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The aim of this work is to investigate the influence of Arrhenius activation energy

and variable thermal conductivity with EMHD fluid flow over a nonlinearly radiating

stretching sheet in a porousmedium. Themain objective of this research is to study

the effects of variable electromagnetohydrodynamic (EMHD) on fluid flowmotion.

The significance of the combined effects of electric and magnetic fields is useful

where one can create a strong Lorentz force for industry applications. The

fundamental laws, that is, conservation of mass, momentum, and energy

equations, are given in the form of partial differential equations (PDEs). The

current fluid flow problem is not similar, which means that the presented

solution is local. The introduction of nonsimilarity variables transforms PDEs into

a set of coupled ODEs. The resultant ODEs are not only solved computationally by

MATLAB built-in solver bvp4c but the solution is also obtainedwith other numerical

schemes that include the shootingmethod and the finite elementmethod (FEM). In

applying FEM,wechoose theGalerkinmethod inwhich theweight function is equal

to the shape function. The aforementioned numerical methods are implemented

and programmed inMATLAB. Graphs illustrate the effects of various parameters on

the velocity, temperature, concentration, and microorganism profiles. Physical

parameters measure the roughness of the sheet (skin friction coefficient), heat

transfer rate at the sheet (local Nusselt number), the mass transfer rate of the

concentration gradient (local Sherwood number), and transfer rate of

microorganisms at the sheet (density of motile microorganism). The skin friction

coefficient increases for higher values of (Kp) and magnetic parameters (M). The

local Sherwood number decreases for different values of activation energy. An

excellent agreement of FEM results with other numerical methods, shooting

method, and bvp4c has been achieved. Moreover, for particular cases, the

current results have a good agreement with the published work.
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1 Introduction

Scientists and mathematicians encounter fluids everywhere.

Studying fluid flow over a stretching sheet has a wide range of

applications in technological devices, medical instruments, and

in the manufacturing industry. The production of sheeting

materials takes place in a number of industrial manufacturing

procedures and involves metal and polymer sheets, for example,

cooling an infinite metal plate in a cooling bath Rana et al. [1],

Buongiorno [2], material handling conveyors, aerodynamic

extrusion of plastic sheets Vajravelu [14], Char [15], glass

blowing, paper production, drawing plastic films, and metal

spinning Buongiorno [2], Vishalakshi et al. [16].

A bio-nanofluid is a fluid that contains a base fluid,

nanoparticles, and living microorganisms. Algae and oxytaxis

bacteria are a couple of examples of microorganisms Mahmud

et al. [4]. Bioconvection is caused by microbes living in a fluid.

This phenomenon stabilizes the nanoparticles and enhances the

thermal and mass transport susceptibility of the fluid Kuznetsov

[5]. Biomedical engineering, environmental systems, and

biological technology depend on bioconvection and the

suspension of nanoparticles Chan et al. [19]. Biosensors and

biofuel cells are two other areas where bioconvection is also

extensively used. The topic of bioconvection flow has been

covered by Balla et al [6]. Shafiq et al. [7] considered second-

grade bioconvective nanofluid flow. Ferdows et al. [8]

investigated bioconvection flow over an exponentially

stretchable surface. Recently, Sangeetha and Poulomi [9]

discussed MHD bioconvection flow with gyrotactic

microorganisms over a non-Darcian porous medium.

The capacity of a fluid to carry heat is measured by its thermal

conductivity. The thermal conductivity of various materials is

constant at standard conditions. However, if the temperature

gradient is considerable, it may be a function of temperature.

According to James et al. [10], the variation of physical

parameters, such as thermal conductivity, has been regarded as a

function of temperature during the heat and mass transfer flow over

a hot sheet or a plate causing a major effect in the cooling process. In

the context of the variable thickened surface, Hayat et al. [11] studied

the variable thermal conductivity.

Heat flow is severely constrained by the base fluid’s poor

thermal conductivity. Choi and Eastman [17] showed that the

thermal conductivity of the fluid can be increased by suspending

metallic nanoparticles with the base fluid. The colloids produced

with base fluid and nanoparticle size ranging from 1 to 100 nm

are known as nanofluids Choi and Eastman [17]. Since

nanofluids have greater thermal conductivity and heat transfer

rate, they are frequently used in electronic circuits Buongiorno

[2], as a coolant in radiators Devendiran and Amirtham [18].

Rasouli et al. [3] mentioned that improper handling, blockage,

and insufficient mixing of the material, in addition to the

instability of nanoparticles, led to a decrease in the rate of

heat and mass transfer.

An electric field is created by static charges, while a magnetic

field is formed by the varying motion of electric charges. The

study of the magnetic characteristics and behavior of electrically

conducting fluids is known as magnetohydrodynamics (MHD).

MHD has many applications in medical sciences, the

transportation industry, and the engineering industry. For

instance, a high-intensity electric field may be used to

diminish or slow the growth of a tumor in the brain. MHD

absorbs energy and depicts a controllable behavior that makes it

useful as a cooling material in electrochemistry, chemical

engineering Mjankwi et al. [13], polymer processing Hamad

[20], Jusoh and Pop [22], and MHD generator Ganesh et al.

[21]. An external magnetic field impacts the motion of the

electrically conducting fluids. This interaction produces a

Lorentz force. For flow control, the strong Lorentz force is

required for industrial applications, which are obtained by the

electric field Wakif et al. [23], and Sajid and Khan [12] studied

the thermal radiation on boundary layer flow due to an

exponentially stretching sheet. Similarly, electromagnetic

effects deal with the electrically conducting fluids in a

magnetic field. EMHD can be utilized to enhance the flow

rates in microchannel Das et al. [24], Paul and Chakraborty

[25], Si and Jian [26], and Sinha and Shit [27].

