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Abstract: Mapping the spatial and temporal dynamics of species distributions is necessary for
biodiversity conservation land-use planning decisions. Recent advances in remote sensing and
machine learning have allowed for high-resolution species distribution modeling that can inform
landscape-level decision-making. Here we compare the performance of three popular Sentinel-2
(10-m) land cover maps, including dynamic world (DW), European land cover (ELC10), and world
cover (WC), in predicting wild bee species richness over southern Norway. The proportion of
grassland habitat within 250 m (derived from the land cover maps), along with temperature and
distance to sandy soils, were used as predictors in both Bayesian regularized neural network and
random forest models. Models using grassland habitat from DW performed best (RMSE = 2.8 ± 0.03;
average ± standard deviation across models), followed by ELC10 (RMSE = 2.85 ± 0.03) and WC
(RMSE = 2.87 ± 0.02). All satellite-derived maps outperformed a manually mapped Norwegian land
cover dataset called AR5 (RMSE = 3.02 ± 0.02). When validating the model predictions of bee species
richness against citizen science data on solitary bee occurrences using generalized linear models,
we found that ELC10 performed best (AIC = 2278 ± 4), followed by WC (AIC = 2367 ± 3), and DW
(AIC = 2376 ± 3). While the differences in RMSE we observed between models were small, they
may be significant when such models are used to prioritize grassland patches within a landscape for
conservation subsidies or management policies. Partial dependencies in our models showed that
increasing the proportion of grassland habitat is positively associated with wild bee species richness,
thereby justifying bee conservation schemes that aim to enhance semi-natural grassland habitat. Our
results confirm the utility of satellite-derived land cover maps in supporting high-resolution species
distribution modeling and suggest there is scope to monitor changes in species distributions over
time given the dense time series provided by products such as DW.
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1. Introduction

The Anthropocene has heralded an unprecedented loss of biodiversity, primarily
due to changes in land use and land cover, climate change, pollution, (over-)exploitation,
and biological invasions [1]. In response, governments have established frameworks that
address biodiversity loss, including the United Nations’ (UN) Sustainable Development
Goals (SDGs, 2030 Agenda) as well as the Aichi biodiversity targets (Strategic Plan for Bio-
diversity 2011–2020) and the Post-2020 Global Biodiversity Framework of the Convention
on Biological Diversity. Recently, the UN established the statistical standards for ecosystem
accounting (EA) under the System of Environmental–Economic Accounting (SEEA), which
require countries to account for changes in ecosystems over time [2]. To achieve the SDGs,
meet biodiversity conservation targets, and to account for ecosystem changes, we require
monitoring and evaluation tools that are both globally available and locally relevant [3].
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One such tool is species distribution modeling, also known as ecological niche or habi-
tat modeling, which has been widely used to inform decision-making in conservation
planning [4].

By modeling and mapping the distribution of species over space and time, we are
able to make data-driven decisions about which areas to prioritize for restoration or
conservation [5]. The predictive and explanatory power of species distribution models also
allows for identifying critical environmental variables (e.g., precipitation, habitat availabil-
ity) that drive species communities [6]. Insect conservation strategies are a good case in
point, whereby mapping and monitoring of insect species richness are prioritized both at
the international [7,8] and national levels [9,10]. In Norway, field surveys of bee diversity
have been combined with habitat and climate models to create prediction maps that can
help determine where wild bee habitat enhancement schemes can be most efficient [11].
However, such priority maps and many species distribution models are currently based on
static environmental predictor variables such as land cover maps, whereas management
requires more flexible solutions that can detect temporal dynamics in ecosystem conditions
and species distributions over time [12].

Recent advances in satellite remote sensing and earth observation have filled data gaps
and improved the spatio-temporal transferability of species distribution models [13]. As
such, satellite-derived products can capture the environmental processes that underlie the
distribution of biodiversity, such as vegetation productivity, water availability, temperature,
and perhaps most importantly, land use and land cover. The Sentinel satellites under the
Copernicus Programme have been used to produce annually updatable regional and global
land cover maps at 10 m resolution, including ELC10 [14], Dynamic World (DW) [15], and
World Cover 2020 (WC) [16]. All three products have the capacity to be multi-temporal,
but only DW is operationally delivering near real-time land cover maps as new Sentinel-2
scenes become available (every 2–5 days). Due to the novelty of freely available, medium-
resolution, high-frequency land cover maps, their use in species distribution modeling is
still in its infancy. It is also not clear whether global Sentinel-based land cover maps can
replace or improve upon the contribution of regional land cover datasets [17], given that
regional maps produced by national mapping agencies through manual methods such as
photogrammetry are often more precise and tailored to local conditions.

