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Abstract: Alzheimer’s disease (AD), the most common type of dementia in older people, causes neu-
rological problems associated with memory and thinking. The key enzymes involved in Alzheimer’s
disease pathways are acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because of this,
there is a lot of interest in finding new AChE inhibitors. Among compounds that are not alkaloids,
flavonoids have stood out as good candidates. The apple fruit, Malus domestica (Rosaceae), is second
only to cranberries regarding total phenolic compound concentration. Computational tools and
biological databases were used to investigate enzymes and natural compounds. Molecular docking
techniques were used to analyze the interactions of natural compounds of the apple with enzymes in-
volved in the central nervous system (CNS), acetylcholinesterase, and butyrylcholinesterase, followed
by binding affinity calculations using the AutoDock tool. The molecular docking results revealed that
CID: 107905 exhibited the best interactions with AChE, with a binding affinity of−12.2 kcal/mol, and
CID: 163103561 showed the highest binding affinity with BuChE, i.e., −11.2 kcal/mol. Importantly, it
was observed that amino acid residue Trp286 of AChE was involved in hydrogen bond formation,
Van Der Walls interactions, and Pi–Sigma/Pi–Pi interactions in the studied complexes. Moreover, the
results of the Molecular Dynamics Simulation (MDS) analysis indicated interaction stability. This
study shows that CID: 12000657 could be used as an AChE inhibitor and CID: 135398658 as a BuChE
inhibitor to treat Alzheimer’s disease and other neurological disorders.

Keywords: Alzheimer’s disease; apple flavonoids; acetylcholinesterase; butyrylcholinesterase;
molecular docking

1. Introduction

Alzheimer’s disease (AD), the most common form of dementia in older people, is a
significant cause of disability today and is linked to impairments in memory and thinking.
There is currently no treatment or cure for Alzheimer’s disease (AD) due to its complex bio-
chemical process [1,2]. Two neurochemical changes in Alzheimer’s disease are cholinergic
deficit and a decreased synthesis of choline, which cause the abnormal activities of some
the enzymes involved in neurological signaling [3,4]. Acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) are the two main cholinesterases (ChEs) found in the brain,
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detected in neurofibrillary tangles and neuritic plaques. AChE and BuChE are hydrolytic
enzymes that cleave acetylcholine (ACh) into choline and acetate, thereby terminating
synaptic cleft functioning. Previously presented scientific reports have stated that the
healthy brain is enriched in significant levels of AChE and BuChE, which play a minor role
in regulating brain ACh levels. But in people with Alzheimer’s, BuChE activity slowly
increases while AChE activity stays the same or goes down. As a result, both enzymes are
promising therapeutic targets for improving the cholinergic deficit that is thought to be
behind the declines in cognitive, global functioning, and behavioral status that comes with
AD [5]. Even though the cause of AD is unknown, previously conducted research indicated
that the activity of cholinesterase (ChE) needs to be controlled at various key points of
AD pathogenesis. One of the most effective treatment strategies has been to inhibit AChE
and BuChE, which inhibited cholinergic function and increased ACh levels. AChE and
BuChE inhibitors have been developed and used to treat Alzheimer’s disease by boosting
cholinergic neurotransmitter activity in the brain, thereby reducing AD symptoms [6,7].
The way cholinesterase inhibitors exert their mechanism of action under the cholinergic
hypothesis dictates that AD is linked to a loss of cholinergic function in the central nervous
system (CNS). An aging brain’s loss of cholinergic function is associated with a gradual
decline in neuronal function [8,9].

This loss of cholinergic activity may be related to or linked to several things, such
as the production of amyloid peptide and the clumping together of tau protein, among
others [10], stress [11], and excessive transition metals [12]. Surprisingly, AChE inhibitors
have been shown to influence the “amyloid cascade” [13], which starts with the aggregation
of insoluble amyloid β in the brain [14]. But AChE may also make A-peptides, which
would speed up the process. It looks like the enzyme’s peripheral anionic site (PAS) is very
important for this activity [15,16].