Activation energy is the minimum energy required for

reactants to undergo a chemical transformation or physical

transport. Arrhenius energy with mass transport phenomenon

and chemical reaction has been widely analyzed owing to its

numerous applications in the compound invention, geothermal

artificial lake, and retrieval of thermal lubricant and simmer own

of atomic reactors. Providing the activation energy through the

Arrhenius equation can be difficult at times as the temperature

highly fluctuates with the rate constant. It is crucial to be effective

with the reaction and energy discarded as the conversions can

have diverse effects from reactants. The joint enactment of the

Arrhenius activation energy with the chemical reaction for

radiative flow and heat transport to the vertical pipe was

reported by Bestman [28] at first. Mustafa et al. [29] discussed

the properties of magneto-nanofluid with activation energy and

buoyancy influence. In recent times, many efforts have been

made in this regard as this is an emerging phenomenon that has

wide applications Khan et al. [30], Makinde and Animasaun [31],

Andersson et al. [32], Ganesh et al. [33], Kalaivanan et al. [34],

Zhang et al. [35] and Jama et al. [36].

The primary research questions and novelties addressed in

this work are as follows:
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1. how do Peclet number and Schmidt number affect the

concentration profiles, as well as the density of motile

microorganisms?

2. How do increasing Lorentz force and porosity of the medium

affect the velocity?

3. To what extent does activation energy control the mass

transfer rate?

4. How do convective boundary condition parameters affect the

temperature and concentration profiles? Moreover, how do

the local Nusselt number and local Sherwood number change

at the surface due to the convective boundary condition

parameter?

5. How accurate is the Galerkin FEM when compared to the

shooting method and bvp4c?

In this paper, the main objective of the analysis is to study the

impact of Arrhenius activation energy on the MHD flow of bio-

nanofluid with heat and mass transfer through a porous medium

over a nonlinear stretching sheet with thermal radiation, viscous

dissipation, and chemical reaction. Moreover, variable thermal

conductivity is also considered, which is a function of

temperature. The paper is organized as follows: Section 1 is

an introduction to a mathematical model. Problem formulation

is given in Section 2. Physical parameters are discussed in Section

3. A numerical procedure is discussed in Section 4. Section 5 is

about results and discussion. Section 6 draws the conclusion of

the research work.

2 Problem formulation

Consider an EMHD two-dimensional steady laminar flow of

bio-nanofluid over a nonlinearly stretching sheet with thermal

radiation, variable thermal conductivity, Arrhenius activation

energy, and convective heat and mass boundary conditions. The

surface is placed at y = 0 and a variable magnetic field B(x) �
Box

m−1
2 and a variable electric field E(x) � Eox

m−1
2 have been

applied in a perpendicular direction of the fluid flow. The

sheet at y = 0 has been stretched with the velocity uw = axm,

where a, m > 0 are positive constants. The magnetic Reynolds

number does not induce a magnetic field due to its low value. The

two-dimensional magnetohydrodynamic (MHD) boundary layer

flow equations are given as follows:

zu

zx
+ zv

zy
� 0, (1)

u
zu

zx
+ v

zu

zy
� ]

z2u

zy2 −
σ

ρf
B2 x( ) − E x( )B x( )( )

+ 1
ρf

1 − C∞( )ρf∞βTg* T − T∞( )(
− ρp − ρp∞( )βcg* C − C∞( )) − ]

Kp*
u, (2)

u
zT

zx
+ v

zT

zy
� 1

ρcp( )
f

z

zy

kzT

zy
( ) − 1

ρcp( )
f

zqr
zy

+ Q x( )
ρcp( )

f

T − T∞( ) + σ

ρcp( )
f

uB x( ) − E x( )( )2

+ μ

ρcp( )
f

zu

zy
( )2

+ τ DB
zC

zy

zT

zy
+ DT

T∞

zT

zy
( )2( ),

(3)

u
zC

zx
+ v

zC

zy
� DB

z2C

zy2
+ DT

T∞

z2T

zy2

− K2
r C − C∞( ) T

To
( )n

exp
−Ea
KBT

( ), (4)

u
zN

zx
+ v

zN

zy
+ bwc

Cw − C∞( )N
z2C

zy2
+ bwc

Cw − C∞( )
zN

zy

zC

zy

� Dn
z2N

zy2
. (5)

The subjected boundary conditions are expressed as follows:

u � uw � axm, v � 0, −kozT
zy

� h1 Tw − T( ),

−DB
zC

zy
� h2 Cw − C( ), N � Nw, at

y � 0,

u → 0, T → T∞, C → C∞,

N → N∞, as y → ∞,

(6)

where ] � μ
ρ is the dynamic viscosity of the fluid, σ is the electrical

conductivity, ρf is the density of the fluid, B is a uniformmagnetic

field applied transverse to the flow direction, and u and v are the

velocity components in x − and y – directions, respectively. g*, βt,

and βc are, respectively, gravitational acceleration, volumetric

thermal, and solutal expansion coefficients. Here, T is the

temperature; C is the nanoparticles concentration; N is the

concentration of microorganisms; Kp* is the permeability of

the porous medium; cp is the specific heat constant; and DB,

DT, and Dn are Brownian diffusion, thermophoretic diffusion,

and diffusivity of microorganism, respectively. qr is the radiative

heat flux and Q(x) is the volumetric rate of heat generation/

absorption. Kr is the chemical reaction rate, n is fitted rate

constant, Ea is activation energy, and h1 and h2 are heat and

mass transfer coefficients, respectively. wc is the maximum cell

swimming speed and b is the chemotaxis constant.The

nondimensional similarity variables are defined as follows:

η �
��������
a m + 1( )

2]

√
x

m−1
2 y, u � axmf′ η( ),

v � −
���������
]a m + 1( )

2

√
x

m−1
2 f η( ) + η

m − 1
m + 1

f′ η( )( ),
θ η( ) � T − T∞

Tw − T∞
, ϕ η( ) � C − C∞

Cw − C∞
,

χ η( ) � N −N∞
Nw −N∞

.

