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Abstract
Discrete mathematics and mathematical modelling, along with the educational discourse surrounding these, have many con-
nections. However, ways that the educational discourse on discrete mathematics can benefit from the inclusion of examples 
of mathematical modelling and the accompanying discussion are currently under-researched. In this paper, we elaborate on 
the educational potential of examples of mathematical modelling based on the usage of methods from discrete mathematics, 
with a focus on secondary education. We first describe vertex-edge graphs as possible topics of discrete mathematics that are 
accessible at school level within modelling lessons. Secondly, in the context of a case study, we describe modelling activities 
with students at the end of lower-secondary education, using a classical problem of discrete mathematics originating from 
the Königsberg bridge problem. The students’ solution processes for this optimisation problem based on graph theory are 
described. Their approaches are examined referring to the phases of the modelling cycle, using the method of qualitative 
content analysis. We studied in particular the extent to which students use concepts related to vertex-edge graphs in specific 
sub-phases of the modelling process. The analysis allows the required sub-competences of modelling to be identified and 
the connection of these competences with discrete mathematics to be worked out. On the basis of this analysis, educational 
opportunities of teaching discrete mathematics and mathematical modelling are assessed. Overall, we point out the possi-
bilities and opportunities for using examples from the field of discrete mathematics to acquire modelling competences and 
to foster the linkage of mathematical modelling and discrete mathematics at school level.
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1  Introduction

Making connections between discrete mathematics and 
mathematical modelling holds great potential from the per-
spective of mathematics education, and this potential is fur-
ther elaborated in the context of this paper. Using discrete 
mathematics methods allows for a broader—and in part less 
formal—approach to working with mathematical models, 
since, for example, the concept of infinity can initially be 
avoided. Limits and infinity usually create high learning 
barriers and epistemological problems for secondary school 

students or for students at university (Goldin, 2004). Meth-
ods of discrete mathematics in connection with competence 
in mathematical modelling should be an essential part of a 
modern curriculum (Hart & Martin, 2018), as discrete math-
ematics is considered to have high value in mathematical 
education (Beutelspacher & Zschiegner, 2014).

We first present different approaches to discrete math-
ematics in connection with mathematical modelling in 
secondary education and explain the potential for solving 
concrete modelling problems with discrete models. We 
then detail the educational aspects of discrete mathematics 
and mathematical modelling. These are manifested at lev-
els of content, progressive technological development, and 
discussion of discrete models in the context of modelling 
processes. This analysis leads to the question of the role of 
discrete ideas concerning students’ modelling processes. In 
a case study, we investigated the actual use of these ideas 
in detail. In this way, the necessary sub-competences of 
modelling could be identified and connections with discrete 
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mathematics using the example of a graph-theoretical prob-
lem could be worked out, to show opportunities and possi-
bilities for promoting the link between mathematical model-
ling and discrete mathematics in school, thereby potentially 
strengthening the teaching and learning of both discrete 
mathematics and mathematical modeling.

2 � Mathematical modelling and discrete 
mathematics in educational discussions

There is a long tradition of requiring real-life applications 
to be included in mathematics education, and mathematical 
modelling and related modelling competences have finally 
become a central component of national curricula (Kaiser, 
2020; Vorhölter, Greefrath, et al., 2019).

In the past decades, there have also been repeated calls for 
the consideration of modern mathematical subject areas for 
mathematics education that are also attributed proximity to 
mathematical modelling. In addition to stochastics (Chick & 
Watson, 2003), these themes include discrete mathematics in 
particular (Anderson et al., 2004; Dolgos, 1990).

Even during the 1980s and 1990s, there was intensive 
discussion about discrete models in the International Com-
munity of Teachers of Mathematical Modelling and Applica-
tions (ICTMA) (e.g. James & Wilson, 1986; Street & Street, 
1998; van den Heuvel & Krabbendam, 1991; Ziegenbalg, 
1984). In these contributions, teaching proposals with dis-
crete models of growth behaviour, graph theory and differ-
ence equations were presented from a modelling perspective. 
In the educational discussion over the following decades, 
empirical studies were carried out that integrated mathe-
matical modelling and discrete mathematics, and researchers 
pointed out that discrete mathematics would be indispensa-
ble for a modern curriculum (Hart & Martin, 2018).

In the following sections, we work out the connection 
between discrete models and mathematical modelling.

2.1 � The current discourse on mathematical 
modelling

According to Pollak (1977, p. 255 ff.), mathematical model-
ling refers to a specific aspect of applied mathematics that 
is currently described using repeated work through a mod-
elling cycle. The modelling cycle describes the expected 
activities of students and provides metacognitive help (Still-
man, 2011). Currently, there exist many descriptions of the 
expected modelling activities by students. One detailed mod-
elling cycle was developed by Kaiser and Stender (2013), 
whose application is described as an example in a case study 
in the second part of the paper. However, it should be noted 
that there exist many nuances of the modelling cycle that 
we cannot unpack due to space limitations (for a detailed 
overview, see, e.g., Kaiser, 2017). In this modelling cycle, 
the process of the model’s individual development from an 
initial real-world situation to the actual model is presented as 
the first phase, which usually includes several simplification 
steps. This modelling phase is followed by translation into 
mathematics, from which a mathematical model is devel-
oped. With the help of this model, a mathematical solution is 
then determined, and this finally has to be related to the real 
problem again by interpreting and validating a solution in 
the original real-world situation (see Fig. 1). This modelling 
cycle describes the various sub-processes of mathematical 
modelling, such as understanding and simplifying, in more 
detail than modelling cycles from applied mathematics (e.g., 
Ortlieb, 2004; Pohjolainen & Heiliö, 2016).

