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Abstract 

Eucheuma is one of the most important commercial red seaweeds in Southeast Asia, and plays 

globally an important role in seaweed aquaculture. Its natural distribution has been affected by 

global warming in recent years. We used maximum entropy species distribution models (SDMs) to 

map suitable habitat of Eucheuma denticulatum under present conditions and to project future 

range shifts under four representative concentration pathway (RCP) scenarios. The environmental 

factors that could best discriminate suitable from non-suitable habitat included distance to shore, 

water depth and sea surface temperature. Range Shifts in the distribution of E. denticulatum 

indicated that until year 2100, its range will contract in the Central Indo-Pacific Realm, especially 

to the Sunda Shelf, and will expand polewards along the south coast of Australia. Our results 

provide important knowledge for tropical seaweed conservation, management and sustainable 

exploration in the future. 
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Introduction 

Eucheumatoids, comprising the genera Kappaphycus and Eucheuma, are red seaweeds of 

commercial importance in tropical regions and are valuable resources for manufacturing the 

different types of carrageenans (Naseri et al., 2020). The countries in which Eucheumatoids are 

currently cultivated, including Indonesia, Philippines, Malaysia, Vietnam, etc (Borlongan et al., 

2017), contribute tremendously to the world's seaweed production. Eucheumatoids grows 

naturally in tropical coastal environments, at temperatures ranging from 22°C to 30°C 

(Borlongan et al., 2017; Doty, 1973; Glenn and Doty, 1981; Kumar et al., 2020; Lideman et al., 

2013), and display a rich variety of morphological plasticity (Conklin et al., 2009). According to 

currently known records, E. denticulatum is mainly distributed in the Indo-Pacific Ocean between 

20°S and 30°N, between 30°E (East Africa) and 180°E (Fiji), recently extending further east 

to Hawaii through human activity. It grows strongly attached to coralline gravelly-rocky or coarse 

sandy-rocky substrate at the intertidal to the upper (shallow) subtidal zone (Carpenter and Niem, 

2001). Its survival, growth, and reproduction are mainly affected by temperature, salinity, seawater 

current, and water depth (Hurtado et al., 2008; Zhu et al., 2014). 

In recent years, many seaweeds’ distributions were influenced by the increase in global 

warming (Smale, 2020), and are predicted to further shift poleward, extending into high latitudes 

and losing habitat at their trailing edges (Jueterbock et al., 2013; 2016; Muller et al., 2009; Zhang 

et al., 2019). The impact of global warming on tropical and subtropical seaweeds is poorly studied. 

As tropical seaweed, E. denticulatum is sensitive to rising temperatures (Somero, 2010; Tomanek, 

2010), and thus, is expected to undergo range shifts in the future.  

By linking occurrence data of species to the physical and biotic environment, species 

distribution models (SDMs) provides a framework to formulate hypotheses about the ecological 

processes governing spatial and temporal patterns in biodiversity, which can be useful for marine 

ecosystem management and conservation. In recent studies, species distribution models have 

become powerful management tools in wide-range climate change studies in the marine 

environment (de la Hoz et al., 2019). Here we focus on SDMs constructed via maximum entropy 

using the program Maxent (Phillips, 2017), this approach performed particularly well in a recent 

comparison of alternative SDMs construction methods (Elith et al. 2006). By combing the 

program ArcGIS (Kozak, et al., 2008), we visualized MaxEnt results and performed the spatial 



calculation. 

With the combination of SDMs and ArcGIS, we predicted the habitat suitability for E. 

denticulatum. Based on the most important environmental factors limiting the its geographical 

distribution, we predicted its range shifts and migratory paths of the distribution center (centroids) 

for the current and future (the 2050s and 2100s). With these projections we aimed to identify 

which regions remain suitable for sustainable seaweed production in the tropical and subtropical 

Indo-Pacific regions under projected global warming.  

2 Material and Methods 

2.1.Study area 

Based on the distribution range of E. denticulatum taken from occurrence data (below), we 

defined the studies focus area between 25°E and 180°E longitude, and between 40°S and 50°N 

latitude (Fig. 1). This area covered the entire Indo-Pacific Ocean, including the Western and 

Central Indo-Pacific Realms (Spalding et al., 2007). Background points (similar to 

pseudo-absence points in practice) were used to indicate the environmental conditions within the 

distributional range of E. denticulatum. The environmental conditions in the study region were 

compared between background points and the seaweed’s occurrence sites during model evaluation. 

In total, 10,000 background points were randomly sampled in the study area within 100 m water 

depth (Barve et al., 2011; Doty, 1973; Nelson et al., 2015) (Supporting Information Fig. S1). 

