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A B S T R A C T   

Globalization faces a tradeoff between meeting fish consumption demand for nutritious & healthy living and 
reducing the ecological footprint to achieve sustainable development. Here, we document drivers, historical 
trends, and mitigation options for global fish footprint using unevenly spaced data spanning 1961 to 2021 from 
over 200 economies while accounting for income classifications. We report a decline in fish production in 
developed countries, yet, their increased consumption demand per capita is met through overexploited stocks of 
fish imported from developing economies. Besides, global fish price volatility has no effect on fish distribution in 
high-income nations but highly influences fish production, consumption, import, and export in developing na-
tions. The evidence of purchasing economies of scale in urbanized countries and the potential threat of embodied 
price in fish distribution and trade affect global fish footprint. The persistent increase in fish footprint can be 
attributed to affluence, choice of technology, urbanization, human development, marine trophic levels, emission 
intensity, and time-invariant & unobserved country-specificities. We highlight that aligning development and 
choices along the targets of sustainable development goals augments the achievement of sustainable fish pro-
duction and consumption.   

1. Introduction 

Food is a basic need for human survival—hence, its availability, 
accessibility, and affordability remain crucial to achieving food security 
(Nicholson et al., 2020). However, the growing production and con-
sumption rate of global food resources undermines environmental sus-
tainability (Garnett, 2013). Humanity is faced with several 
environmental challenges that require urgent climate-resilient options 
including mitigation and adaptation to reduce climate vulnerabilities 
(Sarkodie et al., 2022). However, stringent measures that contravene 
present global demand may be detrimental to sustained economic 
pathways (Schandl et al., 2020). The tradeoff between reducing envi-
ronmental challenges and meeting present demands without jeopard-
izing sustainable economic development remains crucial in the era of 
globalization. Recent studies developed a framework that links the 
synergies and tradeoffs of the sustainable development goal (SDG) 14 — 
the “ocean goal” — to the other 16 SDGs (Frazão Santos et al., 2020; 
Singh et al., 2018). Yet, literature that comprehensively documents the 
complex interactions of fish footprint in line with the targets of the SDGs 
is limited. Accurate accounting of such complex dynamics and the 

magnitude of effects is crucial to designing sustainable fish resource 
policies while attaining the other SDGs. 

Here, we present a global fish footprint of nations using several in-
dicators of sustainability (see Table 1) by assessing the drivers, temporal 
trends, and mitigation options while accounting for income conver-
gence. We specifically examine the impact of fish availability, accessi-
bility, and affordability on global fish footprint across global economies 
and income groups. Our study investigates research questions including, 
(1) Are historical trends in fish production and consumption indicative 
of fish overexploitation or collapse? (2) Is there trade convergence that 
influences fish distribution? (3) Which economies have fish reserves or 
nearing fish deficits? and (4) What are the global drivers of fish foot-
print? We use estimation techniques such as wavelet analysis that ac-
count for transient characteristics in ecological components via time- 
frequency localization, and machine learning-based econometric tech-
nique that accounts for nonlinearity, time-invariant and unobserved 
heterogeneous effects, and temporal effects across over 200 countries 
and territories. We find persistent effects of fish footprint attributed to 
historical consumption patterns across income classifications, especially 
in high-income economies. Upsurge in global fish consumption per 
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Table 1 
Variable collection, description & SDG linkages.  

Variable name SDG targeta Period Units Source/reference 

Response variable 
Fish footprint - ecological footprint 

of consumption 
SDG 14.4: Reduce harvesting & overfishing. 1995–2017 GHA/person Quality of Government 

Institute 
https://buff. 
ly/3uqJIFB 

Shift estimation      
Fish biocapacity per capita SDG 14.2: Protect & restore the marine ecosystem. 1961–2016 GHA/capita Quality of Government 

Institute 
https://buff. 
ly/3uqJIFB 

Fish stock status SDG 14.4: End overfishing & restore fish stock. 1995–2020 Score Sea Around Us https://buff. 
ly/3uAwshL 

Ecological fish status SDG 14.7: Sustainable fisheries management. 1961–2016 Score In this paper Authors 
Fish export in developing 
countries 

SDG 17.11: increase share of global exports. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish consumption in developing 
countries 

SDG 12.2: domestic material consumption. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish import in developing 
countries 

SDG 17.12: enhanced market access. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish production in developing 
countries 

SDG 12.1: shift to sustainable production. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Human consumption of fish per 
capita in developing countries 

SDG 12.2: domestic material consumption per 
capita 

1990–2021 kg/capita OECD https://buff. 
ly/3nGykS1 

Fish export in developed countries SDG 17.4: debt sustainability financing. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish consumption in developed 
countries 

SDG 8.4.2: domestic material consumption. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish import in developed 
countries 

SDG 17.13: enhanced economic stability. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Fish production in developed 
countries 

SDG 12.1: shift to sustainable production. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Human consumption of fish per 
capita in developed countries 

SDG 8.4.2: domestic material consumption per 
capita. 