(7)
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f‴ + ff″ − 2m
m + 1

f′2 −M f′ − E1( ) + λ θ −Nrϕ( ) −Kpf′ � 0,

(8)

1 + ϵθ + 4
3
Rd( )θ″ + ϵθ′2 + Pro fθ′ +MEc f′ − E1( )2 + Ecf′′2(

+Nbθ′ϕ′ +Ntθ′2 + sθ) � 0, (9)

ϕ″ + Nt

Nb
θ″ + Sc fϕ′ − 2

m + 1
σ1ϕ 1 + δθ( )n exp −E

1 + δθ
( )( ) � 0,

(10)
χ″ + Sbfχ′ − Pe χϕ″ + χ′ϕ′( ) � 0. (11)

Here, f is the dimensionless stream function. Following Prasad et al.

[37], the thermal conductivity k is expressed as follows:

k T( ) � ko 1 + ϵθ( ), (12)

The transformed boundary conditions corresponding

to the above nondimensional variable are presented as follows:

f 0( ) � 0, f′ 0( ) � 1, θ′ 0( ) � −β1 1 − θ 0( )( ),
ϕ′ 0( ) � −β2 1 − ϕ 0( )( ), χ 0( ) � 1, f′ ∞( ) � 0,
θ ∞( ) � 0, ϕ ∞( ) � 0, χ ∞( ) � 0, (13)

where M � 2σB2
0

(m+1)ρa is a magnetic parameter, E1 � Eo
uwBo

is an

electric parameter, Kp � 2]L
(m+1)aKp* is the porosity parameter, the

Grashof number is Gr � 2g*βt(1−C∞)ρf∞(Tw−T∞)x3
ρf]2(m+1) , Nr �

(ρp−ρf∞)βc(Cw−C∞)
(1−C∞)ρfβt(Tw−T∞) represents the ratio of buoyancy parameter,

mixed convection parameter is λ � Gr
Re2x

, Pro � μocp
ko

is the

ambient Prandtl number, Rd � 4σ*T3
∞

kok*
denotes the radiation

parameter, s � 2Qox
a(ρCp)fuw(m+1) is the local heat source/sink

parameter, Ec � u2w
cp(Tw−T∞) is Eckert number, Nb � τDB(Cw−C∞)

C∞]

is the Brownian motion parameter, Nt � τDT(Tw−T∞)
]T∞ is the

thermophoresis parameter, Sc � ]
D is Schmidt number, E �

−Ea
KBT∞ is the dimensionless activation parameter, σ1 � Kr2

axm−1 is

the chemical reaction parameter, δ � Tw−T∞
T∞ is temperature

difference, β1 � h1
ko

�����
2]

a(m+1)
√

x
−m+1
2 and β2 � h2

DB

�����
2]

a(m+1)
√

x
−m+1
2 are

thermal and concentration Biot numbers, respectively, Sb � ]
Dn

is bioconvection Schmidt number, and Pe � bwc
Dn

is Peclet number.

3 Physical quantities

3.1 Skin friction coefficient

A key dimensionless parameter that determines the frictional

drag on the surface is the skin friction coefficient Cf. It is

defined as:

Cf � τw*
ρu2

w

, (14)

Here, the wall shear stress is written as τw* � μ(zuzy)y�0.
After putting τw* � μ(zuzy)y�0 in Eq. 14 and using algebra

we get,

Cf

���
Rex

√ �
�����
m + 1
2

√
f″ 0( ), (15)

where Rex � uwx
] is the local Reynolds number.

3.2 Local Nusselt number

To quantify the heat transfer rate at the wall, we measure the

local Nusselt number Nux at the surface.

Nux � − xqw
ko Tw − T∞( ), (16)

Here, qw � ko(zTzy)y�0 is the Fourier’s law at the wall. Thus, we get:

Re
−1
2
x Nux � −

�����
m + 1
2

√
1 + 4Rd

3
( )θ′ 0( ). (17)

3.3 Local Sherwood number

To measure the mass transfer rate at the wall, the local

Sherwood number Shx is calculated by the following formula:

Shx � xjw
DB Cw − C∞( ). (18)

Using Fick’s law jw � −DB(zCzy)y�0 in Eq. 18 we get:

Re
−1
2
x Shx � −

�����
m + 1
2

√
ϕ′ 0( ). (19)

3.4 Local density of motile
microorganisms

The local density of motile microorganisms is defined as

follows:

Nnx � xiw
DnNw

, (20)

here iw is:

iw � −Dn
zN

zy
( )y�0, (21)

and local density of motile microorganisms Nnx is converted to:

Re
−1
2
x Nnx � −

�����
m + 1
2

√
χ′ 0( ). (22)
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4 Numerical procedure

A numerical solution is obtained by three methods:

finite element method (FEM), shooting method, and

bvp4c. In the first section, the procedure to use the finite

element method is presented followed by the shooting

method and bvp4c.

4.1 Finite element method

The governing ODEs in Eqs. 8–11 are coupled and nonlinear.

Before applying FEM, we first establish a procedure to linearize

the ODEs. The linearization procedure is given as follows.