An important construct within the modelling discourse is 
the competence of students across various educational levels 
in modelling. This competence enables them to identify a 
problem in a real-world situation, translate it into mathemat-
ics and interpret and validate a solution in relation to the 
given situation (Niss et al., 2007, p. 12). Modelling compe-
tence also refers to the willingness to work on mathematical 
modelling problems through mathematical means, and it is 

Fig. 1   Modelling cycle, from 
Kaiser and Stender (2013)
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therefore distinguished from ability (Kaiser, 2007; Maaß, 
2006).

The construct of modelling competence is currently 
characterised by sub-competences that are connected to the 
various phases of the modelling cycle (cf. Fig. 1). In addi-
tion, more comprehensive aspects are also included in the 
construct, such as the ability to carry out a complete model-
ling process independently, use metacognitive knowledge 
and structures and critically reflect the modelling cycle (for 
an overview on this discourse, see Cevikbas et al., 2021).

As a result of empirical studies, many researchers have 
pointed out that modelling tasks present difficult and com-
plex work for students (see Kaiser, 2017, for an overview), 
and there are many barriers that students have to overcome 
(Galbraith & Stillman, 2006). Using metacognitive strategies 
can help students remove cognitive barriers during the mod-
elling process. They can focus on the selection of a strategy, 
including the incorporation of alternative strategies. Eventu-
ally, the successful implementation of the chosen strategy 
will depend on both the students’ individual resources (in 
terms of strategies) and the task (Stillman, 2011; Vorhölter, 
Greefrath, et al., 2019; Vorhölter, Krüger, et al., 2019).

2.2 � Discrete mathematics in school

Discrete mathematics in school deals with configurations 
that can be described by a finite or countable set of relations. 
For example, the fields of combinatorics, number theory, 
graph theory, game theory, cryptography and statistics may 
all be counted as discrete mathematics (Ouvrier-Buffet, 
2020). Currently, the advantages of discrete mathematics 
for mathematics teaching are seen on three levels, namely, 
the “content, process, and affect goals of mathematics educa-
tion” (Hart & Martin, 2018, p. 18). The first level consists 
of the content, which is also evident in the analysis of new, 
interesting, and relevant contexts. Here, one can consider 
various important problem types, such as from the areas 
of combinatorics, iteration and recursion, as well as graph 
theory.

The second level refers to process-related competences 
such as reasoning, communicating, problem-solving and 
modelling, and it can be promoted particularly well through 
discrete mathematics (Hart & Martin, 2018). These pro-
cesses form a central component of current educational 
standards in various countries (KMK, 2012; NCTM, 2000). 
At this level, discrete mathematics content can also be con-
sidered a tool for mathematical work from a process-related 
perspective. For example, vertex-edge graphs can be consid-
ered as modelling tools (Greubel et al., 2020; Thomas et al., 
2015), and it would be expected that mathematical model-
ling with discrete models would be a central topic area in 
school and in the modelling discussion. However, only a few 
empirical studies on this topic have been carried out so far.

The third level refers to affect-related goals. Discrete 
mathematics can help students “see mathematics in a new 
light” (Hart & Martin, 2018, p. 17), and it is thus seen as 
particularly suitable for offering teachers a new image of 
mathematics. In this way, it enables them to motivate their 
students about the subject (DeBellis & Rosenstein, 2004).

Many suggestions for topics that are suitable for teach-
ing secondary mathematics have been developed over recent 
decades. The possibility of using challenging problems 
that are at the same time easy to understand is emphasised 
(Anderson et al., 2004). In addition to many inner-math-
ematical problems from number theory, suggestions from 
coding theory have also been developed, such as on the EAN 
and ISBN systems. For secondary school, and partly also 
for primary school, graph theory in particular is highlighted 
as a possible subject area, as it is easily accessible for stu-
dents at nearly all grades, and represents new content outside 
the curriculum that can be worked on without prerequisites 
(Gibson, 2012). By using graphical representations, graph 
theory may be as intuitively accessible as certain algebraic 
problems (Steele, 2008). Students are often able intuitively 
to suggest mathematical generalisations (Amit & Neria, 
2008). Even more mathematically complex concepts such 
as Euler paths—i.e., edge sequences of a vertex-edge graph 
in which each edge is traversed exactly once without the start 
and end nodes having to be identical—can be easily taught 
with the help of illustrative problems. Vertex-edge graphs 
are therefore currently introduced to students as young as 
12 years old (van den Heuvel & Krabbendam, 1991). Suc-
cessful examples described for mathematics teaching use a 
variety of mathematical ideas from, among others, elemen-
tary graph theory, including complete vertex-edge graphs 
and Euler paths (Street & Street, 1998). In universities, the 
results of an empirical study suggested that the inclusion of 
graph theory in mathematics teaching would be beneficial 
for the development of students’ modelling skills (Medová 
et al., 2019). For teaching mathematics at school, graph 
algorithms in particular are suggested, also with the inclu-
sion of visualisation through technology. For example, the 
questions of how optimally to drive a rubbish collection car 
(Geschke et al., 2005) or how to evacuate a building (Ruzika 
et al., 2017) are addressed with spreadsheet analysis and 
dynamic geometry. The examples also show another poten-
tial of discrete mathematics and mathematical modelling in 
dealing with optimization problems that have traditionally 
been solved with functional descriptions and calculus. Opti-
mization problems are easily accessible and of high practical 
relevance, and have motivational power for students. There 
is a large number of examples of combinatorial optimization 
problems for students in discrete mathematics (DeBellis & 
Rosenstein, 2004; Schuster, 2004). The advantages of this 
topic are also seen especially at the second and third levels, 
that is in the process-oriented acquisition of competences 