To date, three of the four medications for treating Alzheimer’s disease that have
been authorized were from AChE inhibitor development programs [17]. Tacrine (1, 2, 3,
4-tetrahydro-9-aminoacridine) has been used to treat Alzheimer’s dementia. It was the
first ChE inhibitor to receive FDA approval, and many different AChE inhibitors, like
galantamine, donepezil, rivastigmine, etc., were created in the years that followed [18,19].
Many plant extracts have been investigated for their potential to treat neurological and cog-
nitive problems. Galantamine was the first plant-derived AChE inhibitor discovered [20].
Many herbal remedies, including olive, tea, blueberry, strawberry, peppermint, walnut,
immortelle, and sage, have been documented to have AChE-inhibiting activities due to
the presence of polyphenols [21–24]. Curcumin, (-)-epigallocatechin-3-gallate (EGCG), and
several flavonoids were also effective AChE inhibitors when isolated [25–27]. Bisphenols
possess structure-specific inhibitory activity, and they can block either acetylcholinesterase
(AChE) or butyrylcholinesterase (BuChE) [28–30]. While caffeic and quinic acids did not
inhibit either AChE or BuChE, chlorogenic acid and 3-O-caffeoylquinic acid did, according
to Chan et al. [31,32]. This is a polyphenolic compound found in apples (quercetin) that
may aid in the prevention of Alzheimer’s disease. Turmeric curcumin, green tea’s main
active phenolic compound, EGCG, and resveratrol have all been linked to AChE inhibi-
tion [33–36]. The flavanone naringenin, a major flavonoid in citrus, has been shown to
exert AChE inhibitory activity in vitro and anti-amnesic activity in vivo [37,38]. Although
the flavonol quercetin’s inhibitory effect has not been examined in vivo, it also seems to
affect cholinergic dysfunction and cerebral blood flow in the brain [39]. AChE inhibitors
should be developed for a variety of reasons. Existing drugs (donepezil, galantamine,
and rivastigmine) have limitations in terms of efficacy and tolerability, and Alzheimer’s
disease is characterized by complex and multifactorial pathological mechanisms involving
multiple neurotransmitter systems, inflammation, oxidative stress, and abnormal protein
accumulation [40]. Therefore, the creation of novel AChE inhibitors is of interest, and
potential candidates have been found among non-alkaloid substances, such as flavonoids.

The apple, scientifically known as Malus domestica (Rosaceae), comes in at number two
on the list of foods with the highest total concentration of phenolic compounds, behind
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only cranberries. Apples contain five different polyphenols, including flavanols, phenolic
acids, dihydrochalcones, and anthocyanins [41]. Phytochemicals, particularly flavonoids,
can be found in apples in varying concentrations depending on factors such as growing
conditions, harvesting time, and how the fruit is processed. Flavonoids vary in type and
concentration depending on whether they are found in the apple bark or core.

Flavonoids found in apples include the well-known quercetins (quercetin-3-galactoside,
quercetin-3-glucoside, and quercetin-3-ramnoside), as well as other compounds like epi-
catechin catechin, cyanidin-3-galactoside, procyanidin, chlorogenic acid, coumaric acid,
phlorizin, and gallic acid [42]. Several different types of flavonoid conjugates, including
procyanidins, catechins, epicatechins, chlorogenic acid, fluorine, and quercetin, can be
found in apple bark. The phytonutrients catechol, epicatechin, procyanidin, and fluorine
are present in the apple core but in significantly lower concentrations than in the apple
bark [43]. As a result, the quercetin conjugates are only found in the bark, and chlorogenic
acid is the only flavonoid more abundant in the apple core than in the bark [44]. Apples
have been the subject of much research because of their possible health benefits, includ-
ing protecting against and treating chronic diseases like Alzheimer’s. Scientific evidence
suggests that the high flavonoid content of apple juice and concentrate may help reduce
the symptoms of Alzheimer’s disease, laying the groundwork for future controlled clinical
trials [45,46]. In rodent models, apple extracts high in anthocyanins and flavan-3-ols have
been shown to slow the progression of Alzheimer’s disease. This adds to the growing body
of evidence supporting the use of polyphenols for cognitive health in the elderly [47]. An
iron- and folate-deficient diet in adults and aged mice causes acetylcholine levels to drop,
demonstrating that eating antioxidant-rich foods like apples can prevent the decline in
cognitive performance associated with dietary and genetic deficiencies and aging. Apple
juice concentrate added to drinking water has the same effect [27]. Caffeic acid also re-
duced acetylcholinesterase activity and nitrite production significantly. It also decreased
inflammation, oxidative stress, nuclear factor-B-p65 protein expression and activity, and
p53, caspase-3, and phosphorylated (p-)p38 MAPK activity [48].