1990–2021 kg/capita OECD https://buff. 
ly/3nGykS1 

Global fish export SDG 17.4: debt sustainability financing. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Global fish consumption SDG 8.4: global resource efficiency in 
consumption. 

1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Global fish import SDG 17.13: enhanced global economic stability. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Global fish production SDG 8.4: global resource efficiency in production. 1990–2021 Tonnes, 
thousands 

OECD https://buff. 
ly/3nGykS1 

Global human consumption of fish 
per capita 

SDG 8.4.2: global material consumption per capita. 1990–2021 kg/capita OECD https://buff. 
ly/3nGykS1 

World fish price SDG 2.c: proper food commodity markets & 
limiting extreme food price volatility. 

1990–2021 US$/tonne OECD https://buff. 
ly/3nGykS1  

Independent variables 
1. Socio-economic      

Human development index SDG 4.7; 12.8: sustainable development & lifestyle. 1995–2017 Index UNDP https://buff. 
ly/3CK5iYh 

GDP per capita SDG 1.1; 8.1-2: eradicate poverty & sustained 
income. 

1995–2017 constant 
2015 US$ 

World Bank https://buff. 
ly/3ic6nik 

Foreign direct investment net 
inflows 

SDG 8.9; 9.a; 17.18-19: sustainable tourism, 
technology diffusion & external funding. 

1995–2017 BoP, current 
US$ 

IMF, Balance of Payments 
database 

https://buff. 
ly/3ic6nik 

2. Demographics      
Population, total SDG 10.1-5: sustained income with reduced 

inequality. 
1995–2017 Number World Bank https://buff. 

ly/3ic6nik 
Urban population SDG 11.3; 11.a: sustainable urbanization. 1995–2017 Number World Bank https://buff. 

ly/3ic6nik 
Rural population SDG 11.a: improved social, economic & 

environmental links between rural and urban 
areas. 

1995–2017 Number World Bank https://buff. 
ly/3ic6nik 

3. Technology      
Energy use SDG 7.3: improve energy efficiency. 1995–2017 kgoe/capita OECD/IEA https://buff. 

ly/3Rch30D 
Fossil fuel energy consumption SDG 12.2: sustainable & efficient use of resources. 1995–2017 % of total IEA https://buff. 

ly/3Rch30D 
4. Biodiversity      

Marine trophic index SDG 14.4: reducing effects of fishing on fish stocks. 1995–2017 Index Quality of Government 
Institute 

https://buff. 
ly/3uqJIFB 

5. Environment      
Climate change vulnerability SDG 13.1: climate-resilience & adaptive capacity. 1995–2017 Score NDGAIN https://buff. 

ly/3OLDHLP 
Average annual temperature SDG 2.4; 13.1: reducing extreme climate hazards. 1995–2017 ◦C Yuan et al. (2021) https://buff. 

ly/3PnTIHN 
Average annual precipitation SDG 2.4; 13.1: reducing extreme 

weather—drought & flooding. 
1995–2017 mm/year Yuan et al. (2021) https://buff. 

ly/3PnTIHN 
Greenhouse gas emissions SDG 13.2-3: climate change mitigation & impact 

reduction. 
1995–2017 Mton CO2eq Emission Database for Global 

Atmospheric Research 
https://buff. 
ly/3ReNawA  

a (United Nations, 2021). 
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capita in high-income nations amidst low fish biocapacity implies fish 
stocks in developing countries become a source of exploitation to meet 
demands in developed countries, thus, exacerbating fish footprint. De-
mographic dynamics of consumption patterns confirm the mitigating 
effects of ruralization and escalation effects of urbanization on global 
fish footprint. 

