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Abstract
We study the Newman–Unti (NU) group from the viewpoint of infinite-
dimensional geometry. The NU group is a topological group in a natural coarse
topology, but it does not become a manifold and hence a Lie group in this topol-
ogy. To obtain a manifold structure we consider a finer Whitney-type topology.
This turns the unit component of the NU group into an infinite-dimensional Lie
group. We then study the Lie theoretic properties of this group. Surprisingly,
the group operations of the full NU group become discontinuous, whence the
NU group does not support a Lie group structure. The NU group contains the
Bondi–Metzner–Sachs (BMS) group as a subgroup, whose Lie group structure
was constructed in a previous article. It is well known that the NU Lie algebra
splits into a direct sum of Lie ideals of the Lie algebras of the BMS group and
conformal rescalings of scri. However, the lack of a Lie group structure on the
NU group implies that the BMS group cannot be embedded as a Lie subgroup
therein.

Keywords: Bondi–Metzner–Sachs group, Newman–Unti group, asymptoti-
cally flat spacetime, infinite-dimensional Lie group, analytic Lie group, smooth
representation, Trotter product formula

1. Introduction and statement of results

In [PS22], we studied the Lie group structure of the Bondi–Metzner–Sachs (BMS) group
[BBM62, Sac62] from the viewpoint of infinite-dimensional geometry. The BMS group is
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defined as the subgroup of spacetime-diffeomorphisms that preserve asymptotic flatness in
the sense of Bondi, van der Burg, Metzner and Sachs. Asymptotically flat spacetimes are ide-
ally suited to study gravitational waves, which were first experimentally verified at LIGO in
2016 [A+16], and their corresponding symmetry groups provide useful insight into the grav-
itational S-matrix via soft-scattering theorems for the corresponding Feynman rules [Wei65,
Str14, HLMS15], cf [Pri21] and the references therein. In this article we extend our investiga-
tions to the Newman–Unti (NU) group [NU62], which turns out to be much more involved.
On the level of Lie algebras it is a well-known fact that the corresponding Lie algebras of the
BMS and NU groups are related via the following direct sum decomposition [BT10b, BT10a]

nu4
∼= bms4 ⊕ confI , (1)

where nu4 and bms4 denote the respective Lie algebras for the NU and BMS groups in four
dimensions of spacetime and confI denotes the abelian Lie algebra of conformal rescalings
on scri I , the corresponding null boundary of the spacetime. Interestingly, this decomposition
is not compatible with the smooth structure and does therefore not carry over to the global Lie
group level. More precisely, there is a topological obstruction which is similar to the situation
for diffeomorphism groups of non-compact manifolds. There, the Lie algebra of the diffeomor-
phism group needs to be defined as the Lie algebra of compactly supported vector fields and is
not equal to the Lie algebra of all vector fields. Unfortunately, this restriction is not compatible
with the decomposition of equation (1). In the following, we will briefly compare the BMS and
NU groups from a physical and from a mathematical perspective. Furthermore, we refer to our
previous article [PS22] for a general introduction to asymptotic symmetry groups in general
relativity and infinite-dimensional Lie groups.

1.1. Physical motivation

Asymptotic symmetry groups capture the symmetries of physical models in general relativity
with a finite matter content. Such models are given e.g. by isolated stars, but also complete
universes with a finite matter distribution. Therefore, asymptotically flat spacetimes are ide-
ally suited to study gravitational waves—a topic that has regained a lot of interest after the
experimental verification of gravitational waves at LIGO in 2016 [A+16]. However, there
are different approaches to asymptotically flat spacetimes, each of which leading to different
asymptotic symmetry groups, see e.g. [Fri18, Ruz20] for overviews and [PS22] for a general
introduction. Specifically, there are coordinate based approaches, such as the original BMS and
NU approach [BBM62, Sac62, NU62], as well as the geometric approach by Penrose [Pen63,
Pen64, Pen65, Pen68]. We refer to [SWS75] for a characterization of the BMS and NU groups
in terms of the geometric approach of Penrose. Physically, the BMS group and the NU group
differ in the definition of the corresponding ‘supertranslations’, given for four-dimensional
spacetimes with vanishing cosmological constant via the function spaces S :=C∞(S2) for the
BMS group and N ⊂ C∞(R× S2) for the NU group, where the subset is characterized in
definition 3.8. Geometrically, the difference lies in the action of the corresponding groups
on scri I :=R× S2 (cf [PS22, subsection 2.1] and subsection 2.1 of the present article), the
null-boundary of the aforementioned spacetimes, and its induced (degenerate) metric. More
precisely, the NU group allows for conformal rescalings of the induced metric, whereas the
BMS group is additionally subjected to the invariance of a specific (2, 2)-tensor, defining a
‘strong conformal geometry’, [Pen74, SWS75].
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1.2. Mathematical motivation

The NU group is known to be an ‘infinite-dimensional group’. This directly motivates the
question: is it an infinite-dimensional Lie group? The answer to this depends on the definition
of infinite-dimensional Lie group. The present articles concept of an infinite-dimensional Lie
group is a group with a manifold structure modeled on a locally convex space, such that the
group operations are smooth. As ordinary calculus breaks down beyond the realm of Banach
spaces (and the NU group cannot be modeled on a Banach space), smoothness here refers
to smoothness in the sense of Bastiani calculus (see [Sch22] for more information). Fur-
thermore we refer to [PS22, appendix A] for a concise overview on infinite-dimensional Lie
groups. Specifically, we recalled that while the Lie group exponential provides a local dif-
feomorphism (exponential coordinates) between finite-dimensional Lie groups and their Lie
algebras, this correspondence breaks down in general in the infinite-dimensional case. As an
example, the Lie group exponential of the diffeomorphism group fails to be locally surjec-
tive. In this article, we encounter another complication: for the BMS group, it was sufficient
to consider function spaces on compact manifolds. The NU group is modeled on spaces of
functions on non-compact manifolds. This might seem like a minor issue, but it leads to major
complications stemming from the function space topologies. Again this complication is well
known for the diffeomorphism group of a non-compact manifold [Sch15]. To illustrate this,
recall that for a compact manifold K the Lie algebra of the Lie group Diff(K) is the Lie alge-
bra of vector fields on K with the negative of the usual bracket of vector fields. The natural
topology on this Lie algebra is the compact open C∞-topology. This topology allows one to
simultaneously control a function and up to finitely many of its derivatives on any given com-
pact set. The Lie group exponential of Diff(K) is the map which sends a vector field to its
time one-flow and it is not difficult to see that it is smooth with respect to the compact open
C∞-topology.

Switching now to a non-compact manifold N, consider the Lie algebra of vector fields
on N with the compact-open C∞-topology. Since N is non-compact, this topology does
not control the behavior of vector fields at infinity. Indeed, it is too coarse in the non-
compact case. Extrapolating from the compact case, also the Lie group exponential is prob-
lematic: on a non-compact manifold there are vector fields whose flow explodes in arbitrar-
ily short time, so the flow map is simply not available on the algebra of all vector fields.
All of these problems can be solved by switching to the Lie algebra of compactly sup-
ported vector fields on N with a finer topology. This topology, called the fine-very strong
topology, yields enough control to work with the restricted algebra. Moreover, flows exist
now and give rise to a smooth Lie group exponential turning the group Diff(N) into a Lie
group.

Returning to the NU group, the problems we face stem from the well-known difficulties for
diffeomorphism groups which were just outlined. The BMS group is a product of an infinite-
dimensional abelian group (indeed a vector space of functions on a compact manifold) with a
finite-dimensional Lie group. For the NU group, the abelian part is replaced by a parameterized
version of the diffeomorphism group of a non-compact manifold. So one should expect that all
problems associated to diffeomorphism groups in the passage from compact to non-compact
domains are again present.

1.3. Original results of the present article

In the present article, we investigate whether the NU group can be made an infinite-dimensional
Lie groups in the sense of Milnor [Mil84]. Specifically, we use the so-called Bastiani calculus,
an introduction to which can be found e.g. in [PS22, appendix B] and the book [Sch22]. Let us
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first recall the algebraic structure of the NU group. We denote by SO+(3, 1) the orthochronous
Lorentz group and note that it is a finite-dimensional Lie group which acts on the function
space C∞(R× S2). This action will be recalled later; for now, we only mention that the action
restricts to a certain (non-commutative) group N ⊆ C∞(R× S2) and the NU group is then the
semidirect product

NU = N � SO+(3, 1). (2)

There is a canonical identification I : BMS → NU identifying the BMS group as a subgroup of
the NU group. Note that the semidirect product (2) is topologically much more involved com-
pared to the BMS case. The reason is that the functions in N are defined on a non-compact
manifold, while functions in S are defined on a compact domain. The non-compactness of
R× S2 implies that C∞(R× S2) admits at least three qualitatively different choices of func-
tion space topologies (the compact open C∞-topology, the Whitney topologies and the fine
very strong topology). Only two of these topologies provide additionally either a topological
vector space structure (compact open C∞-topology) or a manifold structure (fine very strong
topology) on C∞(R× S2).

As our first result, we prove that N and also the NU group becomes a topological group in
the compact open C∞-topology. The inclusion of the BMS group becomes then a morphism
of topological groups. The compact open C∞-topology is too coarse to construct a manifold
structure on N , whence there is no Lie group structure to be gained here.

Passing to the fine very strong topology, we construct a manifold structure on N which
turns the group N into a Lie group. Note that the model space of N is neither a Banach nor
a Fréchet space, whence Bastiani calculus is needed to make sense of this. We then identify
the Lie algebra of N and establish that N is a regular Lie group. Recall that a Lie group is
regular if a certain kind of ordinary differential equations can be solved on the Lie group and
the solution depends smoothly on parameters, cf e.g. the introduction in [PS22]. Regularity is
a prerequisite for advanced tools in (infinite-dimensional) Lie theory. Surprisingly, the action
of the Lorentz group on N is discontinuous with respect to the fine very strong topology, so
the NU group cannot be turned into a Lie group if N carries this topology. However, endowing
the function space N with the fine very strong topology, the action of SO+(3, 1) on the identity
component ofN becomes smooth. To distinguish the identity component in the fine very strong
topology from the (larger) identity component in the topological group N with the compact
open C∞-topology, we will write N vs

0 . We prove that N vs
0 forms a Lie group. Then we consider

the NU group as a manifold (where the function space part N is again endowed with the fine
very strong topology). In this topology the connected component of identity NUvs

0 (not to be
confused with the larger connected component of the identity in the topological group NU with
the compact open C∞-topology) becomes a Lie group. As a consequence of the semidirect
product structure, NUvs

0 is a regular Lie group. Moreover, we establish for N vs
0 and NUvs

0 that
they are not real analytic Lie groups (whence the Baker–Campbell–Hausdorff series does not
yield a model for the group structure). However, our analysis shows that the strong Trotter and
the strong commutator properties hold for both groups.