Exploration of novel or alternative cheap molecules from natural resources is always
in demand, and research continues. One of the faster and most cost-effective techniques
is computational techniques. Thus, using computational biology, it has been observed
that various classes of chemicals from plants and marine origins have been screened and
reported to have significant inhibitory activity against cholinesterase. Still, cholinesterase
inhibitors from fruits are not explored. Thus, in this study, we conducted a virtual screening
to find novel cholinesterase inhibitors from fruits and reported the molecular conformations
of apple chemicals that interact with cholinesterase. Docking and molecular simulation
tools were used to learn more about the importance of binding interactions of potentially
novel molecules for the treatment of AD. Therefore, apple consumption by the AD patient
could be significant in managing AD.

2. Material and Methods

In search of AChE and BuChE inhibitors from a library of the apple’s natural com-
pounds, we have adopted molecular docking-based virtual screening between natural
compounds and selected enzymes. The required data was downloaded from structural
databases like Protein Data Bank (PDB) (www.rcsb.org) (accessed on 23 December 2022) [49]
and PubChem (https://pubchem.ncbi.nlm.nih.gov) (accessed on 23 December 2022) [50].
Online tools were used to perform ADMET profiling of the identified natural compounds.
The 2D and 3D graphics were developed using Discovery Studio visualizer 2021 [51].
The obtained docking data was last validated by Molecular Dynamics Simulation (MDS)
methods. We have provided details of each technique in the following sections.

2.1. Preparation of Ligand Structures

Malus domestica’s 164 natural compounds library in structure-data file (.sdf) format
was mined and downloaded from the PubChem database. The drug rivastigmine was

www.rcsb.org
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taken as a control molecule, and its chemical file was retrieved from the DrugBank Database
(https://go.drugbank.com/drugs/DB00989 (accessed on 23 December 2022)) [52].

2.2. Preparation of Enzyme Structures

We have downloaded the 3D structure of human AChE (PDB:7E3H) developed by
X-ray diffraction with a resolution of 2.45 Å, R-Value free of 0.224, R-Value work of 0.194,
and R-Value observed of 0.195; while BuChE (PDB:7AIY) was prepared by X-ray diffraction
with a resolution of 2.94 Å, R-Value free of 0.300, R-Value work of 0.225, and R-Value
observed of 0.229. Initially, from the native 3D structures of the selected enzymes, HETATM
and water molecules were removed after .pdb file editing in Discovery Studio Visualizer
2021 [51]. Then, CHARMm forcefield [53] was used to perform energy minimization of the
selected receptors [51].

2.3. Virtual Screening

The fast virtual screening was performed using the PyRx tool after uploading the
natural compounds and receptor molecules in the execution tool [54].

2.4. Molecular Interaction Analysis

Binding affinity between the apple’s natural compounds and the enzymes was calcu-
lated after docking analysis with AutoDock suite [55], which is built in PyRx. The AutoDock
tool uses the scoring function of the chemical compound and protein molecules interaction
according to the binding energy (∆G) calculation based on the following formula:

∆Gbinding = ∆Ggauss + ∆Grepulsion + ∆Ghbond + ∆Ghydrophobic + ∆Gtors,

where ∆Ggauss: attractive term for dispersion of two gaussian functions; ∆Grepulsion: square
of the distance if closer than a threshold value; ∆Ghbond: ramp function—also used for
interactions with metal ions; ∆Ghydrophobic: ramp function; ∆Gtors: proportional to the
number of rotatable bonds [56].

The molecular docking-assisted virtual screening was executed on the active site
after setting the grid box to 25 × 25 × 25 Å, which covered key amino acid residues of
the active site. Default molecular docking parameters were utilized for obtaining the
best conformation of the apple’s natural compounds and AChE/BuChE complexes. The
3D models of complexes containing hydrogen bond information, residues involved in
hydrogen bonding, Van Der Waals interactions, and Pi–Pi/Pi–alkyl bonds were obtained
from Discovery Studio Visualizer 2021 [51,56,57].