868	 G. Greefrath et al.

1 3

and affect-related goals. In this context, the promotion of 
students’ motivation is emphasised and the connection of 
mathematics with real life is considered important (Fer-
rarello & Mammana, 2018).

2.3 � Connecting educational aspects

Connecting aspects of the different approaches of mathemat-
ical modelling and discrete mathematics for mathematics 
education can be identified from different perspectives.

A connecting perspective is of a content-related nature: 
“The power of discrete mathematics lies in mathematical 
modelling” (Hart & Martin, 2018, p. 5). This connection has 
also been recognised as relevant for mathematics education. 
In the 1980s and 1990s, teaching proposals for both math-
ematical modelling and discrete mathematics were discussed 
more intensively, and discrete models were seen as having 
particular potential for modelling (James & Wilson, 1986; 
Street & Street, 1998).

The advancing technological development is another 
perspective for considering discrete mathematics in the 
modelling discussion. Understanding how computers and 
their applications work requires knowledge of discrete 
mathematics in the context of modelling (Pollak, 2007). In 
the context of teaching discrete mathematics, the singular 
possibilities offered by technology have been pointed out 
(Durcheva & Varbanova, 2017; Weigand, 2004, 2014). 
This is also the case in the context of mathematical model-
ling (e.g., Greefrath et al., 2018; Keune & Henning, 2003; 
Sinclair & Jackiw, 2010). In this regard, some empirical 
results have already been reported (Hankeln & Greefrath, 
2021). For example, in a case study, Greefrath and Siller 
(2017) observed students working on a reality-based task 
with GeoGebra. They studied the phases of the modelling 
cycle in which digital tools were used, and the activities that 
were carried out using these tools, during modelling activi-
ties. They found out that the use of digital tools took place 
mainly within the phases of mathematising and mathemati-
cal work. In the context of a short experiment to investigate 
the potential of introducing complex dynamical systems into 
curricula, it was shown that the transition to working with 
a computer simulation system would require one or more 
types of processes of discretisation, for example, referring 
to time or space (Caron, 2019). Already as early as in the 
1980s, Ziegenbalg (1984) emphasised the usage of discrete 
models in the context of computer simulation in mathemat-
ics education.

A third perspective is the discussion of the choice of 
discrete models in the context of modelling processes. For 
example, James and Wilson (1986) and Ziegenbalg (1984) 
noted a greater proximity to real-world problems when 
modelling with discrete models compared to continuous 
ones. Nevertheless, James and Wilson (1986) emphasised 

that students should not be restricted to discrete or con-
tinuous models, and that a discrete model should not be 
considered a rough numerical approximation of a continu-
ous model.

Recent empirical studies have encountered more dif-
ferentiated results. For example, based on an evaluation 
of student difficulties, Castillo-Garsow et al. (2013) noted 
that continuous ideas of change might be more powerful 
than discrete ones. However, this need not be a contradic-
tion, as discrete mathematics can also be used to specifi-
cally model continuous structures and thus provide a new 
way of looking at specific phenomena (Ouvrier-Buffet, 
2020). Niss (2013) described discrete models as helpful 
in the course of working on data-based modelling prob-
lems—especially at the beginning of the mathematisation 
phase—that could then also be further developed into con-
tinuous models later on.

In a study to support the understanding among grade 
10 students of rate of change and velocity using discrete 
representations with scatter plots, qualitative analyses 
showed that by independently carrying out modelling pro-
cesses, the basic principles of infinitesimal calculus could 
be developed from the students’ reasoning about motion 
when supported by discrete representations (Doorman & 
Gravemeijer, 2009).

Observations in modelling problems on population 
growth by groups of students also showed a differenti-
ated picture of the benefit of discrete models. While dis-
crete models, which are rarely taught in school, would 
also be possible for population modelling, the students 
did not consider this option at the beginning and instead 
formulated a known function from their mathematics les-
sons. Another group, however, used a discrete model with 
a recursive formula, instead of a continuous model that 
they could not handle, and succeeded with the discrete 
approach (Kaiser et al., 2011). Overall, the actual use of 
discrete models probably depends on the mathematical 
methods available.

To summarise the current state of the art about the usage 
of discrete models within modelling activities, it can be 
noted that there are only a few empirical studies available, 
and these are based on smaller case studies. There exist 
empirical studies with students from secondary school, for 
example, on combinatorial problems such as the question 
of how many ways three flavours can be selected from six 
different options. Although there was a reference to reality, 
modelling was not at the core of this study (Coenen et al., 
2018).