The aim of this study was to compare Sentinel-based, 10-meter-resolution land cover
maps in their ability to predict wild bee species richness distributions across gradients in
temperature and habitat availability. To do so, we use a Norwegian land cover dataset
called AR5 [18] as a benchmark to evaluate three satellite-based maps, including DW, WC,
and ELC10, that are annually updatable. The proportion of semi-natural grassland habitat
within 250 m derived from the land cover maps is used as a predictor variable in species
distribution models that predict the richness of solitary bee species in southern Norway.

2. Methods

To compare the utility of Sentinel-based land cover maps in species distribution
modeling, we chose wild bee species as a model system. We do this for three main reasons,
which are elaborated on below: (1) bees are keystone species in grassy ecosystems globally
that are good indicators for ecosystem condition; (2) they are experiencing significant local
declines in population numbers; and (3) they have a limited home range and are dependent
on local resources for survival, so we expect their distribution to respond strongly to
landscape-scale land use gradients in the Sentinel-based land cover maps.

Insects in general and wild bees in particular are key components of many ecosystems
and provide important contributions to people [19,20]. For example, the economic value of
pollinating insects is considerable, estimated at EUR 153 billion globally [21]. Although
pollination is often associated with domestic insects such as the honey bee (Apis mellifera), a
large and diverse community of wild bee species contributes significantly to the pollination
of wild plants and crops [22,23]. Insect abundance, biomass [24], and diversity [25] are
declining in some regions due to urbanization, deforestation, climate change, pesticide use,
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and invasive species [26]. The same is true for bee species [27]. Although the diversity of
wild bees is predominantly driven by temperature at global and regional scales, habitat and
landscape characteristics are important drivers at local scales [28,29]. Bees are central place
foragers that travel back and forth from a nesting site to collect resources [30], and therefore,
the abundance and diversity of wild bees correlate to the diversity and abundance of floral
resources (vascular plants) in the landscape [28,31]. Land cover types such as semi-natural
grasslands, including hay and flower meadows, provide ample floral [32] and non-floral
resources to wild bees [33]. Non-floral resources include nesting sites, and although some
wild bee species nest in dead wood, the majority use sandy soil sediments as nest sites [34].
Consequently, wild bee diversity can be predicted by the availability of suitable land
cover types for resources (i.e., semi-natural grasslands) and for nests (i.e., sandy soils), in
combination with climatic variables [29].

2.1. Solitary Bee Surveys

We surveyed solitary bee communities in 72 traditionally managed (mowed) semi-
natural grasslands distributed along a climatic gradient from south-eastern Norway to
mid-Norway (Figure 1A). In 2019, we sampled 32 semi-natural grasslands in south-eastern
Norway [11], adding another 20 study sites in 2020 [29]. To capture potential influences of
climatic conditions on solitary bee diversity at regional scales, solitary bee communities
were sampled in another set of 20 semi-natural grasslands in mid-Norway in 2021. All
surveys were conducted using pan traps, which are an efficient method for surveying wild
bee communities [35], in particular when the aim is to survey the solitary as opposed to
social bee species [36]. Each pan trap consisted of three white plastic soup bowls, coated
with fluorescent yellow or blue, or left white, mounted on a fence pole at the height of the
surrounding vegetation [11,29]. We deployed 3 traps per site in 2019 and 2 traps per site
for sites sampled in 2020 and 2021. The number of traps per site was reduced from 3 to 2
after 2019 to allow more sites to be sampled. This resulted in 176 samples (the sum of traps
across all sites) distributed across 72 study sites. Within sites, traps were always placed at
least 20 m apart to avoid inter-trap competition [37].
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Figure 1. Extent of study area with solitary bee sampling locations and individual survey extents
(A). Location of study sites in Trøndelag County, sampled in 2021 (B). Location of study sites in Oslo,
Viken, and Innlandet counties, sampled in 2020 (C). Locations of study sites in Oslo, Viken, and
Innlandet, sampled in 2019 (D).
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In all years, sites were sampled in May, June, and July at similar times of day and
on days with weather conditions that are optimal for bee activity (i.e., low wind and
temperatures above 15 ◦C). For each sampling period, we activated the pan traps at a site
by mounting the bowls and filling them with water and a drop of detergent. Sampled bee
specimens were collected after 48 h. In 2019, sampling was initiated on 13 May, 21 June,
9 July, and 23 July [11]. In 2020, sampling was initiated on 13 May, 25 May, 14 June, and
16 July [29]. In 2021, sampling began on 29 May, 22 June, and 24 July. Collected bees were
stored in 96% laboratory ethanol prior to pinning and identification. Voucher specimens
are stored in the entomological collections at the Norwegian Institute for Nature Research.
We tallied the number of solitary bee species sampled per trap across the season.