2.5. Drug-Likeness and ADMET

In silico pharmacokinetics properties and drug-likeness predictions of absorption, distri-
bution, metabolism, and excretion (ADME) of the selected natural compounds were performed
using the SwissADME server developed by the Swiss Institute of Bioinformatics (SIB) [58–60].
Also, additional toxicity analysis prediction was made using the pkCSM tool [61].

2.6. Molecular Dynamics Simulation

We performed MDS of the natural compounds that best interacted with the AChE and
BuChE enzymes. A 50 nanoseconds (ns) simulation was executed for each complex with
the Groningen Machine for Chemical Simulations (GROMACS) 2021 tool. The GROMACS
standard protocol was followed and other required methodologies were adopted from
our previously published articles [59,60,62]. The pdb2gmx module was used to generate
AChE and BuChE topology files, and then the CHARMM27 all-atom force field was chosen
for simulation. The SwissParam server was then used to generate the natural compounds
topology files [63]. A solvation unit cell box filled with water molecules was prepared in a
triclinic shape. The new box volume was 241.76 (nm3) with a system size of 6.260 5.173
7.464 (nm), from center −5.437 3.284 −2.865 (nm), box vectors 6.261 5.173 7.464 (nm), and
the box angles were 90.00 90.00 90.00 (degrees). The ligand–protein complexes were created
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and solvated in water for the cellular model. In order to neutralize the system, Na+ or
Cl− ions were utilized, followed by energy minimization. Initially, the system containing
each complex had to be set up in equilibrium, and then two different ensembles—the
NVT (constant number of particles, pressure, and temperature) ensemble and the NPT
(constant number of particles, pressure, and temperature) ensemble were carried out. Both
ensembles provide control over temperature and pressure coupling, resulting in constancy
and stabilization of the system through complete simulation. We used gmx rms for root
mean square deviation (RMSD) [64], gmxrmsf for root mean square fluctuation (RMSF),
gmx gyrate for the radius of gyration (Rg) [65], and gmxhbond for the calculation of the
number of hydrogen bonds made between compounds and enzymes. Trajectory files
were generated and required simulation plots were created using the Xmgrace program as
described by Turner, 2005 [66].

3. Results and Discussions
3.1. Docking Results

The in silico results obtained by docking analysis are documented in Tables 1 and 2.
The molecular docking results reveal that the selected natural compounds of the apple
exhibited interactions with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)
in their active pockets compared to the chosen control drug rivastigmine. The preferred
drug is a parasympathomimetic or cholinergic compound from the cholinesterase inhibitor
class, working as a dual inhibitor against AChE and BuChE. This drug has U.S. Food and
Drug Administration (FDA)-approved status for treating Alzheimer’s disease and other
neurological disorders. All kinds of compounds were found to bind easily in the same area
with a slight deviation (Supplementary File Figure S1).

CID: 107905 interaction with AChE formed a total of six hydrogen bonds, and amino
acid residues Ala204, Gly122, His447, Thr83, Asp74, Gly120, Gly121, Pro88, Leu130, Gly126,
Val294, Tyr72, Phe295, Phe297, and Phe338 were involved in Van Der Waals interactions, while
Trp286 and Tyr341 were forming Pi–Pi interactions (Table 1; Figure 1C,D). Further, the CID:
12000657 with AChE complex formed a total of six hydrogen bonds. Amino acid residues,
namely Tyr72, Val73, Trp86, Asn87, Tyr124, Gly121, Ser125, Gly126, Trp286, Val294, Phe295,
Arg296, and Phe338 were involved in Van Der Waals interactions. Other interaction types also
formed Phe297, Tyr337, and Tyr341 were involved in Pi–Pi interactions (Table 1; Figure 1E,F).