Therefore, there is a strong need for empirical research 
into the actual use of discrete approaches within modelling 
processes, evaluating the potential and pitfalls of the usage 
of discrete mathematics in mathematical modelling activi-
ties in schools.
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3 � Research questions of the case study

While, on the one hand, the connecting elements of discrete 
mathematics and mathematical modelling are emphasised at 
the level of teaching proposals and in the field of technology, 
on the other, recent empirical studies show differentiated 
results while using discrete models in mathematical model-
ling processes (Castillo-Garsow et al., 2013; Kaiser et al., 
2011). Graph theory is seen as a particularly appropriate 
area for studies of authentic discrete modelling problems, 
since it is a central area of discrete mathematics that is easily 
accessible and can be treated without prerequisites, and there 
is usually no prior experience of it in school (cf. Sect. 2.2). 
In the empirical study described in the following sections, 
we examine in depth students’ concepts when working on 
discrete modelling problems from the area of graph theory. 
The aim of the study was to investigate which phases of the 
modelling cycle require particular attention (cf. Niss, 2013). 
Specifically, the following research question was examined:

To what extent do students use concepts related to vertex-
edge graphs in specific sub-phases of the modelling process?

4 � Method

4.1 � Design of the study

The study was conducted in a higher-track school in Ham-
burg (Germany) during so-called modelling days. These 
modelling days have been held for many years by the Math-
ematics Education Working Group at the University of Ham-
burg. They last for 2 days, directly after the winter term in 

February. Every year, entire 9th grade classes from differ-
ent schools take part. For this purpose, pre-service teach-
ers were trained at an educational seminar that focused on 
teaching modelling (Vorhölter, Greefrath et al., 2019). Dur-
ing the modelling days, the students were given a task and 
were observed while working on it in groups. The study 
we describe in the following took place during a period 
when schools were closed due to the coronavirus pandemic; 
therefore, the students collaborated digitally using a video 
conferencing tool. They worked on a complex modelling 
problem that they had previously selected from three that 
were provided. The task consisted of a problem related to 
‘city cleaning’ (see Fig. 2).

The problem was provided both on paper and as a video. 
During their work, the students were videotaped and super-
vised by two pre-service mathematics teachers who were 
asked to use the principal of minimal help. The working 
phase ended with the preparation of a presentation of the 
results of their work.

As the aim of the task was to support independent mod-
elling activities by the students, no further guidelines were 
given to them. This meant that they could use all aids, espe-
cially information sources, but did not have to do so.

The problem was chosen because it is a reality-based 
modelling problem that can be solved with ideas from graph-
theory by grade-9 students without any prior knowledge. 
Moreover, central graph-theoretical concepts such as Euler 
paths can be used to find a solution (see Sect. 2.2.).

A vertex-edge graph seems to be especially appropriate to 
support problem-solving because of its visual nature. After 
selecting the area of the city map to be cleaned, the stu-
dents could show the road network in a simplified form as a 
vertex-edge graph, allowing them to describe the streets as 

Fig. 2   City cleaning task City cleaning routes

The city cleaning service in Hamburg has a lot to do. Throughout the year, it disposes of
household waste; in autumn, it ensures that the streets are free of leaves, and in winter, it 
clears snow from them and collects Christmas trees. To save both �me and fuel, the service
is always trying to find the best route for these ac�vi�es. The ques�on that arises from this 
is:

What does an op�mal route for a selected area look like?

Develop a route that is as short as possible for an area nearby. The answers from the fol-
lowing ques�ons may help you:

• What criteria should the route fulfil?
• What informa�on do you need from the city map to solve this problem?
• Are there any differences between routes for rubbish removal, bags of leaves, Christmas 

tree collec�on and snow clearing?
• What should a street plan look like that makes it par�cularly easy to find the best route 

for the refuse collec�on vehicle?
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edges and the intersections as nodes (see Fig. 3). A further 
simplification of the problem can now be achieved by focus-
ing only on the vertex-edge graph (see Fig. 4). In further 
work, the degree of the nodes can be used directly to decide 
at which points roads must be covered twice. A possible 
vertex-edge graph with matching additional edges is shown 
in Fig. 5. For this purpose, a variant can then be determined 
in which the sum of these edges is as small as possible. With 
the help of this vertex-edge graph, a suitable Euler path can 
be found. However, it was not expected that the students 
would reach this point in their modelling activities.

4.2 � Sample and data collection

All students who had worked on the city cleaning task were 
asked to participate in the study, and all the reports of the 
groups in which all students volunteered to take part, were 
taken into account. Thus, the data base consists of video 
recordings of 8 female students of a grade-9 class (aged 
14–15 years) in a higher-track secondary school. The stu-
dents worked together in two small groups of four. The work 
phase comprised 9 h spread over two school days. Group 1 
worked on the task for a total of 6 h, 57 min; Group 2 for 
8 h and 37 min.

The four girls in the first group chose as their cleaning 
ground an area around the home of one group member, 
which was also very familiar to two of the others. They 
argued strongly based on real facts (such as parked cars, 
number of trees, traffic lights) and abstracted only slightly 
from these real facts. They regularly made sure that they 
were considering the task correctly, and referred in particu-
lar to the questions at the end of the task. They achieved their 
results by measuring different distances with a ruler.

