals the existence of dynamic prop-

erties requiring further estimation. Explosive behavior of economic indicators often trickle-down to so-

cio-demographic and environmental variables during distress or crises. Thus, explosive behavior may

cause sampled variables to deviate from their fundamentals leading to ‘‘bubbles.’’ To account for this

unusual behavior, we use the novel backward supremum right-tail augmented Dickey-Fuller unit root

technique based on recursive window widths for data-stamping of episodes (Baum and Otero, 2021; Phil-

lips et al., 2011). The estimation technique is applied to the top three low-performing and high-perform-

ing countries of sampled variables (i.e., GHG emissions, forest, and agricultural land) to examine for po-

tential explosive behaviors (Figures 2, S2, and S3). We observe a rejection of the null hypothesis of unit

A B

C D

Figure 1. Country-specific average change from 1990 to 2016 (A) income (B) GHG emissions (C) Agricultural land-

use (D) urbanization

LIC, LMC, UMC, and HIC represent low-income countries, lower-middle-income countries, upper-middle-income

countries, and high-income countries. We use a normalization scale [0, 100] to develop country-specific scores from

average changes over the sampled time period.
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root corresponding to the right-tail 90–95% confidence interval, implying the existence of varying pe-

riods of explosive behavior across the sampled countries. In Figure 2, one episode of explosive behavior

in GHG emissions is observed in Niger (2013–2014), Pakistan (2006–2007), and Afghanistan (2013–2014),

whereas two episodes are detected in China (2004, 2014), India (2008–2012, 2015–2016), and DR Congo

(2001, 2014–2016). The unusual rebound effect of forest expansion detected in Niger is corroborated by

two episodes of explosive behavior occurring in 2001, 2009–2016 (Figure S2). However, no evidence of

explosive behavior is found for Nigeria and Syria in the forest model (Figure S2) and Iran in the agricul-

tural land model (Figure S3). Similar episodes of explosive behavior are confirmed among sampled vari-

ables using the US as a benchmark (Figure S4). The validation of explosive behavior of sampled variables

across the top three low-performing and high-performing countries is suggestive of heterogeneous and/

or nonlinear behavior driven by unobserved factors. This infers the adoption of business-as-usual estima-

tion techniques for variables exhibiting sensitive behaviors may be erroneous. The identified episodes of

explosive behavior highlight country-specific events of influx or excesses in emissions, land-use intensity,

urban sprawl, and income. These unusual periods of extremely low or high trends could have been trig-

gered by country-specific or global financial crises.

Assessment of symbiotic relationships

Owing to the limitations of standard empirical techniques to examine dynamic systems with complex,

nonlinear, and chaotic functions, we employ the non-parametric convergent cross-mapping (CCM)

A B

DC

E F

Figure 2. Date-stamping explosive behavior of GHG emissions in top three low-performing and high-performing

countries using BSADF test (A) Niger (B) Pakistan (C) Afghanistan (D) China (E) India (F) DR Congo

Episodes of explosive behavior occur in 2013–2014 (Niger), 2006–2007 (Pakistan), 2013–2014 (Afghanistan), 2004, 2014

(China), 2008–2012, 2015–2016 (India), and 2001, 2014–2016 (DR Congo). Explosive behaviors are assessed using the

backward supremum ADF (BSADF) test based on recursive window widths for data-stamping of episodes.
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algorithm (Li et al., 2021) to assess causality by mimicking biological symbiotic relationships. Contrary to

standard econometric techniques that predict outcomes using causes, the CCM algorithm employs the

reverse—arguing that the search for causes, in reality, begins with an outcome to ascertain whether its dy-

namic structure is embedded with the signature of a cause (Schiff et al., 1996). Additionally, we control for

transitivity and external forcing of non-coupled series that exist in ecological systems. Thus, the CCM

models presented herein account for complexities that are problematic in panel literature that examine

causations (Sugihara et al., 2012). The validation of causality infers the paired variables share information

about a common dynamic system that underpins the direction of causality (Sugihara et al., 2012). The San-

key diagram presented in Figure 3 shows statistically significant causal networks among sampled variables.

The unidirectional coupling observed from income to land-use, income to agriculture, and population to

land-use shows commensal or amensal relationships that have policy implications. Previous studies on

another scope classify the unidirectional causality between paired variables as either conservation or

growth hypotheses synonymous with commensal or amensal relationships (Ozturk, 2010). The conservation

hypothesis posits that sustainable productivity is driven by long-term resource utilization. In contrast, the

growth hypothesis postulates that natural resource utilization is driven by economic productivity. This con-

firms the effect of urban population on land-use, and the influence of income on land-use, and agriculture.

In contrast, the bidirectional coupling is validated between GHG emissions and land-use, GHG emissions

and forest, GHG emissions and urban population, GHG emissions and agricultural land, agricultural land

and urban population, income and forest, and forest and population. The bidirectional coupling aka feed-

back hypothesis postulates a long-term mutual relationship between natural resource utilization and eco-

nomic development. These mutual relationships validate known feedback mechanisms in biological sys-

tems where organisms are co-dependent.