AChE and BuChE have four types of pockets: acyl, catalytic triad, choline-binding,
and peripheral anionic pockets. Both enzymes hydrolyzed at the active site situated 20
Å deep inside the pocket. The amnio acid residue Asp74 of AChE is responsible for lig-
and binding, well supported by Trp286, while Asp70 of BuChE is present in the periph-
eral anionic pocket and plays a significant role in ligand interaction. Also, some aryl
residues like Phe295 and Phe297 of AChE, and Phe329 and Tpr332 of BuChE, pull ligands
toward the inner gorge [67–69]. We have further described the different pockets of the se-
lected enzymes in our previous articles [62,70]. Furthermore, the binding affinity between
AChE and CID: 107905 was −12.2 kcal/mol, and between AChE and CID: 12000657 it was
−11.6 kcal/mol, which was better than the control drug rivastigmine, which has a binding
affinity of −7.8 kcal/mol (Table 1; Figure 1).

The BuChE and CID: 163103561 interaction showed a binding affinity of−11.2 kcal/mol,
while that with CID: 135398658 was −10.0 kcal/mol, better than the control drug rivastig-
mine (−6.8 kcal/mol) (Table 2; Figure 2).

CID: 163103561 interacted with BuChE with a binding affinity of −11.2 kcal/mol and
formed seven hydrogen bonds. Amino acid residues Pro84, Tyr332, Gln119, Asn83, Phe398,
Val288, Gly116, Gly117, Ser287, Ser198, Gly115, Gly439, and Trp112 were involved in the Van
Der Waals interactions. Also, Glu197 formed a Pi–Anion bond, Leu286 formed a Pi–Alkyl
bond, while Phe329, Trp231, and Trp82 formed Pi–Pi T-shaped bonds (Table 2; Figure 2C,D).

The BuChE interaction with CID: 135398658 has shown a −10.0 kcal/mol binding
affinity and formed seven hydrogen bonds. Amino acid residues Trp231, Ala199, Val288,
Ser287, Pro285, Gln119, Gly116, Ala328, Phe398, His438, Tyr332, Trp430, Trp82, Ile69, Gln67,
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Pro84, Gly121, and Thr120 were involved in Van Der Waals interactions, while Phe329
formed a Pi–Pi T-shaped bond (Table 2; Figure 2E,F).

Table 1. Molecular docking data was obtained from the PyRx tool after performing molecular
interactions between the selected natural compounds and AChE (PDB:7E3H).

Compounds Binding Affinity
(Kcal/mol)

Hydrogen Bond
Names

Hydrogen Bond
Lengths

(Angstrom)