2.2. Species occurrence data  

We assembled the occurrence records of the species E. denticulatum from the Global 

Biodiversity Information Facility (http://www.gbif.org) (GBIF.org, 2022), the AlgaeBase 

(https://www.algaebase.org) (AlgaeBase, 2022), the Ocean Biodiversity Information System 

(http:// iobis.org) (OBIS, 2022), and the AquaMaps database (https://www.aquamaps.org) 

(AquaMaps, 2022), and the literature (Supporting Information Table S1). We compiled a total of 

172 records observed after the year 1990, and removed duplicated and on-land sites. All the online 

databases were accessed on March 29, 2022, and the initial filtering processing for distributed data 

was conducted in R 4.1.2 (R Core Team, 2017). 

The records data were further filtered with the followed steps, (i) keep only one record per 

5-arcmin and removed other records randomly within the same grid; (ii) only retain sites in our 

defined study region; (iii) perform spatial thinning using a distance of 10 km using the R package 



“spthin”, discarding sites that were less than 10 km apart (Aiello-Lammens et al., 2015). After 

filtering, we finally retained 111 records for E. denticulatum (Varela et al., 2014; Veloz, 2009).  

2.3. Environmental variables 

From the Global Marine Environment Datasets (http://gmed.auckland.ac.nz; Basher et al., 

2014), we obtained the 2 geographical predictors:water depth and distance to shore. From the 

Bio-ORACLE database version 2.2 (https://www.bio-oracle.org) (Assis et al., 2018), we obtained 

surface layers of 18 environmental variables (including the annual mean, the annual maximum, 

the annual minimum, the annual range, an average of the minimum records per year and the 

average of the maximum records per year) for sea surface temperature (SST), sea surface salinity 

(SSS) and current velocity (CV) (Supporting Information Table S2). The marine environmental 

predictors from Bio-ORACLE v2.2 represent the average and range values for the duration 

between 2000 and 2014.  

Further, we used the four representative concentration pathway (RCP) scenarios (i.e., RCP 2.6, 

RCP 4.5, RCP 6.0, and RCP 8.5) and the two periods (i.e., the 2050s: the average for 2040-2050, 

and 2100s: the average for 2090-2100) to predict the future distribution of E. denticulatum. The 18 

environmental variables from the Bio-ORACLE database were projected to future conditions, 

while the two geographical predictors (water depth and distance to shore) were assumed 

unchanged in the future (Zhang, et al., 2020). All environment variables are scaled to a 5-arcmin 

resolution. To exclude the influence of collinearity and reduce the model complexity, we 

calculated the correlation coefficients (r) among the environmental variables, and randomly 

eliminated one among highly correlated predictors (|r| > 0.75) (Dormann et al., 2013) (Supporting 

Information Fig. S2). The retained environmental variables were used for habitat suitability 

projections (Table 1). 

2.4. Modeling method selection 

Initially, we considered five modeling algorithms with their default settings in the “sdm” R 

package (Naimi and Araújo, 2016): generalized linear model (GLM, Guisan et al., 2002), random 

forest (RF, Breiman, 2001), maximum entropy (Maxent, Phillips et al., 2006), boosted regression 

trees (BRT), and bioclim (climate-envelope-model, Booth et al., 2014). The five models were run 

with the filtered occurrence data and non-correlated environmental predictors. We used for each of 

10 runs a partition of 75% sub-sampled training data to fit the models, and a partition of 25% of 



the data to test the models’ performances.  

Model performance was assessed with the AUC (area under the receiver operating characteristic 

curve) and TSS (the true skill statistic). Because the Maxent models performed best (Supporting 

Information Fig. S3 and Table S3), we used this for the following analyses (Supporting 

Information Fig. S4-S12; Table S4-S5; Fig. 2-5; Table 1-2). 

2.5. Model optimization and evaluation 

2.5.1. Tuned process 

The regularization multiplier (RM) and feature classes (FC) in the MaxEnt algorithm are used to 

balance model fitness and complexity (Phillips and Dudı´k, 2008). The applied RM and FC 

parameters were adjusted and optimized with filtered occurrence records and environmental data. 

through the R package “ENMeval” (Muscarella et al., 2014) with the assistant package “kuenm” 

(Cobos et al., 2019). We established a total of 240 candidate models with different combinations 

of regularization multipliers (ranging from 0.1 to 4.0, at a 0.1 interval) and feature classes: L 

(linear), LQ (linear quadratic), T (threshold), H (hinge), Q (quadratic), QH (quadratic hinge).  

A spatial block method was selected for evaluating the model performance, briefly, each study 

region was divided into four spatial blocks containing an equal number of presence records; three 

blocks were used for model training and the remaining block for validation. This method takes 

model transferability into account (Kass et al., 2021). The best-performing model was selected 

with the sequential criteria, (i.e., first, minimum average 10% omission rate (OR10) was used to 

select optimal models, followed by the highest average validation AUC (AUCval.). All evaluation 

metrics were visualized in the Supporting Information Fig. S4. 