The second group chose a sub-area that was promi-
nently located in the city centre, although its members 
were not very familiar with it. They intensively discussed 
the start and end points, but their arguments were based 
on experiments, not on theoretical considerations. Paral-
lel to the discussion of optimal start and end points, they 
discussed the weighting of the edges. In the first step, they 
considered the length of the route; in the second step, the 
time needed to drive through the route (caused, for exam-
ple, by traffic lights and road works) seemed relevant. 
After attempting the task once, they did not go back to it.

Fig. 3   Map with vertex-edge graph of the road network (Map by 
Openstreetmap, licence CC-BY-SA 2.0)

Fig. 4   Vertex-edge graph of the road network

Fig. 5   Vertex-edge graph of the road network with additional edges 
(Euler path)
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4.3 � Evaluation method

Qualitative text analysis based on the approach by Kuck-
artz (2014) was used to evaluate the video data. Through a 
theory-guided and methodologically prescribed procedure, 
existing theoretical prior knowledge can be used. At the 
same time, the possibility of considering the empirical mate-
rial in the evaluation process provides the necessary open-
ness for considering new categories. The relevant scenes of 
the videos were transcribed according to a content semantic 
transcription system based on the approach developed by 
Dresing and Pehl (2018, p. 20 ff.) and coded by two experts 
from the field of mathematics and two from the field of 
mathematics education consensually in a deductive–induc-
tive coding process. For this purpose, sampling units com-
prising sentences or whole sections of text on a certain topic 
were generated and then systematised in terms of content. 
Through this systematisation, categories with an abstract, 
classifying character and which reflected the content of the 
respective text passages were identified.

For this purpose, the phases of the modelling process in 
the video were first coded based on deductive codes. Analo-
gous to a modelling activity diagram developed by Bergman 
Ärlebäck and Bergsten (2010), the course of the modelling 
process could be analysed focusing on specific sub-phases. 
Likewise, scenes in which concepts related to vertex-edge 
graphs (see Sect. 4.3.2) were reconstructed and presented. 
Thus, two codes were assigned to each scene relevant to 
the research question, namely, one related to the modelling 
process, the other to concepts related to vertex-edge graphs.

4.3.1 � Category system for modelling processes

For the development of the category system for coding the 
sub-phases in the modelling process, the frequently used 
modelling cycle of Kaiser and Stender (2013), and the 
phases described there, were used. The categories were as 
follows: understanding, simplifying, mathematising, work-
ing mathematically, interpreting, validating and commu-
nicating. In the following, we have listed detailed descrip-
tions in order to clarify the nature of these sub-competences 
(Greefrath et al., 2013, p. 19; Kaiser, 2007; Maaß, 2006):

•	 Understanding: Students construct their own mental 
model of a given problem situation and thus understand 
the question.

•	 Simplifying: Students make assumptions related to the 
situation, identify influencing variables, establish rela-
tionships between the variables, and search for relevant 
information.

•	 Mathematising: Students transfer the relevant quantities 
and relationships—simplified, if necessary—into a math-

ematical model and choose a suitable mathematical form 
of representation for this.

•	 Working mathematically: Students apply heuristic strat-
egies and mathematical knowledge to solve the math-
ematical problem.

•	 Interpreting: Students translate mathematical results 
into extra-mathematical situations, generalise solutions 
developed for specific situations and represent problem 
solutions appropriately in language.

•	 Validating: Students check and reflect on solutions found, 
revise parts of the model if solutions to the situations are 
not appropriate and consider if other solutions or models 
are possible.

•	 Communicating: Students relate the answers they find to 
the real-world situation, and thus answer the question.

4.3.2 � Category system for concepts related to vertex‑edge 
graphs

For the discrete approaches, open codes were first identified 
and then further developed into categories (see Table 1).

5 � Results

The students took different paths while working on the task 
and also achieved different results.

They approached the problem intuitively and worked 
with the concrete city map, from which they chose a specific 
section. While Group 1 chose an area around their homes, 
Group 2 chose one in the city centre. They marked in blue 
the streets that had to be passed through. They then selected 
a starting point and marked the possible routes with red 
arrows. In principle, they worked with vertex-edge graphs, 
but did not indicate the special role of the corners. Here, 
considerations were made as to which roads had to be cov-
ered twice and how these distances could be kept as short as 
possible. Such a sketch is shown in Fig. 6.

The use of concepts in the context of vertex-edge graphs 
can be divided into two central groups referring to edges and 
graph structure. Overall, the ‘effectiveness’ (see Table 1) of 
focusing on edges was considered very frequently, for exam-
ple, when students discussed the question of not covering the 
longest distance twice.

In the following transcript excerpt, translated by the 
authors, the students talked about the question of whether 
driving down a road twice would make sense (i.e., driving 
through the edge twice):

## (Group 1, Part 1, Positions 49-52)
S2*: So you just drive this little piece twice. Is the 
question ... does that make sense?
S1*: Not really.
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##

This section was coded as ‘Consideration of roads cov-
ered twice in the context of edges’ (Codes: Effectiveness: 
Duplications). The students were in the phase of mathema-
tising with regard to the modelling processes.