4.1.1 Linearization of ODEs
Let us define a variable F

f′ � F, (23)

for Eqs. 8–11. The abovementioned variable reduces the order of

Eq. 8 from three to two. It is worth notingthat the order of other

equations, that is, Eqs. 9–11, remains the same. We get,

F″ + fF′ − 2m
m + 1

F2 −M F − E1( ) + λ θ −Nrϕ( ) − KpF � 0,

(24)
θ″ + ϵ

1 + ϵθ + 4
3Rd

θ′2 + Pr0
1 + ϵθ + 4

3Rd

fθ′ +MEc F − E1( )2 + EcF
′2 +Nbθ′ϕ′ +Ntθ

′2 + sθ( ) � 0,

(25)
ϕ″ + Nt

Nb
θ″ + Sc fϕ′ − 2

m + 1
σ1ϕ 1 + δθ( )ne −E*

1+δθ( ) � 0, (26)
χ″ + Sbfχ − Pe χϕ″ + χ′ϕ′( ) � 0. (27)

The boundary conditions in Eq. 13 are written in terms of the

new variable:

f � 0, F � 1, θ′ � −β1 1 − θ( ), ϕ′ � −β2 1 − ϕ( ),
χ � 1, at η � 0, (28)

F � 0, θ � 0, ϕ � 0, χ � 0, as η → ∞ . (29)

As mentioned earlier, the equations are nonlinear and coupled.

We use the Taylor series to linearize these equations. We start

with Eq. 24 and write higher-order derivative terms on the left-

hand side, then,

F″ � −fF′ + 2m
m + 1

F2 +M F − E1( ) − λ θ −Nrϕ( ) +KpF.

Writing the right-hand side as h (η, F, F′):

h η, F, F′( ) � −fF′ + 2m
m + 1

F2 +M F − E1( ) − λ θ −Nrϕ( )
+KpF,

differentiating h with respect to F′:

An � − zh

zF′( )
n

� − −fn[ ] � fn,

so writing it as:

An � fn.

Similarly, differentiating h with respect to F

Bn � − zh

zF
( )

n

� − 4m
m + 1

Fn +M + Kp[ ],
Bn � − 4m

m + 1
Fn −M − Kp,

Now, writing Dn in terms of h, Bn, and An defined previously

Dn � h η, Fn, Fn′( ) − zh

zF
( )

n

Fn − zh

zF′( )
n

Fn′,

Dn � h η, Fn, Fn′( ) + BnFn + AnFn′.

Finally, the linearized equation for F is given as follows:

Fn+1″ + An η, Fn, Fn′( )Fn+1′ + Bn η, Fn, Fn′( )Fn+1 � Dn η, Fn, Fn′( ),
Similarly, the same abovementioned procedure can be used for

Eqs. 25–27 to linearize these.

4.2 Galerkin method

The system of Eqs. 23–27 is linearized first; then, using these

equations, we computed numerical solutions by the FEM. The

linearized equations are written as follows:

f′ � F, (30)
Fn+1″ + An η, Fn, Fn′( )Fn+1′ + Bn η, Fn, Fn′( )Fn+1 � Dn η, Fn, Fn′( ),

(31)
θn+1″ + An η, θn, θn′( )θn+1′ + Bn η, θn, θn′( )θn+1 � Dn η, θn, θn′( ),

(32)
ϕn+1″ + An η,ϕn,ϕn′( )ϕn+1′ + Bn η, ϕn, ϕn′( )ϕn+1 � Dn η,ϕn,ϕn′( ),

(33)
χn+1″ + An η, χn, χn′( )χn+1′ + Bn η, χn, χn′( )χn+1 � Dn η, χn, χn′( ),

(34)
along with the boundary conditions

f � 0, F � 1, θ′ � −β1 1 − θ( ), ϕ′ � −β2 1 − ϕ( ),
χ � 1, as η � 0,

F � 0, θ � 0, ϕ � 0, χ � 0, as η → ∞ . (35)

Just to simplify the procedure, the finite element method is

applied to Eq. 31. We write:

Fn+1″ + AnFn+1′ + BnFn+1 � Dn, (36)

multiplying Eq. 36 with a weight function w(η) and integrating

over the general domain [a,b], we get:
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∫ b

a

d2Fn+1
dη2

+ An
dFn+1
dη

+ BnFn+1w η( )( )dη � ∫ b

a
Dnw η( )dη,

∫ b

a

d2Fn+1
dη2

w η( )dη + ∫ b

a
An

dFn+1
dη

w η( )dη + ∫ b

a
BnFn+1w η( )dη

� ∫ b

a
Dnw η( )dη,

using integration by parts on the left-hand side to get a weak

form. For Dirichlet boundary conditions, weight function

w(η) is chosen in such a way that w(a) = w(b) = 0. The

result is as follows:

TABLE 1 Comparison of − θ9(0) for different values of Pro.