2.5.2. Evaluated metrics 

The performance of the Maxent models was evaluated based on 5 metrics. First, AUC, the area 

under the receiver operating characteristics curve, was calculated on the validation data, 

measuring the model's ability to discriminate between presence and background records. The 

values > 0.90 were considered “excellent” and in the range of 0.7–0.9 “reasonable predictions”. 

We also used the partial ROC ratio (pROC), a modified AUC metric that is calculated through R 

package “kuenm” (Cobos et al., 2019). The statistic ratio >1 represents more significant than the 

null expectations (Peterson, 2008). What’s more, the Maxent models were assessed with the 

Continuous Boyce index (CBI), it varies from -1 to 1, positive values indicate model predictions 



are consistent with the presence distribution in the evaluation dataset, values close to zero mean 

that the model is not different from a chance model, negative values indicate an incorrect model 

(Hirzel et al., 2006). In addition, we calculated AUCDiff. (i.e., the difference between training and 

testing AUC), that is positively associated with the degree of model overfitting (Muscarella et al., 

2014). The two types of threshold-dependent metrics of omission rate were used for measuring 

model overfitting degrees: the minimum training presence’ omission rate (ORMTP) (Peterson et al., 

2011), and the 10% training omission rate (OR10) (Fielding and Bell, 1997, Peterson et al., 2011). 

The values greater than zero typically indicate model overfitting for ORMTP, for OR10, the values 

above 10 mean model overfitting. 

2.5.3. Null models application  

Null-model could indicate whether the relations between species’ presence localities and the 

predictor variable values in the study area are stronger than can be expected by chance, and test 

for the significance and effect sizes of calculations metrics (Bohl et al., 2019; Raes and ter Steege., 

2007). We first run the null simulations with 100 iterations to get a reasonable null distribution for 

comparisons with the tuned model. Null models were generated by randomly drawing collection 

localities without replacement from background points, which settings are the same as the tuned 

model (i.e. RM=2.4, FC=LQ). Then we calculated metrics (i.e. OR10 and AUCval.) comparing the 

model performance of the the tuned and null models results. Finally, we made plots of both kinds 

of model evaluation results as a histogram and a violin plot (Supporting Information Fig. S5). All 

steps were conducted using ENMeval 2.0.0 (Kass et al., 2021). 

2.6. Model construction 

2.6.1. Model fitting, testing and projection 

We built a Maxent model based on the 111 filtered data (Supporting Information Table S1) and 

eight selected environmental variables (Table 1), and projected it onto four RCP scenarios (RCP 

2.6, RCP 4.5, RCP 6.0, and RCP 8.5) for future periods (the 2050s and 2100s). Each model was 

based on 10 replicated runs with random sub-sampling of 75% training and 25% testing data from 

the set of occurrence sites. The output was set to logistic format, which yields continuous values 

of habitat suitability for the species, ranging from 0 to 1 (Phillips and Dudı´k, 2008).  

2.6.2. The assessment of environmental variables 

Relative contributions of environmental variables to the model gain (Table 1) were tested with a 



jackknife test (Phillips, 2017) (Supporting Information Fig. S6). We also plotted response curves 

showing the effect of the single environmental variables on projected habitat suitability 

(Supporting Information Fig. S7). 

2.7. ArcGIS visualization 

The model results were fed into ArcMap 10.4.1, to plot projections for two recognized 

representative concentration pathways (RCPs): RCP 2.6 and RCP 8.5. The plots contains 

continuous distribution maps (Fig. 2 and Supporting Information Fig. S8), binary distribution 

maps (Supporting Information Fig. S9) and distribution change maps (Fig. 3 and Supporting 

Information Fig. S10). The centroid shift map is in Fig. 4 for RCP 6.0 and RCP 8.5.  

The continuous habitat suitability projections were loaded into ArcMap 10.4.1 (Fig. 2), to 

calculate average probabilities of suitability to allow calculating threshold values (0.43) 

discriminating suitable from non-suitable habitats (Liu et al., 2005). Based on this threshold, we 

converted the continuous habitat suitability for E. denticulatum to binary values (0 or 1) 

(Supporting Information Fig. S9). These maps were transformed to the Equal-Area Cylindrical 

projection to calculate distribution changes (Table 2 and Fig. 3), and the distribution centers 

(centroids) (Fig. 4). From these distribution centers, we could estimate migration paths under 

climate change (Supporting Information Table S4).  