Elsewhere, the students discussed the question of whether 
one should not run the longest distance twice:

## (Group 2, Part 2, Items 36-37)
S2*: I just took this one because it’s the longest route 
that you don’t have to take twice. But you couldn’t start 
here and end there either, because you don’t have to 
travel the final distance twice.
##

This section was also added to the codes ‘Effectiveness: 
Duplications’. However, the students were already in the 
mathematical work phase here because parallel calculations 
were being carried out. Such passages were identified 11 
times in Group 2.

Another result was the frequent usage of metrics by the 
students. Here, the weighting of road sections was consid-
ered: it was discussed how fast one could cover these roads. 
Different aspects of reality that had an influence on the 
weighting of the roads (edges) were considered.

However, it should be noted that the usage of metrics 
occurred significantly more frequently in Group 2 than in 
Group 1. The third concept that was used frequently—espe-
cially in Group 2—was one of start and end points. In the 
transcript, it is discussed where these should be. An example 
comes from Group 1:

## (Group 1, Part 1, Items 42-48).
S1*: And why are we starting there?
S3*: Because ... because you can only start from there.

Table 1   Categories of concepts related to vertex-edge graphs

Concepts related to vertex-edge graphs Description

Edges This category includes all codes in which students look more closely at the edges of the vertex-edge 
graph (not the nodes)

 Metrics This code is assigned to the weighting of road sections. This may be the length of a road or the presence 
of traffic lights or roadworks, etc., for which these roads should be avoided if possible (or at least 
should not be covered twice)

 Effectiveness: Duplications Consideration of roads covered twice
 Effectiveness: Omissions Consideration of omitted roads
 Cover Proportion of road coverage by the vertex-edge graph

Vertex-edge graph structure This category includes all codes in which students look more closely at the structure of the vertex-edge 
graph

 Subgraph Considerations for viewing a sub-graph
 Graph complexity Development of basic insights into which a Euler graph might be created become apparent
 Duplicates Considerations of road sections covered twice, whereby the double driving is explicitly not done for 

reasons of time or path saving (for example, because in reality it seems easier to turn right instead of 
turning left)

 Start and end points Considerations of where the start and end points should be; also considerations of tour or circle
 Directed graph Concrete: Consideration of one-way street
 Passage sense Consideration of whether the graph should be covered from A to B or from B to A (e.g. because of left 

turns)
Generalisation Discussion of transferring the model to other city districts or to other real situations

Fig. 6   Road map with edge markings (Map by Openstreetmap, 
licence CC-BY-SA 2.0)
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S2*: Because it’s a good place to start, because of all 
the one-way streets.
##

The students were talking about considerations of where 
the start and end points should be placed, in relation to the 
overall structure of the vertex-edge graph. At the same time, 
mathematisation activities took place with the aim of devel-
oping a mathematical model.

In addition to the consideration of the concepts concern-
ing edges, and the structure of the vertex-edge graph, there 
was also discussion in a few cases about the transfer of the 
model to other situations (only in Group 1). Usage of the 
concept of nodes could not be identified.

In both groups, all 7 sub-competences of mathematical 
modelling could be identified. In Figs. 7 and 8, and similarly 
to the ‘modelling activity diagram’ of Bergman Ärlebäck 
and Bergsten (2010), the first seven lines show the sub-
phases of modelling over time. It can be seen that the seven 
phases of modelling are not carried out in the given order. In 
the three lines below, the three main categories of concepts 
related to vertex-edge graphs are also shown over time. This 
makes it clear which concepts related to vertex-edge graphs 
could be identified at different phases in the modelling pro-
cess. The two extracts from the work of Group 1 shown 
above are from the first mathematisation phase (shown in 
green) in Fig. 7 and refer to the edges in the first case and to 
the structure of the graph in the second case. Overall, there 

is only one mathematisation phase by Group 1, in which 
concepts on graphs also could be identified at the same time.

Group 2 changed more frequently between the sub-phases 
of the modelling cycle than Group 1. While for Group 1, 
no focus on the modelling sub-phases could be identified, 
Group 2 showed a focus on working mathematically. Both 
groups also discussed concepts related to vertex-edge graphs 
over a long period of time. It should be noted that in Group 
1, interpreting and validating in connection with concepts 
on graphs over a longer period of time also played a role, 
whereas in Group 2, these activities were used only rarely. In 
Group 2, no generalisation could be identified for concepts 
related to vertex-edge graphs.

The simultaneous coding of the modelling sub-phases, in 
which the students worked intensively and there was usage 
of concepts with reference to vertex-edge graphs, enabled a 
detailed analysis regarding in which sub-phases of the mod-
elling cycle certain concepts were discussed. In the process, 
different emphases emerged for the two groups studied. In 
the following, both groups are presented individually.

In Group 1, there was no reference to vertex-edge graphs 
recognisable—i.e., comprehension of the problem—dur-
ing the typical first phase of modelling (see Table 1). These 
references emerged during the simplification phase. Here, 
different aspects were used (sense of passage, start and end 
point, subgraph) that were not explicitly used later; nev-
ertheless, the group obviously found its way to a solution. 
Mathematising activities were carried out with the use of 

Fig. 7   Work of group 1 over time

Fig. 8   Work of group 2 over time



874	 G. Greefrath et al.

1 3

four different concepts related to vertex-edge graphs. The 
effectiveness argument was used across all decisions in the 
subsequent sub-phases from the mathematisation phase 
onwards. In particular, duplications and omissions of roads 
(edges) were discussed here. Within the validation activi-
ties, different concepts related to vertex-edge graphs were 
discussed intensively in this group. An important aspect 
besides effectiveness was the complexity of the vertex-edge 
graph, which was identified in four different sub-phases of 
the modelling process. In the following transcript excerpt 
from Group 1, the students discuss the basic question of 
what a road network that is easy to navigate would look like. 
It relates to the complexity of the vertex-edge graph as well 
as to the simplification phase.