Predictors of changes in land use

Accounting for decadal effects of income level on land-use intensity and anthropogenic GHG emissions

using Games-Howell pairwise test (Patil, 2021) across income groups provides statistically significant be-

tween-group comparisons. Based on Welch’s parametric one-way ANOVA hypothesis testing,

Figure 3. Symbiotic relationship among sampled variables across countries

The parameters were estimated using the convergent cross-mapping technique to examine causal effects. The Sankey

diagram presented shows the predictor (left) to target (right) causal relationship. We only presented causal effect

relationships that are statistically significant. The arrow represents the causal links with width proportionate to the weight/

coefficient of the flow, whereas the rectangles with corresponding texts are the nodes.
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several country-specific means are compared without restrictions on equal sample variances (Welch,

1951). In the output distribution plots, we use outlier tagging to detect extremely high and low perfor-

mance across income groups. A visual inspection of Figure 4 confirms the statistical evidence showing

the ranking: low-income > lower-middle-income > upper-middle-income > high-income. This infers

the within-mean of low-income countries is higher than their counterparts in both emissions and land-

use models. Another observation is that economies with low-income levels have higher GHG emissions

and land-use intensity, whereas high-income countries exhibit low emissions and land-use intensity. For

example, DR Congo produces higher GHG emissions per income, whereas Afghanistan is the lowest

A

B

Figure 4. Distribution across income groups (A) GHG emissions per Income (B) Land-use intensity per Income

The pairwise test using the Games-Howell technique shows only statistically significant comparisons. ( ) represents the

within mean across income groups. The output of the frequentist analysis Fwelch (.) = #, p = #, cu2
p = #, CI95% [#, #], nobs = #

denote the parameter test statistic, significance of the p-value, estimate of the effect size, confidence interval, and

number of observations.
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emitter per income in low-income countries (Figure 4A). Countries with low-income levels often depend

on vintage technologies for agriculture, forestry, and land use, with little or no sustainable practices and

environmental consciousness—which coincides with a pollution-driven growth trajectory at the early

stages of economic development (Sarkodie and Strezov, 2019). In contrast, Romania exhibits the highest

land-use intensity per income, whereas Canada is the lowest land-use per income economy in high-in-

come countries (Figure 4B). To further strengthen the argument, Figure 5 examines the relationship be-

tween GHG emissions and land use by accounting for both population and income dynamics. The resul-

tant nexus shows a positive monotonic relationship that validates the distribution plot and feedback

coupling mechanism of GHG emissions and land use in the convergent cross-mapping causality. In a

similar ranking, while high-income economies are associated with low emissions and land-use intensity,

low-income economies including inter alia, DR Congo, Mozambique, and Uganda have close linkage

with high land-use intensity and GHG emissions (Figure 5). In another scenario (Figure S5), the effect

of urban population on land-use intensity is glaring, showing that income group with high urban popu-

lation has lower land-use intensity, whereas countries with low urban population rate have higher land-

use intensity. A similar study found little impact of urban expansion on land-use intensity, viz. forest

degradation in Africa and Latin America, yet, the impact is high in Asia (Hosonuma et al., 2012). Notice-

ably, the lowest change in agricultural land in low-income countries far exceeds the highest agricultural

land change in high-income economies. This describes potential diminishing effects of agricultural land

in developed countries, altering agricultural production.

Drivers of anthropogenic emissions and land use

To examine relationships that identify determinants of GHG emissions, agriculture, forestry, and land use,

we adopt panel dynamic estimation techniques that investigate global common shocks, spillover effects,

heterogeneous effects, and controls for both endogeneity and omitted-variable bias. We use the panel

bootstrap corrected fixed-effects regression based on cross-section dependence resampling and

analytical heterogeneous initialization to achieve convergence (De Vos et al., 2015). We observe significant

(p-value < 0.01) inertia effects in historical anthropogenic emissions that predict the future rise in GHGs

(Figures 6 and S6). This explains why 60% (30/50) of the sampled countries including 11 of 15 Sub-Saharan

Figure 5. Relationship between GHG emissions per Income and land-use intensity per Income across income

groups

Both population and income dynamics are accounted for in both variables, hence, showing a positive monotonic

relationship that validates the feedback coupling mechanism of GHG emissions and land use in the convergent cross-

mapping causality.
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African economies show a positive yearly average in emission levels. Owing to the absorptive capacity of

forests and crops, rising levels of anthropogenic GHG emissions significantly (p-value < 0.05) trigger global

expansion of land use for agricultural and forestry activities (Figure S7). We find evidence of a global shift

from forestry to agricultural land use, which may have been triggered by the increasing global demand for

food to control threats of food insecurity––that permeates many low-income economies. Our model pro-

vides statistically significant (p-value < 0.05) evidence supporting the escalation effect of urban population

on GHG emissions, land use (Figure S7), and agricultural land (Figure S8A), but has mitigating effects on

forest land use (Figure S8B). Although urbanization is a threat to future land allocation, we identify oppor-

tunities for reducing forest loss with improved innovation and technology. The yearly fixed-effects of

several countries excluding Kazakhstan and Niger predict (p-value < 0.01) future forest expansion as inno-

vation increases over time (Figure S9). Such predicted threat of forest loss aside from low forest cover in

