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Abstract: Pacific herring (Clupea pallasii) is an essential target of commercial fishing in the North
Pacific Ocean. Previous studies have suggested the existence of marine and lake ecological forms
of this species within its range. The lake ecological form of herring has a shortened life cycle,
spending the winter and spawning in brackish waters near the shoreline without long migrations
for feeding; it also has a relatively smaller body size than the marine form. Genetic-based studies
have shown that brackish water Pacific herring not only can be distinguished as a separate lake
ecological form but possibly has its genetic legacy. Here, as part of an ongoing study, using ddRAD-
sequencing data for marine and lake ecological forms from a total of 54 individuals and methods
of comparative bioinformatics, we describe genomic signatures of freshwater adaptivity in Pacific
herring. In total, 253 genes containing discriminating SNPs were found, and part of those genes
was organized into genome clusters, also known as “genomic islands of divergence”. Moreover,
the Tajima’s D test showed that these loci are under directional selection in the lake populations of
the Pacific herring. Yet, most discriminating loci between the lake and marine ecological forms of
Pacific herring do not intersect (by gene name) with those in other known marine fish species with
known freshwater/brackish populations. However, some are associated with the same physiological
trait—osmoregulation.

Keywords: speciation; subspecies; ecological form; RAD sequencing; marine; lake; isolation; Russia

1. Introduction

Freshwater adaptation among marine fish species opens them new ecological niches
and evolutionary opportunities. In contrast, this environmental shift requires substantial
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changes in immunity, physiological and metabolic processes, osmoregulation, and behav-
ior [1]. The genetic basis of adaptation to different salinity environments has been studied
for the different teleost species—prickly sculpin (Cottus asper) [2], mummichog (Fundu-
lus heteroclitus) [3], Atlantic cod (Gadus morhua) [4], rainwater killifish (Lucania parva) [5].
Genetic comparisons between anadromous and nonmigratory ecotypes of rainbow trout
(Oncorhynchus mykiss) and Atlantic salmon (Salmo salar) were also carried out [1,6,7].

Significant advances have been achieved during in-depth studies of freshwater adap-
tation of the three-spined stickleback (Gasterosteus aculeatus), the well-established model for
modern evolutionary biology [8]. Genetic comparisons in this species have been intensively
studied in the migratory and nonmigratory ecotypes. Such studies are based on genomic
data [9–13] and gene expression of protein-coding genes [14] or microRNAs [15]. These
studies showed that the genes responsible for ion transmembrane transport play an essen-
tial role in adaptation to the freshwater environment. Moreover, these genes are under
positive selection [16]. In many cases, genomic regions responsible for adaptation to the
freshwater environments are grouped into compact genomic islands of divergence [4,10,11].
Atlantic herring (Clupea harengus) also has interpopulation genetic differentiation, which is
related to different salinity levels and is associated with haplotype blocks, often spanning
multiple genes and maintained by balancing selection [17].

The commercial importance of the Pacific herring (C. pallasii) and its trophic signifi-
cance for other species in marine ecosystems prompt many studies aimed at its biology,
reproduction, diversity, and genetic differentiation [18–24]. This species has marine and
lake ecological forms. The marine ecological form of C. pallasii performs long feeding migra-
tions and spends wintertime in the upper part of the deep sea. In addition, it uses to spawn
in large sea bays. Conversely, the lake ecological form prefers brackish lagoon-type lakes
and small bays to spawn and spend the winter [25]. Recent genetic-based studies showed
the level of genetic differentiation between populations from the Russian part of the North
Pacific Ocean and the Kara Sea; moreover, lake populations from the Kamchatka Peninsula
and Sakhalin Island separated from the marine populations of Pacific herring [21,26]. At
the same time, it has been suggested that the lake ecological form has its genetic component
associated with freshwater adaptation [26].