1.4. A recap of the Bondi–Metzner–Sachs group

We have established in [PS22] that the BMS group is an infinite-dimensional Lie group mod-
eled on a Fréchet space. This follows directly from its semidirect product form [Sac62],
McC72]

BMS = S � SO+(3, 1), (3)
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where S = C∞(S2) is a function space (viewed as an abelian Lie group) and SO+(3, 1) denotes
the Lorentz group (which is in particular a finite-dimensional Lie group) together with the
smoothness of the group action on the infinite-dimensional space of supertranslationsS [PS22].
We found that the BMS group is regular in the sense of Milnor [Mil84]. As a consequence,
we obtain the validity of the Trotter product formula and the commutator formula on the BMS
group. We remark that these formulae are important tools in the representation theory of Lie
groups. Additionally, we found a more surprising results of our investigation: the BMS group
is not an analytic Lie group. In a nutshell, the reason for this is that the group product incor-
porates function evaluations of smooth (but not necessarily analytic) mappings. In particular,
this entails that

• the well known Baker–Campbell–Hausdorff series does not provide a local model for the
Lie group multiplication, and

• there cannot be a complexification of the BMS group which continues the real BMS
group multiplication as a complex (infinite-dimensional) Lie group. (See also [MS92] on
complexifications of the BMS group.)

Moreover, we remark that due to this defect either the Lie group exponential does not pro-
vide a local diffeomorphism onto an identity neighborhood or the BCH-series cannot converge
on any neighborhood of 0 in the Lie algebra.

Finally, we have also discuss the case of the generalized BMS group (or gBMS), which can
be identified with the semidirect product S � Diff(S2), and behaves quite similarly (when it
comes to the Lie theory) to the BMS group.

2. Asymptotically flat spacetimes

We start this article with an introduction to different definitions of asymptotic flatness. This
was started in [PS22, section 2] with a particular emphasis on the coordinate-wise approach
of Bondi et al and Sachs. In this article, we briefly recall the geometrical construction due to
Penrose and then discuss the coordinate-wise construction of Newman and Unti. We refer to
[Ash14, Fri18] for excellent overview articles.

2.1. Penrose’s conformal extension

In [PS22, subsection 2.1] we have reviewed Penrose’s conformal extension, which we now
briefly recall: in this geometrical approach the ‘physical spacetime’ (M, g) gets embedded into
its so-called ‘conformal extension’ (M̂, ĝ), that is the spacetime (M, g) together with a boundary
I , called scri, that represents the points ‘at infinity’, i.e.

M̂ ∼= M 	 I , (4)

such that the embedding ι : M → M̂ is a conformal diffeomorphism. Scri I consists of three-
dimensional components representing lightlike infinity I± as well as three points, representing
timelike and spacelike infinity. In particular, the two metrics g and ĝ are conformally related
via ι, i.e.

ι∗g ≡ ς2ĝ, (5)

where ς ∈ C∞(M̂) is a smooth function on the conformal extension. If this construction is
possible, the spacetime (M, g) is called asymptotically simple. Furthermore, if in addition the
Ricci tensor vanishes in a neighborhood of I , the spacetime is called asymptotically empty.
Using this construction, the BMS and NU groups can be seen as diffeomorphisms acting on I ,

5
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cf [SWS75]. Moreover, we recall two important classical results that characterize the geometry
of asymptotically simple spacetimes:

• If (M, g) is additionally asymptotically empty, then it is globally hyperbolic [HE73,
proposition 6.9.2] (and thus parallelizable in four dimensions of spacetime, cf [PS22,
proposition 2.3]).

• If the cosmological constant is vanishing (Λ = 0), then the two components representing
lightlike infinity I± ⊂ I are both homeomorphic to R× S2 [New89, corollary 2].

Finally, we also mention the viewpoint from symplectic geometry to the above concepts via
the Hamiltonian formalism of general relativity [AS81].

2.2. Newman and Unti’s coordinate-wise definition

The original approach to this subject was due to the pioneering works of Bondi et al [BBM62]
and Sachs [Sac62] via a coordinate-wise definition, which are described in [PS22]. In this arti-
cle, we focus on the coordinate approach of Newman and Unti [NU62] in the form of [BL12],
where also an explicit relation between the BMS and NU gauges is discussed. As turned out
later using Penrose’s conformal extension, asymptotically flat spacetimes are parallelizable.
Thus, the following coordinate functions can be defined globally, modulo possible singular-
ities. Furthermore, we remark that they are constructed for spherically symmetric situations,
which motivates the use of spherical coordinates for the spatial submanifold:

Definition 2.1. (NU coordinate functions). Let (M, g) be an asymptotically sim-
ple spacetime with globally defined coordinate functions xα : M → R4, denoted via
xα ≡ (t, x, y, z). Then we introduce the so-called NU coordinate functions
yα : M → R× I × S2, where I ⊆ R is an open subinterval, denoted via yα ≡ (u, �,ϑ,ϕ), as
follows: the first coordinate u is fixed and serves as a label for null surfaces, the second coordi-
nate �(u) is an affine parameter for null geodesics and the two remaining ones za := (ϑ,ϕ) are
angular coordinates. Given these coordinates, the metric in the Newman and Unti approach
can be expressed as follows:

gμν dxμ ⊗ dxν ≡ Wdu ⊗ du − (du ⊗ d�+ d�⊗ du) (6a)

+ �2hab(dza − Ua du) ⊗ (dzb − Ub du), (6b)

where hab is the metric on the (deformed) unit sphere, which we decompose as follows

hab dza ⊗ dzb ≡ h(1)
ab dza ⊗ dzb +

1
�

h(2)
ab dza ⊗ dzb +O(�−1), (6c)

where h(1)
ab is conformally flat and h(2)

ab is traceless with respect to h(1)
ab , i.e. h(1)ab

h(2)
ab ≡ 0.

Here, we have expressed the metric degrees of freedom via a real function on the spacetime
W ∈ C∞(M,R), a vector field on the unit sphere U ∈ X(S2) and a metric on the unit sphere
h ∈ Met(S2).

Definition 2.2. (NU asymptotic flatness). Given the coordinate functions from
definition 2.1 with the angular functions za := (ϑ,ϕ) transformed into stereographic coordinates
ζ := cot(ϑ/2)exp(iϕ) and ζ := cot(ϑ/2) exp(−iϕ), the spacetime (M, g) is called asymptoti-
cally flat in the sense of NU, if the following relations are satisfied [BL12]:

W = −2�∂uk + 4 exp(−2k)∂ζ∂ζk +O(�−1), Ua = O(�−2) (7)

6
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and equation (6c), where k(u,ϑ,ϕ) is the conformal factor such that h(1)
ab dza ⊗ dzb

≡ exp(2k)dζ ⊗ dζ .

Remark 2.3. We emphasize that an explicit relation between the BMS gauge and the NU
gauge has been worked out in [BL12, section 4].

3. Lie theory for the NU group

Asymptotic symmetry groups are subgroups of the diffeomorphism group that preserve the
chosen boundary condition and gauge fixing. We focus in this article on the NU group. Our
aim is to establish (infinite-dimensional) Lie group structures on the NU group. For readers who
are not familiar with calculus beyond Banach spaces, we have compiled the basic definitions
in [PS22, appendix A] (and we suggest to review them before continuing). Furthermore, as the
NU group is an extension of the (perhaps more well known) BMS group, let us recall some
facts and notation on the BMS group from [PS22].

Let S :=C∞(S2) :=C∞(S2,R) be the abelian group of supertranslations and SO+(3, 1) the
orthochronous Lorentz group SO+(3, 1). Then SO+(3, 1) acts by conformal transformations
on the sphere S2. Furthermore, we can identify elements in SO+(3, 1) with Möbius transfor-

mations. Recall that a Möbius transformation admits a matrix representation Λ f =

[
a b
c d

]
for

f ∈ SO+(3, 1) which acts conformally on the Riemann sphere Ĉ ∼= S
2. The conformal factor

of the transformation f can thus be expressed as

K : SO+(3, 1) × Ĉ→ ] 0,∞ [, Kf (ζ) :=
1 + ‖ζ‖2

‖aζ + b‖2 + ‖cζ + d‖2
, Λ f =

[
a b
c d

]
.

(8)

Identifying the sphere S2 with the Riemann sphere, we obtain a smooth group action

σ : S × SO+(3, 1) →S, ( f ,α) �→ Kf (·)−1 · α ◦ f

and the BMS group is the semidirect product BMS = S � SO+(3, 1) with respect to this action.
To spell it out explicitly, the group product of the BMS group is

(F,φ)(G,ψ) = (F + σ(G,φ),φ ◦ ψ) = (F + K−1
φ · G ◦ φ,φ ◦ ψ).

In [PS22] it was shown that this structure turns the BMS group into an infinite-dimensional
regular Lie group.

3.1. General constructions

Before we begin, let us recall several general constructions which will be used through-
out the following sections. We will encounter spaces of differentiable mappings as infinite-
dimensional manifolds. Let us repeat some important definitions and properties of these
manifolds. In the following M, N will always denote smooth paracompact manifolds and

7
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Ck(M, N) the set of k-times continuously differentiable mappings from M to N where k ∈
N0 ∪ {∞}.

3.1. (Compact open Ck-topology). If nothing else is said, we topologize Ck(M, N) with
the compact open Ck-topology. This is the topology turning the mapping

Ck(M, N) →
∏

�∈N0,��k

C(T�M, T�N), f �→ (T� f )0���k

into a topological embedding. Here the sets on the right-hand side are topologized with
the compact open topology and T � denotes the �-fold iterated tangent functor. Recall from
[AGS20, appendix A] that this topology turns Ck(M, N ) into a Banach (resp. Fréchet) mani-
fold for k ∈ N0 (resp. k = ∞) if M is compact and N is a finite dimensional manifold. More-
over, one can prove that if N is a locally convex topological vector space, then also Ck(M, N)
is a locally convex topological vector space with the pointwise operations.

If M is non-compact, the compact open Ck-topology does not control the behavior of map-
pings at infinity. Moreover, the compact open Ck-topology does not turn Ck(M, N) into a man-
ifold if N is not a vector space. For this reason one introduces the so called fine very strong
topology on Ck(M, N). We recall its definition now and refer to [HS17] for more information.

3.2. (The fine very strong topology). We now endow C∞(M, N) with the so called FD-
topology or fine very strong topology and write C∞

fS (M, N) for the space endowed with this
topology. This is a Whitney type topology controlling functions and their derivatives on locally
finite families of compact sets. Before we describe a basis of the fine very strong topology,
we have to construct a basis for the strong topology which we will then refine. To this end,
we recall the construction of the so called basic neighborhoods (see [HS17]). Consider f
smooth, A compact, ε > 0 together with a pair of charts (U,ψ) and (V,ϕ) such that A ⊆ V and
ψ ◦ f ◦ ϕ−1 makes sense. Then we use standard multiindex notation to define an elementary
f -neighborhood

N r ( f ; A,ϕ,ψ, ε) :=

⎧⎪⎨⎪⎩
g ∈ C∞(M, N), ψ ◦ g|A makes sense,

sup
α∈Nd

0 ,|α|<r

sup
x∈ϕ(A)

‖∂αψ ◦ f ◦ ϕ−1(x) − ∂αψ ◦ g ◦ ϕ−1(x)‖ < ε

⎫⎪⎬⎪⎭ .