Kazakhstan may be linked to the failure to address climate change in forest policies (Sehring, 2012). The

biological diversity loss of forests in Niger can be associated with degradation owing to agricultural expan-

sion, inadequate forest management, immature harvesting of forest products, and climate change-driven

desertification and wildfires (WA BiCC, 2020).

A

B

Figure 6. Parameter estimation (A) GHG emissions, income, and land-use (B) Model validation using bootstrap

distribution for all autoregressive coefficients

A visual inspection of the histogram shows the bootstrap-simulated distribution is normally distributed, which is

informative for investigating residual stationarity. The parameter estimates of all variables excluding land use are

statistically significant at p-value < 0.05 (**). The heterogeneous slope testing—Standard delta test ~D (9.030, p < 0.01),

adjusted delta test ~Dadj (10.240, p < 0.01), and HAC robust delta test ~DHAC (3.664, p < 0.01), confirms heterogeneous

effects across countries. We used bootstrap corrected dynamic FE regression (n = 1300) based on cross-section

dependence resampling and analytical heterogeneous initialization to achieve convergence. The estimated model has

bootstrapped standard errors, bootstrap 95% (percentile-based) confidence intervals, and statistical inferences

performed with non-parametric bootstrap. Residual diagnostics: CD-test (�0.23) & p-value (0.821); Pesaran’s CADF test

(�1.375) & p-value (0.998).
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Growth in income level exhibits insignificant positive effect on forest, but insignificant negative effect on

land-use intensity. Contrary, income growth significantly (p-value < 0.01) spurs GHG emissions and agri-

cultural land use; however, the coefficient (p-value < 0.01) on the quadratic of income is negative in both

emission and agricultural land-use models. This implies that income level exhibits a parabolic shape,

hence, has diminishing effects on GHG emissions and agricultural land use. From the estimated slope

relationship, 1% growth in income exacerbates GHG emissions by 0.74% and agricultural land use by

0.12%. Using the approximation
hbb1GDP=

�
� 2bb2GDP2

� i
, the turning points for both models are calcu-

lated as 6.912 (in log) for the GHG model and 7.333 (in log) for the agricultural land-use model. This in-

fers the return to income level becomes zero at � US$1005 per capita in the GHG model and �US$1530

per capita for the agricultural land-use model. This has policy implications as income data shows about

64% of countries have average income levels above the turning point in the GHG model, whereas 52% of

economies are beyond the extremum point in the agricultural land-use model. Our model reveals the

possibility of income level increasing anthropogenic GHG emissions until it reaches an extremum point

of U$1005 per capita and declines thereafter. Although the seemingly low turning points may have been

influenced by the dominance of low- and lower-middle-income countries sampled in the model, many of

these countries are still below the extremum point. This describes extreme income inequality where a

large population in low-income countries are poor, hence, averaging income level affect the few wealthy

population. Countries with average income below the turning point in the GHG model include Nigeria,

Afghanistan, Pakistan, India, Ghana, Kenya, Vietnam, Bangladesh, Myanmar, Mali, Chad, Tanzania, Bur-

kina Faso, Uganda, Mozambique, Niger, DR Congo, and Ethiopia. Similarly, income growth escalates

agricultural land-use intensity until a turning point of U$1530 per capita before declining. Other countries

below the extremum point in the agricultural land-use model including the listed economies in the GHG

model comprise Indonesia, the Philippines, Angola, Syria, Bolivia, and Cameroon.

DISCUSSION

This study examines ecosystem dynamics to better understand the historical trends and performance of

nations. We further date-stamped episodes of analyzed explosive behavior for unusual trends observed

among sampled variables. The convergent cross-mapping for causations confirmed bidirectional

coupling, both conservation and growth hypotheses among a network of variables, specifically, between

natural resource utilization and economic productivity. First, the coupling effect between environmental

footprints (i.e., including land use, agriculture, and forest resources) and growth implies the institution-

alization of environmentally friendly policies that decline resource intensity will affect sustained economic

development and vice versa. In contrast, the coupling effect with limited green growth has implications

on climate change and its impacts. Because of the feedback effect of resource consumption and eco-

nomic development, production often increases to meet consumption demands triggered by economic

activities. Although decoupling natural resources from economic development appears useful in

resource-intensive and carbonized economies, the coupling effect of economic development and

resource sustainability (including the adoption of artificially engineered resources) could be more prac-