In this study, we present the analysis of a double digestion restriction site-associated
DNA (ddRAD) sequencing dataset of 54 individuals of Pacific herring, which was pre-
viously determined as lake (15 specimens) and marine (39 specimens) ecological forms.
Genotype analysis of marine and lake ecological forms allows us to identify the genomic sig-
natures of freshwater adaptation in Pacific herring and carry out the comparative analysis
of freshwater adaptation loci with its congener—Atlantic herring.

The comparison of such discriminating loci in the genomes of marine fish species with
known freshwater adaptation ability will determine the genetic mechanisms and directions
of adaptation to the different osmotic conditions, particularly during the conquering of
new freshwater ecological niches. It is assumed that other environmental factors related to
the new habitat are also changing in addition to osmotic conditions. Another critical topic
considered in this study is the representation of new data on how rigidly determined the
evolutionary mechanisms of adaptation to an environmental condition and the habitats of
different species. From a general point of view, it is assumed that such mechanisms may
differ significantly in evolutionarily distant species in comparison with close evolutionary
species [27]. Nevertheless, it involves common genes or gene categories that underlie
adaptive traits. The comparative analysis of such adaptation-associated loci sheds light on
the species-specific genomic mechanisms in higher vertebrates.

2. Materials and Methods
2.1. Pacific Herring Genomic Dataset Description

The sampling, DNA extraction, ddRAD library preparation and DNA sequencing
were previously described [26]. Fifty-four individuals of two ecological forms of Pacific
herring from the Northwest Pacific and the Kara Sea were involved in the present study.
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Specimens from twelve wild populations of Pacific herring were combined as two separate
marine (39 specimens) and lake (15 specimens) ecological forms and used in a comparative
analysis aimed at describing genomic signatures of freshwater adaptation (Table 1; Figure 1).
The average salinity and temperature in the sampling regions in late spring—early summer
are presented in Table 2.

Table 1. The list of Pacific herring genomic datasets that were used in this study.

Ecological
Form

Population Name
(Abbreviation) NCBI Accession Number

Marine
(n = 39)

Bering Sea, Gulf of Anadyr
(Scva) SRR14076746; SRR14076757; SRR14076758

Sea of Japan, Aleksandrov Bay
(Salex)

SRR14076740; SRR14076741; SRR14076742; SRR14076743;
SRR14076744

Sea of Japan, Amur Bay
(Samur)

SRR14076734; SRR14076736; SRR14076737; SRR14076738;
SRR14076739

Kara Sea
(Scvk) SRR14076713; SRR14076724; SRR14076735

Shelikhov Gulf, Sea of Okhotsk
(Seve)

SRR14076729; SRR14076730; SRR14076731; SRR14076732;
SRR14076733

Bering Sea, seaward border of the
continental shelf

(Sk12)

SRR14076723; SRR14076725; SRR14076726; SRR14076727;
SRR14076728

Bering Sea, Karagin Bay
(Skrg)

SRR14076718; SRR14076719; SRR14076720; SRR14076721;
SRR14076722

Kuril Islands, Pacific Ocean
(Sukur)

SRR14076712; SRR14076714; SRR14076715; SRR14076716;
SRR14076717

Sea of Okhotsk, Tugur Bay
(Sclu7) SRR14076709; SRR14076710; SRR14076711

Lake
(n = 15)

Ainskoe Lake, Sakhalin Island
(Fain)

SRR14076705; SRR14076706; SRR14076707; SRR14076708;
SRR14076756

Nerpiche Lake, Kamchatka Peninsula
(Fnerp)

SRR14076751; SRR14076752; SRR14076753; SRR14076754;
SRR14076755

Bolshoy Vilyuy Lake, Kamchatka
Peninsula

(Fvil)

SRR14076745; SRR14076747; SRR14076748; SRR14076749;
SRR14076750

Table 2. Ecological information (average salinity and temperature) in the sampling places across the
Pacific Ocean during late spring–early summer.