A basic neighborhood of f arises now as the intersection of ( possibly countably many) ele-
mentary neighborhoods N r ( f ; Ai,ϕi,ψi, εi) where the family (Vi,ϕi)i∈I is locally finite. We
remark that basic neighborhoods form the basis of the very strong topology. To obtain the fine
very strong topology, one declares the sets

{g ∈ C∞(M, N)|∃K ⊆ M compact such that∀ x ∈ M\K, g(x) = f (x)} (�)

to be open and constructs a subbase of the fine very strong topology as the collection of sets
(�) (where f ∈ C∞(M, N)) and the basic neighborhoods of the very strong topology. If M is
compact, the fine very strong topology coincides with the compact open C∞-topology.

3.3. The fine very strong topology turns C∞(M, N) into an infinite-dimensional manifold
(cf [Mic80] and [HS17]). If N = F is a locally convex space, the pointwise operations turn
C∞

fS (M,Rn) into a vector space. However, for non-compact M, C∞
fS (M, F) is disconnected,

8



Class. Quantum Grav. 39 (2022) 155005 D Prinz and A Schmeding

whence it is a manifold but not a locally convex space. The largest locally convex space
contained in C∞

fS (M, F) is the space of compactly supported maps

C∞
c (M, F) := { f ∈ C∞(M, F)|∃K ⊆ M compact, s.t. f |M\K ≡ 0}

We shall always topologize C∞
c (M, F) with the fine very strong topology.

Recall from [AGS20, lemma A.10] that for M compact and N a finite dimensional manifold
the manifold Ck(M, N) is canonical, i.e. a mapping

h : A → Ck(M, N) for any smooth manifold A

is of class C� if and only if the adjoint map h∧ : A × M → N, (a, m) �→ h(a)(m) is a C�,k-map.
This means that h∧ is �-times continuously differentiable with respect to the A-component of
the product and each of these differentials is then k-times differentiable with respect to the M-
component. This is an extremely useful property of the compact open Ck-topology. We warn
the reader that the corresponding statement is false for the fine very strong topology if M is
non-compact.

Finally, we recall from [HN12, lemma 2.2.3] the concept of a semidirect product (all
asymptotic symmetry groups in this article will turn out to be semidirect products).

3.4. (Semidirect product of groups). Let N and H be groups and Aut(N) the group of
automorphisms of N. Assume that δ : H→ Aut(N) is a group homomorphism. Then we define
a multiplication on N × H by

(n, h)(m, g) := (nδ(h)(m), hg). (9)

This multiplication turns N × H into a group denoted by N �δ H, where N ∼= N × {e} is
a normal subgroup and H ∼= {e} × H is a subgroup. Furthermore, each element x ∈ N �δ H
has a unique representation as x = nh, n ∈ N, h ∈ H.

If H, N are Lie groups (or analytic Lie groups) and δ∧ : H × N → H, (h, n) �→ δ(h)(n) is
smooth (analytic)3, then N �δ H is a Lie group (analytic Lie group). Its Lie algebra is a
semi-direct product of Lie algebras.

3.1.1. Almost local mappings. To establish smoothness of certain mappings with respect to the
function space topologies just defined we need Glöckner’s concept of almost local mappings,
see [Glö05]. We present here a version of this technique which allows for parameter dependent
almost local mappings. These results were communicated to us by Glöckner and will appear
in [Glö22]. We remark here that the proofs for these results are variants of the proofs for the
statements without parameter in [Glö05].

3.5. Let M, N be finite-dimensional smooth manifolds and E, F be locally convex spaces. Fix
an open set Ω ⊆ C∞

c (M, E). Furthermore, consider a smooth ( possibly infinite-dimensional)
manifold P and a map

f : P × Ω→ C∞
c (N, F).

3 If N is finite dimensional, it suffices to require that δ is a Lie group morphism. In general, there is no Lie group
structure on Aut(N ) which guarantees smoothness of the group operation in N �δ H.

9
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The map f is called an almost local if for each p ∈ P there exist an open p-neighborhood
Q ⊆ P, a locally finite cover (Un)n∈A of M by relatively compact open subsets and a locally
finite cover (Vn)n∈A of N by open relatively compact subsets (where both families are indexed
by the same set A) such that the following condition holds

∀ n ∈ A, ∀ q ∈ Q, ∀ σ, τ ∈ Ω, σ|Un = τ |Un ⇒ f (q, σ)|Vn = f (q, τ )|Vn .

If each (p, σ) ∈ P × Ω has an open neighborhood P0 × Ω0 such that f |P0×Ω0 is almost local,
f is called locally almost local.

This notion is relevant due to Glöckner’s smoothness proposition for locally almost local
maps (which is a parameter-dependent version of [Glö05, theorem 3.2]).

f : P × Ω→ C∞
c (N, F)

has the following properties:
(a) The restriction of f to a mapping

P × (Ω ∩ C∞
K (M, E)) → C∞

c (N, F)

is smooth for each compact subset K ⊆ M; and
(b) f is an almost local map (or locally almost local).

Then f is smooth.

Proposition 3.6. In the situation of 3.5, assume that P is a finite dimensional manifold and
the map

Remark 3.7. The statement of proposition 3.6 simplifies several assumptions and the result
obtained. We mention that [Glö22] establishes in particular a version for finite orders of differ-
entiability and works not only with the spaces C∞

c (M, E) but more generally with Ck-sections
of locally convex vector bundles.

3.2. The Newman–Unti group

Let us first recall the definition of the NU group as a certain semidirect product. Let
Diff+(R) be the group of all smooth orientation-preserving diffeomorphisms of R (recall that
a diffeomorphism of R is orientation-preserving if it has positive derivative everywhere).

Definition 3.8. Define N :=
{

F ∈ C∞(R× S2)|F(·, z) ∈ Diff+(R), ∀ z ∈ S2
}

. Then N
becomes a group with respect to the product

F · G(u, z) :=F(G(u, z), z).

The unit of the product is the map p : R× S2 → R, (t, z) �→ t and the inverse F−1 : R× S2 → R

is for z ∈ S2 given by F(·, z)−1, where the inverse is computed in Diff+(R). Note that the inverse
is the unique smooth map4 satisfying the implicit equation

t = F(F−1(t, z), z) (t, z) ∈ R× S
2. (10)

4 Note that smoothness of the inverse in all variables is guaranteed by the implicit function theorem.

10
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Furthermore, using the conformal factor from (8), the mapping

τ : N × SO+(3, 1) →N , (F,φ) �→
(

(t, z) �→ K−1
φ (z)F(Kφ(z)t,φ(z))

)
,

makes sense. A quick calculation shows that it is a group action which induces a group mor-
phism τ̂ : SO+(3, 1) → Aut(S),φ �→ τ (·,φ) and we can form the semidirect product of groups.
The NU group is now the semidirect product

NU :=N�τSO+(3, 1).

Explicitly, the multiplication (F, φ) · (G, ψ) of the NU group is given by

(F(τ (G,φ)(t, z), z),φ ◦ ψ(z)) = (F(K−1
φ (z)G(Kφ(z)t,φ(z)), z),φ(ψ(z))).

By construction of the group structures we obtain an injective group morphism:

I : BMS → NU, (F,φ) �→ ((t, z) �→ t + F(z),φ) (11)

Remark 3.9. Our definition of the NU group might look odd to the reader used to the usual
presentations in the physics literature. In [AE18, definition 5.1] the definition of the space N
seems only to require that F ∈ C∞(R× S2) satisfies

∂F
∂t

(t, z) > 0 ∀(t, z) ∈ R× S
2 (12)

(an impression one could also have from the formulation in [SWS75], though a second glance
shows that the maps need to induce diffeomorphisms of I ); but we note that this definition
would not lead to a group structure on N . As an example, we could consider the mapping
F : R× S2 → R, F(t, z) := arctan(t) which would satisfy (12) but its inverse tan cannot be
extended to a smooth map on R.

Compared to the BMS group, one replaces the abelian group of supertranslations by the
non-abelian group N . Beyond the non-abelian structure there is another significant difference
between the two groups. Whereas the supertranslations are smooth mappings on a compact
domain, the group N ⊆ C∞(R× S2) consists of smooth mappings on a non-compact domain.
Thus, for S, there is in principle only one choice for the function space topology, while for N
the different topologies do not coincide5. Before we investigate this behavior, let us note for
later use that elements in N are proper maps:

Lemma 3.10. If F ∈ N , then for every K ⊆ R compact, F−1(K) is compact, i.e. F is a proper
map.

Proof. Let K ⊆ R be compact and let us show that the preimage F−1(K ) is compact. To this
end, pick a sequence (rn, zn) ∈ F−1(K), n ∈ N. We need to show that this sequence has a con-
vergent subsequence. Due to the compactness of K, we see that (by passing to a subsequence)

5 The space C∞(R× S2) supports a variety of inequivalent function space topologies beyond the compact open C∞

and the fine very strong topology. For example one can define several Whitney-type topologies, see [Mic80, section 4].
As these additional topologies do not turn N into a manifold we shall ignore them.

11
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we may assume that F(rn, zn) converges in K towards a limit, say z. Now S2 is compact, whence
we can pass again to a subsequence and assume that zn converges towards some z∗ ∈ S2. Now
F(·, z) is a diffeomorphism, whence r∗ :=F(·, z∗)−1(z) exists. We claim that now rn → r∗. To
see this, consider the diffeomorphisms

Gn :=F(·, z∗)−1 ◦ F(·, zn), n ∈ N.

By construction this sequence of diffeomorphisms converges (pointwise) towards the iden-
tity and satisfies Gn(rn) → r∗ as n →∞. We see that G−1

n (r∗) → r∗ and rn − Gn(r∗) → 0,
whence also rn converges towards r∗. We conclude that (rn, zn) has a convergent subsequence
and thus F−1(K) is compact. Since K was arbitrary, F is a proper map. �

We now topologize the NU group with respect to the compact open C∞ topology and con-
sider whether it becomes a topological or Lie group in that way. This is the coarsest function
space topology and the NU group with this topology can be analyzed similarly to the BMS
group.

Proposition 3.11. Endow N with the subspace topology induced by the compact open
C∞-topology on C∞(R× S

2). Then the NU group becomes a topological group.

Proof. From 3.3 we see that a map f : M → C∞(R× S2) is smooth if and only if the associ-
ated map f ∧ : M × (R× S2) → R, (m, (t, z)) �→ f (m)(t, z) is smooth. This entails that the eval-
uation map ev :C∞(R× S

2) × (R× S
2) → R, ( f , t, z) �→ f (t, z) is smooth, as it is the associ-

ated map to the identity C∞(R× S2) → C∞(R× S2). In the following, we prove directly that
group product and inversion in the NU group are continuous (it will be clear from the proof
that this entails that also N is a topological group with the subspace topology and the group
action of SO+(3, 1) on N is continuous).