2.2. Land Cover Maps

Data pre-processing and extraction of land cover maps took place in the Google
Earth Engine [38]. The AR5 map obtained from the Norwegian Institute of Bioeconomy
Research [18] is provided as a vector map at 1:5000 scale, which we rasterized at 5 m
resolution. AR5 is updated every 5–8 years and therefore represents a mosaic of years
across the country. WC and ELC10 are available in Google Earth Engine for the years 2020
and 2018, respectively. However, DW is provided as a collection of classified Sentinel-2
images with less than 35% cloud cover. To generate an annual land cover composite for 2020
comparable with WC and ELC10, we calculated the mode predicted land cover class in the
image band named “label” across all DW images during June, July, and August. For all land
cover maps, we used a focal mean function to calculate the proportion of grassland habitat
within 250 m of each pixel in the study area (Figure 1) at 10 m resolution. We used the
250-m radius because solitary bee diversity has been shown to respond strongly to habitat
availability at this spatial scale [39]. To isolate grassland pixels, we used the “grassland”
class from WC and ELC10 and the “grass” class from DW, which are both defined as
areas dominated by natural herbaceous vegetation, including grasslands, prairies, steppes,
savannahs, and pastures. For AR5, we used the “innmarksbeite” and “åpent fastmark”
classes, which are defined as open ecosystems dominated by herbaceous vegetation and
often used for extensive grazing [18]. We used a radius of 250 m as solitary bee species
richness has previously been shown to respond to habitat area at this spatial scale [39].

2.3. Modeling

Data modeling and visualization were performed in R [40]. As in [29], we included
predictor variables related to climatic conditions, habitat availability, and distances to
high-quality nesting substrates for below ground nesting bees, which account for the vast
majority of solitary bees. In [29], the spatial variation in climatic conditions was estimated
using a digital elevation model (DEM) together with latitude. Here, we used the average
temperature for the warmest quarter (June, July, and August), during the current 30-year
climate reference period (1990–2021), calculated from daily estimates and interpolated
station measurements at a 1 km resolution from the Norwegian Meteorological Institute’s
database [41]. We used the average temperature during the warmest quarter instead of
the annual mean temperature because high winter temperatures along the coast result in
annual mean temperatures not reflecting the gradient in ambient temperature experienced
by bees during their main activity periods in Norway (spring to autumn). Using modeled
climate data instead of DEMs to estimate the effects of temperature on bee diversity enables
one to project changes in bee diversity as a function of future climate scenarios. In [29]
we used a habitat suitability model to estimate the potential habitat area surrounding
each pan trap at a 60-m radius. In contrast, in the current study, we use the proportion
of pixels identified as “grassland” by satellite-derived land cover maps as estimates of
habitat availability within a 250-m radius surrounding each trap. A benefit of using satellite-
derived grassland classifications instead of estimates of habitat suitability maps that may
partly rely on existing land cover products is that one reduces the number of modeling steps
required to produce maps of pollinator diversity from remote sensing data. In addition, we
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used the geographic distance to areas with soils mapped as having a high water infiltration
capacity by the Norwegian geological survey [42], as such areas are typically located on
sandy soils, which is the preferred nesting substrate for the majority of Norwegian soil
nesting bees.

We ran and compared eight models of solitary bee species richness that all followed
the general formula:

Solitary bee species richness (survey year + average temperature during the warmest
quarter + Distance to sandy soils + proportion of grassland within a 250-m radius).