2.8. Extrapolation, Clamping and Multivariate Environmental Similarity Surfaces (MESS) 

The multivariate environmental similarity surfaces (MESS) analysis measured the differences in 

the environmental conditions between present-day occurrence records and study regions in the 

present and future using the R package “rmaxent” (Baumgartner and Wilson, 2021; Elith et al., 

2010), which could reflect the degree of extrapolations risk (Supporting Information Fig. S11). 

When environmental conditions at a pixel fall well out of the range of values the model was 

trained with, the extrapolation will become unreliable, ‘clamp’ assumption should be applied in 

this case, meaning they will be set to the maximum value captured by training samples. The values 

shown in the clamp pictures give the absolute difference in predictions when using vs not using 

clamping (Supporting Information Fig. S12). Predictions were interpreted only with an assessment 

of clamping predictions. 

3 Results 

3.1. Model optimization and evaluation 



The best one (tuned model) of the 240 candidate models was characterized by RM=2.4 and 

feature class=LQ. By the null simulation, the AUCval. and OR10 exhibited significant differences 

between the tuned and null models (Supporting Information Fig. S5), indicating both metrics were 

valid to the models applied, and the tuned model performance was much better than that of null 

models (Supporting Information Fig. S5). 

Among 240 candidate models, the tuned model exhibited the lowest OR10 (0.0600±0.0741) and 

highest AUCval. (0.8204±0.0215), suggesting that the model was not overfitted, and could well 

discriminate test records from background localities (Hanley and McNeil, 1982), respectively. 

Low AUCDiff. values also supported the model’s low risk to overfit (0.0313±0.0218). Besides, the 

large pROC value (2.044±0.029) indicated that the model was superior to the null expectations 

with statistical significance. The CBItest value (0.6947±0.2762), suggested that the predicted model 

matched well with the E. denticulatum occurrence records (Supporting Information Fig. S4; Table 

S5).  

3.2 Clamping and MESS 

The MESS value in the areas north of 40°N and south of 30°S was below -50, which means that 

this region showed large differences in environmental conditions compared with the conditions in 

the present occurrence records, indicating a high risk of extrapolation. The MESS values were 

slightly negative in the Sunda Shelf, which implies that there was a slight risk of extrapolation to 

environmental conditions that the species does not experience in its present range of distribution 

(Supporting Information Fig. S11). The MESS maps for future predictions were highly similar to 

the MESS map for present-day conditions, but showed overall slightly larger negative values, 

suggesting that the future environments in the region will exceed values experienced in the present 

range of distribution. MOD (most different environmental variables) maps show the variables that 

were the most different from variables at the occurrence locations. In the future, these were 

SSTrange and SSTmean, especially in Central Indo-Pacific Realm. 

 The values shown in the clamp pictures give the absolute difference in predictions when using 

vs not using clamping (Supporting Information Fig. S12). The values were lower for the present 

day and future map, indicating the predicted area is less affected by variables being outside their 

training range. 

3.3. The assessment of environmental variables 



3.3.1. Variable contributions analysis 

After eliminating the environmental variables with a correlation of |r|>0.75 (Supporting 

Information Fig. S2), we retained 8 environmental variables (Table 1): distance to shore (land 

distance), water depth, annual range of sea surface temperature (SSTrange), annual mean of sea 

surface temperature (SSTmean), annual range of sea surface salinity (SSSrange), annual mean of sea 

surface salinity (SSSmean), annual mean of currents velocity (Cvmean), and annual min of currents 

velocity (CVmin). According to the permutation importance to the model, the distance to shore 

contributed the highest (57.4%), SSTrange ranked second (11.2%), and SSTmean ranked fourth. 

CVmean and CVmin ranked third and fifth, respectively. The accumulated permutation importance of 

the three most important environmental factors reached 76%. 

3.3.2. Jackknife test 

The Jackknife test results showed that the distance to shore and water depth were the most 

effective variables of the model (Supporting Information Fig. S6 a), and SSTrange was also was 

also an important factor in E. denticulatum distributions (Supporting Information Fig. S6 b). All 

the data are from the 10 replicate runs (Supporting Information Fig. S6).  

3.3.3. Response curves of environmental variables 

Habitat suitability decreased with increasing SSSrange, but increased with increasing SSSmean, 

CVmin, and CVmean. Concerning the SSTrange and SSTmean, the habitat suitability showed an 

optimum at ca. 7°C and 23°C, respectively, and a drop towards smaller and higher values 

(Supporting Information Fig. S7). When setting the threshold for suitable habitat to 0.43, the 

suitable ranges of key environmental variables were: SSTmean between 20℃ and 29℃, SSTrange 

between 2.5℃ and 12.5℃, SSSrange between 0 and 4.0 PPS, and SSSmean between 32.5 and 40 PPS. 