Van Der Waals
Interactions

Other Types of
Bond Formation

Rivastigmine
(Control) −7.8

A:TYR337:HH-
UNL1:O1 2.15667

GLY120, GLY121,
SER203,

HIS447, TYR133,
GLY448,

TRP439, SER125,

PI–PI
TYR124

PI–ALKYL
TYR337

PI–SIGMA
TRP86

A:TRP86:CD1-
:UNL1:O1 3.46816

:UNL1:C3-
A:THR83:O 3.0719

:UNL1:C3-
A:ASN87:OD1 3.32779

:UNL1:C13-
A:GLU202:OE1 3.47924

(-)-Epicatechin
gallate

CID: 107905
−12.2

A:TYR337:HH-
N:UNK1:O 2.57161

ALA204, GLY122,
HIS447,

THR83, ASP74,
GLY120,

GLY121, PRO88,
LEU130,

GLY126, VAL294,
TYR72,

PHE295, PHE297,
PHE338

PI–PI
TRP286, TYR341

N:UNK1:H-
A:TRP86:O 2.56415

N:UNK1:H-
A:ASN87:OD1 2.57352

N:UNK1:H-
A:SER203:OG 1.92587

A:SER125:HB1-
N:UNK1:O 2.81437

A:TYR124:HH-
N:UNK1 2.80141

4-((4′-
(Aminomethyl)-
[1,1′-biphenyl]-3-

yl)oxy)pyrimidine-
2-carbonitrile
CID: 12000657

−11.6

A:ASP74:HN-
N:UNK1:N 2.56919

TYR72, VAL73,
TRP86,

ASN87, TYR124,
GLY121,

SER125, GLY126,
TRP286,

VAL294, PHE295,
ARG296,
PHE338

PI–PI
PHE297, TYR337,

TYR341

N:UNK1:HN-
A:ASP74:OD2 2.10567

N:UNK1:HN-
A:SER125:OG 2.25043

N:UNK1:H-
A:TYR341:O 2.58107

N:UNK1:H-
A:SER293:O 2.6484

A:VAL73:HA-
N:UNK1:N 3.01081

Furthermore, active site interaction investigation revealed that CID: 107905 formed a
hydrogen bond with Ser203, which is an essential residue of the catalytic triad site of AChE;
Trp86, which is a key amino acid residue of the choline-binding site, and Trp286, a compo-
nent of the peripheral anionic pocket, created a Pi–Pi interaction (Table 1; Figure 1C) [70,71].
Also, it was observed that CID: 12000657 interacted with Asp74 and forming hydrogen
bonds. Asp74 facilitates ligand binding with AChE [72]. Choline binding residue Trp86
and acyl pocket residue Phe295 were involved in hydrophobic interactions, while another
acyl pocket residue, Phe297, was involved in Pi–Pi bonding (Table 1; Figure 1E). BuChE
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interaction with CID: 163103561 showed the formation of hydrogen bonds with Leu286,
a part of the acyl pocket of BuChE, and with His438, a residue of the catalytic triad. An-
other essential amino acid residue of the peripheral anionic pocket, Trp82, formed a Pi–Pi
T-shaped bond. An aryl residue, Trp332, formed a hydrophobic interaction, and Phe329
formed a Pi–Pi T-shaped bond (Table 2; Figure 2C). During CID: 135398658 interaction with
BuChE, Asp70 formed hydrogen bonds, part of the peripheral anionic pocket that enables
the compound binding with BuChE. Aryl residue Phe329 formed a Pi–Pi T-shaped bond,
and these residues pull compounds toward the deep gorge (Table 2; Figure 2C) [68–70].

Table 2. In silico docking data was obtained from the PyRx tool after performing molecular interac-
tions between the selected natural compounds and BuChE (PDB:7AIY). In the hydrogen bond names
column, where UNL1, UNK1 = selected compounds.

Compounds Binding Affinity
(Kcal/mol)

Hydrogen Bond
Names

Hydrogen Bond
Lengths

(Angstrom)