The eight models differed in terms of the data source (map) used to estimate the
proportion of grassland around each pan trap and the type of model used to predict
solitary bee species richness. The survey year was included as a categorical variable to
account for inter-annual variation in bee species richness as well as for annual differences
in climatic conditions, which could influence the number of species sampled in a trap.
For each land cover map, we trained a Random Forest (RF) regression model [43] and
a Bayesian Regularized Neural Network (BRNN) model [44] in Caret [45] in R. BRNN
models were tuned by selecting the number of neurons (1, 2, or 3) that resulted in the lowest
root mean square error (RMSE) following 25 bootstrap resamples of the training data. RF
models were tuned by selecting the mtry (number of parameters tested at each node) and
split-rule variance or extra trees that resulted in the lowest RMSE, following 25 bootstrap
resamples. We adopted leave-one-out cross-validation (LOOCV) to assess model predictive
performance due to the small number of study sites. Small training datasets can result
in large variances in model performance when using traditional training-testing splits
(e.g., 70% training and 30% testing) before model fitting, compared to LOOCV [46]. In
LOOCV, each model was iteratively trained and tuned on data from 71 study sites and
then used to predict solitary bee species richness in pan traps from the one held-out site.
Predictive performance is calculated across all LOOCV iterations. Following this nested
cross-validation procedure ensures independence between the data used for tuning the
models and the data used for final validations.

For each land cover-map model prediction, we evaluated the predictive power in terms
of the Pearson correlation coefficient (Cor), the root-mean-square deviation (RMSE), and
the mean absolute error (MAE) between observed values of solitary bee species richness
and the solitary bee species richness predicted by the model. As an alternative form of
model validation, we also tested the ability of model predictions of bee species richness
to predict the variance in occurrence of solidary bee records obtained from citizen science
data. We first downloaded all post-2015 solitary bee species observations from the Global
Information Biodiversity Facility (GBIF) that intersected our study area (xmin: 9.836, xmax:
12.719, ymin: 58.909, ymax: 63.962) and had a GPS error of less than 50 m (n = 2111). To
reduce spatial bias in the data—i.e., that some areas have been surveyed more frequently
or intensively than others—we only included one occurrence per square kilometer. We
randomly sampled 10,000 pseudo-absences from within our study area and used binomial
generalized linear models to quantify how well the predicted species richness scores
explained the variance in the GBIF presence-absence data. We used the Akaike information
criterion (AIC) to compare the explanatory capacity of the different models (δAIC > 2).
Finally, we used partial dependency plots through the R-package pdp [47] as a means to
visualize the estimated marginal effect of the proportion of grassland, using the different
land cover maps, on solitary bee species richness.

In summary, our modeling workflow included 16 unique models for combinations
of reference data (survey, GBIF), model type (RF, BRNN), and land cover dataset (AR5,
DW, ELC10, WC). Each model was iterated 100 times in order to estimate the mean and
standard deviation in model performance metrics.
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3. Results

We did not find that models using the proportion of grassland estimated from the
vector-based Norwegian land cover map (AR5) outperformed models where grassland had
been estimated from satellite-derived land use models with 10 m resolution. Specifically,
satellite-derived maps exhibited an average RMSE of 2.87 ± 0.03 (±standard deviation),
whereas the Norwegian AR5 map produced models with a RMSE of 3.02 ± 0.02 (Figure 2).
Similarly, for the AR5-based BRNN models, the correlation coefficient between observed
and predicted solitary bee species richness (SR) was slightly lower (Figure 2A) than for the
satellite-based models (Figure 2B–D). This was also the case for the Random Forest (RF)
models (Figure 2E–H).
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Figure 2. Performance of Bayesian regularized neural network (BRNN) and random forest (RF)
models for predicting solitary bee species richness (SR). Data points represent model predictions
against observed SR following a leave-one-out cross-validation procedure. The average and standard
deviation of correlation coefficients (Cor), root-mean and mean-absolute error (RMSE, MAE) from
100 iterations of each leave-one-out cross validation are reported for models trained with land cover
data from (A,E) a Norwegian map (AR5), (B,F) dynamic world (DW), (C,G) European land cover
(ELC10), and (D,H) world cover (WC). Red and blue points show the predicted and observed solitary
bee species richness for each pan trap across the 100 leave-one-out iterations, and black points show
the average predicted bee species richness and the associated observed species richness for each
specific trap.