Step 1. The group product of the NU group is continuous. Let us first extend the group prod-
uct to the locally convex space C∞(R× S

2) containing N . To write it in terms of composition
of mappings, consider pr2 : R× S2 → S2, (t, z) �→ z. Then we can write the product as:

P : (C∞(R× S
2) × SO+(3, 1)(C))2 → C∞(R× S

2) × SO+(3, 1),

× ((F,φ), (G,ψ)) �→ (F ◦ (τ̂ (φ)(G), pr2),φ ◦ ψ). (13)

As SO+(3, 1) is a Lie group, it suffices to establish continuity of the first component of P. Note
that ψ is irrelevant to the first component of P, whence due to the exponential law it suffices to
establish smoothness of the mapping

C∞(R× S
2) × SO+(3, 1) × C∞(R× S

2) × R× S
2 → R

× (F,φ, G, t, z) �→ F(K−1
φ (z)G(Kφ(z) · t,φ(z)), z).

However, this mapping is easily seen to be smooth as it can be written as a composition of
the smooth mappings K, δ and the smooth action of SO+(3, 1) on S2 and the smooth evalua-
tion map ev. We deduce from the exponential law that the map P on C∞(R× S

2) is smooth.

12
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In particular, it is continuous and restricts to the group product of the NU group on N . As N
carries the subspace topology, this establishes continuity of the group product.

Step 2. Inversion in the NU group is continuous. Recall that in a semidirect product the
inversion is given by the formula

ι : N × SO+(3, 1) →N × SO+(3, 1), (F,Λ) �→ (τ (F−1,Λ−1),Λ−1) )

where F−1 is the inverse in the group N . Since SO+(3, 1) is a Lie group, inversion is smooth
and we may suppress it in the following computations. Having endowed N with the subspace
topology of C∞(R× S

2), continuity of ι will follow if we can establish the continuity of the
mapping

i1 : N × SO+(3, 1) → C∞(R× S
2), (F,φ) �→ τ (F−1,φ).

We apply now the exponential law [AS15, theorem B] in its strong form: the map i1 is
continuous if and only if the associated map

i∧1 : (N × SO+(3, 1)) × (R× S
2) → R, ((F,φ), (t, z)) �→ K−1

φ (z)F−1(t,φ(z))

is a C0,∞-mapping. Recall that a mapping is of class C0,∞ if it is continuous and infinitely often
continuously differentiable with respect to the second component (i.e. in the present case, with
respect to (t, z)). Rewriting the latter formula we see that

i∧1 (F,φ)(t, z) = ev(δ(φ), z) · ev (F−1, (t,φ(z)).

Now δ and the evaluation maps are smooth and we know that SO+(3, 1) acts smoothly on
S2. From the chain rule for Cr,s-mappings [AS15, lemmas 3.17 and 3.18] we deduce that i∧1
is a C0,∞-map if the map H : N × (R× S2) → R, (F, (t, z)) �→ F−1(t, z) is a C0,∞-map. By
construction, H(F, ·) solves the implicit equation (10) for the function F ∈ N . Hence we can
treat the whole equation as an implicit equation with parameter F. It is well known that the
implicit function theorem with (continuous) parameter yields a smooth solution which depends
continuously on the parameter. In other words the map H will be of class C0,∞ as a result of
the implicit function theorem. Thus we can deduce continuity of the inversion in the NU group
from an implicit function theorem with parameter in a locally convex space (a suitable version
of the theorem is recorded in [Glö06, proposition 2.1]). �

Lemma 3.12. The canonical inclusion I(F,φ) = ((t, z) �→ (t + F(z),φ), (11) of the BMS
group into the NU group is a topological group morphism.

Proof. From the definition of I it is clear that it will be continuous if its first component

S →N , F �→ p+ F ◦ pr2

is continuous, where pr2 : R× S
2 → S

2 denotes the projection onto the second component. We
exploit that N carries the subspace topology of C∞(R× S2) and the exponential law [AS15,
theorem B]. It suffices to prove that the mapping

C∞(S2) × (R× S
2) → R, (F, (t, z)) �→ t + F(z) (14)

13
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is a C0,∞-map. Indeed this map is even smooth as [AS15, proposition 3.20] shows that
the evaluation map ev on C∞(S2) is smooth. Hence (t, z) �→ t + ev(F, z) and thus also I are
smooth. �

Remark 3.13. Note that, for the compact open C∞-topology, there does not seem to be any
sensible way to turn N into a submanifold. Indeed in the compact open C∞-topology Diff+(R)
is not a submanifold of C∞(R) in any suitable sense. Thus, the compact open C∞-topology does
not seem to provide a suitable structure to turn N into an infinite-dimensional Lie group.

While the compact open C∞-topology is too coarse to turn N into a manifold, switching
to a finer topology this problem can be remedied. We will investigate the resulting structure in
the next section.

3.3. The group N in the fine very strong topology

In this section we endow C∞(R× S2) with the fine very strong topology. We will see that N
is an open subset of C∞

fS (R× S2) and this endows N with a manifold structure as C∞(R× S2)
is a manifold (cf [Mic80]). The following result seems to be new (and while the related set
Diff+(R) ⊆ C∞

fS (R) is open (cf [Mic80, section 10]) this is not immediately useful to establish
the following).

Proposition 3.14. The set N is an open subset of C∞
fS (R× S2).

The proof of proposition 3.14 is postponed to appendix A. Having now a manifold structure
at our disposal, the group N turns out to be a Lie group.

Proposition 3.15. The submanifold structure turns N ⊆ C∞
fS (R× S2) into a Lie group.

Proof. Recall from [HS17] that in the fine very strong topology C∞
prop(R× S2), the subset of

proper mappings, is an open subset. By lemma 3.10 and proposition 3.14, the group N is an
open subset of C∞

prop(R× S2) whence it is an open submanifold of C∞
fS (R× S2) (see [Mic80,

theorem 10.4] for a construction of the manifold structure on the function space).
Step 1. The multiplication is smooth. We rewrite the group product of N as follows

F · G = F ◦ (G × idS2 ) ◦ (idR ×Δ) = (idR ×Δ)∗(Comp(F, G × idS2 )), (15)

where Δ : S2 → S2 × S2, z �→ (z, z) is the diagonal map, and we have

(idR ×Δ)∗ : C∞(R× S
2,R× S

2) → C∞(R× S
2 × S

2,R× S
2),φ �→ φ ◦ (idR ×Δ)

Comp : C∞(R× S
2) × C∞

prop(R× S
2 × S

2,R× S
2), (F,φ) �→ F ◦ φ

(where the subscript prop denotes the open subset of proper mappings). From [Mic80,
corollary 10.14 and theorem 11.4] we deduce that (idR ×Δ)∗ and Comp are smooth. Further-
more, the map C∞(R× S2) → C∞(R× S2 × S2,R× S2), G �→ G × idS2 is smooth by com-
pactness of S2 and [Mic80, corollary 11.10 1]. We deduce from (15) that the group product is
smooth as a composition of smooth mappings.
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Step 2. N is a Lie group. Since we already know that the group product is smooth
and inversion I : N →N is a group anti-morphism, the formula I(F) = G−1 · I(F · G) shows
that it suffices to prove that I is smooth in an open neighborhood of the identity element
p : R× S2 → R, (x, z) �→ x. In A.5 we construct a local model ι for the pointwise inversion
I on Φ(G0) ⊆ C∞

c (R× S2) where Φ is a chart and G0 a suitable p-neighborhood. We will now
use the auxiliary results from appendix A to establish smoothness of ι.

Then lemma A.7 shows that ι restricts to a smooth map on the closed subspaces C∞
L (R× K).

Define now for R > 0 the set Or := {γ ∈ Φ(G0)|sup(x,k)|γ(x, k)| < R}. By construction OR is
an open subset of Φ(G0) ⊆ C∞

c (R× K) and we see that Φ(G0) =
⋃

R>0OR. Moreover, lemma
A.8 implies that for every R > 0, the restriction of ι to OR ∩ Φ(G0) is almost local. Hence,
Glöckner’s smoothness theorem [Glö05, theorem 3.2] shows that ι is smooth, whence I is
smooth on G0.

In conclusion, the manifold structure turns the group operations into smooth maps, whence
N is an infinite-dimensional Lie group. �

In essence, the group N is a version of the group Diff+(R) with an added parameter which
is not directly visible in the composition of the group. Hence the Lie algebra should be given
by a Lie algebra of (compactly supported) vector fields where every vector fields depends on
a parameter which is not relevant for the Lie bracket. The next proposition shows that this is
indeed the case. To formulate it, we recall from A.4 that the set of all compactly supported map-
pings C∞

c (R× S2) becomes a locally convex space if we endow it with the subspace topology
induced by the strong very fine topology.

Proposition 3.16. The Lie algebra of N can be identified as L(N ) = C∞
c (R× S2) with

the Lie bracket given by

[X, Y ] (u, θ) := − [X(·, θ), Y(·, θ) ] (u), (u, θ) ∈ R× S
2

and the Lie bracket on the right is the usual Lie bracket of vector fields (on R).

Proof. The unit in N is the projection p(u, θ) = u and we use [Mic80, 10.12] to identify

TpN = {(p, X) ∈ C∞(R× S
2, TR2)|X ∈ C∞

c (R× S
2)}.

This identifies the Lie algebra as a locally convex space. Now we need to compute the Lie
bracket. Again the proof is a variant of the classical argument by which the Lie algebra of
the diffeomorphism group can be identified [Mil84, 6]. Take X ∈ L(N ) = C∞

c (R× S2). Since
multiplication in N is given by composition in the u-component, we deduce from [Mic80,
corollary 11.6] that the extension of X to a right invariant vector field Rx on N is given by the
formula

RX(F) = X ◦ (F × pr2), F ∈ N

where pr2 : R× S2 → S2 is the projection onto the second component. Consider the vector field
RX × 0 ∈ V(N × (R× S2)). We shall now prove that RX × 0 is related to X0 : R× S2 → R

× TS2, (u, z) �→ (X(u, z), 0(z)), where 0(z) is the zero-vector field on S2. To this end, consider
the left action

α : N × (R× S
2) → R× S

2, (F, (u, z)) �→ (F(u, z), z).

As the evaluation ev :C∞
fS (R× S2) × (R× S2) → R, (F, (u, z)) �→ F(u, z) is smooth by

[Mic80, corollary 11.6], it is easy to see that α is a Lie group action. Moreover, [Mic80,
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corollary 11.6] implies that T(F,(u,z))ev(X, Y ) = X(u, z) + dF(u, z;Y). Plugging the vector field
RX × 0 into this formula, we deduce that

Tα ◦ (RX × 0)(F, (u, z)) = (X(F(u, z)), 0z) = X0(α(F, (u, z))).