tical to achieve sustainable economic development. Second, the conservation hypothesis infers ecolog-

ical infrastructure of a country determines the composition of the economic pathway (i.e., circular or

linear economy). The conservation hypothesis supports the notion of eco-sufficiency—where environ-

mental footprints such as land use, agriculture, and forest resources decline through sustainable produc-

tion and utilization of services (Princen, 2005). Existing literature argues that the introduction and adop-

tion of conservation and management (typically in energy and production sectors) options to reduce

environmental degradation may hinder sustainable economic development (Tallis et al., 2008). In

contrast to this notion, conservation may not always thwart economic productivity if the natural resource

portfolio and production are efficiently diversified using modern technologies and innovations such as

eco-metamaterials (Rosemarie and Michael, 2022). This implies that resource efficiency and eco-suffi-

ciency can be achieved while meeting immediate demands for economic activities. In this scenario, coun-

tries can shift from a brown economic pathway to green economic growth. In a contrary scenario, the

growth hypothesis is useful in examining healthy economic pathways—by accounting for both resource

intensity and efficiency. Natural resource intensity entails resources required per unit of economic pro-

ductivity. High resource intensity represents inefficient growth-resource interaction where high resources

and environmental costs underpin economic activities. However, low resource intensity represents effi-

cient growth-resource interaction where there is low resource exploitation and utilization, hence,

reducing environmental externalities. Natural resource efficiency occurs when resource requirement
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per economic productivity declines owing to stringent environmental policies, enhanced technology, and

sustainable infrastructures. Thus, the composition of the economic structure determines the production

and consumption of natural resources, viz. environmental footprints such as land use, agriculture, and

forest resources.

The validation of potential spillover effects across countries implies GHG emissions have transboundary

tendencies through trade in agricultural and forestry products that affect land-use intensity, especially in

low-income countries. However, the magnitude of anthropogenic emissions, forestry, and agricultural

land use appears heterogeneous across income groups. For example, fossil fuels dominate the energy

portfolio of developed economies driving global emissions owing to the increase in production and con-

sumption (Le Quéré et al., 2019; Raupach et al., 2007; Sarkodie, 2022). However, high adaptation readiness

and mitigation options in developed economies increase climate resilience, hence, reducing the effects of

GHG emissions compared to developing economies (Sarkodie et al., 2022). Although economic productiv-

ity has improved across countries, there is evidence of outgrowth in anthropogenic GHG emissions in

developing countries, specifically in low-income economies. The turning point of income in both quadratic

models shows GHG emissions and agricultural land-use intensity across high-income and upper-middle-

income countries have lessened at some point but somewhat unclear if this decline occurred around

US$1005–1530 per capita. Nevertheless, we still found structural evidence confirming countries with low

average income are characterized by high GHG emissions and high land-use intensity, whereas emissions

and land-use intensity diminish as income increases. This parabolic shape confirms the existence of the

environmental Kuznets curve hypothesis, which posits income outgrowth characterized by extensive

resource utilization, pollution, and waste intensity at developmental stages in weakly regulated countries.

However, emissions levels, waste, and resource intensity decline after realizing a specific turning point of

income in stringent and regulated countries with environmental awareness (Dasgupta et al., 2002; Sarkodie

and Strezov, 2019). Although income growth is not an exclusive determinant of anthropogenic emissions

and land-use intensity, the fundamental difference between income groups in terms of production and

consumption patterns is determined by income distribution. Similarly, income level underpins the dy-

namics of agriculture, forestry, and land-use intensity (FAO, 2022).

Our date-stamping technique shows explosive behavior for forest lands, with many countries observing a

structural decline in forest areas. Deforestation is reportedly increasing andbecoming a global threat owing

to the decline in forest areas embodied in global supply chains (Hoang and Kanemoto, 2021). Studies have

reported a link between deforestation and agricultural productivity. Deforestation affects water resources

and agricultural productivity by declining pasture productivity, livestock production, and crop productivity

(Lawrence and Vandecar, 2015). Thus, large-scale conversion of forests in one region could have spillover

effects that hamper sustainable food production (Gordon Line et al., 2005; Knoke et al., 2013). The historical

changes in forest area can be attributed to deforestation owing to an increase in commodity demand, a shift

from forestry to agriculture—especially when food security is a threat, urbanization-driven infrastructure

expansion, and wildfires (Curtis et al., 2018). Expansion of agricultural land remains the primary driver of for-

est degradation anddeforestation, yet the resilienceof foodproduction systems and their adaptive capacity

to future changes depend on forest biological diversity (FAO, 2022). Agricultural expansion is evident in

countries, typically developing economies that depend heavily on agriculture to meet economic targets.

For example, while subsistence agriculture is the main driver of deforestation in Africa and subtropical

Asia, large-scale commercial agriculture is the primary determinant of deforestation in Latin America (Ho-

sonuma et al., 2012). The concept of scale effect applies here, given the expansion in agricultural land re-

sources for productive use to meet the growing population and global demand for food and domestic ma-

terial resources for global supply chains. This explains why anomalies identified in forest land use and

agricultural land expansion are mostly located in low-income countries with extreme poverty (FAO, 2022).