## (Group 1, Part 1, Items 12-14)
S2*: So if a road network ... [S2 draws, see Figure 9] 
... the black is now a road network. If that were the 
case, it would be the easiest, wouldn’t it? ... But that 
doesn’t really exist; there’s usually also something like 
that [drawn] here.
##

To summarise, a detailed overview of concepts related 
to vertex-edge graphs in the different sub-phases of model-
ling is shown in Table 2. The three examples from Group 1 
mentioned above are marked with bold numbers in the table.

In Group 2, no concepts related to vertex-edge graphs 
were discernible in three sub-phases of modelling—namely 
in understanding, simplifying and interpreting (see Table 3). 
A conspicuously large number of references to vertex-edge 
graphs could be found in mathematical work and also in 
mathematising. Mathematical work was associated with all 
concepts related to vertex-edge graphs (except omissions 
and transferability). Particularly central to mathematical 
work were effectiveness and the start and end points. The 
discussions around start and end points would also have had 
a potential for further insights from a content perspective. 
An equally important sub-category was that of metrics, as 
three different sub-phases of modelling were also linked 
there. The above example from Group 2 is marked with a 
bold number in the table.

Figures 7 and 8 illustrate the interaction of the modelling 
process and concepts with reference to vertex-edge graphs. 
Group-specifically, these were identified more in the math-
ematical work (Group 2) or in other sub-phases (Group 1). 
This is also illustrated by the values in Tables 2 and 3. Here, 
focal points from graph theory could be worked out, par-
ticularly in Group 2.

6 � Discussion

The analysis shows that concepts related to vertex-edge 
graphs were conspicuous and significant throughout the 
task processing of both groups. It can be seen that the most 
frequently identified concepts can be assigned to the area 
of edges of graphs. The question of the effectiveness of the 
chosen path plays a special role in the example chosen here, 
as the basic idea of optimisation was considered at the local 
level of the edges. Here the special chance of the treatment 
of discrete optimization problems in the school shows up 
(Schuster, 2004). It is a particular strength of the problem 
used that graph-theoretical concepts such as Euler path have 
a direct correspondence in the real problem (optimal path). 
Effectiveness can be seen here as a connecting element 
between mathematical and real models and, in this context, 
it establishes an interesting link between modelling and dis-
crete problems. This shows the easy accessibility and lack 
of prerequisites for the processing (Gibson, 2012; van den 
Heuvel & Krabbendam, 1991), when an appropriate model-
ling problem is selected.

There are also differences between the groups, which 
can be seen, on the one hand, in the mathematical pro-
cessing depth and, on the other, from the generalisability 
of the results obtained. For example, while Group 1 dis-
cussed the transfer of the model to other city districts or to 
other real situations in some places, Group 2 focused much 
more frequently on the structure of the graph. Substantial 
generalisable considerations were already made; however, 
these related only to arguments close to reality and not to 
the graph structure. Further generalisations at the level of 
the structure of the graph did not take place because not 

Fig. 9   Student’s drawing
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enough abstraction activities had been done. This shows the 
importance of modelling competences as a prerequisite for 
working with discrete concepts.

Overall, it should also be noted that the students were 
intensively concerned with the edges of the graph, although 
not with the nodes. This aspect can be of great importance 
from a mathematical perspective because it is precisely the 
structure of the nodes that is important in the classifica-
tion of different vertex-edge graphs (for example, in the 
Euler path). On the one hand, it can be seen that this was 
a challenging problem that was at the same time easy to 
understand (Anderson et al., 2004), but on the other hand, 
its content was not fully exploited (low ‘floor’ … high ‘ceil-
ing’-tasks; Ingram et al., 2020, p. 500). However, it must be 
considered that the students had no prior knowledge of this 
area of graph theory but developed these ideas and concepts 
only during the course of working on their task. It should be 
noted here that graph theory content is not part of the cur-
riculum at German schools. Therefore, it is not surprising 
that students have no prior knowledge in this area (Kaiser 
et al., 2011). In contrast, the teaching of modelling compe-
tences is mandatory in Germany. This may explain why the 
students did not use more complex graph theoretic content 
(for example, Euler’s Theorem on Euler paths). The fact that 
they used these concepts at all well could be due to the easy 
accessibility (Gibson, 2012) or also to the intuitive approach, 
which, as observed in other areas, allows independent gen-
eralisations (Amit & Neria, 2008; Steele, 2008). However, 
it could be a particular strength of graph theory that one can 
intuitively understand central concepts.