The distance within 500 km was negatively correlated with the habitat suitability, therefore 0-50 

km shore distance was considered suitable to the seaweed distributions. 

3.4. Prediction of potential distributions 

3.4.1. Continuous and binary distributions  

In the Central Indo-Pacific Realm, E. denticulatum was predicted to find suitable habitats in 

Malaysia, Indonesia, the Philippines, Vietnam, and Australia (Fig. 2). In the Western Indo-Pacific 

Realm, it was predicted to find suitable conditions in the Arabian Province, Red Sea and the Gulf 

of Aden Province, and also at places scattered along the east African coast. In coastal areas above 



30° in latitude, the species was predicted to be sparsely distributed.  

Presently, E. denticulatum occupied 18.3% of the suitable habitat in the near-shore regions. 

Under the 2050 RCP 2.6 scenario, its niche occupation decreased to 16.7%, then decreased further 

to 16.6% under the 2100 RCP 2.6 scenario. In the RCP 8.5 scenario, niche occupation was 16.2% 

and 14.1% for the 2050s and 2100s respectively (Table 2). Generally, the difference in predicted 

suitable habitats between the four scenarios was significant. With the increasing severity of 

representative Concentration pathways (RCPs), the proportion of suitable habitats decreased 

gradually (Fig. 5), suggesting that the distribution of E. denticulatum is affected by gas emission 

and global warming. 

3.4.2. Distribution changes 

We predict that the suitable habitat of E. denticulatum will shrink in the Central Indo-Pacific 

Realm, especially on the Sunda Shelf, including most regions of Malaysia and Indonesia; while its 

distribution will remain comparatively stable from Djibouti to South Africa; central Australia will 

be also less variable; the range along the Arabian coasts will contract slightly. The models predict 

E. denticulatum to extend its range e along the south coast of Australia (Fig. 3). In general, the 

range contraction will be much larger than the range expansion, especially in the Central 

Indo-Pacific Realm, and this might be our further focus area to conduct seaweed resource research 

in the future.  

E. denticulatum’s northern distribution boundary was predicted to contract less than its southern 

boundary. With increasing severity of the representative concentration pathways (RCPs), the 

species’ poleward range expansion was predicted to decrease and the lower latitude range was 

predicted to increasingly contract except for the case of RCP 6.0 (Fig. 3).  

Compared with the conditions in occurrence data, the most different variable in the future was 

sea surface temperature (SSTmean and SSTrange) (Supporting Information Fig. S11), particularly in 

regions where its future distribution was predicted to change significantly (i.e. the Central 

Indo-Pacific Realm). 

3.4.3. Centroid changes 

The centroids and their changes under the four RCP scenarios were predicted to move about 

170-425 km south-westward from south of Indonesian waters (coordinates: 100.187, -2.34158) in 

equatorial regions (Fig. 4); the migration distance would increase with the increasing severity of 



the representative concentration pathway (except under the RCP 4.5 scenario) (Supporting 

Information Table S4).  

4. Discussion 

Present-day distribution projections and environmental drivers 

Based on the MaxEnt model, distance to shore, water depth and sea surface temperature are 

identified as the most important variables delimiting the distribution of E. denticulatum. The 

response curves indicated that E. denticulatum finds suitable habitat where SSTmean remains above 

20 °C and currents velocity is relatively high, which is consistent with physiological and 

biochemical studies (Borlongan et al., 2017; Kumar et al., 2020; Lideman et al., 2013) and 

literature record (Carpenter and Niem, 2001). The suitable habitat range of E. denticulatum is 

centered within 30°S and 30°N in the Central and Western Indo-Pacific Realm, which matches the 

currently available distribution information of E. denticulatum. However, our prediction of the 

coverage of the currently suitable distribution area in this region is only 18.3%, which is much 

lower than simulations on AquaMap website (Kaschner eet al., 2019) and our expected results. 

First, the less available distribution data due to incorrect species identification may cause an 

underestimate of the potential distribution of E. denticulatum. The morphological plasticity of 

Eucheumatoids may cause E. denticulatum to be misidentified as Kappaphycus species, especially 

in the early stage, when relying only on morphological observation and farmer experience to 

identify species (Conklin et al., 2009). On the other hand, Lim et al (2014) have found the 

unexpected low Eucheuma species coverage compared with Kappaphycus, and the biodiversity of 

Eucheuma species was scarce according to molecular analysis throughout Southeast Asia. Thus 

the actual natural distribution of E. denticulatum in the Indo-Pacific Realm may not be promising, 

and this situation will be exacerbated by future global warming. The genetic and distribution 

situation for E. denticulatum remains to be studied by broadly sampling expeditions in the future. 