As relatedness is inherited by the Lie bracket of vector fields, we find([
RX, RY

]
(p)(u, z), 0(z)

)
= Tα

([
RX × 0, RY × 0

])
(p, (u, z))

= ([X(·, z), Y(·, z) ] (u), 0(z)) ,

where the bracket on the right-hand side is the usual bracket of vector fields. By definition, the
Lie bracket on L(N ) is given as [X, Y ] = −

[
RX , RY

]
(p) with the sign shift arising due to the

computation with right invariant fields. This proves the claim. �
Having identified the Lie algebra, the next step to develop the Lie theory of N is to establish

the regularity of this Lie group. Let us briefly recall the concept of a regular Lie group. A Lie
group G is Cr-semiregular, r ∈ N0 ∪ {∞}, if for every Cr-curve γ : [0, 1] → L(G) ) the initial
value problem {

η′(t) = T1ρη(t)(γ(t)) ρg(h) := hg

η(0) = 1
(16)

has a unique Cr+1-solution Evol(γ) := η : [0, 1] → G. If moreover, the evolution map evol :
Cr([0, 1], L(G)) → G, γ �→ Evol(γ)(1) is smooth, then G is said to be Cr-regular. If G is C∞-
regular (the weakest of the regularity conditions), G is called regular (in the sense of Milnor).
To employ advanced techniques in infinite-dimensional Lie theory, one needs to require regu-
larity of the Lie groups involved, cf [Glö15b]. Note that for a constant curve η(t) ≡ v ∈ L(G),
we simply recover the Lie group exponential evol(η(t)) = exp(v). Thus every regular infinite-
dimensional Lie group admits a Lie group exponential.

Again, since the regularity of the group Diff+(R) is a well-known fact (see e.g. [KM97,
Sch15] for proofs in the convenient and in the Bastiani setting), it is not hard to imagine that
these proofs carry over to N (as we have in principle just added another parameter to the
construction). As the modification is again not trivial, we supply the necessary details now.

Let us first take a look at the differential equation we need to solve. Consider first the initial
condition given by a Ck-curve γ : [0, 1] → L(N ). The Lie algebra L(N ) has been identified
as C∞

c (R× S2), so we can think of elements in the Lie algebra as parameter-dependent vector
fields on R (with smooth dependence on a parameter z ∈ S2). To understand the derivative
of the right translation ρG(F) = F · G where the product is the group product of N , we apply
[Mic80, corollary 11.6] twice to (15). This shows that if we identify X ∈ L(N ) = C∞

c (R× S
2)

then

TρF(X) = X ◦ (F, pr2), i.e. TρF(X)(t, z) = X(F(t, z), z).

In other words a Ck+1-curve η : [0, 1] →N solves the differential equation (16) if the asso-
ciated map η∧ : [0, 1] × R× S

2 → S
2 solves the time and parameter dependent flow equation

∂

∂s
η∧(s, t, z) = γ∧(s, η∧(s, t, z), z). (17)

We recall now from [AS15, proposition 3.20] that the evaluation map

evk : Ck([0, 1], C∞
c (R× S

2)) × [0, 1] → C∞
c (R× S

2)
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is a C∞,k-map. As the evaluation ev of smooth functions is a smooth map, the chain rule [AS15,
lemma 3.18] for Cr,s-maps implies that

H : [0, 1] ×
(
Ck([0, 1], C∞

c (R× S
2) × (R× S

2))
)
→ R,

× (s, (γ, (u, z))) �→ ev(evk(γ, s), (u, z)) = γ(s)(u, z)

is a mapping of class Ck,∞. Hence the right-hand side of (17) is a Ck,∞-mapping in its entries
and we can apply the solution theory for differential equation whose right-hand side is of
class Cr,s.
Lemma 3.17. Let k ∈ N0. For every γ ∈ Ck([0, 1], C∞(R× S2)) the differential
equation (17) admits a unique solution η∧γ : [0, 1] × (R× S2) → R which is of class
Ck+1,∞. Moreover, we obtain a map of class Cr+1,∞ via

[0, 1] ×
(
(R× S

2) × Ck([0, 1], C∞(R× S
2))

)
→ R, (s, (u, z), γ) �→ η∧γ (s, u, z).

Proof. Instead of the differential equation (17) we consider directly the differential equation

∂

∂s
η(s, u, z) = H(s, γ, η(s, u, z), z) = γ(s)(η(s, u, z), z) (18)

where we regard γ and z as parameters on which the right-hand side H depends smoothly. We
have already seen that H is a Ck,∞-map (where the k is with respect to the time variable s). We
can now apply [AS15, theorem 5.6] which ensures that for every parameter γ, z there exists a
unique solution η∧γ (s, u, z) on some time interval (a priori depending on the parameters) around
0. Note that this is exactly the differentiable dependence on parameters and time we claimed
for the solution in the statement of the lemma. Since γ(s)(·, z) is a compactly supported time-
dependent vector field on R for every choice of the parameters γ, z, the usual argument (see
e.g. [Lee13, theorem 9.16]) shows that the solution exists on all of [0, 1]. �

We have now constructed candidates for the solution of the regularity problem for N . Now
these candidates need to be identified with smooth mappings taking values in the manifold of
mappings.

Proposition 3.18. The Lie group N is Cr-regular for all r ∈ N0.

Proof. Fix r ∈ N0 and γ ∈ Cr([0, 1], C∞
c (R× S2)). From lemma 3.17 we obtain a solution

η∧γ of (17), by construction we have for fixed s ∈ [0, 1] that η∧γ (s, ·) ∈ C∞
c (R× S2), whence we

can define ηγ : [0, 1] → C∞(R× S
2), ηγ(s) := η∧γ (s, ·). Note that C∞

c (R× S
2) = lim→C∞

L (R×
S2), where L runs through the compact subsets of R× S2. The inductive limit is compactly
regular by [Mic80, 4.7.8]. This means that since γ : [0, 1] → C∞

c (R× S2) is continuous with
compact image, the image of γ is already contained in a step of the directed system. Thus for
γ there exists a compact set L1(γ) ⊆ R such that γ(s)|R×S2\L1(γ)×S2 ≡ 0 for all s ∈ [0, 1]. Note
that since the initial condition for the differential equation (18) is γ(0)(u, z) = u = p(u), we
see that

|ηγ(s)(u, z) − u| =
∣∣∣∣∫ s

0

d
ds
ηγ (s)(u, z)ds

∣∣∣∣ �
∫ s

0
|γ(s)(ηγ(s)(u, z))|ds

is bounded by sups,u,z|γ(s)(u, z)| < ∞. So if R := sups,u,z|γ(s)(u, z)| and L1 = [a, b], then out-
side of the compact set LR := [a − R, b + R] the map ηγ(s)|R×S2\(LR×S2) coincides with p for all
s ∈ [0, 1].
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Step 1. ηγ is a Cr+1-curve to C∞(R× S2). From the preliminary considerations we see that
ηγ − p takes its image in C∞

LR×S2(R× S2). As the mapping

C∞
fS (R× S

2) → C∞
fS (R× S

2), F �→ F + p

is smooth (see [Mic80, remark 4.11] and note that this even restricts on the component of
p to a manifold chart), it suffices to prove the Ck+1-property of ηγ − p as a mapping to
C∞

LR×S2 (R× S2). However, η∧γ : [0, 1] × (R× S2) → R is a Ck+1,∞-mapping due to lemma
3.17. Subtracting p, we can exploit the exponential law [AS15, theorem B] to see that the
mapping ηγ − p : [0, 1] → C∞

LR×S2(R× S2) is a Ck+1-map. The crucial point here is that the
space on the right-hand side is endowed with the compact open C∞-topology which coincides
on the subspace with the fine very strong topology (see e.g. [HS17, remark 4.5]). Thus ηγ is a
Ck+1-map.

Step 2. ηγ is a Ck+1-map with image in N . By construction we have ηγ(0) = p and for
every fixed z ∈ S

2 the map η∧γ (s, ·, z) is in Diff(R) by the flow property. Now p(·, z) ∈ Diff+(R)
and s �→ γη(s)(·, z) ∈ C∞

c (R) is continuous for every z, whence also as a curve to Diff(R). We
deduce that γη(s)(·, z) ∈ Diff+(R) for every s, z as it is a continuous curve starting in Diff+(R).

Step 3. C0-semiregularity and the map evol. From our discussion of the differential equation
governing regularity of N , we see that ηγ is a solution for (16) for the initial value γ. Thus N
is Ck-semiregular. To establish C0-regularity of the group N , we consider the map

evol : C([0, 1], C∞
c (R× S

2)) →N ⊆ C∞(R× S
2), γ �→ ((u, z) �→ η∧γ (1, u, z)),

where again η∧γ solves (17). In view of [Glö15b, lemma 3.1], the group N will be C0-regular
if evol is smooth.

Step 4. eK : C([0, 1], C∞
K (R× S2)) → C∞

c (R× S2), γ �→ evol(γ) − p is smooth for every
K ⊆ R× S2 compact. Consider for R > 0 the open set

OR := {γ ∈ C([0, 1], C∞
L (R× S

2))| sup
(s,u,z)∈[0,1]×R×S2

|γ(s)(u, z)| < R}.

As the OR exhaust C([0, 1], C∞
L (R× S2)), it suffices to prove smoothness of eK on every OR.

To this end, we recall from lemma 3.17 that the associated map

e∧K : OR ∩ C([0, 1], C∞
K (R× S

2)) × R× S
2 → R, (γ, u, z) �→ ηγ (1)(u, z)

is smooth. We now need to create a situation where the exponential law can be applied. As
the compact set K is contained in some compact set L × S2 we proceed as in step 1: for
every γ ∈ OR, the solution η∧γ to (17) takes its image in C∞

LR×S2(R× S2) for a compact set

LR only depending on R. Hence we deduce that there is a compact subset KR ⊆ R× S2 such
that evol(γ) − p takes its image in C∞

KR
(R× S2). Applying now the exponential law [AS15,

theorem B], the smoothness of eK follows.
Step 5. N is C0-regular. To prove that evol is smooth, we exploit that C∞

c (R× S2)
= lim→C∞

L (R× S2) is a compactly regular inductive limit. Thus Mujica’s theorem [Muj83]
yields an isomorphism

C([0, 1], C∞
c (R× S

2)) = C([0, 1], lim
→

C∞
L (R× S

2))

∼= lim
→

C ([0, 1], C∞
L (R× S

2).
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On each step C∞
L (R× S2) the topology coincides with the compact open C∞-topology

and we can thus apply the exponential law [AS15, theorem A] for C0,∞-mappings. Thus
C([0, 1], C∞

L (R× S2)) ∼= C∞
L (R× S2, C([0, 1],R)) for every L. Passing to the limit, we deduce

that the mapping

Θ : C([0, 1], C∞
c (R× S

2)) → C∞
c (R× S

2, C([0, 1],R)), γ �→ ((u, z) �→ γ(·)(u, z))

is an isomorphism of locally convex spaces. We combine this with the fact that the image of
evol is contained in the component of the unit p ∈ N . Thus it suffices to establish smoothness
of the map

E : C∞
c (R× S

2, C([0, 1],R))→ C∞
c (R× S

2), h �→ evol(Θ−1(h)) − p.

Pick now K ⊆ R× S2 compact and consider the restriction of E to C∞
K (R× S2, C([0, 1],R)).

As Θ−1(C∞
L (R× S2, C([0, 1],R))) = C([0, 1], C∞

L (R× S2)), we have E|C∞
K (R×S2,C([0,1],R))

= eK ◦Θ−1|C∞
K (R×S2,C([0,1],R)), whence the restriction is smooth by step 4.