2. Methods 

2.1. Data 

We gathered time series and unevenly spaced cross-sectional time 
series datasets spanning 1961–2021 (see Table 1). Because our analyses 
hinge on the credibility of secondary datasets, we employed data from 
high-quality sources detailed in Table 1. The Quality of Government 
(QoG) Standard datasets involve a meticulous data collection process 
from a wide range of existing data sources, surveys, expert assessments, 
and administrative records. Data aggregation and harmonization, and 
data validation and quality control techniques are applied to these 
sourced data to ensure the reliability and accuracy of the datasets 
(Teorell et al., 2021). Our datasets entail over 200 countries and terri-
tories (see Supplementary Table 1, economies are identified using both 
names & ISO3 code), 4 income (low, lower-middle, upper-middle, & 
high) groups, and 2 economic (developed & developing) classifications. 
The first dataset (time series & panel data) comprises fish biocapacity, 
fish stock status, ecological fish status, fish production, consumption, 
imports, exports, and the global fish price used to examine historical 
shifts. Additionally, the ecological time series sample in the first dataset 
is used for decomposition analysis and time series relationships. The 
second dataset (panel data only) employs fish footprint as the target 
variable whereas—the predictors include climate change vulnerability, 
human development index (HDI), GDP per capita, total population, rural 
& urban population, foreign direct investment (FDI), energy use, fossil 
fuels, marine trophic index, GHG emissions, and average temperature & 
precipitation with 0.5◦ × 0.5◦ spatial resolution (Table 1). Our several 
independent variables can be classified broadly under socio-economic, 
demographics, technology, biodiversity, and environment. The socio- 
economic classification details the effect of income (poverty vs. 
wealth), external funding (resource-efficient vs. resource-intensity), and 
human development (captures inequality in standard of living, educa-
tion & life expectancy [low human development vs. high human 
development]) on the dynamics of fish footprint. The varying supply and 
demand of marine resources are largely driven by population dynamics 
namely ruralization and urbanization, which determine the extent of 
resource exploitation and management. Energy plays a vital role in 
fisheries, yet, the technological composition (renewables or fossil fuels) 
determines the sustainability of the marine ecosystem. The marine tro-
phic index is a useful biodiversity indicator for assessing the effect of 
fishing on fish stocks (Butchart et al., 2010). The environmental vari-
ables involve climatic events and underlying drivers that may alter the 
dynamics of fish resources (Wernberg et al., 2013). These sampled 
variables align with several targets and indicators of the Sustainable 
Development Goals (SDGs)—depicting factors that affect the de-
mographics, economics, health, and the environmental sustainability 
dimension of the marine ecosystem. The integration of the SDGs from 
various sectors allows the assessment of the potential synergies and 
trade-offs associated with the supply and demand of fish resources 
(Table 1). For example, in the adoption of global fish prices, we can 
assess the effect of (extreme) food price volatility (as outlined in SDG 2. 
c.) on sustainable production & consumption of fish resources. Similarly, 
SDG 14 is a broader context that captures the progress towards 
achieving ocean sustainability and conserving the marine ecosystem by 
reducing the accelerated threats of acidification, eutrophication, fishery 
collapse, ocean warming, and marine pollution. Here, we narrow the 
several ocean sustainability threats to fish footprint, which measures the 
biologically productive fishing grounds required to produce the 

maximum sustainable and harvestable catch of fish species using exist-
ing technologies and resource management techniques (Teorell et al., 
2021). This implies that increasing demand for fish-related resources 
above a country's ability of available fishing grounds to produce seafood 
(i.e., fish biocapacity) will lead to fishery collapse and deficit. 

2.2. Empirical analysis 

Ecological fish status was calculated by subtracting fish footprint 
consumption from fish biocapacity to classify economies under either 
fishery reserve or fishery deficit—the latter of which is a threat to 
biodiversity and the sustainable fish sector. We subsequently examined 
historical changes (i.e., shift estimation) in fish stock, harvesting & 
restoration (i.e., fish stock, fish footprint consumption & biocapacity) 
across economies and fish distribution & trade across income classifi-
cation over time. Adopting this technique is crucial to assess the rate of 
fish exploitation, market access, economic stability (including debt 
sustainability financing), and sustainable fisheries management 
(resource efficiency, domestic material production & consumption). The 
shift estimation was derived using panel data operators that capture 
both first-difference and historical effects using the expression: 

Shifti,t (%) = 100×
(

xi,t − xi,t− 1

xi,t− 1

)

We further generated normalized mean samples from the cross- 
sectional time series dataset while controlling for time periods across 
economies, which is expressed as: 

Shifti,t =

(
1
W
∑n

j=1
wjyj

)

i  

XNorm
i,t = 100 ×

[
xi,t − min

(
xi
)

max(xi) − min(xi)

]

where the first-difference of variable x (i.e., xi,t − xi,t− 1) is divided by 1- 
period (t) lag of x across country i, Shift is the mean of the estimated 
yearly shift, W is the sum of individual (j = 1, …, n) weights (wj), n 
denotes the sample size, yj is the individual observations of the esti-
mated variable y, min(xi), and max(xi) represent minimum & maximum 
data points. We use the minimum-maximum normalization (Norm) to 
generate further datasets for between-income-group pairwise compari-
son and statistical visualization. 