Van Der Waals
Interactions

Other Types of
Bond Formation

Rivastigmine
(Control) −6.8

:UNL1:C3-
A:TRP82:O 3.42913 ALA328, TRP430, TYR440,

GLY439, SER79, TYR332,
TYR128, GLY115, THR120,

GLY121, LEU125,

PI–PI STACKING
HIS438:UNL1:C13-

A:ASP70:OD1 3.52033

[(2R,3S,4S,5S,6S)-6-
[5-[(2S)-5,7-

dihydroxy-4-oxo-
2,3-

dihydrochromen-2-
yl]-2-

hydroxyphenoxy]-
3,4,5-

trihydroxyoxan-2-
yl]methyl
(E)-3-(4-

hydroxyphenyl)prop-
2-enoate

CID: 163103561

−11.2

N:UNK1:H-
A:GLU197:OE1 2.48466

PRO84, TYR332, GLN119,
ASN83, PHE398, VAL288,
GLY116, GLY117, SER287,
SER198, GLY115, GLY439,

TRP112

PI–ANINON
GLU197

PI–ALKYL
LEU286

PI–PI T SHAPED
PHE329,TRP231,

TRP82

N:UNK1:H-
A:LEU286:O 1.8801

N:UNK1:H-
A:PRO285:O 2.54319

N:UNK1:H-
A:GLN67:OE1 2.29008

A:GLY121:HA1-
N:UNK1:O 2.84111

A:LEU286:HA-
N:UNK1:O 2.85756

N:UNK1:C-
A:HIS438:NE2 3.13846

Folic acid
CID: 135398658

−10.0

N:UNK1:HN-
A:ASP70:OD1 2.30031

TRP231, ALA199, VAL288,
SER287, PRO285, GLN119,
GLY116, ALA328, PHE398,
HIS438, TYR332, TRP430,

TRP82, ILE69, GLN67,
PRO84, GLY121, THR120

PI–PI T SHAPED
PHE329

N:UNK1:HN-
A:SER79:O 2.58808

N:UNK1:HN-
A:ASN83:OD1 2.26671

N:UNK1:H-
A:THR120:OG1 2.52606

N:UNK1:H-
A:ASN83:OD1 2.12821

N:UNK1:H-
A:SER198:OG 2.55222

N:UNK1:H-
A:LEU286:O 2.84045

3.2. Drug-Likeness and ADMET Analysis

Based on the ADME data obtained from the SwissADME server, after analyzing several
parameters like gastrointestinal (GI) absorption, blood–brain barrier (BBB) permeability,
P-glycoprotein substrate interaction, cytochrome inhibition, and log Kp value for skin
permeation, showed better results for all the selected compounds. In contrast, compounds
163103561, 12000657, and 107905 showed GI absorption. Compounds 12000657 and 107905
showed CYP1A2 inhibitor properties, and compound 107905 can also inhibit CYP2D6
and CYP3A4 (Table S1; Supplementary File). Drug-likeness analysis revealed that com-
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pounds 163103561 and 107905 have zero violation of the required parameters of Lipinski’s
rule of five [73] (Table S2; Supplementary File). Further, the toxicity analysis performed
using the pkCSM server (http://biosig.unimelb.edu.au/pkcsm/theory) (accessed on 14
January 2023) [61] suggested that all the selected compounds are non-toxic. Compounds
fulfilled the criteria set up by different parameters like AMES toxicity, hepatotoxicity,
T. pyriformis toxicity, and Minnow toxicity, except compound 12000657, which can produce
skin sensitization (Table S3, Supplementary File).
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Figure 1. 2D representations (A,C,E) and 3D conformations (B,D,F) of the interactions of the selected
natural compounds with AChE.

3.3. MDS Results

RMSD, RMSF, the radius of gyration, and the formation of hydrogen bond plot data
were extracted from trajectory files after a 50 ns molecular dynamics simulation. The
deviation of all the selected complexes and the AChE simulation in water ranged from
0.1 to 0.3 nm (Figure 3A). The 12000657–AChE complex demonstrated a better and lower
RMSD value than the control drug–AChE complex, i.e., near 0.15 nm. It also had the lowest
AChE simulation value in water.

http://biosig.unimelb.edu.au/pkcsm/theory
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RMSF fluctuation plot values ranged between 0.1 and 0.6 nm (Figure 3B) for complexes.
In comparison, the observed average value was approximately 0.1 to 0.15 nm, except for
some major fluctuations at the 50–60, 70–80, 110–130, 160–170, 260–290, and the 360 amino
acid residue regions.

Because of the presence of natural compounds, the radius of gyration analysis is
critical for assessing the compactness and stability of protein structures throughout the
simulation period. Rg values were observed to be between 2.25 and 2.35 nm. Surprisingly,
the complex 12000657–AChE showed promising results compared to the control drug
regarding stability, with an average value of 2.3 nm (Figure 3C). While the values for
compound–AChE in water and the control drug complex were similar, slightly greater than
2.3 nm, 1–6 hydrogen bonds formed during the 50 ns MDS (Figure 3D). Hydrogen bonds
were formed in the 12000657–AChE complex, the rivastigmine–AChE complex, and the
107905–AChE complex.
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Figure 3. (A) RMSD plot of 107905–AChE (black), AChE in water (red), 12000657–AChE (green), and
control drug rivastigmine–AChE (blue) complexes. (B) RMSF values of the enzyme and compound
complexes per amino acid residue. (C) Number of hydrogen bonds formed between compounds and
AChE in 50,000 ps. (D) Rg values that show the compactness of AChE and compounds complexes
maintained for the whole simulation period.

Furthermore, the deviation of all the selected complexes and the BuChE simulation
in water showed values between 0.1 and 0.25 nm (Figure 4A). It was observed that the
135398658–BuChE complex showed a stable pattern with an RMSD value of 0.2 nm, which
is very near to the control drug–BuChE complex, i.e., approximately 0.15 nm, and a similar
value was obtained for the BuChE simulation in water. RMSF fluctuation plot values were
between 0.1 and 0.6 nm (Figure 4B) for complexes, while the observed average value was
approx. under 0.1 nm, except for some major fluctuations at the 55–75, 350–385, 450–460,
and 475–490 amino acid residue regions. The observed values of Rg were between 2.25 and
2.35 nm. The complexes 135398658–BuChE and 163103561–BuChE showed less value in
water than the control drug and BuChE, i.e., between 2.25 and 2.3 nm (Figure 4C). During
the 50 ns MDS, 1–8 hydrogen bonds were formed (Figure 4D). The compound 135398658–
BuChE complex formed 1–6 hydrogen bonds, the rivastigmine–AChE complex formed
1–2 hydrogen bonds, and the compound 163103561–BuChE complex formed 1–8 hydrogen
bonds (Figure 4D).
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Figure 4. (A) RMSD plot of 135398658–BuChE (turquoise), control drug rivastigmine–BuChE (pink),
163103561–BuChE (brown), and BuChE in water (dark green) complexes. (B) RMSF values of the
enzyme and compound complexes per amino acid residues. (C) Number of hydrogen bonds formed
between compounds and BuChE in 50,000 ps. (D) Rg values that show the compactness of BuChE
and compounds complexes maintained for the whole simulation period.