Ecological Form Population Name Abbreviation Salinity(‰) Temperature(◦C) Reference

Marine(n = 39)

Bering Sea, Gulf of Anadyr Scva 32.0–34.0 7.0–10.0 [28]
Sea of Japan, Aleksandrov Bay Salex ≈29.5 13.0–17.0 [29]

Sea of Japan, Amur Bay Samur 23.0–31.0 14.0–22.0 [30]
Kara Sea Scvk 20.0–27.0 >10.0–12.0 [31,32]

Shelikhov Gulf, Sea of Okhotsk Seve 22.0–33.4 10.0–18.0 [33]
Bering Sea, seaward border of the

continental shelf Sk12 32.0–34.0 7.0–10.0 [28]

Bering Sea, Karagin Bay Skrg 32.0–34.0 7.0–10.0 [28]
Kuril Islands, Pacific Ocean Sukur 33.2–33. 4 6.0–12.0 [33]
Sea of Okhotsk, Tugur Bay Sclu7 22.0–33.4 10.0–18.0 [33]

Lake (n = 15)

Ainskoe Lake, Sakhalin Island Fain ≈2.5 15.0–20.0 [34]
Nerpiche Lake, Kamchatka

Peninsula Fnerp ≈4.0 ≈10.0 [35,36]

Bolshoy Vilyuy Lake, Kamchatka
Peninsula Fvil ≈ 1.7 11.0–17.0 [37]
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Figure 1. Map showing the sampling sites of lake (marked by blue circles) and marine (marked by
red circles) Pacific herring (Clupea pallasii) populations. The Pacific herring specimen description is
presented in Table 1.

2.2. Bioinformatics Analysis

Raw DNA reads were converted to FASTQ format and demultiplexed using bcl2fastq
(v2.20). DNA reads quality was examined with the FastQC tool (v0.11.5) [38]. Library
adapter trimming from the sequencing data and quality filtration (phred 30) were carried
out using cutadapt (v2.10) [39].

Stacks package (v2.41) and its clone_filter module were used for PCR duplicate re-
moval. In addition, the process_radtags module from the same package was used for dual
index demultiplexing and additional quality filtration [40]. The output reads from the
Stacks package were mapped against the Atlantic herring reference genome (Ch_v2.0.2,
https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2 (accessed on 4 July 2022))
using Bowtie2 under the “very-sensitive” parameter set [41]. The BAM files that were ob-
tained using the Samtools (v1.7) [42] and uploaded to BCFtools (v1.9) [42] for SNP-calling.
Only SNPs with coverage higher than 1000× for all 54 Pacific herring individuals were
used in the subsequent analyses.

The filtered VCF file was loaded into the R statistical environment (v3.4.4) for discrim-
inant analysis. The VCF file was then converted into genlight format and used for discrimi-
nant analysis of principal components (DAPC) in the adegenet R package (v2.1.3) [43].

The VCF file was also converted into internal plink format using PLINK (v1.9) package
under the “make-bed” parameter [44]. To find the loci in which allele frequencies differ

https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2
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in marine and lake populations of Pacific herring, we used loci association analysis using
the “assoc” command, as in the case–control association study, with Fisher’s p-value
determination. Loci with p-value less than 1 × 10−6 were considered to discriminate
between marine and lake Pacific herring ecological forms. Gene names with discriminating
SNP loci were determined using coordinates of genes from the Atlantic herring reference
genome (Ch_v2.0.2), SNPs coordinates, and bedtools software package (v2.27.1) under the
“intersect” command [45].

The gene list, containing discriminating SNP loci was analyzed against the reference
group of genes using the ShinyGO (v0.76) web service [46]. The genes with a single discrim-
inating SNP in the filtered VCF dataset were also included in the comparison. A sliding
window method from the ShinyGO tool was implicated in the genomic region prediction
process with the SNPs that discriminate marine and lake ecological forms of Pacific herring.
The window size was equal to two megabase pairs (Mbp). The hypergeometric test was
used to determine if the genes were significantly overrepresented. The FDR cutoff for each
window was equal to 0.001.