Pro Goyal
and bhargava [39]

Gorla
and sidawi [40]

Present Results

0.07 0.0698 0.0656 0.0656

0.20 0.1691 0.1691 0.1691

0.70 0.4539 0.5349 0.4539

2.00 0.9113 0.9114 0.9114

7.00 1.8954 1.8954 1.8954

20.00 3.3539 3.3539 3.3539

70.00 6.4621 6.4622 6.4623

TABLE 2 Effect of different parameters on the skin friction coefficient by considering E1=0, = 0.1, Sc = 1, E = 0.5, δ = 0.3, σ1 = 0.3, n = 0.5, Sb = 0.5, Pe =
0.5, β1 = 0.4, and β2 = 0.4.

m M λ Nr Kp Rd Pr0 Ec Nb Nt s bvp4c SM FEM

1 0.3 0.2 0.3 0.5 0.3 6.8 0.3 0.3 0.1 0.1 1.2817 1.2817 1.2839

1.5 1.4862 1.4862 1.4890

2 1.666 1.6657 1.6693

1 0.2 1.248 1.2479 1.2508

0.5 1.3464 1.3462 1.3487

0.7 1.4081 1.4077 1.4102

1 0.3 0.3 1.2535 1.2533 1.2574

0.5 1.2003 1.1981 1.2063

0.7 1.1501 1.1459 1.1582

1 0.3 0.2 0.4 1.2852 1.2850 1.2885

0.5 1.2887 1.2884 1.2927

0.8 1.2989 1.2987 1.3053

1 0.3 0.2 0.3 0.6 1.3169 1.3167 1.3194

0.7 1.3513 1.3511 1.3537

0.9 1.4175 1.4173 1.4197

1 0.3 0.2 0.3 0.5 0.4 1.2812 1.2810 1.2838

0.5 1.2807 1.2805 1.2832

0.7 1.2795 1.2793 1.2820

1 0.3 0.2 0.3 0.5 0.3 6.2 1.2811 1.2809 1.2837

7 1.2818 1.2816 1.2844

7.5 1.2821 1.2819 1.2848

1 0.3 0.2 0.3 0.5 0.3 6.8 0.5 1.2486 1.2484 1.2508

0.6 1.2329 1.2323 1.2348

0.9 1.1881 1.1869 1.1891

1 0.3 0.2 0.3 0.5 0.3 6.8 0.3 0.4 1.2782 1.2780 1.2808

0.5 1.2747 1.2745 1.2774

0.8 1.2637 1.2633 1.2663

1 0.3 0.2 0.3 0.5 0.3 6.8 0.3 0.3 0.2 1.2781 1.2771 1.2812

0.3 1.2734 1.2736 1.2774

0.4 1.268 1.2683 1.2729

1 0.3 0.2 0.3 0.5 0.3 6.8 0.3 0.3 0.1 0.1 1.2817 1.2817 1.2843

0.15 1.2735 1.2736 1.2762

0.2 1.2632 1.2629 1.2659
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−∫ b

a

dFn+1
dη

dw
dη

dη + ∫ b

a
An

dFn+1
dη

w η( )dη + ∫ b

a
BnFn+1w η( )dη

� ∫ b

a
Dnw η( )dη,

(37)
the abovementioned Eq. 37 is written in a weak formulation.

Suppose the solution is of the form

Fn+1 � ∑Ne

i�1
ϕn Fn+1( )i,

where ϕi is the basis functions and Ne is the total number of

nodes in an element.Here, we use the Galerkin finite element that

requires the basis function to be defined same as the weight

function, that is, w = ϕ above. Furthermore, choosing [ηi, ηi+1] as

nodes of the randomly selected finite element, Eq. 37 becomes

−∑Ne

i�1
∫ ηi+1

ηi

dϕi

dη

dϕj

dη
dη[ ] Fn+1( )i +∑Ne

i�1
∫ ηi+1

ηi

An
dϕi

dη
ϕjdη[ ] Fn+1( )i

+∑Ne

i�1
∫ ηi+1

ηi

Bnϕiϕjdη[ ] Fn+1( )i � ∫ ηi+1

ηi

Dnϕjdη,

∑Ne

i�1
−∫ ηi+1

ηi

dϕi

dη

dϕj

dη
dη + ∫ ηi+1

ηi

An
dϕi

dη
ϕjdη + ∫ ηi+1

ηi

Bnϕiϕjdη[ ] Fn+1( )i

� ∫ ηi+1

ηi

Dnϕjdη.

(38)

Defining:

Lij � −∫ ηi+1

ηi

dϕi

dη

dϕj

dη
dη,

Cij � ∫ ηi+1

ηi

An
dϕi

dη
ϕjdη,

Mij � ∫ ηi+1

ηi

Bnϕiϕjdη,

Rj � ∫ ηi+1

ηi

Dnϕjdη,

where

Kij � Lij + Cij +Mij,

Thus, Eq. 38 is as follows:

∑Ne

i�1
Kij Fn+1( )i � Rj,

For a single element, the matrix will be as follows and is called an

element stiffness matrix.

K11 K21

K12 K22
[ ] F1

F2
[ ]n+1

� R1

R2
[ ]

The global stiffness matrix will be defined as follows:

K11 K21 0 0
K12 K22 +K11 K21 0
0 K12 K22 + K11 0

..

.
1 ..

.

0 0 0 / K22

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F1

F2

F3

..

.

FN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
n+1

�

R1

R2 + R3

R3 + R4

..

.

RN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We presented FEM for a single equation for convenience. The

same procedure can be applied to other Eqs. 32–34.

4.3 Shooting method

The boundary value problem Eq. 8–13 are written as a pair of

first-order equations so that one can apply the shootingmethod. The

shooting method is a procedure in which the boundary value

problem is converted into an initial value problem.

f � y1, f′ � y2, f″ � y3, f‴ � y3′ � −y1y3 + 2m
m + 1

y2
2

+M y2 − E1( ) − λ θ −Nrϕ( ) +Kpy2,

y4 � θ, y5 � θ′, θ″ � y5′ � −ϵy2
5

− Pr0

1 + ϵθ + 4
3

( )Rd (y1y5 +MEc y2 − E1( )2
+ Ecy2

3 +Nby5y7 +Nty2
5 + sy4), y6 � ϕ, y7 � ϕ′,

y7′ � −Nt

Nb
y5′ − Sc y1y7 − 2m

m + 1
σ1ϕ 1 + δθ( )n exp −E

1 + δθ
( )( ),

y8 � χ η( ), y9 � χ′, χ″ � y9′ � −Sby1y9 + Pe y8y7′ + y7y9( ).
The unknown values for the boundary conditions required for

the shooting method are written as:

FIGURE 1
Velocity profile f′(η) for different M.
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y3 0( ) � u1, y5 0( ) � u2, y7 0( ) � u3, y9 0( ) � u4

These unknowns are obtained first by a root-finding technique.