Let us now show that E is a locally almost local map. To this end, we work locally on
the open sets Θ(OR) which by construction exhaust C∞

c (R× S2, C([0, 1],R)). Hence we fix
R > 1 and may assume that sups sup(u,z)|F(u, z)(s)| < R for every F we consider. From the
definition of E we see that E(F)|K = E(G)|K on some compact subset K if and only if ηΘ−1(F)
and ηΘ−1(G) coincide on K. To obtain such sets, we define for n ∈ Z the open relatively compact
sets UR

n := ] n − R, n + 2 + R[×S2andVn := ]n, n + 2 [× S2. Clearly the resulting families are
locally finite and cover R× S2. Assume now that F and G coincide on the open set UR

n . By
definition this implies that γ :=Θ(F) and γ ′ :=Θ(G) satisfy γ(s)(u, z) = γ ′(s)(u,Z) for all s ∈
[0, 1], (u, z) ∈ UR

n . Moreover, ηγ is the unique solution of the initial value problem

⎧⎨⎩
d
ds

ηγ(s)(u, z) = γ(s)(ηγ(s)(u, z), z) ∀ s ∈ [0, 1], (u, z) ∈ R× S
2,

ηγ(0)(u, z) = u.
(19)

Now if (u, z) ∈ Vn, we deduce from sup(s,u,z)|γ∧(s, u, z)| < R that the flow of (19) starting at
(u, z) stays inside of UR

n . The same observations hold for γ ′. Hence ηγ(s)(u, z) = ηγ′ (s)(u, z)
for all (u, z) ∈ Vn by uniqueness of solutions to the differential equation (19). We conclude that
E restricts on every Θ(OR) to an almost local map, whence is locally almost local.

In conclusion E satisfies the prerequisites of proposition 3.6 and is thus smooth. This
concludes the proof. �

3.4. Lie group structure of the Newman–Unti group

We have seen in the last section that the componentN of the semidirect productN�τSO+(3, 1)
comprising the NU group is a Lie group with respect to the fine very strong topology. Thus we
can ask whether the NU group can be turned into a Lie group, as it is the semidirect product
of two Lie groups. The key is of course the action

τ : N × SO+(3, 1) →N , (F, f ) �→ (t, z) �→ K−1
f (z) · F(Kf (z), f (z))

which needs to be smooth (with respect to the to the manifold structure we just constructed on
N ). However, we obtain first the following negative result,
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Proposition 3.19. The group action τ : N × SO+(3, 1) →N is not smooth in the sense of
convenient analysis. So in particular it is not smooth in the Bastiani sense and thus the NU
group does not become a Lie group (neither in the Bastiani nor in the convenient setting) if we
endow N with the Lie group structure from proposition 3.15.

Proof. We shall construct a smooth curve with values in N × SO+(3, 1) which is mapped by
the action map τ to a non-smooth curve. This not only shows that the action cannot be smooth
in the Bastiani setting but also in the setting of convenient calculus.

Identify elements in SO+(3, 1) with complex 2 × 2 matrices and consider the smooth curve:

Λ : R→ SO+(3, 1), s �→ Λs :=

[
1 + s 1

s 1

]
.

Identifying S
2 with the extended complex plane, via the stereographical projection

map κ : S2 → Ĉ, we define φs := κ−1 ◦ Λ(s) ◦ κ. This yields for ζ = κ(z) the relation

Kφs (z) = 1+‖ζ‖2

‖(1+s)ζ+1‖2+‖sζ+1‖2 . To construct the desired curve with values in the product man-

ifold N × SO+(3, 1) we consider the element n : R× S
2, (t, z) �→ t + 1 of N and define the

smooth curve c(s) := (n,φs). We will now show that the curve τ ◦ c with values in N is not
smooth. A trivial computation yields τ ◦ c(s)(t, z) = t + Kφs (z)−1 and for z = κ−1(1) we obtain

τ ◦ c(s)(t,κ−1(1)) = t +
(2 + s)2 + (1 + s)2

2
.

Observe now that for every compact interval [a, b] ⊆ R containing more than one point it
is impossible to find K ⊆ R× S2 compact such that τ ◦ c(s)|(R×S2)\K is constant in s as no
compact subset of R× S2 contains the set R× {κ−1(1)}. However, a curve with values in
C∞

fS (R× S2) which violates this condition can not be smooth by [KM97, lemma 42.5]. Since
N is an open submanifold of C∞

fS (R× S2) the curve τ ◦ c cannot be smooth. �

The problem identified in the proof of proposition 3.19 is that the action does not respect
the convergence in N . Namely, we picked an element n which is not contained in the same
connected component as the identity element p ∈ N and thus did not coincide with p outside
of any compact subset of R× S2. We will now show that this is the only defect of this action.
In other words, if we restrict from N to the connected component

N vs
0 := {F ∈ N|∃K ⊆ R× S

2 compact, such that (F − p)(u, z) = 0, ∀(u, z) /∈ K},

then we observe the following.

Lemma 3.20. The restriction of τ to the connected component N vs
0 ⊆ N yields a group

action

τ0 : N vs
0 × SO+(3, 1) →N vs

0 .

Proof. We have to show that τ0(F, f ) ∈ N vs
0 if F ∈ N vs

0 . To this end, pick T > 0 such
that outside of the compact set K := [−T, T] × S

2 we have F(t, z) = t = p(t, z) if |t| > T.
Since S2 is compact, there is M := infzK f (z) > 0. Now if |t| > T/M we have F(K f (z)t, z)
= K f (z)t, whence τ0(F, f )(t, z) = K−1

f (z)F(Kf (z)t, f (z)) = t = p(t, z) for all such t and
τ0(F, f ) ∈ N vs

0 . �
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For the restricted action we have ruled out the pathology exploited in Proposition 3.19. We
will show now that the restricted action is smooth, whence it yields a Lie group structure on
the restricted semidirect product.

Theorem 3.21. The connected component of the unit NUvs
0 :=N vs

0 �τ0SO+(3, 1) of the NU
group becomes a Lie group with respect to the submanifold structure N vs

0 ⊆ C∞
fS (R× S2).

Proof. It suffices to prove that the action τ 0 is smooth. Note that the map

Φ : C∞(R× S
2) ⊇ N vs

0 → C∞
c (R× S

2), F �→ F − p

is a chart when restricted to the open set N vs
0 . We write Ω :=Φ(N vs

0 ) for the open image of Φ
in C∞

c (R× S2) and see that it suffices to show that

τ̃ : Ω× SO+(3, 1) → C∞
c (R× S

2), (α, f ) �→
(
(t, z) �→ K−1

f (z)α(Kf (z)t, f (z))
)

is smooth. We will proceed in two steps and verify the prerequisites of proposition
3.6. Before we proceed, it is useful to construct neighborhoods in SO+(3, 1) bounding
the maximal conformal factor: since S2 is compact, for every f ∈ SO+(3, 1) the con-
stant supz∈S2 Kf (z) is finite. As the conformal factor K f (z) is continuous (even smooth)
in ( f , z) ∈ SO+(3, 1) × S

2, the set OR = {g ∈ SO+(3, 1)|supz∈S2 Kg(z) < R} ⊆ SO+(3, 1) is
open. Moreover SO+(3, 1) =

⋃
R�1OR. If L ⊆ R× S2 is a compact set, we can find TL > 0

such that the compact set [−TL, TL] × S2 contains L. Enlarging the set even further, we define
the compact set LR := [−RTL, RTL] × S2 which again contains L for all R � 1.

Step 1. τ̃ restricts to a smooth map on Φ(N vs
0 ) ∩ C∞

L (R× S2) × SO+(3, 1). Clearly it suf-
fices to prove the claim for every open set Ω ∩ C∞

L (R× S2) × OR where R � 1. Consider now
the map associated to the restriction τ̃R of τ̃ given by

τ̃∨R : (Ω ∩ C∞
L (R× S

2)) × ORR× S
2 →R, (α, f , u, z) �→ K−1

f (z) · α(Kf (z)u, f (z)).

By construction, τ̃∨R vanishes outside of (Ω ∩ C∞
L (R× S2)) × OR × LR. Since LR is compact,

we can apply [AS19, lemma C.3] to see that τ̃R will be smooth if τ̃∨R is smooth. However,
Kf (z), K−1

f (z) and the canonical action SO+(3, 1) × S2 → S2 are all smooth. Thus the smooth-
ness of τ̃∨R follows directly from the smoothness of the evaluation ev :C∞

L (R× S2) × R× S2 →
R (cf [AS15, proposition 3.20]).

Step 2. The mapping τ̃ is almost local. Let R ∈ N and define the open set QR := { f ∈
OR|∀ z ∈ S2, 1/R < Kf (z) < R}. Then SO+(3, 1) =

⋃
R∈NQR. We fix R ∈ N and define fam-

ilies of relatively compact open sets as follows: let A be the set of all integers and define
Va := ] a − 2, a + 2 [× S2 for a ∈ A. Then the Va form a locally finite family of relatively com-
pact sets coveringR× S2. To define the sets Ua we need to distinguish several cases: for the first
case, assume that (0, z) ∈ Va. We define Us := ] min(R(a − 2),−2R), max(R(a + 2), 2R) [× S2.
By construction, we have that if (u, z) ∈ Va, for every f ∈ QR we have |K f (z)u| � R|u|, whence
(K f (z)u, f (z)) ∈ Ua for all f ∈ QR. For the other cases, assume that (0, z) /∈ Va. Define

Ua :=

{
] (a − 2)/R, R(a+ 2) [× S

2 a − 2 � 0

] R(a − 2), (a + 2)/R [× S
2 a + 2 � 0
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Thus for a − 2 � 0, (u, z) ∈ Va and f ∈ QR we obtain the inequalities

a − 2
R

<
u
R

� Kf (z)u � Ru < R(a + 2)

and thus (K f (z)u, f (z)) ∈ Ua by construction. Similarly, we obtain the same in the case a + 2 �
0. In conclusion, we have constructed a locally finite family (Ua)a of relatively compact sets
which covers R× S2. If now f ∈ QR and α|Ua ≡ β|Ua then we deduce from the construction
of the locally finite families that for (u, z) ∈ Va we have

τ̃ (α, f )(u, z) = K−1
f (z)α(Kf (z)u, z) = K−1

f (z)β(Kf (z)u, z) = τ̃ (β, f )(u, z).a

This shows that τ̃ is almost local.
Combining steps 1 and 2, the smoothness of τ̃ follows from proposition 3.6. �

While this indeed constitutes a Lie group structure on the unit component of the NU group
(seen as a submanifold of C∞

fS (R× S2) × SO+(3, 1)), we note that this subgroup does not
accommodate the image of the canonical inclusion of the BMS group. Recall that the inclusion
was given by

I : BMS → NU, (F,φ) �→ (p+ F ◦ pr2,φ).