The neutrality test was performed by Tajima’s D method [47] using the Tajima com-
mand of the VCF-kit package [48]. The test was performed by evaluating the Tajima value
in sliding windows with a length of 10,000 bp. The distribution of the Tajima D test val-
ues for frames containing discriminating genes was compared with those containing the
remaining genes using the t.test function of the R environment. Analyses were carried out
separately for the VCF file, which contained all Pacific herring specimen SNPs data, and
for a VCF file which had only lake Pacific herring specimen SNPs data.

3. Results
3.1. Marine and Lake Ecological Form of Pacific Herring Dataset Description and
Mapping Statistics

The total number of reads generated for 54 lake and marine specimens of Pacific
herring was 216,433,546 (NCBI accession numbers are presented in Table 1). DNA reads
were mapped to the reference genome of Atlantic herring (Ch_v2.0.2, https://www.ncbi.
nlm.nih.gov/assembly/GCF_900700415.2 (accessed on 4 July 2022)) after adapter trimming
and quality filtration. From 59.91 to 88.48% of reads per ddRAD library were mapped to
the reference (Table S1). Only SNPs with coverage higher than 1000× (p < 0.05) were used
after the SNPs calling.

3.2. Distribution of Discriminating Loci between Marine and Lake Ecological Forms of
Pacific Herring

A total of 192,433 SNP loci from the 26 chromosomes of the Atlantic herring genome
were involved in the PLINK analysis. The coverage of chromosomes by DNA reads
was approximately uniform, and the number of SNP loci per chromosome was nearly
proportional to the length of each chromosome. However, the distribution of discriminating
loci between marine and lake ecological forms of Pacific herring was extraordinarily uneven.
Most were found on the seventh, twelfth, and twentieth chromosomes (Figure 2).

We also conducted discriminant analyses of the principal component between ma-
rine and lake ecological forms of Pacific herring. To explore differences, we combined
SNPs datasets from Ainskoe, Nerpiche, and Bolshoy Vilyuy lake populations in one lake
group and the remaining in the marine group. As a result, the sample density along the
discriminant function separates two ecological groups (Figure 3).

3.3. Genomic Divergence Islands between Marine and Lake Ecological Forms of Pacific Herring

SNPs localization in gene bodies was carried out by the intersection of their coordinates
with the Atlantic herring reference genome GFF file (Ch_v2.0.2, https://www.ncbi.nlm.
nih.gov/assembly/GCF_900700415.2 (accessed on 4 July 2022)). In total, we found SNPs
in 10,649 genes of the reference genome of Atlantic herring. Interestingly, those SNP loci,
which discriminate marine and lake ecological forms of Pacific herring, were observed only
in 253 genes (Table S2). Moreover, 86 discriminating SNP loci are represented in 6 genes—

https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2
https://www.ncbi.nlm.nih.gov/assembly/GCF_900700415.2
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dnai1, LOC105891580 ral guanine nucleotide dissociation stimulator, dlg2 channel-associated
protein of synapse-110, dcc netrin 1 receptor, thoc2, and sptan1, which locate in chromosomes 7,
8, 12, and 20.
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Figure 3. Density plot of Pacific herring specimens along the first discriminant function from
Discriminant Analysis of Principal Components (DAPC). Two ecological forms of Pacific herring
are shown using different colors. The marine ecological form is in (red), and the lake ecological
form (blue).

Remarkably, chromosomes 7, 8, and 20 contain many discriminating SNP loci (Table S2).
The same results were shown by analyzing the list of genes using the ShinyGO web
service [46]. Furthermore, a significant number of discriminating SNP loci are localized
in chromosomes 6, 7, 12, and 20 and in certain chromosome regions, that were called
“genomic islands of divergence” in the previous studies [11,49]. Figure 4 clearly shows
how the discriminating SNP loci between the marine and lake ecological forms of Pacific
herring are grouped into genomic divergence islands.
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Figure 4. Herring chromosome plot shows the location of discriminating SNP loci (red dots) between
marine and lake ecological forms. Genomic divergence islands on chromosomes 6, 7, 12, and 20
are marked by purple lines. The X-axis shows the position on the chromosome in Mbp. The Y-axis
represents chromosomes and their numbers.