Although wealthy nations are reported to conserve disappearing forests and embark on further afforesta-

tion, low-income nations with little forest cover are reported to likely consume the remaining resources at

faster rates than low-income economies with huge forest resources (Ewers, 2006). The presence of hetero-

geneous effects across countries demonstrates the need for domestic context, viz. cultural and historical

factors in assessing agricultural expansion, forest decline, and land-use intensity (FAO, 2022). The interac-

tion between local forces (i.e., cultural values, access to resources, and corruption), regional policies (i.e.,

trade and environmental policies, institutional quality, and commodity markets), and global processes

(i.e., subsidies, global commodity markets, and international agreements) underpin local resources and re-

sponses that could determine conservation andmanagement outcomes (Giller et al., 2008). Thus, achieving
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sustainable development requires tailoring global readiness, adaptation, and mitigation options to the

local context and identifying opportunities that decline vulnerabilities and effects of climate change.

Limitation of the study

Our empirical estimation has limitations that may have affected statistical inferences. First, the land-use

indicator consists of arable land, forests, permanent cropland, and pasture but excludes built-up areas

and others, which may affect the ability to capture changes in land distribution, especially in urbanized

countries. However, the adoption of a novel panel heterogeneous technique allows controlling for unob-

served heterogeneity and omitted-variable bias. Second, our model doesn’t assess the equilibrium rela-

tionship between country-specific supply and demand as in the case of production-side assessment in

input-output models, yet, we use econometric models that examine historical patterns and drivers of in-

puts and outputs useful for policy formulation. Such information is useful to mitigate land-use and emis-

sion threats and prevent irreversible damage to natural resources. Besides, we identify opportunities for

sustainable land management and land-use planning strategies. For example, we observe that most

developing countries are more likely to address the ecological and economic benefits of land use rather

than climate change effects. This tradeoff highlights the role of Reducing Emissions from Deforestation

and Forest Degradation (REDD+) in developing economies that has co-benefits in mitigating anthropo-

genic emissions while improving the income and social equity of those whose livelihood depends on

forestry (Denton et al., 2014). Extending the forest carbon partnership to include more developing coun-

tries would help in building REDD + readiness, hence, has a long-term impact on forest carbon stock

conservation, sustainable forest management, and emission reduction from forest degradation and

deforestation (FCPC, 2022).

ETHICAL APPROVAL

This article does not contain any studies with human participants performed by any of the authors.

INFORMED CONSENT

This article does not contain any studies with human participants performed by any of the authors.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d METHOD DETAILS

B Data

B Model estimation

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2022.104741.

ACKNOWLEDGMENTS

Open access funding is provided by Nord University.

AUTHOR CONTRIBUTIONS

S.A.S: Conceptualization, Formal analysis, Methodology, Software, Validation; Visualization,Writing – orig-

inal draft, Writing – review & editing. P.A.O: Writing – original draft.

DECLARATION OF INTERESTS

The authors declare no competing interests.

ll
OPEN ACCESS

iScience 25, 104741, August 19, 2022 11

iScience
Article

https://doi.org/10.1016/j.isci.2022.104741


Received: February 21, 2022

Revised: June 3, 2022

Accepted: July 6, 2022

Published: August 19, 2022

REFERENCES
Barrett, M.A., Brown, J.L., Morikawa, M.K., Labat,
J.-N., and Yoder, A.D. (2010). CITES designation
for endangered rosewood in Madagascar.
Science 328, 1109–1110.

Baum, C.F., and Otero, J. (2021). Unit-root tests
for explosive behavior. STATA J. 21, 999–1020.

Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A.,
and Hansen, M.C. (2018). Classifying drivers of
global forest loss. Science 361, 1108–1111.

Dasgupta, S., Laplante, B., Wang, H., and
Wheeler, D. (2002). Confronting the
environmental Kuznets curve. J. Econ. Perspect.
16, 147–168. https://doi.org/10.1257/
0895330027157.

De Vos, I., Everaert, G., and Ruyssen, I. (2015).
Bootstrap-based bias correction and inference
for dynamic panels with fixed effects. STATA J.
15, 986–1018.

Denton, F., Wilbanks, T.J., Abeysinghe, A.C.,
Burton, I., Gao, Q., Lemos, M.C., and Warner, K.
(2014). Climate-resilient pathways: adaptation,
mitigation, and sustainable development. In
Climate Change 2014: Impacts, Adaptation, and
Vulnerability. Part A: Global and Sectoral
Aspects. Contribution of Working Group II to the
Fifth Assessment Report of the
Intergovernmental Panel of Climate Change, C.B.
Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D.
Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi,
Y.O. Estrada, and R.C. Genova, et al., eds.
(Cambridge University Press), pp. 1101–1131.