Among the satellite-derived models (Figure 2B–D,F–H), there were only marginal
differences in their performances as predictors of solitary bee SR. Models using grassland
habitat from DW performed best (RMSE = 2.8 ± 0.03; averaged across RF and BRNN
models), followed by ELC10 (RMSE = 2.85 ± 0.03) and WC (RMSE = 2.87 ± 0.02). Grassland
habitat was ranked the third most important predictor variable in BRNN and RF models
(Figure 3). The mean summer temperature and sampling year were the most important
predictors in the models. All models, independent of data source or model type, produced
partial dependence plots that corroborated a positive association between grassland habitat
and solitary bee SR (Figure 4). The association was less distinct in the AR5 model (Figure 4A)
compared to the satellite-based models (Figure 4B–D).
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Figure 3. Variable importance plots showing the scaled relative importance of sampling year (3 levels),
summer mean temperature, distance to sandy soils, and grassland proportion within 250 m for
predicting solitary bee species richness. For the sampling year, the year 2019 was used as the reference
year and does therefore not appear in the figures. Variable importance is derived from Bayesian
regularized neural network (BRNN; A–D) and random forest (RF; E–H) models for predicting solitary
bee species richness (SR). Models were trained with land cover data from (A,E) a Norwegian map
(AR5), (B,F) dynamic world (DW), (C,G) European land cover (ELC10), and (D,H) world cover (WC).

When validating the model predictions of bee SR against citizen science data on solitary
bee occurrences using generalized linear models (Figure 5), we found that the order of
performance was changed. We found that ELC10 performed best (AIC = 2278 ± 4), followed
by WC (AIC = 2367 ± 3), and DW (AIC = 2376 ± 3). The BRNN models performed slightly
better than RF models, both in terms of leave-one-out cross-validation (Figure 2) and in
terms of explaining the occurrence of solitary bees from GBIF (Figure 5). Therefore, we used
the BRNN models to generate wall-to-wall prediction maps of bee SR over the study region
(Figure 6). A qualitative visual comparison shows that the broad-scale spatial patterns of
bee SR predictions are similar between models, with bee SR increasing with north-south
temperature gradients and along populated valleys where extensive grazing practices
have established semi-natural grassland patches. At the landscape scale (Figure 7), AR5
predictions show less spatial variation than the satellite-derived maps. All models appear
to pick up the grassland habitat adjacent to the runways at Gardermoen International
Airport; however, ELC10 appears to pick up the most habitat in the agricultural landscapes
southwest of the airport (Figure 7C).
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Figure 4. Partial dependence plots from Bayesian regularized neural network (BRNN) and random
forest (RF) models of bee species richness. Partial dependencies are shown for the spatial predictors:
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world (DW), (C) European land cover (ELC), and (D) world cover (WC); (E–H) distance to sandy
soils; and (I–L) mean temperature during the summer months.
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Figure 5. Explanatory power of bee species richness (SR) predictions from Bayesian regularized
neural network (BRNN) and random forest (RF) models. Effects plots are shown along with AIC
scores from binomial generalized linear models of solitary bee species occurrence data from GBIF as
a function of predicted bee SR from models trained with land cover data from (A,E) a Norwegian
map (AR5), (B,F) dynamic world (DW), (C,G) European land cover (ELC10), and (D,H) world cover
(WC). Points in the figures show the mean occurrence of solitary bee records calculated within bins of
one decimal. Individual GLMs were run for each of the 100 spatially filtered datasets of solitary bee
records in order to calculate the average AIC and its standard deviation.
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Figure 6. Solitary bee species richness (SR) prediction maps for Trøndelag county (A–E) and Oslo and
Innlandet county (F–J) from Bayesian regularized neural network (BRNN) models trained on grass-
land habitat data from (B,G) a Norwegian map (AR5), (C,H) dynamic world (DW), (D,I) European
land cover (ELC10), and (E,J) world cover (WC). Each map is overlaid with the bee survey sites.
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moen international airport (left panel) from Bayesian regularized neural network (BRNN) models
trained on grassland habitat data from (A) a Norwegian map (AR5), (B) dynamic world (DW),
(C) European land cover (ELC10), and (D) world cover (WC).
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4. Discussion

Species distribution modeling that incorporates high-resolution satellite data is still in
its infancy [13], yet the application to solitary bee species richness presented in this study
confirms its potential. Our results show that the Sentinel satellite-based land cover maps
outperformed a regional manually digitized land cover map over southern Norway (AR5)
in predicting solitary bee species richness (Figure 2). While the use of satellite imagery to
map vegetation types or individual forest species is common [48], using derived products
to predict habitat suitability for animal or plant species that are not directly visible in
satellite images is far less common [11,49]. Here we show that the availability of grassland
habitat within 250 m, measured from satellite data, is positively associated with solitary
bee species richness (Figure 4) and is therefore predictive of solitary bee occurrences at
regional scales (Figure 5).