For this, the Newton–Raphson method is implemented in

MATLAB. The initial value problem is solved using the

Runge–Kutta method of the fourth-order and fifth-order

schemes (adaptive scheme).

4.4 bvp4c

Boundary value problems (BVPs) for ordinary differential

equations (ODEs) can be solved using MATLAB bvp4c solver.

The results obtained by the shooting method and Galerkin

method are validated using MATLAB built-in solver bvp4c,

which uses the collocation method in the background. It starts

the solution with an initial guess supplied at initial mesh points

and changes step size (hence, changes mesh) to get the specified

accuracy. For more details, see Ref. [38].

5 Result and discussion

The research-related questions that were raised in Section 1

are answered in Section 5.1. Section 5.2 contains a discussion of

the research questions. The results of the parameters other than

Section 5.1, Section 5.2 are described in Section 5.3.

5.1 Analysis of results

The tables and figures have been created in order to respond to

the research questions posed in Section 1. For Pe = 0.6, 0.7, and

0.8 and Sc = 1.3, 1.5 and 2, and Sc= 1, 1.3 and 1.5, Table 4 and

TABLE 3 Effect of different parameters onNusselt number by considering  = 0.2, s = 0.1, Sc = 1, σ1 = 0.3, E = 0.5, δ = 0.3, n = 0.5, Sb = 0.5, Pe = 0.5, Nb =
0.3, β1 = 0.4, and β2 = 0.4.

m M E1 λ Nr Kp Rd Pr0 Ec Nt bvp4c SM FEM

1 0.3 0 0.2 0.3 0.5 0.3 6.8 0.3 0.1 0.0904 0.0901 0.0930

1.5 0.0891 0.0890 0.0925

2 0.0889 0.0887 0.0931

1 0.2 0.1166 0.1164 0.1188

0.5 0.0395 0.0393 0.0429

0.6 0.0148 0.0145 0.0185

1 0.3 0 0.0904 0.0901 0.0930

0.1 0.1172 0.1163 0.1130

0.2 0.1373 0.1371 0.1234

1 0.3 0 0.3 0.0977 0.0975 0.0995

0.5 0.1108 0.1095 0.1112

0.7 0.1223 0.1190 0.1215

1 0.3 0 0.2 0.4 0.0887 0.0884 0.0908

0.5 0.0869 0.0866 0.0886

0.8 0.0816 0.0816 0.0818

1 0.3 0 0.2 0.3 0.6 0.0791 0.0786 0.0819

0.7 0.0679 0.0671 0.0708

0.8 0.0568 0.0564 0.0599

1 0.3 0 0.2 0.3 0.5 0.4 0.1063 0.1060 0.1088

0.5 0.1223 0.1220 0.1247

0.7 0.1542 0.1539 0.1563

1 0.3 0 0.2 0.3 0.5 0.3 2 0.1318 0.1328 0.1310

5 0.1118 0.1118 0.1133

7.5 0.0819 0.0819 0.0849

1 0.3 0 0.2 0.3 0.5 0.3 6.8 0.1 0.291 0.2909 0.2928

0.2 0.1883 0.1882 0.1905

0.3 0.0904 0.0901 0.0930

1 0.3 0 0.2 0.3 0.5 0.3 6.8 0.3 0.2 0.0709 0.0704 0.0750

0.3 0.0503 0.0500 0.0561

0.4 0.0283 0.0279 0.0362
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Table 5 are drawn. The concentration profiles, as well as the

density of motile microorganism, is presented in tables and figures

to answer research question 1. The magnetic parameter effect on

the velocity profile is drawn in Figure 1 to answer research question

2. For M = 0.2, 0.5, and 0.7 and M = 0.2, 0.5, and 0.6, Table 2 and

Table 3 are drawn in order to reply to research question 2.

Similarly, for E =1, 1.3, and 1.5, Table 4 is drawn to answer

research question 3. To answer research question 4 the value of

β2 = 1.3, 2, 2.6, 3.6 is considered in Figure 8. Finally, the accuracy of

the Galerkin method is presented when compared to other

numerical methods in Table 1, Table 2, Table 3, Table 4, and

Table 5 to answer research question 5.

5.2 Discussion of results

The results obtained to answer research questions have been

discussed here. The M specifies the magnetic parameter. It

represents the Lorentz force applied normally that opposes the

flow of fluid. Thus, as we increase the value of M, the velocity

decreases, and hence, the value of the skin friction coefficient

increases.

As the velocity increases, it becomes relatively difficult for

particles to transfer heat, and thus heat transfer rate decreases.