Then the formula for the first component shows that the only element which gets mapped by I
into the subgroup N vs

0 � SO+(3, 1) is the identity supertranslation F ≡ 0.
Note that since N vs

0 is the unit component of the Lie group N we have L(N vs
0 ) = L(N ) =

C∞
c (R× S2) with the bracket computed in proposition 3.16. Now NUvs

0 is a semidirect product
of N vs

0 and SO+(3, 1), whence its Lie algebra is given as the semidirect product

L(NUvs
0 ) = C∞

c (R× S
2)�dτL(SO+(3, 1)),

where dτ is the derived action of τ . Moreover, as N is C0-regular by proposition 3.18,
SO+(3, 1) is C0-regular as a finite-dimensional Lie group and C0-regularity is an extension
property we obtain:

Corollary 3.22. The Lie group NUvs
0 is C0-regular.

As a consequence of C0-regularity we obtain the following properties of NUvs
0 :

Lemma 3.23. The strong Trotter and the strong commutator property hold for the Lie
groups N and NU vs

0 .

Proof. For any C0-regular Lie group the strong Trotter property holds due to [Han20,
theorem 1]. Further, it is known that the strong Trotter property implies the (strong) commutator
property [Glö15a, theorem H]. �

On the other hand we have the following negative results:
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Proposition 3.24. The Lie groups N and NUvs
0 are not analytic Lie groups.

Proof. It is well known that the group Diff+(R) is not convenient real analytic by [KM97,
remark 43.3]. As N is essentially a parametrized version of Diff+(R) these results carry over
to N . So we only need to notice that if a Lie group is not convenient real analytic, it cannot be
real analytic in the Bastiani sense.

For the group NUvs
0 the corresponding results follow now at once from the semidirect prod-

uct structure. Note that as an alternative, we could also have deduced the lack of an analytic
structure from the failure of τ to be analytic (this works exactly as the corresponding proof for
the BMS group, see [PS22, proposition 3.9]). �

Note that as a consequence of proposition 3.24 for both Lie groups the
Baker–Campbell–Hausdorff series does not provide a local model for the multiplica-
tion on the Lie algebra. It is yet unclear as to whether the Lie group N and NUvs

0 are locally
exponential, i.e. that their Lie group exponential induces a local diffeomorphism between a
0-neighborhood in the Lie algebra and a unit neighborhood in the Lie group. Let us note that
if N is not locally exponential this property carries over to NUvs

0 due to the semidirect product
structure (however, if N was locally exponential it is not easy to deduce local exponentiality
of NUvs

0 ). Since Diff+(R) is not locally exponential (see e.g. [KM97]) we strongly suspect that
also N is not locally exponential. A proof of this statement would require a detailed analysis
and adaption of the arguments for the non local exponentiality of Diff(R) in [Gra88]. This is
beyond the scope of the current paper, but we pose the following

Conjecture 3.25. The Lie groups N and NUvs
0 are not locally exponential.

4. Conclusion

We have studied the NU group from the viewpoint of infinite-dimensional Lie group theory.
In particular, we have discussed several possible topologies, which turn the supertranslation
part N of the NU group either into a topological group (proposition 3.11) or into a Lie group
(proposition 3.15). However, we have also shown that only the connected component NUvs

0 of
the identity of the complete NU group becomes a Lie group, as the group action is not smooth
on the full NU group (proposition 3.19 and theorem 3.21). Furthermore, we have shown that
both the NU supertranslation groupN as well as the connected component of the identity NUvs

0
in the manifold topology of the NU group, are regular in the sense of Milnor (proposition 3.18
and corollary 3.22). Moreover, we have shown that both of these Lie groups are not analytic
(proposition 3.24). Moreover, we have shown that while the BMS group can be embedded into
the NU group as a topological group (lemma 3.12), this inclusion is not possible on the level of
Lie groups, contrary to their Lie algebras, which split as a direct sum (cf equation (1)). Finally,
we remark our previous article [PS22] in which we have studied the BMS group from a Lie
theoretic perspective.
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Appendix A. Auxiliary results for section 3.3

In this appendix we compile some auxiliary results used in the construction of the Lie group
structure for the NU group. These results are easy extensions of well known results. However,
we were not able to find them in citable form in the literature, whence they are compiled here
for the readers convenience. We start with a technical lemma:

Lemma A.1. If F ∈ C∞
fS (R× K) for K a compact manifold such that ∂

∂u F(u, z) >
0, ∀(u, z) ∈ R× S2, then there is an open F-neighborhood O ⊆ C∞

fS (R× K) of mappings with
this property.

Proof. Pick a finite atlas (ψ j, U j) j=1,...k of K together with compact sets A j ⊆ U j such that
the A j cover K. Choose a locally finite family (Ki)i∈N of compact subsets which cover R. For
every i ∈ N, j = 1, . . . , k there is εi, j > 0 such that for G ∈ C∞(R× K) the condition on the
directional derivative d(F − G)

sup
(u,z)∈Ki×A j

∣∣d ((F − G) ◦ (idR × ψ−1
j )

)
(u, z; 1, 0)

∣∣ < εi, j (20)

implies that G(·, z) satisfies ∂
∂u G(u, z) > 0 for all (u, z) ∈ Ki × Aj. By construction, the family

of compact sets (Ki × A j)i, j is locally finite and we see that there is a basic open neighbor-
hood OF of F in C∞

fS (R× K) consisting only of mappings which satisfy (20) (compare [HS17,
definition 1.6]). �

The next result is a parametrized version of [Hir76, lemma 2.1.3] (the proof is completely
analogous apart from the presence of another parameter).

Lemma A.2. Let K be a compact manifold and F ∈ C∞(R× K) be a mapping such that
for every k ∈ K the partial map F(·, k) is an embedding. Furthermore, we fix W ⊆ R open and
relatively compact. Then there exists an open neighborhood NF(W) of F in the fine very strong
topology such that for every G ∈ NF(W) the partial maps G(·, k) : R→ R, k ∈ K satisfy

(a) G(·, k) is an immersion,
(b) G(·, k)|W is an embedding.

Proof. Lemma A.1 provides an open neighborhood O of F in the fine very strong topology
consisting only of mappings G such that the partial maps G(·, k) are immersions (note that in
the proof we assumed the stronger condition that the derivative of the partial maps F(·, k) is
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everywhere positive. It is easy to see that the same argument holds for mappings whose par-
tial mappings have everywhere negative derivative). We can shrink O such that every G ∈ O
restricts to an embedding G(·, k) on W for all k ∈ K. Assume to the contrary that it were not pos-
sible to construct such a neighborhood. Then there must be a sequence GN → FN of mappings
GN ∈ C∞(R× K), where convergence of the sequence is in the sense of uniform convergence
of the function and its first derivative on the compact set W × K (actually convergence here is
even stronger, but we only need the convergence on the compact set). In other words

lim
n→∞

sup
i=0,1

sup
(x,k)∈W×K

∣∣∣∣ ∂ i

∂x
Gn(x, k) − ∂ i

∂xi
F(x, k)

∣∣∣∣ = 0. (21)

By assumption there exist distinct an,k, bn,k ∈ W such that Gn(an,k, k) = Gn(bn,k, k) for every
n ∈ N, k ∈ K. Now W is compact, whence an.k → ak and bn,k → bk for some ak, bk ∈ W. Eval-
uating (21) for i = 0 this entails F(ak, k) = F(bk, k) for every k ∈ K. Hence ak = bk. Choosing
subsequences if necessary, we may assume that the sequence of unit vectors

vn,k :=
an,k − bn,k

|an,k − bn,k|

converges (either to 1 or −1). Now we take a Taylor expansion in the x-variable while we treat
the k-variable as a parameter. Note that the resulting function in x, as well as its derivative in x
are both uniformly continuous in the parameter k (using compactness of K). Now by uniformity
of the Taylor expansion (with remainder in integral form) we see that

lim
n→∞

sup
(x,k)∈W×K

∣∣Gn(an,k, k) − Gn(bn,k, k) − ∂
∂x F(bn,k, k)(an − bn)

∣∣
|an − bn|

= 0.

Thus ∂
∂x F(bn,k, k)vn,k → 0 for every k ∈ K. Note that the absolute values of this sequence

converge to | ∂
∂x F(bk, k)| and this contradicts that F(·, k) is an immersion for every k ∈ K. �

Remark A.3. From the proof of lemma A.2 it is clear that the condition that G(·, k) restricts
to an embedding on W for every k ∈ K requires us only to control the function and its derivative
on the compact set W × K. Hence if we have a locally finite family (Ki)i∈N of compact sets
covering R, we can intersect countably many of the neighborhoods constructed in lemma A.2
and still retain an open set in the fine very strong topology. This is due to the fact that the fine
very strong topology admits to control a function and its derivatives on any locally finite family
of compacta simultaneously, cf [HS17] and see also [Hir76, proof of theorem 2.1.4].

This enables us to prove proposition 3.14, i.e. N is an open subset of C∞
fS (R× S2). While

the proof is similar to the classical proof, it carries an additional parameter.

Proof of Proposition 3.14. Adapting [Hir76, theorem 1.7] let us recall that a mapping
f ∈ C∞(R) is an element of Diff+(R) if and only if f satisfies the following conditions

(a) d
du f (u) > 0, ∀ u ∈ R (i.e. f is an orientation preserving local diffeomorphism)

(b) f is proper,
(c) f is injective.
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To see that this is true, we need only notice that these conditions entail that f is a diffeomor-
phism: local diffeomorphisms are open maps, i.e. the image of f is open. Proper maps have
closed image, whence by connectedness of R, f must be surjective. Hence f is a bijective local
diffeomorphism and thus a diffeomorphism.

Let us now show that for each F ∈ N there is an open neighborhood which contains only
mappings G : R× S2 → R whose partial mappings G(·, z) satisfy 1–3. Indeed, we already
know from lemma A.1 that F admits an open neighborhood O such that every partial map
G(·, z) for G ∈ O satisfies 1.

Step 1. A neighborhood of proper maps. The set of proper mapsP ⊆ C∞
fS (R× S2) is open by

[Hir76, theorem 1.5]. For every z ∈ S2 the inclusion iz : R→ R× S2, u �→ (u, z) is a smooth
and proper map. So for every G ∈ P the partial map G(·, z) = G ◦ iz is proper. Since N ⊆ P
by lemma 3.10, we intersect O and P to obtain an open neighborhood of mappings satisfying
1–2.

Step 2. An F-neighborhood O ⊆ C∞(R× S2) such that G(·, z) is injective for G ∈ O. The
argument is a variant of [Hir76, theorem 2.1.4]: fix the locally finite family Ki = [i − 1, i +
1], i ∈ Z of compact sets covering R. Then the open sets Ui = ] i − 2, i + 2 [, i ∈ Z contain
the compact sets Ki ⊆ Ui and form a locally finite family. As F(·, z) is a proper embedding
(so in particular a closed injective map), we have for each z ∈ S2 two closed disjoint sets
F(Ki, z) and F(R\Ui, z). By construction, the first set is compact and connected, while the
second set is closed and consists of two connected components. The minimal distance 3ri,z (for
some ri,z > 0 between the closed sets is realized by one of the pairs (F(i − 2, z), F(i − 1, z)) or
(F(i + 1, z), F(i + 2, z)).

We define now two disjoint open sets

Ai,z := {x ∈ R| sup
y∈F(Ki ,z)

|x − y| < ri,z} and Bi,z

:= {x ∈ R| sup
y∈F(Ki ,z)

|x − y| > 2ri,z}.