Gene ontology (GO) analysis was carried out for the list of 253 genes that contain
discriminating SNP loci, using the ShinyGO (v0.76) web service. GO analysis combined 17
of them in neuron development category, which contains 221 gene (Fold Enrichment = 3.2;
FDR = 0.033).

Not all discriminating SNP loci between ecological forms of Pacific herring were
involved in the analysis since the ddRAD sequencing method does not cover the whole
genome and reduces the complexity of the analysis by subsampling only at specific genomic
sites defined by restriction enzymes [50].

In total, 133 from 253 genes, which contain discriminating SNP loci between ecological
forms of Pacific herring, theare located in genomic divergence islands. Interestingly, these
parts of chromosomes 6, 7, 12, and 20 contain 254 genes. Thus, the ddRAD sequencing
method used in this study allowed us to determine at least half of them.

Recently, Velotta and colleagues summarized genomic mechanisms of adaptation to
different salinity environment conditions in eight different fish species; they described the
specific categories of genes that play a crucial role in such adaptation [16]. We found a
significant number of these gene categories among our discriminating genes. Strikingly,
we speculate that they were possibly involved in freshwater adaptation in Pacific herring.
Notably, it has been shown that osmoregulation is influenced by insulin-like growth factor 1
(IGF-1), which receptor and associated binding proteins aid in its transport. This hormone
is implicated in the proliferation and differentiation of ionocytes of fish gills [16]. The
insulin-like growth factor 2 mRNA binding protein 1 (igf2bp1) and insulin receptor substrate
2b (irs2b) genes are described in the present study as discriminating between marine
and lake ecological forms of Pacific herring. We suppose these genes can be involved
in the proliferation of gill ionocytes, which are responsible for osmoregulation [51]. In
addition, fibroblast growth factors (Fgf) are also represented among discriminating genes.
Fibroblasts are implicated in forming connective tissue in animals, which is also necessary
to protect body tissues from the changing environment. Moreover, it has been shown that
Fgf underlies phenotypical adaptations of fish [52]. Transmembrane channel genes are
important for freshwater adaptation. Previously, ATPase pump, passive ion cotransporter
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and transient receptor potential (TRP) channel genes were described as part of molecular
pathways related to response to the changing of osmotic conditions [16,53]. In the case of
the Pacific herring, a minimum of six genes (abcc8, trpm1a, trpc4b, cacna1bb, sclt1, and piezo1)
from this category are revealed as discriminating between marine and lake ecological
forms. Moreover, seven genes involved in transmembrane transporter activity (slc4a1b,
slc39a10, slc15a4, slc20a1a, slc25a25b, slc45a2, and slc16a5a) and three genes involved in
calcium homeostasis (cabp1, camk2a, and cacna1bb) were also described. Genome epigenetic
modifications and non-coding RNAs play a significant role in the rapid adaptation to
changes in the salinity of the environment in fish [15,54–57]. Table S2 represents several
such genes, including piwil1 (piwi-like1 RNA-mediated gene).

The discriminating genes were tested for neutrality using Tajima′s D statistical test.
As a result, we obtained weakly positive average Tajima′s D values for both groups of
genes — discriminating (0.2044859) and the set of the other genes (0.3041617) with a
high degree of significance (p-value = 9.042 × 10−5) for the 54 Pacific herring specimens.
However, Tajima′s D values became sharply negative when we tested only specimens
from the lake ecological form. The significantly negative values of Tajima′s D indicate the
genes with an excess of low-frequency variation, which is consistent with the fact that the
populations might have experienced an expansion after a recent bottleneck, or the genes
targeted are under positive selective pressure. Moreover, the difference in the averages of
Tajima′s D values for both groups of genes — discriminating (-40.30702) and the whole
set of genes (-26.99115) in lake populations have a high degree of significance (p-value
= 1.185 × 10−10). The most logical interpretation of this result is that in addition to the
population demographic effect, which can be seen by the Tajima′s D for the whole gene set
(-26.99), there is an additional effect of directional selection (-40.3), which is closely related
to discriminating genes of the individuals from lake populations of pacific herring.