Range shifts and its consequences under climate change 

Seawater temperature is expected to increase with global warming (Muller et al., 2009). In our 

study, many regions were predicted to become unsuitable for E. denticulatum distribution under 

the future RCP scenarios, especially in the Sunda Shelf in the Central Indo-Pacific Realm, which 

should be of special interest to conservation planners. Besides, we predict range expansion along 

with the south coast of Australia and range contraction in equatorial regions under the predicted 



southward movement. These findings provide the first step to understanding the climate change 

response of tropical red seaweeds, to predict changes in Eucheumatoids production in the future. 

As a raw material for the extract of carrageenan, Eucheumatoids are widely cultivated in 

Southeast Asia countries, mainly Indonesia and the Philippines owing to the suitability of climate 

and environmental conditions (Lim et al., 2014). It reached production of 10,831,200 tons in the 

world in 2018 (including 1,597,300 tons of Kappaphycus alvarezii and 9,237,500 tons of 

Eucheuma spp.) (here Eucheuma spp. mainly refers to E. denticulatum) (FAO. 2020), serving as a 

source of livelihood to tens of thousands fisherfolks in Southeast Asia. However, in our study, the 

suitable habitat would decrease most significantly under the four future climate scenarios in the 

Sunda Shelf, which includes most regions of Malaysia and Indonesia. This is certainly bad news 

for the entire Eucheumatoids farming industry in Southeast Asia. Besides, we predicted the trend 

of poleward movement for E. denticulatum.  

Accordingly, the breeding industry of Eucheuma needs to make appropriate adjustments. For 

example, future seaweed farms may need to migrate to higher latitudes to ensure suitable 

conditions for E. denticulatum growth and reproduction. In the future, the germplasm of E. 

denticulatum can be improved through artificial mutagenesis or hybridization, and the 

high-temperature resistant strains can be selected and cultivated for breeding and production of E. 

denticulatum, to cope with global climate change. 

Prediction on optimistic distribution in the future 

Our prediction results showed that most of the coastal areas of Australia were potential 

distribution areas for E. denticulatum, which was suitable for the growth of E. denticulatum, but 

there were few reports on Eucheumatoids breeding in Australian waters. The potential use-value 

of this area needs to be further studied. The future will still need more Marine environmental 

factors (pH, Chlorophyll, nutrient, etc.) and biological interactions factors (such as competition for 

light with microbes and grazed by sea urchins, sea stars and rabbit fish) (Mateo et al., 2021) built 

into the model, to evaluate the region of E. denticulatum comfortable by nature. Our work would 

provide the reference for further rational development and utilization of sea area resources. 

5. Conclusion 

Our study shows that E. denticulatum is mainly distributed in the Central and Western 

Indo-Pacific Realm with Indonesia as the center, which matches the current available distribution 



information of E. denticulatum. The most important environmental factors for the distribution of E. 

denticulatum include distance to shore, water depth and sea surface temperature. Based on four 

representative concentration pathways (RCP) scenarios, the predicted future distribution and range 

change indicate that by 2100, the distribution of RCP will change significantly in the central 

Indo-Pacific Realm especially in the Sunda shelf, while poleward along the south coast of 

Australia. And the southward shift of its distribution center also shows this similar trend. Our 

results indicate that we should be alert to the effects of future climate change on tropical algae, 

and make appropriate adjustments to Eucheumatoids culture and breeding industry. This study 

provides an important theoretical basis for the conservation of E. denticulatum germplasm 

resources, the development and utilization of new sea areas, the direction of breeding and the 

sustainable development of carrageenan industry. In the future, regional data should be combined 

to simulate regions with significant changes in range, and genetic data should be integrated to 

clarify the effects of future climate change on species genetic diversity and population structure, 

and physiological and biochemical experiments should be carried out to understand the adaptation 

mechanism of Eucheumatoids to climate change. 
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Figure legends 

Figure 1. Study region and occurrence records. 

Blue triangles indicate occurrence records of E. denticulatum used to develop Species Distribution 

Models (111 points used). 

Figure 2. Continuous distribution maps of E. denticulatum for present-day. 

Continuous values from 0 to 1.0 indicate a gradual increase in habitat suitability, from blue to red 

in color. The solid lines represent the equator and the dashed lines represent the tropic of capricorn 

and tropic of cancer. 

Figure 3. Distribution change maps. 



Predicted range shifts of the E. denticulatum along Indo-Pacific coasts from present-day to 2100s 

under RCP 2.6 and 8.5 scenarios. Stable areas (in blue) indicate habitats that are predicted to 

remain suitable, contraction areas (in red) are predicted no longer to be suitable in the future; 

expansion areas (in purple) represent habitats that would be suitable in future. The solid lines 

represent the equator and the dashed lines represent the tropic of capricorn and tropic of cancer. 