This might have been supported by the existing model-
ling competences, as the work within modelling phases 
could mostly be identified at the same time as the usage 
of concepts related to graphs. This is a central point and 
shows an interdependence: discrete models can be bet-
ter integrated if they are known, and they can be inte-
grated only if the corresponding modelling competences 
are available. Only when both are present can the choice 
of discrete models in the context of the modelling pro-
cesses discussed above succeed (see Sect. 2.3). The tran-
script excerpts presented above show, for example, that 
the discussion about roads that have to be covered twice 
has to be explored mathematically on one’s own first. 
With further knowledge about graph theory, the students 
could have directly accessed mathematical models and 
gone more deeply into the topic. The work could there-
fore have been more fruitful at both the content level and 
the process level. At the same time, it is remarkable that 
students without prior knowledge of graph theory and 
experience of working with it developed and used so many 
concepts related to vertex-edge graphs. This could also 
be seen in the intuitive approach of the students shown 
above, based on a drawing in the city map. This shows the 

specific potential of graph theory for mathematics teach-
ing, which, in combination with open modelling problems, 
opens up access to a completely new mathematical subject 
area. Overall, this points to the mutual benefit of teaching 
modelling through discrete mathematics and the benefit of 
teaching discrete mathematics through modelling.

When looking at the sub-phases of the modelling cycles 
and concepts related to vertex-edge graphs, the differences 
between the groups become even more evident. It becomes 
clear that the references to vertex-edge graphs occurred 
less, for example, during the understanding phase than over 
the later course of the modelling process. There were also 
group-specific sub-phases in which references to vertex-
edge graphs did not occur at all. By analysing the mod-
elling phases and concepts of graphs jointly, specific stu-
dents’ difficulties could be identified that could not be seen 
by examining the usage of vertex-edge graphs alone. For 
example, it was possible to determine the phase of the solu-
tion process at which the graph-theoretical aspects occurred 
or were missing. The analysis revealed the most important 
problematic aspects and topics students encountered. Based 
on these results, intervention methods for further modelling 
activities with graph-theoretical problems can be developed 
as scaffolding measures (Stender & Kaiser, 2015). Due to 
its process character, the modelling perspective offers the 
possibility for controlling the solution processes at the meta-
level by using metacognitive aids (Beckschulte, 2020; Still-
man, 2011; Vorhölter, Krüger, et al., 2019). For example, 
in the intuitive approach described above, a metacognitive 
aid to search for the mathematical model could open the 
view in the direction of more abstract generalisations. The 
modelling perspective thus offers the opportunity to describe 
the process character of developing answers to the original 
problems based on carrying out a modelling cycle (Kaiser & 
Stender, 2013) and its sub-processes, in addition to looking 
at the content of the students’ solution processes. This allows 
feedback to be provided to the students or focus to be placed 
on metacognitive strategies (Vorhölter, Krüger, et al., 2019).

The study presented here is qualitatively orientated, based 
on a single case-study, and thus it has limited potential for 
more general results. Only a few students were observed, 
and only one modelling example was used. Due to the case-
study nature of the study, quantitatively derived results 
were not the aim, which was rather an analysis based on 
the central question in which sub-phases of modelling and 
concepts related to vertex-edge graphs were used by the stu-
dents, especially simultaneously. Further investigations with 
other modelling examples—also from other areas of dis-
crete mathematics—and more students will be necessary to 
expand the scope of the study. It would also be interesting to 
use examples of modelling problems related to vertex-edge 
graphs with digital technology (Durcheva & Varbanova, 
2017; Geschke et al., 2005).
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7 � Conclusion

Graph-theoretical modelling problems like the example 
used here are not part of the content prescribed in the Ger-
man curriculum for mathematics education. However, they 
do offer the potential to stimulate substantial mathemati-
cal reflections and also to motivate students with the help 
of real-world experiences. Such problems are therefore 
very interesting as content for mathematics education and 
offer the opportunity to introduce students to optimization 
problems already early in their school career. At the same 
time, the study showed that intensive and different model-
ling processes were stimulated and carried out. So, from a 
modelling perspective, examples like the one used in this 
study are of high educational value. In addition, the stu-
dents were motivated and mathematically active during the 
long processing periods of several hours over the two days. 
This also shows the potential to promote high motivation 
through suitable modelling problems (Ferrarello & Mam-
mana, 2018). Thus, the advantages of discrete mathematics 
for mathematics teaching may be exemplified across three 
levels (Hart & Martin, 2018), namely, interesting content 
(the example from graph theory), the development of pro-
cess-related competences (concerning modelling compe-
tences) and the level of affect-related goals (motivation).

Further studies with larger sample numbers and integra-
tion into design projects (Cobb et al., 2003) are needed 
to show more clearly the benefits of modelling examples 
using discrete mathematics, and also to attract teachers 
more strongly to discrete mathematics in general and graph 
theory in particular (Gaio & Di Paola, 2018). A quantita-
tive study with more students and a variety of examples 
could also be useful here.

The examples of discrete mathematics cannot yet be 
fully used by students—also in connection with model-
ling processes—because of missing prior knowledge of 
graph theory. Here, prior knowledge could enable the use 
of more advanced mathematical models and thus further 
mathematical and extra-mathematical discoveries. The 
process character of mathematical modelling can support 
work with discrete concepts. Mathematical modelling 
offers a chance to take a new look at discrete mathematics 
content for schools and present it as a central example of 
successful modelling processes, not least because model-
ling competences ultimately represent a central component 
in many educational standards all over the world (KMK, 
2012; Lu & Kaiser, 2021; NCTM, 2000).
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