4. Discussion

Our previous studies allowed us to describe the genetic differentiation between the
Pacific herring populations in the Russian part of its range using mitochondrial and nuclear
genome markers [21,26]. Moreover, the comparative analysis of the genetic differentiation
between the combined three lakes on one side and nine marine populations of Pacific
herring on the other showed that lake form populations differ from the marine ones [26].
The origin of lake populations across the Russian Far East is still unclear. However, they
most likely arose independently due to the significant geographical distance between
Sakhalin Island and the Kamchatka Peninsula habitats. Nevertheless, Pacific herring
individuals who inhabit fresh-/brackish water in different regions are clustered together
based on genetic data [26]. Perhaps, such differences are explained by their ongoing contact
with marine individuals, which can spread “freshwater” alleles between lake populations
across Russian Far East.

In the present study, even though the relatively small number of gene categories most
likely participating in the freshwater adaptation in Pacific herring, we succeeded in showing
that the function of most of them are related to osmotic regulation. Moreover, in other
teleost species, several of these genes have previously been correlated to the adaptation
dynamic toward different salinity conditions [16]. In addition, among discriminative genes
between marine and lake forms of Pacific herring, we have found a significant number of
regulatory genes, which suggests that rearrangement of regulatory pathways with salinity-
related environment changes is a way to quick adaption. Previously, it has been shown
on the three-spined stickleback model where at least half of the genes from the genomic
divergence islands have regulatory functions [10,11].

Non-coding RNAs are also implicated significantly in the freshwater adaptation of
teleost fish by gene expression regulation. Moreover, the differentiation in the microRNA
expression occurs in both cases when fish transfer from the marine to the freshwater
environment and vice versa—physiological (quick) response or during the time-long
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period of adaptation (via generations)—evolutionary response. Interestingly, the different
microRNAs are expressed in these two types of responses [15].

However, note that discriminative genes between marine and lake ecological forms of
Pacific herring are not intersected directly with genes that evolved under positive selection
in other fish species, like three-spined stickleback [11]. Indeed, that result is not unexpected.
Such overlapping was not observed even between closely related three- and nine-spined
(Pungitius pungitius) stickleback species [58], which have a possibility for intergeneric
hybridization in natural conditions [59,60]. This observation perhaps could be expanded to
other types of adaptation among species.

We also compared our discriminating gene list of marine and lake ecological forms of
Pacific herring with the same one for Atlantic herring (the Atlantic Ocean and moderate-
salted Baltic Sea populations) previously published [17]. Surprisingly, only microRNA
silencing modulator—piwil1 overlapped among the two herring species. Thus, we hypothe-
size that microRNA-silencing is an essential factor in the process of ecological adaptation
of fish species. However, it is not entirely accurate to compare our results with those of
Barrio and colleagues since they only analyzed marine specimens which inhabit regions of
different salinity [17]. Nevertheless, the gene families and categories associated with fresh-
water adaptation usually overlap between Pacific herring and other studied species [16].
However, the neuron development GO category has not been described previously as
adaptive for changing salinity conditions.

Finally, we suggest that fish species go on their way to achieving their evolutionary
goal—an adaptation to new environmental conditions. In addition to the necessary changes
that adjust the physiological parameters, such as changes in ion channel activity, several
unobvious genetic and phenotypical changes appear during the adaptation to the envi-
ronment, which differ from species to species. Neuron development category innovations
in the lake form of Pacific herring may allow adapting faster to the new ecological niches
where this species meets with the new osmotic conditions, predators, changes in feeding,
seasonal, sexual, migratory, and other forms of behavior.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13101856/s1, Table S1: Illumina generated reads and ratio
of mapped reads to Atlantic herring (Clupea harengus) reference genome sequence (Ch_v2.0.2); Table
S2: Genes containing of discriminating SNP loci between marine and lack ecological forms of Pacific
herring (Clupea pallasii).
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