RCP: representative concentration pathway. 2100S: 2090-2100. 

Figure 4. The centroids change of E. denticulatum for RCP 6.0 and RCP 8.5 scenarios from 

present to 2100s. 

The red sphere represents the centroid of the RCP 8.5 scenario (2050s and 2100s), while the blue 

sphere represents the centroid of the RCP 6.0 scenario (2050s and 2100s), the purple sphere is the 

centroid in the present-day. The corresponding colored line represents the centroid change route of 

the respective scenario. The dashed line represent the equator. 

RCP: representative concentration pathway. 2050s: 2040–2050, 2100s: 2090-2100. 

Figure 5. Suitable range change (%) over time. 

The x-axis represents different RCP scenarios, and the y-axis represents the suitable habitat 

proportion. Lightblue, mistyrose and lavender color represent 2100s, 2050s, present stage , 

respectively.  

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Table legends 

Table 1. Permutation importance (%) and detailed information of marine predictors in 

maxent model. 

Values in bold indicate important predictors. 

Table 2. Range size change (%) from present-day to the future under climate change. 

RCP: representative concentration pathway. 2050s: 2040–2050, 2100s: 2090-2100. 

Supporting material legends 

Figure S1. Background points. 

Background points that provided information on environmental conditions within the 

distributional range of E. denticulatum (10000 points used). We limited the study extent to water 

depths above 100 m (Nelson et al., 2015). 

Figure S2. Heatmap of the correlation between environment variables.  



The heatmap shows color-correlation between any pair of the 20 environmental variables, plotted 

with the R package ‘corrplot’. The darker the color, the stronger the correlation. We eliminate one 

among highly correlated predictors (|r| > 0.75) (Dormann et al., 2013).  

SSS: sea surface salinity, CV: Current velocity , SST: sea surface temperature, Land_distance: 

distance to shore. 

Figure S3. The Maxent ROC for five models. 

The receiver operating characteristic curve (ROC) for five models method for 10 runs. The deep 

red line represents the average training AUC (area under the receiver operating characteristic 

curve) of ten runs; the deep blue line represents the average test AUC of ten runs. The value > 

0.90 were considered “excellent” and in the range 0.7–0.9 “reasonable predictions”. 

rf: random forest; maxent: maximum entropy; brt: boosted regression trees; glm: generalized 

linear model.  

Figure S4. Evaluation results of Maxent model performance. 

The auc.val and or.mtp values as performance indicators for models (average over 10 replicate 

models) with different feature classes (fc). The color of the points and lines represents the 

regularization multiplier (rm). auc: validation of area under the receiver operating characteristic 

curve. Values > 0.90 were considered “excellent” and in the range 0.7–0.9 “reasonable 

predictions”. or.mtp: the minimum training presence’omission rate. Values >0 typically indicate 

model overfitting. 

Figure S5. Comparison between null models and tuned model performance. 

(a) Histogram and (b) violin plot of evaluated metrics. auc: validation of area under the receiver 

operating characteristic curve. Values > 0.90 were considered “excellent” and in the range 0.7–0.9 

“reasonable predictions”. or.10: 10% training omission rate. This value than the expectation of 

exceeds 10% typically indicates model overfitting (Fielding and Bell, 1997; Peterson et al., 2011) 

Figure S6. The results of the jackknife test. 

The results of the jackknife test showing (a) variable importance using training gain, (b) variable 

importance using test gain, and (c) AUC on test data. Values shown are averages over 10 replicate 

runs. AUC: validation of area under the receiver operating characteristic curve. bio2 and 6 are 

annual mean and range of sea surface temperature; bio8 and 12 are annual mean and range of sea 

surface salinity; bio14 and 15 are annual mean and min of currents velocity; bio89: water depth; 



bio90: distance to shore. 

Figure S7a-h. Response curves of the eight environmental variables. 

The curves show how the mean (red line) logistic probability of the presence of E. denticulatum 

depends on each variable over10 replicate models; the range of two standard deviations is 

represented as a blue shade. 

SSS: sea surface salinity, CV: Current velocity , SST: sea surface temperature, Land_distance: 

distance to shore. 

Figure S8a. Continuous distribution maps of E. denticulatum for the future (the 2050s and 

2100s) conditions under different climate change scenarios (RCP 2.6 and RCP 8.5). 

Continuous values from 0 to 1.0 (blue to red) indicate a gradual increase in habitat suitability. The 

solid lines represent the equator and the dashed lines represent the tropic of capricorn and tropic of 

cancer.  

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Figure S8b. Continuous distribution maps of E. denticulatum for the future (the 2050s and 

2100s) conditions under different climate change scenarios (RCP 4.5 and RCP 6.0). 