DiSano, J. (2002). Indicators of Sustainable
Development: Guidelines and Methodologies
(United Nations Department of Economic and
Social Affairs).

Everaert, G., and Pozzi, L. (2007). Bootstrap-
based bias correction for dynamic panels.
J. Econ. Dynam. Control 31, 1160–1184.

Ewers, R.M. (2006). Interaction effects between
economic development and forest cover
determine deforestation rates. Glob. Environ.
Change 16, 161–169. https://doi.org/10.1016/j.
gloenvcha.2005.12.001.

FAO (2020). Global Forest Resources Assessment
2020: Main Report. Retrieved from. https://doi.
org/10.4060/ca9825en.

FAO (2022). The State of the World’s Forests
2020. Retrieved from. https://doi.org/10.4060/
ca8642en.

FCPC (2022). A Guide to the FCPF Readiness
Assessment Framework. Retrieved from. https://
buff.ly/3opA6rC.

Giller, K.E., Leeuwis, C., Andersson, J.A.,
Andriesse, W., Brouwer, A., Frost, P., Hebinck, P.,
Heitkönig, I., van Ittersum, M.K., Koning, N., et al.
(2008). Competing claims on natural resources:
what role for science? Ecol. Soc. 13, art34.

Gordon Line, J., Steffen, W., Jönsson, B.F., Folke,
C., Falkenmark, M., and Johannessen, Å. (2005).
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C., Canadell, J.G., Klepper, G., and Field, C.B.
(2007). Global and regional drivers of accelerating
CO2 emissions. Proc. Natl. Acad. Sci. USA 104,
10288–10293.

Rosemarie, S., and Michael, K. (2022). Eco-
metamaterials. Engineered Nanomaterials
May Be More ‘‘Sustainable’’ than Those Found
in Nature. Retrieved from. https://buff.ly/
3y46Cn5.

Rosenzweig, C., and Tubiello, F.N. (2007).
Adaptation and mitigation strategies in
agriculture: an analysis of potential synergies.
Mitig. Adapt. Strateg. Glob. Change 12, 855–873.

Sarkodie, S.A. (2022). Winners and losers of
energy sustainability—global assessment of the
sustainable development goals. Sci. Total
Environ. 831, 154945. https://doi.org/10.1016/j.
scitotenv.2022.154945.

Sarkodie, S.A., Ahmed, M.Y., and Owusu, P.A.
(2022). Global adaptation readiness and
income mitigate sectoral climate change
vulnerabilities. Humanit. Soc. Sci. Commun. 9,
113. https://doi.org/10.1057/s41599-022-
01130-7.

Sarkodie, S.A., and Owusu, P.A. (2020). How
to apply dynamic panel bootstrap-
corrected fixed-effects (xtbcfe) and
heterogeneous dynamics (panelhetero).
MethodsX 7, 101045.

Sarkodie, S.A., and Strezov, V. (2019). A review on
Environmental Kuznets Curve hypothesis using
bibliometric andmeta-analysis. Sci. Total Environ.
649, 128–145. https://doi.org/10.1016/j.scitotenv.
2018.08.276.

Schiff, S.J., So, P., Chang, T., Burke, R.E., and
Sauer, T. (1996). Detecting dynamical
interdependence and generalized synchrony
through mutual prediction in a neural ensemble.
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Topics 54, 6708–6724.

ll
OPEN ACCESS

12 iScience 25, 104741, August 19, 2022

iScience
Article

http://refhub.elsevier.com/S2589-0042(22)01013-6/sref1
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref1
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref1
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref1
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref2
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref2
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref3
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref3
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref3
https://doi.org/10.1257/0895330027157
https://doi.org/10.1257/0895330027157
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref5
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref5
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref5
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref5
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref6
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref8
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref8
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref8
https://doi.org/10.1016/j.gloenvcha.2005.12.001
https://doi.org/10.1016/j.gloenvcha.2005.12.001
https://doi.org/10.4060/ca9825en
https://doi.org/10.4060/ca9825en
https://doi.org/10.4060/ca8642en
https://doi.org/10.4060/ca8642en
https://buff.ly/3opA6rC
https://buff.ly/3opA6rC
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref13
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref13
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref13
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref13
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref13
https://doi.org/10.1073/pnas.0500208102
https://doi.org/10.1073/pnas.0500208102
https://doi.org/10.1038/s41559-021-01417-z
https://doi.org/10.1038/s41559-021-01417-z
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref16
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref16
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref16
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref16
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref16
https://doi.org/10.1016/j.gloenvcha.2013.07.004
https://doi.org/10.1016/j.gloenvcha.2013.07.004
https://doi.org/10.1016/S0959-3780(00)00057-1
https://doi.org/10.1016/S0959-3780(00)00057-1
https://www.fao.org/3/ca5543en/ca5543en.pdf
https://www.fao.org/3/ca5543en/ca5543en.pdf
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref20
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref20
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref20
https://doi.org/10.1038/s41558-019-0419-7
https://doi.org/10.1038/s41558-019-0419-7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref22
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref22
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref22
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref23
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref23
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref23
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref23
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref23
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref24
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref24
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref25
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref25
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref25
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref26
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref26
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref27
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref27
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref27
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref28
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref28
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref28
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref28
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref29
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref29
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref29
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref30
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref30
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref31
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref31
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref31
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref31
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref31
https://buff.ly/3y46Cn5
https://buff.ly/3y46Cn5
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref33
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref33
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref33
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref33
https://doi.org/10.1016/j.scitotenv.2022.154945
https://doi.org/10.1016/j.scitotenv.2022.154945
https://doi.org/10.1057/s41599-022-01130-7
https://doi.org/10.1057/s41599-022-01130-7
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref36
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref36
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref36
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref36
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref36
https://doi.org/10.1016/j.scitotenv.2018.08.276
https://doi.org/10.1016/j.scitotenv.2018.08.276
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38
http://refhub.elsevier.com/S2589-0042(22)01013-6/sref38