CID: 107905 ((-)-Epicatechin gallate) is a polyphenol that interacted significantly with
AChE. A study conducted in 2021 investigated and concluded that exosomes delivered
Epicatechin gallate into SHSY5Y cells and demonstrated neuroprotective effects in vitro
in a rotenone (Rot)-induced Parkinson’s disease (PD) model [74]. Another study reported
that polyphenol Epigallocatechin-3-gallate (EGCG) showed protective effects by reducing
neuroinflammation and mitigating neural damage [75]. CID: 12000657 has revealed that
the second highest binding affinity is a cysteine proteinase inhibitor purified from the
apple fruit [76]. Previous studies suggested that reversible cysteine protease inhibitors
have significant properties and could be established as agents for treating AD and other
neurodegenerative disorders [77,78]. The identified compound CID: 163103561, which
interacts well with BuChE, is a natural product found in Malus pumila and Malus domestica,
with data available [79]. CID: 163103561 was found in the young leaves of Malus domestica
after treatment with prohexadione-Ca, which is used to reduce the effect of fire blight
caused by Erwinia amylovora.

Another compound that interacted and showed a better binding affinity with BuChE
was CID: 135398658, known as folic acid. As a dietary supplement, apple vinegar benefits
anemia patients because it has iron, vitamin B12, and folic acid. Also, apple cider vine-
gar could have a beneficial effect on asthma, kidney stones, arthritis, and skin diseases
patients [80–82]. Furthermore, previous studies suggest that diets containing folic acid can
prevent neurological disorders, neural tube defects, development delays, and Alzheimer’s
disease [83–85]. Folic acid, in combination with vitamin B12, could have important pre-



Nutrients 2023, 15, 1579 12 of 15

ventive functions for CNS developmental and mood disorders, including dementia in
Alzheimer’s disease and vascular dementia in older adults [86].

4. Conclusions

AChE and BuChE are two types of cholinesterases found in the brain that are associated
with choline metabolism. Activation of AChE rapidly hydrolyzes acetylcholine, halting
impulse transmission at cholinergic synapses. Cholinesterase inhibitors play a role in various
neurodegenerative diseases, including Alzheimer’s. For this reason, neuroscientists have
been motivated to seek out and utilize the many naturally occurring compounds in plants
worldwide that can inhibit AChE and BuChE. The results of this study indicate that some of
the apple’s chemical constituents interact significantly with the enzyme acetylcholinesterase
and could be used to improve the health and well-being of those who suffer from neurological
diseases. Our research concludes that some of the apple’s natural compounds could be
potential treatments for neurological disorders including Alzheimer’s disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu15071579/s1, Figure S1. Showing 3D model of AChE binding
pocket of selected natural compounds CID:107905 (red), CID: 12000657 (purple) and Rivastigmine
(green); Table S1. ADME prediction from SwissADME (GI = Gastro intestinal, BBB = Blood Brain
Barrier, Pgp = P glycoprotein, CYP = Cytochrome, log Kp = skin permeation); Table S2. Drug-likeness
prediction from SwissADME server (MW = Molecular Weight, TPSA = total polar surface area,
Consensus Log P = average of all predicted Log Po/w; Table S3: Toxicity prediction. Data obtained
from the pkCSM server (http://biosig.unimelb.edu.au/pkcsm/theory) (accessed on 14 January 2023);
Table S4: Selected apple natural compounds 2D structure and corresponding binding affinity Data
obtained from docking analysis.
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