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On the unit component of the
Newman-Unti group

Alexander Schmeding*

In this short note we identify the unit component of the Newman—Unti
(NU) group in the fine very strong topology. In previous work, this com-
ponent has been endowed with an infinite-dimensional Lie group structure,
while the full NU-group does not support such a structure.

Keywords: Newman—Unti group, asymptotically flat space-time, infinite-dimensional
Lie group
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In [PS22a,PS22b], the Lie group structure of the Bondi-Metzner—Sachs (BMS) group
and the Newman—Unti (NU) group as well as certain related groups were studied from
the viewpoint of infinite-dimensional geometry. Both groups appear in the theory
of asymptotically flat space times in the sense of Bondi, Van der Burg, Metzner and
Sachs. On the infinitesimal level, the Lie algebra of the more widely studied BMS group
identifies as s subalgebra of the Lie algebra of the NU group (see [BT10b, BT10a]).
The global level is more delicate, as only the unit component of the NU group can be
turned into a Lie group in a suitable function space topology. It is thus of interest
to identify this component of the NU group. To this end, recall that the NU group
is a semidirect product of a certain set of smooth functions with the orthochronous

Lorentz group
NU =N % SO™(3,1) with N'C C®(R x S?). (1)

The set of functions N can be endowed with a variety of function space topologies
(derived from an ambient space of smooth functions). We have shown in [PS22b],
that the usual function space topologies do not turn the NU group into an (infinite-
dimensional) Lie group. However, the unit component of the NU group can be turned
into an infinite-dimensional Lie group with respect to the so called fine very strong
topology.
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In loc.cit. we then mentioned en passant that the unit component of the NU group
coincides with the subgroup NU. = N, x SOT(3,1) of NU, where

N.:={F e N |3IK CR x S? compact, s.t.F(t,z) =t ¥(t,2) ¢ K}.

While this is not hard to prove the argument is somewhat involved and it is thus the
goal of this note to supply the argument.

Acknowledgements: The author wishes to thank H. Glockner for the question
which led to this note. Moreover, he thanks D. Prinz and H. Glockner for helpful
comments on the draft.

1 Identifying the unit component

Let us note first that the problem reduces to a question about the function space N.
As a semidirect product of Lie groups is, topologically, a product of the underlying
topological spaces, the unit component is given by the product of the connected com-
ponents containing the parts of the unit in the product decomposition. Now as the
orthochronous Lorentz group is connected, the semidirect product structure becomes
irrelevant and it suffices to identify the connected component containing the unit ele-
ment in the subgroup A. The topology at hand is here given by the subspace topology
induced by the fine very strong topology. What we will now set out to prove is that
this component coincides with all mappings in A differing from the unit element only
on a compact set. For the readers convenience we shall now first recall the definitions
of the sets involved.

Let Diff ™ (R) be the group of all smooth orientation-preserving diffeomorphisms of R
(recall that a diffeomorphism of R is orientation-preserving if it has positive derivative
everywhere). We note that the orientation preserving diffeomorphisms of the real line
admit a global manifold chart (see [G1605] for details concerning the construction). It
is given by the map

#: Diff t(R) — C®(R,R), k(¢) = ¢ — idg,
which identifies the diffeomorphism with the open convex set
C:={feC®R,R)| f'(t) > —1,Vt € R}.
As translation with a fixed function induces a homeomorphism of C*° (R, R) in the fine

very strong topology (cf. [HS17]), this implies that Diff " (R) is an open convex subset
of C*°(R,R).

1.1 Definition Define N/ := {F € C®(R x S?) | F(-,z) € Diff '(R), Vz ¢ Sz}. Then

N becomes a group with respect to the product

F-G(u,z) := F(G(u,2),z).



The unit of the product is the map p: R x S? — R, (t,z) — t and the group inverse
F~1: R xS? = Ris for z € S? given by F(-,z)~!. Here for every z, the inverse is the
unique smooth map satisfying the implicit equation

t=F(F\(t,z),2) (t,z) € R x % (2)

We now topologise A with the subspace topology induced by the fine very strong
topology on C*°(R x S?,R) (we do not recall its definition here, but see [PS22b]
or [HS17]. Note that the fine very strong topology turns the set

N.:={F &N |3IK CR x S? compact, s.t.F(t,z) =t V(t,z) ¢ K}

into an open subset which contains the unit p. Recall from the definition of the fine
very strong topology (see e.g. [HS17]) that the connected component of the unit in
N contains only functions which differ at most on a compact subset from the unit
p. Hence, the connected component N¢® of the unit is contained in N,. Therefore, it
suffices to prove that N, is (path)connected. To establish the claimed connectedness,
we need the following lemma, whose proof can be found in [AS19, Lemma C.3]:!

1.2 Lemma Let M be a manifold (possibly infinite-dimensional or with smooth bound-
ary) and X a smooth locally compact manifold. Let f: M x X — R*n € N be
smooth such that f wvanishes outside M x K for K C X compact. Then the ad-
joint map f~: M — CX(X,R"),m — f(m,-) is smooth, where the target space
CE(X,R™) :=={f € C®(X,R") | 3L C X compact s.t. f|x\r = 0} is an open subset
of C*°(X,R™) in the fine very strong topology.

1.3 Proposition The set N is (path-)connected in N with respect to the fine very
strong topology.

Proof. Consider Fy, Iy € N, and let us construct a continuous path from Fy to Fy.
For this, we study the mapping

c:[0,1] x (RxS*) =R, (s,(t,2)) > sFi(t,z)+ (1 —s)Fy(t,z) —t.

By construction c is smooth. Moreover, we observe that since Fy, F} € N, there exist
compact sets K;,i = 0,1 such that F;(t,z) = ¢ for all (¢,z) ¢ K;. In particular, for
every (t,z) ¢ L := K; U Ky we have c(s,t,z) = 0. Thus we invoke Lemma 1.2 to
obtain a smooth (and thus continuous) path

" [0,1] = C(R x S%R), ¢+ clt,-).

Addition of a function induces a homeomorphism of C*°(R x S?,R) to itself when
endowed with the fine very strong topology (note that C*°(R x S?,R) is disconnected

1The cited lemma is stated in loc.cit. only for manifolds without boundary. Inspecting the proof,
it is easy to see that it carries over without any changes to the case of a manifold with smooth
boundary (or even more general to manifolds with rough boundary).



in this topology whence not a locally convex vector space). We deduce that v: [0,1] —
C>®(R x S2,R), s > ¢\(s,-) + p (with p being the unit of N) is a continuous path.
We have to prove now that + takes its image in A,. For this it is sufficient to prove
that ~ takes its values in N. By construction for every fixed z € S? we obtain the
map c(-,z)": [0,1] = C(R,R),s — c(s,-,z) is continuous in the parameter s and a
convex combination of the diffeomorphisms Fy and F;. Since Diff " (R) is convex, we
see that c(t,-,z) € Diff "(R) as Fy, Fy are contained in this set. Thus Definition 1.1
implies that (¢) € N and thus N, is path connected. O

1.4 Corollary The unit component of the group N coincides with N..

1.5 Remark In [PS22b] A, was turned into a Lie group, these techniques gener-
alise (without essential changes) also to similar groups constructed from mappings in
C>(R™ x S?,R™) (the author is not aware of any physical relevance of these groups).
For these generalised groups the identification of the unit component presented in this
note does not work as the diffeomorphism group Diff ™ (R™) is not known to be convex
(beyond the special case n = 1).
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