By construction, F(Ki, z) ⊆ Ai,z and F(R\Ui, z) ⊆ Bi,z. Using continuity of F and [Eng89,
3.2.10 the Wallace theorem], there is a compact neighborhood Li,z of z such that F(Ki × Li,z) ⊆
Ai,z. We will now shrink Li,z such that also F((R\Ui) × Li,z) ⊆ Bi,z holds. By construction,
∂
∂u F(u, s) > 0 for all s ∈ S2, whence

F(i − 2, s), F(i + 2, s) ∈ Bi,z implies F(R\Ui, s) ⊆ Bi,z. (22)

Applying again continuity of F and Wallace theorem, we can shrink Li,z such that every s ∈ Li,z

satisfies (22). Define now the open F-neighborhood

NF,i,z := {G ∈ C∞(R× S
2)|∀ s ∈ Li,z, G(Ki, s) ⊆ Ai,z, G(i − 1, s), G(i + 2, s) ∈ Bi,z} ∩ O,

where O is the open F-neighborhood from lemma A.1. By construction, (22) implies that every
G ∈ NF,i,z satisfies G(R\Ui, s) ⊆ Bi,z.

Now we exploit compactness of S2 to find finitely many zi,1, . . . , zi, ji such that S2 =⋃ ji
k=1Li,zk . Intersecting the open sets NF,i,zk , we find an open F-neighborhood of functions

which satisfy the condition (22) for all s ∈ S2, but with different sets Ai,z, Bi,z. Note in addition
that this neighborhood only controls functions on the compact set Ki ∪ {i − 2, i + 2} × S2.

Repeat the construction for all i to obtain an open F-neighborhood of functions which sat-
isfy G(Ki, s) ⊆ Ai,z and G(R\Ui, s) ⊆ Bi,z for all i ∈ Z, some z ∈ S

2 and disjoint open subsets
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Ai,z, Bi,z. Applying lemma A.2 and remark A.3 we can shrink the open neighborhood to obtain
an open neighborhood Ω of F such that every G(·, s)|Ui , i ∈ Z, s ∈ S2 is an embedding. Let
us show now that the partial maps for every element in Ω are injective. If x ∈ Ki, y ∈ R are
two distinct points and s ∈ S2, we distinguish two cases: if y ∈ Ui, then G(x, s) �= G(y, s) as
G(·, s) is an embedding on Ui. If y ∈ R\Ui, we then have G(x, s) ∈ Ai,z and G(y, s) ∈ Bi,z for
some z. Since these sets are disjoint, we see that also G(x, s) �= G(y, s). This concludes the
proof. �

It is possible to extend the proof of proposition 3.14 to groups of smooth maps defined on
Rn × K (replacingR with a multidimensional space and S2 with a compact manifold). While it
is apparent from the proof that we have only exploited the compactness of S2, the argument for
Rn is slightly more involved. While groups with a compact manifold K replacing S2 have been
considered in the literature (corresponding to different spacetime dimensions), the extension
to Rn does not seem to be physically relevant. We thus omit the discussion of any details to
this extension.

A.1. Auxiliary results for the inversion in N

In this subsection, we provide the necessary details to establish smoothness of the inversion
mapping for the N -component of the NU group. By construction, this is just a parameterized
version of the inversion map in the Lie group Diff+(R). However, since manifolds of mappings
on non-compact manifolds are somewhat delicate, there seems to be no quick way of leveraging
the fact that we already know that inversion in Diff+(R) is smooth. Instead, we have to mimic
the proof for the smoothness of inversion in the diffeomorphism group as outlined in [Glö05]
but with an additional parameter inserted. We start with some preparation:

A.4. Let K be a compact manifold and p : R× K → R, (x, k) �→ x. Consider the subset

G =
{

F ∈ C∞(R× K)|F(·,k)∈Diff+(R)∀k∈K and
∃L⊆R compact with (F−p)|(R\L)×K=0

}
.

Then G is an open subset of C∞
fS (R× K). To see this, note that lemma A.1 entails that the

set {F ∈ C∞(R× K)|F(·, k) ∈ Diff+(R), ∀k ∈ K} is open in the fine very strong topology. In
addition, the set

Ωp := {F ∈ C∞(R× K)|∃L ⊆ R compact with (F − p)|(R\L)×K = 0}

is open in this topology. Thus G is open as the intersection of two open sets.

Let us fix some subspaces of C∞(R× K): first of all we consider the open subset

C∞
c (R× K) := {F ∈ C∞(R× K)|∃L ⊆ Rwith F|(R\L)×K ≡ 0}

and note that the fine very strong topology turns it into a locally convex vector space.
Furthermore, we define for every L ⊆ R compact the subset

C∞
L (R× K) := {F ∈ C∞

c (R× K)|F|(R\L)×K ≡ 0}.
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Then C∞
L (R× K) is a closed locally convex subspace of C∞

c (R× K) and one can prove
that C∞

c (R× K) is the locally convex inductive limit of the spaces C∞
L (R× K) (partially

ordered by obvious inclusion as L runs through all compact subset of R). Moreover, the
subspace topology on C∞

L (R× K) is a Fréchet topology, i.e. a the space is a complete
metrizable space. See [Glö02] for more information.

A.5. Arguing as in lemma A.1 we define another open subset of C∞
fS (R× K):

U0 :=

{
F ∈ C∞

c (R× K)| sup
(x,k)∈R×K

∣∣∣∣ ∂∂x
F(x, k)

∣∣∣∣ < 1

}
.

Observe that the map

Φ : Ωp → C∞
c (R× K), F �→ F − p

is a homeomorphism, mapping G onto an open subset of the locally convex space. Indeed the
restriction ofΦ to G is a chart for the manifold G. We define the open subset G0 = Φ−1(U0) ∩ G
of G and observe that it is a neighborhood of p.

We now build a local model for the pointwise inversion map F−1(x, k) := (F(·, k)−1)(x), by
defining

U0 ∩ Φ(G) → C∞
c (R× K), γ �→ γ∗ :=Φ((Φ−1(γ))−1)

Obviously inversion in the group G will be smooth in a neighborhood of p if and only if the
local inversion map is smooth on U0 ∩ Φ(G) = Φ(G0).

A.6. A quick computation yields the validity of the following formulae for γ, η ∈ Φ(G0):

Φ−1(Φ(γ) ◦ (Φ(η) × idK)) = η + γ ◦ ((p+ η) × idK) (23)

γ∗ + γ ◦ ((p+ γ∗) × idK) = 0 and γ + γ∗ ◦ ((p+ γ)) × idK ) = 0, (24)

where (24) is a direct consequence of (23).

Lemma A.7. For every L ⊆ R compact, the mapping

ιL : Φ(G0) ∩ C∞
L (R× K) → C∞

L (R× K), γ �→ γ∗

makes sense and is smooth.

Proof. Let us show that ιL(γ)|(R\L)×K ≡ 0. If we fix k ∈ K then we need to prove that the
map γ∗(·, k) vanishes outside of L if γ vanishes outside of L. Due to our definition of U0 this
pointwise property is a consequence of [Glö05, step 3 in the proof of lemma 5.1]. Thus ιL

makes sense and takes its image in C∞
L (R× K). To establish smoothness of ιL, we consider

the associated map

ι∨L : Φ(G0) ∩ C∞
L (R× K) × (R× K) → R, (γ, x, k) �→ γ∗(x, k).

28



Class. Quantum Grav. 39 (2022) 155005 D Prinz and A Schmeding

By construction every γ ∈ C∞
L (R× K) vanishes outside of the compact set L × K ⊆ R× K.

Thus [AS19, lemma C.3] implies that ιL will be smooth if ι∨L is smooth. However, for
ι∨L (γ) = γ∗ we obtain from (24) the implicit equation

γ∗(x, k) + γ(x + γ∗(x, k), k) = 0, (25)

which depends on the parameter γ ∈ Φ(G0) ⊆ C∞
L (R× K). Now the topology of C∞

L (R×
K) coincides with the subspace topology induced by the compact open C∞-topology on
C∞(R× K) (cf [HS17, remark 4.5]). In particular, [AS15] entails that the evaluation map
ev :C∞

L (R× K) × R× K → R, (γ, x, k) �→ γ(x, k) is smooth. Hence the left-hand side is given
by the smooth function

H : Φ(G0) × R× K × R→ R, H(η, x, k, Z) = Z + ev(γ, (x + Z, k)).

Taking the derivative with respect to the Z variable we obtain the continuous linear map

d4H(γ, x, k, Z; •) = • ·
(

1 +
∂

∂x
γ(x + Z, k)

)
.

Since γ ∈ Φ(G0) ⊆ U0, we see that ‖idR − d4H(η, x, k, Z; •)‖op = | ∂
∂x γ(x + Z, k)| < 1. In

other words, d4H(γ, x, k, Z) is invertible. We can thus again apply the implicit function theorem
with parameters in locally convex spaces [Glö06, theorem 2.3] to deduce that ι∨L is smooth. �

To extend the smoothness assertion now from the closed subspace C∞
L (R× K) to all of

C∞
c (R× K) we employ almost local mappings, 3.5 (here without parameter).

Lemma A.8. Let R > 0 and OR be as in step 2 of the proof of proposition 3.15. The
restriction of the inversion map

Φ(G0) ∩ OR → C∞
c (R× K), γ �→ γ∗

is an almost local map.

Proof. Denote for x ∈ R by Br(x) the r-ball around x in R

Step 1. For all r > 0, x ∈ R and γ ∈ OR we have Br(x) ⊆ (p+ γ)(Br+R(x) × K). Let y ∈
Br(x) and recall that p+ γ = Φ−1(γ) ∈ G0, whence for every fixed k ∈ K the map Φ−1(γ)(·, k)
is a diffeomorphism of R there is a unique element yk such that

y = p(yk, k) + γ(yk, k) = yk + γ(yk, k), and |yk − x|

= |y − γ(yk, k) − x| � r + R,

where we exploited that γ ∈ OR. In particular, yk ∈ Br+R(x) for all k ∈ K.
Step 2. If R, r > 0 and x ∈ R, then for all γ, η ∈ OR such that γ|Br+R(x)×K = η|Br+R(x)×K

we have γ∗|Br(x)×K = η∗|Br+R(x)×K . Let y ∈ Br(x). By Step 1 we find for every k ∈ K a unique
element yk ∈ Br+R(x) such that yk + γ(yk, k) = y. Then from (24) we deduce that

γ∗(y, k) = γ∗(yk + γ(yk, k), k) = −γ(yk, k)

= −η(yk, k) = η∗(yk + η(yk, k), k) = η∗(y, k)
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Step 3. Inversion is almost local. Define for z ∈ Z the open sets Vz :=B2(z) × K,
Wz :=B3(z) × K, Uz :=B2+R(z) × K and Xz :=B3+R(z) × K. We deduce from step 2 that
the restriction of the inversion map to OR ∩ Φ(G0) together with the families {Uz}z∈Z,
{Xz}z∈Z, {Vz}z∈Z and {Wz}z∈Z satisfy the requirements in the definition of an almost local
mapping. �
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