In line with SDG 2.c, we assessed the effect of extreme fish price 
volatility on fish production, consumption, and trade (i.e., imports & 
exports) using the expression: 

Ratiok,t = ΔYk,t
/

ΔPricet  

where Ratiok,t denotes the average rate of change across income classi-
fications k (i.e., developing vs. developed countries) over the sampled 
period t (1990–2021), ΔYk,t =

(
Yk,t − Yk,t− 1/Yk,t− 1

)
× 100 represents 

the individual returns of fish distribution Y [namely production, con-
sumption, imports, and exports], whereas ΔPricet = (Pricet − Pricet− 1/

Pricet− 1) × 100 is the global fish price returns. 

2.3. Model estimation 

The econometric techniques applied include both time series and 
panel data models. For the time series modeling, we applied bivariate 
wavelet coherence to examine the nexus between variability in fish 
trade & distribution and global fish price volatility. The wavelet analysis 
involves a time-frequency localization applicable to nonstationary sys-
tems (typically tested using unit root methods), like the transitory 
components (that violated the assumption of stationarity) observed in 
our ecological indicators (Sarkodie et al., 2023). We employed the 
Morlet wavelet—a continuous wavelet approach as the choice of mother 
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wavelet (the decomposed signals over translated function) due to its 
good scale & frequency localization, and robustness to noise (Cazelles 
et al., 2007). Besides, the decomposition function of the estimation 
approach has the ideal tradeoff between time and frequency resolution, 
suitable for assessing aperiodic dynamics, chaotic components, and 
short-lived signals (Cazelles et al., 2008). Prior literature applied this 
technique to investigate the effect of environmental forcing and popu-
lation dynamics on the variations in fisheries observed in the Atlantic 
(Rouyer et al., 2008). However, the existing traditional wavelet tech-
nique applied in the literature produces an artificial and systematically 
reduced power spectrum at lower periods, thus, the current bivariate 
wavelet technique used herein employs normalized scales to correct this 
bias (Liu et al., 2007; Veleda et al., 2012) Using the bivariate wavelet 
approach, we developed 30 bivariate models across income classifica-
tions and validated the estimated results using global dataset. 

Second, we developed panel estimation models using a machine 
learning technique aimed at addressing challenges affecting panel 
classification and regression devoid of strict parametric assumptions, yet 
controlling for nonlinearity, heterogeneity, and interaction effects 
(Hainmueller and Hazlett, 2014). Our panel estimator provides a bal-
ance between typical generalized linear models and machine learning, 
hence, reducing panel misspecification bias while improving predict-
ability and statistical inferences. Our model specification follows a 
typical panel fixed-effects model expressed as: 

fishi,t = β0 + β1Gi,t + β2G2
i,t + β3Ti,t + β4T2

i,t + β5Vi,t + δzi,t + ai + εi,t  

where model 1 incorporates β0 as the intercept, fishi,t denotes the target 
variable (fish footprint), Gi,t & G2

i,t represent income level and quadratic 
of income to examine the doubling effect of sustained income in econ-
omies i and year t (the selection of the period [i.e., 1961–2017] is 
because our panel data analysis requires a balanced dataset [without 
missing values in other variables] for all variables incorporated in the 
model for consistency and accuracy), Ti,t & T2

i,t represent the low and 
high mean annual temperature effects, Vi,t is the vulnerability to climate 
change, ai captures unobserved and time-invariant country-specific 
fixed effects that account for time-invariant heterogeneity affecting fish 
footprint. The notation εi,t is the time-varying idiosyncratic error 
whereas zi,t denotes other control variables namely ruralization, ur-
banization, energy use, precipitation, time trends, and quadratic of time 
trends by economies to capture changes in technology and innovation. 
This equation was further used to test the fish footprint Kuznets curve 
(F2KC) hypothesis while accounting for income convergence (this was 
further validated with a third model with only income, quadratic of 
income, time trends, and quadratic of time trends by economies). 
Investigating the validity of F2KC hypothesis is crucial because while 
poor economies consume more fish resources due to the inability to 
afford meat and meat products, wealthy countries consume more fish to 
improve their healthy lifestyle while reducing diet-attributed morbidity 
and mortality (Hirvonen et al., 2020). 