The increase in the magnetic field parameter M stops the

motion of the fluid and thus Brownian motion of fluid

TABLE 4 Effect of different parameters on Sherwood number by considering M = 0.3, λ = 0.2, Nr = 0.3,  = 0.2, Nt = 0.1, Pr0 = 6.8, s = 0.1, Sb = 0.5, Pe =
0.5, β1 = 0.4, and β2 = 0.4.

m E1 Kp Rd Ec Nb Sc σ1 E δ n bvp4c SM FEM

1 0.5 0.5 0.3 0.3 1 1.5 0.3 0.8 0.3 1 0.2856 0.2855 0.2656

1.5 0.3162 0.3162 0.2914

2 0.3438 0.3439 0.3144

1 0.3 0.2855 0.2856 0.2643

0.5 0.2856 0.2856 0.2656

0.7 0.2863 0.2861 0.2677

1 0.5 0.6 0.2858 0.2858 0.2665

0.7 0.286 0.2859 0.2675

0.9 0.2864 0.2864 0.2695

1 0.5 0.5 0.4 0.2849 0.2849 0.2649

0.5 0.2844 0.2844 0.2644

0.7 0.2836 0.2835 0.2635

1 0.5 0.5 0.3 0.2 0.2817 0.2817 0.2598

0.3 0.2856 0.2855 0.2656

0.5 0.2925 0.2925 0.2752

1 0.5 0.5 0.3 0.3 1.3 0.2856 0.2855 0.2657

1.7 0.2859 0.2859 0.2664

2 0.2862 0.2862 0.2671

1 0.5 0.5 0.3 0.3 1 1 0.2649 0.2648 0.2435

1.3 0.2785 0.2785 0.2580

1.5 0.2856 0.2855 0.2656

1 0.5 0.5 0.3 0.3 1 1.5 0.5 0.2939 0.2939 0.2800

0.6 0.2975 0.2975 0.2855

0.9 0.3061 0.3066 0.2980

1 0.5 0.5 0.3 0.3 1 1.5 0.3 1 0.2833 0.2832 0.2562

1.3 0.2803 0.2802 0.2414

1.5 0.2785 0.2785 0.2310

1 0.5 0.5 0.3 0.3 1 1.5 0.3 0.8 0.4 0.2867 0.2867 0.2683

0.6 0.2889 0.2889 0.2732

1 0.2931 0.2933 0.2817

1 0.5 0.5 0.3 0.3 1 1.5 0.3 0.8 0.3 0.8 0.2851 0.2851 0.2647

1 0.2856 0.2855 0.2656

1.5 0.2867 0.2867 0.2678
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FIGURE 3
Temperature profile θ(η) for different Pr0.

FIGURE 2
Velocity profile f′(η) for different Kp.

FIGURE 5
Temperature profiles θ(η) for different Ec.

FIGURE 4
Temperature profile θ(η) for different Rd.
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decreases, which resulted in a lowering of the heat

transfer rate.

The increase in porosity parameter Kp decreases the heat

transfer rate. The heat transfer rate reduces when fluid attracts to

pores structured medium.

For the parameters Kp the Sherwood number has a negligible

change in its values. For the Schmidt number Sc, the Sherwood

number decreases.

Figure 2 demonstrates the impacts of Kp on the velocity profile.

It shows that increasing values of Kp decline the fluid velocity.

Figure 9 elucidates that the microorganism profile is decayed

for greater values of Peclet number Pe.

The accuracy of the Galerkin method is shown in all tables.

The results obtained from the Galerkin method have been

matched with the shooting method and bvp4c. However, in

some cases, the accuracy reduces, which is linked to a number

of reasons. One reason is the linearization procedure in which

nonlinear ODEs are first linearized. The other possible reason is

the complexity of the mathematical model which contains four

nonlinear coupled ODEs.

5.3 Investigation of various other
parameters

Other than the research questions posed in Section 1 and

discussed in Section 5, one can also see the effect of numerous

other parameters on the physical parameter.

In Table 1, a comparison is drawn for the case of – θ′(0) for
different values of Prowith published results. An excellent

agreement between the published and present results is achieved.

In Table 2, the impact of different parameters on the skin

friction coefficient is discussed. In Table 2, with the increased

value of m, the skin friction coefficient increases. The reason for

the increase is that the fluid velocity increases which affects the

magnitude of the skin friction coefficient. The parameter λ is a

mixed convection parameter. As we increase the value of themixed

convection parameter, the skin friction coefficient decreases. The

parameter Nr represents the ratio of the buoyancy parameter.

Physically, as we increase the value of Nr, the stronger buoyancy

force acting normally resists the horizontal flow of the fluid.

Therefore, the value of the skin friction coefficient is increased.

TABLE 5 Effect of different parameters for motile microorganisms by consideringM =0.3, E1=0, λ = 0.2, Nr = 0.3, Kp = 0.5, Rd = 0.3,  = 0.2, Pr0 = 6.8,
σ1 = 0.3, Ec = 0.3, δ = 0.3, s = 0.1, β1 = 0.4, and β2 = 0.4.

m Nb Nt Sc E δ n Sb Pe bvp4c SM FEM

1 0.3 0.1 1 0.5 0.3 0.5 1 0.5 0.6496 0.6537 0.6428

1.5 0.7189 0.7267 0.7099

2 0.7819 0.7985 0.7708

1 0.4 0.6458 0.6495 0.6389

0.5 0.6438 0.6475 0.6370

0.8 0.6422 0.6460 0.6354

1 0.3 0.1 0.6496 0.6537 0.6428

0.2 0.6747 0.6787 0.6683

0.3 0.7029 0.7076 0.6971

1 0.3 0.1 1.3 0.6568 0.6605 0.6504

1.5 0.6605 0.6642 0.6544

2 0.6672 0.6709 0.6617

1 0.3 0.1 1 0.8 0.6461 0.6500 0.6338

1 0.644 0.6480 0.6275

1.5 0.6396 0.6437 0.6104

1 0.3 0.1 1 0.5 0.4 0.65 0.6538 0.6433

0.6 0.6507 0.6546 0.6443

1 0.6521 0.6562 0.6462

1 0.3 0.1 1 0.5 0.3 0.8 0.65 0.6538 0.6433

1 0.6503 0.6545 0.6437

1.5 0.6511 0.6568 0.6447

1 0.3 0.1 1 0.5 0.3 0.5 0.7 0.5276 0.5397 0.5205

0.8 0.5701 0.5784 0.5631

1.4 0.7906 0.7914 0.7841

1 0.3 0.1 1 0.5 0.3 0.5 1 0.6 0.6752 0.6789 0.6673

0.7 0.7008 0.7045 0.6918

0.8 0.7265 0.7300 0.7164
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FIGURE 6
Temperature profile θ(η) for different Nt.