We found larger differences in the predictive capacity of grassland habitat derived
from manually mapped versus satellite-derived land cover maps than differences between
the satellite-based maps themselves (Figure 2). The AR5 map uses a minimum mapping
unit of 2000 m2, which results in very small grassland fragments being subsumed into
a broader land cover class [18]. For example, road verges or small urban parks will be
classified as “built” in the AR5 maps. However, such small grassland patches can harbor
significant floral resources for bees, and the fact that AR5 does not map these areas may
therefore be why AR5 was less predictive of species richness than satellite-based maps.
Furthermore, AR5 is not as up-to-date as the satellite-based maps and may misrepresent
the conditions on the ground during 2019, 2020, and 2021, when the field surveys were
conducted. In contrast, ELC10 and WC use a minimum mapping unit of 100 m2, while DW
uses 2500 m2. At the landscape scale, it is evident that predictions of bee species richness
with ELC10 were more spatially heterogeneous than AR5 or DW (Figure 6), probably
due to its smaller minimum mapping unit and ability to detect smaller grassland patches.
This may have contributed to its greater predictive capacity compared to AR5. This also
explains why, when validating our models using citizen science data from GBIF, ELC10
outperformed DW. In contrast to the survey dataset, GBIF data are spatially clustered
and biased toward urban landscapes, which are easily accessible but also have complex
landscapes. Due to ELC10’s small minimum mapping unit, it captures the landscape
complexity more than DW does and is able to predict the GBIF bee SR better.

The accuracies of the solitary bee species richness models presented here are arguably
high enough to make data-driven management decisions at the landscape scale. The aver-
age RMSE of 2.87 means that one can at least distinguish very species-rich areas (maximum
species richness of 16 in our study) from species-poor areas (zero species). The differences
in model accuracy between satellite-based grassland maps were marginal (RMSE difference
of 0.04); however, when visualized at a landscape scale (Figure 6), small nuances may have
important implications for management and decision-making. For instance, a ranking
or prioritization of grassland patches for receiving conservation subsidies based on the
maps in Figure 6 may yield different results depending on the data source used. Therefore,
post-stratified accuracy assessment of species distribution models in specific landscapes
may be necessary before they can be adopted in practice [50].

Based on several limitations identified in our study, we outline avenues for further
research on the integration of high-resolution satellite data in species distribution modeling.
Firstly, it is not necessary to use derived products such as land cover maps, as we have
carried out here. Instead, one can use the spectral signatures themselves from a satellite
image to calibrate distribution models [13], although this would not allow ecologists
or policymakers to relate species-rich areas to specific land use types. Secondly, maps
with a higher thematic resolution than those used in this study would produce more
detailed species distribution maps [51]. For example, all four maps tested here contained a
single broad category for grassland, without distinguishing between intensively managed
grasslands and extensively managed grasslands, such as the mowed meadows from which
we sampled solitary bees [11,29]. Therefore, measuring aspects of ecosystem condition or
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use, such as grassland use intensity [52], might further improve the accuracy of species
distribution models. Thirdly, we did not explore how accurately satellite-based prediction
models can detect real changes in species distributions over time because we did not
implement a field survey design that was comprehensive enough to capture changes in
species ranges over time. However, we know from earlier studies that changes in land
cover that are detectable from space are direct drivers of species range shifts [53]. To this
end, DW is probably the most suitable Sentinel-based land cover dataset to quantify land
cover and use dynamics [54] because of its continuous updates and delivery and would
be well-suited to such dynamic species distribution modeling. This also strengthens the
call for investment in long-term biodiversity monitoring programs so that satellite-based
distribution models can be calibrated and validated with in situ data [55].

5. Conclusions

The proliferation of high-resolution earth observation data and derived land cover
products provides scope for mapping biodiversity distributions with models that are
both locally relevant for decision making and scalable to the globe. Here we found that
globally available Sentinel-based land cover maps can improve upon manually digitized
regional land cover maps for predicting the richness of solitary bee species in southern
Norway. The differences in predictive performance between DW, WC, and ELC10 were
marginal; however, at the landscape scale, the smaller minimum mapping units of WC and
ELC10 allow them to resolve smaller habitat patches, which are reflected in the landscape
variations in predicted species richness. Furthermore, the rich time series provided by
maps such as DW (from 2015 to present) offer unique opportunities to model short-term
changes in species distributions in response to land use changes if paired with in-situ
temporal monitoring data. We conclude that the use of satellite-derived land cover maps
can facilitate high-resolution species distribution models that can guide decision-making
relevant to landscape ecology. To this end, future modeling efforts should be aimed at
those species that perform key roles in ecosystems, are indicators of ecosystem status, and
support nature’s contribution to people.
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