Sehring, J. (2012). Forests in the Context of
Climate Change in Kazakhstan.

Shukla, P.R., Skeg, J., Buendia, E.C., Masson-
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Materials availability
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Data and code availability
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Code: This paper does not report original code, however, the code for analysis was written in Stata and R,

available from the lead contact upon request.

Additional Information: Any additional information required to reanalyze the data reported in this paper is

available from the lead contact upon request.

METHOD DETAILS

Data

The empirical assessment is based on over decadal (1990–2016) data derived from the World Bank data-

base (World Bank, 2020) consisting of 50 countries in 7 regions [i.e., East Asia & Pacific ( 7 economies),

Europe & Central Asia (12 economies), Latin America & Caribbean (5 economies), Middle East & North

Africa (5 economies), North America (2 economies), South Asia (4 economies), and Sub-Saharan Africa

(15 economies)]. The sampled data comprises anthropogenic GHG emissions, income level, urban popu-

lation, agricultural land, and forest area (used as a proxy for forest land use). The adoption of GHG emis-

sions as an indicator of environmental vitality enables the assessment of the direct effect of global emission

status on climate change. While GDP per capita is used as an indicator of income level, urban population is

used to examine the role of urbanization on changes in land resources. Agricultural land used in this study

captures cropland, arable land, and permanent pasture whereas forest area is the proportion of land

covered by forests. The indicator used to comprehensively assess changes in land use (LU) is constructed

using the weights (WA, WF) of both agricultural land (A) and forest area (F) expressed as:

LU = ðA �WA + F �WFÞ=2; WA =
A

A + F
andWF =

F

A + F
; (Equation 1)

Multiple data transformations and quantifications including logarithm, normalization, first-difference, and

means were used to capture specific data features in the models. We quantified low- and high-performing

countries across income groups using the average percentage change in sampled variables over time. The

graphical relationship between GHG emissions and land-use intensity was investigated across income

groups while accounting for both population and income dynamics (Figure 6). Both variables were divided

by income level and subsequently averaged over the sample period before normalization to generate

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

World Development Indicators World Bank national accounts data, and OECD

National Accounts data files.

https://data.worldbank.org/indicator

Software and algorithms

Stata 16 StataCorp LLC https://www.stata.com/

Rstudio 2022.02.3 Build 492 RStudio, PBC https://www.rstudio.com/
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country-specific scores using the expression: score (0,1) = [Vi-Vmin]/[Vmax-Vmin], where Vmin represents the

minimum data point whereas Vmax denotes the maximum data point.

Model estimation

To visualize the distribution across income groups, we used the Games-Howell test (i.e., parametric tech-

nique with no equal variance but normally distributed residuals) for the between-group pairwise compar-

ison (Pohlert, 2014). The visualization produces detailed statistical inferences (Patil, 2021) based onWelch’s

one-way ANOVA (parametric technique) hypothesis testing procedure with parametric effect size estima-

tion (Welch, 1951). Assessing unexplained characteristics of historical data across countries is a useful step

in econometric modeling. Thus, the unusual characteristics observed among variables across time periods

reveal the presence of dynamic properties requiring attention. Explosive behaviors in economic indicators

have a trickle-down effect on demographic and ecological markers during crises. From a policy perspec-

tive, explosive behaviors may cause historical trends to deviate from their fundamentals leading to unusual

and unexplained scenarios. Our empirical analysis accounted for such unusual behaviors in demo-eco-

nomic and ecological variables using the backward supremum right-tail augmented Dickey-Fuller unit

root technique based on recursive window widths for data-stamping of episodes (Baum and Otero,

2021; Phillips et al., 2011). The date-stamping explosive behaviors of demo-economic and ecological vari-

ables were examined for the top 3 low-performing and high-performing countries namely Niger, Pakistan,

Afghanistan, China, India, and DR Congo. We further used the dataset of the US to validate the estimated

behaviors over the time period.