Continuous values from 0 to 1.0 (blue to red) indicate a gradual increase in habitat suitability. The 

solid lines represent the equator and the dashed lines represent the tropic of capricorn and tropic of 

cancer. 

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Figure S9a. Binary distribution maps of E. denticulatum for present-day and future (the 

2050s and 2100s) under different climate scenarios (RCP 2.6 and RCP 8.5). 

The solid lines represent the equator and the dashed lines represent the tropic of capricorn and 

tropic of cancer.  

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Figure S9b. Binary distribution maps of E. denticulatum for future (the 2050s and 2100s) 

under different climate scenarios (RCP 4.5 and RCP 6.0). 

The solid lines represent the equator and the dashed lines represent the tropic of capricorn and 

tropic of cancer.  

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Figure S10a. Distribution change maps. 



Predicted range shifts of E. denticulatum along Indo-Pacific coasts from present-day to 2050s 

under different climate scenarios (RCP 2.6, 4.5, 6.0, 8.5). Areas predicted to remain suitable (in 

blue), to become unsuitable (in red) , and to become suitable (in purple) in the future. The solid 

lines represent the equator and the dashed lines represent the tropic of capricorn and tropic of 

cancer. 

RCP: representative concentration pathway. 2050s: 2040–2050.  

Figure S10b. Distribution change maps. 

Predicted range shifts of the E. denticulatum along Indo-Pacific coasts from the 2050s to 2100s 

under different climate scenarios (RCP 2.6, 4.5, 6.0, 8.5). Stable areas (in blue) indicate habitats 

that are predicted to be suitable, contraction areas (in red) are predicted no longer to be suitable; 

expansion areas (in purple) represent habitats that would be suitable in the future. The solid lines 

represent the equator and the dashed lines represent the tropic of capricorn and tropic of cancer. 

RCP: representative concentration pathway. 2050s: 2040–2050, 2100s: 2090-2100. 

Figure S10c. Distribution change maps. 

Predicted range shifts of the E. denticulatum along Indo-Pacific coasts from present-day to 2100s 

under different climate scenarios (RCP 4.5 and RCP 6.0). Stable areas (in blue) indicate habitats 

that are predicted to be suitable, contraction areas (in red) are predicted no longer to be suitable in 

the future; expansion areas (in purple) represent habitats that would be suitable in the future. The 

solid lines represent the equator and the dashed lines represent the tropic of capricorn and tropic of 

cancer. 

RCP: representative concentration pathway. 2100S: 2090-2100. 

Figure S11. Multivariate environmental similarity surface (MESS) maps and most different 

environmental variables (MOD) maps. 

Lower negative values indicate increasingly different climatic conditions between present-day and 

future scenarios, and higher positive values increasingly similar conditions (Elith et al., 2010). The 

MOD map shows which variable was most different compared with conditions in occurrence data. 

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Figure S12. The clamp maps. 

These pictures showed where the prediction is most affected by variables being outside their 

training range. The values shown in these pictures give the absolute difference in predictions when 



using vs not using clamping (Clamping means that environmental variables and features are 

restricted to the range of values encountered during training). Warmer colors show areas where the 

treatment of variable values outside their training ranges is likely to have a large effect on 

predicted suitability.  

RCP: representative concentration pathway. 2050s: 2040–2050. 2100s: 2090-2100. 

Table S1. Ocurrence records and source of E. denticulatum. 

Table S2. Twenty marine environmental variables  

They were considered to be relevant for habitat suitability of E. denticulatum. 

Table S3. Comparison of model performance between different modeling methods. 

AUC: area under the receiver operating characteristic curve; TSS: the true skill statistic. For AUC, 

models with values > 0.90 were considered “excellent” and in the range 0.7–0.9 “reasonable 

predictions”. For TSS, models with values > 0.8 were considered “excellent” and in the range 

0.4–0.8 “good”.  

RF: random forest; Maxent: maximum entropy; BRT: boosted regression trees; GLM: generalized 

linear model. 

Table S4. The coordinates and shifts of E. denticulatum distribution centers from today to 

the future (the 2050s and 2100s) under RCP 6.0 and RCP 8.5 scenarios.  

RCP: representative concentration pathway. 2050s: 2040–2050, 2100s: 2090-2100. 

Table S5. Eight metrics for measuring model-performance (models with different feature 

class and regularization multiplier). 

FC: feature class. RM: regularization multiplier. AUCval.: validation area under the receiver 

operating characteristic curve. AUCtrain: train area under the receiver operating characteristic 

curve. AUCdiff.: the difference between training and testing AUC. OR10: 10% training omission 

rate. ORmtp: the minimum training presence’ omission rate. CBIval.: the validation Continuous 

Boyce index. pROC: partial Receiver Operator Characteristic ratio. 
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