FIGURE 7
Concentration profile ϕ(η) for different Nb.

FIGURE 8
Concentration profile ϕ(η) for different β2.

FIGURE 9
Microorganisms profile χ(η) for different Pe.
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The Kp indicates the porosity parameter. As we increase the value

of Kp, the velocity of fluid decreases thus more resistance on the

nanoparticles in the fluid increases the value of skin friction

coefficient increases. The parameter Rd represents the radiation

parameter. As we increase the radiation parameter, negligible

effects are observed on the skin friction coefficient. The

parameter Pr0 represents the Prandtl number. Increasing the

Prandtl number has negligible effects on the skin friction

coefficients. The parameter Ec is the Eckert number. As we

increase the Eckert number, the skin friction coefficient

decreases. The parameter Nt represents the thermophoresis

parameter. They have a negligible effect on flow velocity and

thus on the skin friction coefficient. The s represents the local heat

source/sink parameter. As we increase the value of s, we observe an

increase in the flow velocity and thus it overcomes the resistance.

Therefore, the value of the skin friction coefficient decreases.

In Table 3, we discuss the effect of different parameters on the

Nusselt number.m represents a positive constant. As the value ofm

is increased, we observe a decrease in the value of the Nusselt

number. E1 represents the electric field parameter. The increase in

the electric parameter results in an increase in the Nusselt number.

The temperature difference between the surface and upper layers

increases and thus the rate at which heat is transferred increases. λ

represents the mixed convection parameter. The increase in value of

λ causes Nu to increase. Mixed convection aids the flow of fluid in

order to transfer heat. The Nr represents the ratio of the buoyancy

parameter. It has a negligible effect on the heat transfer rate. The

radiation parameter is represented by Rd. The increase in Rd results

in an increase in heat transfer rate. The radiation is absorbed by the

particles of the system and thus creating a temperature difference

between the surface and upper layers. Therefore, the heat is

transferred at a higher rate. The increase in Pr0 results in a

decrease in the heat transfer rate. Prandtl number is the ratio of

momentum diffusivity to thermal diffusivity. For a higher heat

transfer rate, we have a lower value of Pr0. The Eckert number is

represented by Ec. An increase in Ec resulted in a decrease in the

heat transfer rate. The Ec is the relationship between a flow’s kinetic

energy and boundary layer enthalpy difference and characterizes the

heat transfer dissipation. So as we increase Ec it lowers the heat

transfer rate. The thermophoresis is represented by Nt. The increase

in the value of Nt resulted in a decrease in the Nusselt number.

In Table 4, we discuss the effect of different parameters on the

Sherwood number. As m increases, the Sherwood number

increases. For the parameters E1, Rd, Ec, Nb, and n, the

Sherwood number has a negligible change in its values. For

Sc, the Sherwood number decreases. For σ1, E, and δ, there is

negligible change in the Sherwood number.

In Table 5, we discuss the effect of different parameters on

motile microorganisms. As the value of m increases, the motile

microorganisms increases. There is no change in the values of

motile microorganisms when the parameter Nb, Sc, E, δ, and n

increases. With the increase of Nt, Sb, and Pe, the

microorganisms increases.

Figure 3 elaborates on the influences of the Prandtl number

Pro on the temperature profile.Figure 4 exhibits the influence of

Rd on temperature distribution. The radiation parameter heats

up the fluid through radiation which increases its

temperature.Figure 5 and Figure 6 are plotted to discuss the

effects of Ec and Nt on the temperature profile. The Eckert

number appears when the fluid motion is considered to be

relatively high. The thermophoresis parameter appears due to

the considered fluid.

The influence of Brownian motion parameter Nb can be seen

on the concentration profile in Figure 7.Figure 8 portrays the

impacts of concentrated Biot number β2 on the concentration

profile.Figure 9 and Figure 10 elucidate that the microorganism

profile is decayed for greater values of the bioconvection Peclet

number Pe and the bio Schmidt number Sb.

6 Conclusion

This study is carried out to discuss the impacts of activation

energy on EMHDmixed convection and heat transfer flow of fluid

in a porous medium with radiative heat transfer while considering

variable thermal conductivity over a nonlinearly stretching sheet.

The significant findings based on research questions posed in

Section 1 of the current study are confirmed as:

FIGURE 10
Microorganisms profile χ(η) for different Sb.
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• An increasing value of magnetic parameterM and porosity

parameter Kp decreases the boundary layer thickness.

• The growing values of radiation parameter Rd increase the

temperature of the fluid while the boundary layer thickness

decreases for growing values of Pr0.

• The temperature is enhanced for rising values ofNt and Ec.

The concentration profile increases for Biot number β2.

• The microorganisms profile declines for higher values of

bioconvection Schmidt number Sb and Peclet number Pe.

• The skin friction coefficient increases for different values of

magnetic parameter M.

• The local Nusselt number increases for various values of

radiation parameter Rd and decreases for Eckert number Ec.

• The density of motile microorganisms increases on

increasing the value of Peclet number Pe.
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