Global partnerships between countries and across income groups may stimulate spillover effects, pollu-

tion-embodied in trade, deforestation-embodied in trade, and land-degradation-embodied in interna-

tional trade. Besides, economies are prone to global common shocks such as the recent Covid-19

pandemic and other historical global economic recessions. Yet, the impact may be heterogeneous across

economies depending on the economic structure and ecological status. Beyond the challenges of tradi-

tional panel data models, income groups exhibit economic diversification, income disparities between

population structures, varying pollution levels, and diverse environmental policies that affect the specifica-

tion of ecological models. To account for this, we examined panel cross-section dependence (CD) and het-

erogeneous effects using the Pesaran-CD test (Pesaran, 2004) for both variable and residual diagnostics

and standardized Swamey-tests (i.e., Standard delta test ~D, adjusted delta test ~Dadj, and HAC robust delta

test ~DHAC ) (Pesaran and Yamagata, 2008) for panel slope homogeneity (i.e., a violation of the test implies

heterogeneous effects). After confirming panel cross-section dependence and heterogeneous effects, we

used the panel unit root test (i.e., CADF is a 2nd generational panel unit root test for heterogeneous panels)

to examine stationary properties of sampled variables (Lewandowski, 2006). This technique curtails the

possibility of spurious regression while improving model specification. We observed level stationary char-

acteristics for almost all sampled series.

Subsequently, we assessed symbiotic relationships using the convergent cross-mapping technique while

accounting for complexities, and dynamics among variables. Contrary to standard panel techniques that

fail to report true causality in non-linear dynamic systems, the empirical dynamic modeling technique,

viz. convergent cross-mapping solves the challenges of traditional panel methods by predicting causality

amidst variables that exhibit nonlinearities, explosive behaviors, and complexities (Li et al., 2021). The

convergent cross-mapping is a non-parametric technique where manifolds are reconstructed with one-

to-one mapping if, for example, both GHG and Income variables occur within the same dynamic system

with manifold M (Sugihara et al., 2012). Thus, causality (GHG / Income) exists if the reconstructed mani-

fold (MIncome) cross-maps GHG with accuracy in prediction for GHG|MIncome.

After assessing the causal associations using the convergent cross-mapping method, we proceeded to es-

timate the determinants of anthropogenic emissions and land use using bootstrap-corrected dynamic

fixed-effects regression. For brevity, the generic dynamic panel model can be expressed as (De Vos

et al., 2015; Everaert and Pozzi, 2007):

yi;t = a1yi;t� 1 +.+aqyi;t�q + bxi;t + ui + εi;t (Equation 2)

where y denotes the dependent variable across countries i in time period t, b is estimated parameters

(coefficient vector) of exogenous variables x, a1 � aq represent autoregressive coefficients of lagged-

dependent variables, ui denotes the fixed-effect across countries, and εi;t is the observation-specific error
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across countries over the time period. Using the model specification in Equation 2, we developed four

models where the EKC hypothesis is examined using income, quadratic income, urban population, and

land use in GHG emission function (Figure 6). Second, we validate the EKC hypothesis using income,

quadratic of income, urban population, disaggregated land-use, i.e., forestry and agricultural land in

GHG emission function (Figure S6). Third, we assessed the effect of GHG emissions, income, and urban

population on land-use intensity (Figure S7). Finally, we examined the impact of GHG emissions, income,

quadratic income, urban population, and forestry on agricultural land (Figure S8A).

Advantageously, the bootstrap-corrected dynamic fixed-effects estimator controls for panel cross-

sectional dependence and heteroskedasticity patterns that undermine standard correction techniques

(Everaert and Pozzi, 2007). The bootstrap-corrected dynamic fixed-effects regression (n = 1300) is improved

to incorporate cross-sectional dependence resampling and analytical heterogeneous initialization to

achieve convergence (De Vos et al., 2015; Sarkodie and Owusu, 2020). The cross-sectional dependence

resampling enforces cross-section-specific error terms but with identical time indices across countries. Be-

sides, the analytical heterogeneous initialization technique is utilized to generate the initial conditions, i.e.,

multi-variate normal distribution sample with country-specific means and variance-covariance matrices in

the resampling procedure (De Vos et al., 2015; Everaert and Pozzi, 2007). The estimated model has boot-

strapped standard errors, bootstrap 95% (percentile-based) confidence intervals, and statistical inferences

performed with non-parametric bootstrap. The estimated models are further diagnosed for residual inde-

pendence using bootstrap distribution for all autoregressive coefficients, residual cross-sectional depen-

dence (CD-test), and residual panel stationarity tests (Pesaran’s CADF test).
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