fishi,t = β0 + β1fishi,t− 1 + β2FDIi,t + β3FDI2
i,t + β4Ei,t + δzi,t + ai + εi,t 

In the second model, fishi,t− 1 is the lagged fish footprint to assess 
historical change and initial effects, FDIi,t & FDI2

i,t represent foreign 
direct investment inflows to assess potential spillover effects of external 
funding, Ei,t is greenhouse gas emissions, used as a proxy indicator to 
examine the effects of climate change on fish footprint, zi,t represents 
other control variables including human development, marine trophic 
level, and lagged fossil fuel consumption (i.e., the persistent growth of 
fossil fuel utilization underpins industrialization and economic pro-
ductivity in several economies). The notations β1…βp & δ are the esti-
mated parameters whereas ai captures unobserved country effects and 
temporal effects that may bias the model estimates. The robustness of 
the estimated models is improved by further specifying the pointwise 
estimates to include unconditional distribution across quantiles. The 

integration of quadratic terms in both models highlights the response of 
fish footprint to nonlinearity in income, temperature, and investment 
inflows. We improved the numerical precision of the included second- 
degree polynomials (i.e., trend, trend2, income, income2, FDI, FDI2, 
Temperature, and Temperature2) by generating orthogonal variables of 
the original series using the Christoffel-Darboux recurrence technique 
(Abramowitz and Stegun, 1964). This serves two estimation advantages 
namely controlling for collinearity and exclusively retaining the effects 
of all series (Golub and Van Loan, 2013). 

2.4. Caveats 

Due to data convenience, we employed unevenly spaced datasets 
with different time periods, however, we used estimation methods that 
control for such limitations. For the wavelet analysis, we only used 
aggregated data based on income classification, hence, unable to assess 
country-specific variations compared to the panel data models. Yet, this 
shortfall still provides an opportunity to examine the role of income 
convergence on the nexus between fish trade & distribution and fish 
price volatilities. Second, there are several socio-economic, technolog-
ical innovation, and demographic factors that were not considered in 
our models, however, the inclusion of country-specific, time-specific, 
time trends, heterogeneous and lagged-dependent variables account for 
such time-varying factors while controlling for unobserved and omitted- 
variable biases (Wooldridge, 2016). 

3. Results 

3.1. Trends in fish distribution 

We used statistical visualizations to investigate the current patterns 
of fish distribution and trade dynamics. Global fish production increased 
by 84.17 % between 1990 and 2021, however, developing countries 
observed 166.11 % growth [i.e., 56,484.83 to 150,313.53 (thousand 
tonnes)] in production compared to ~28 % yield in developed countries. 
Interestingly, the ratio of mean fish output in developing countries to the 
mean yield in developed economies is about 3.4 times. While historical 
production appears to decline in developed countries, a contrary case is 
observed in developing countries (Fig. 1a). As of 2021, the top 10 fish 
producers that account for 68.88 % of global fish production include 
China (65,552 thousand tonnes, indicating 42.54 % of global fish 
output), Indonesia, India, Vietnam, Peru, the US, Russia, Norway, Japan, 
and Chile (Supplementary Table 2). Similarly, global fish consumption 
grew from 98,784 (thousand tonnes in 1990) to 180,075 (thousand 
tonnes in 2021), representing 82.29 % increase in 32 years. Fish con-
sumption in developing countries increased by 163.14 % but declined by 
17.3 % [i.e., 44,254.81 in 1990 to 36,586.98 in 2021 (thousand tonnes)] 
in developed countries. This implies developing countries consume 2.65 
times more fish on average than developed economies (Supplementary 
Fig. 1b). The top 10 fish consumers representing 66.32 % of global fish 
consumption comprise China (59,859 thousand tonnes, indicating 
41.62 % of global fish consumption as of 2021), Indonesia, India, the US, 
Japan, Vietnam, Peru, Russia, Korea, and the Philippines (Supplemen-
tary Table 3). When we control for population, human consumption of 
fish is on average ~1.47 times higher in developed countries (20.32 kg/ 
capita) than in developing countries (13.78 kg/capita), which outweighs 
the global average of 15.17 kg/capita. While fish consumption per 
capita has declined by 22.43 % in developing countries from 1990 to 
2021, consumption per capita has increased by 104.87 % (i.e., 8.65 kg/ 
capita in 1990 to 17.72 kg/capita in 2021) in developing countries 
within the same period (Fig. 1b). 

There has been a surge in global fish importation compared to fish 
exportation. For example, the mean import between 1990 and 2021 is 
valued at 31,122 (thousand tonnes), nearly 1.02 times compared to 
mean fish export [i.e., 30,640 (thousand tonnes)]. Global fish importa-
tion increased by 154.39 % from 1990 to 2021, however, exportation 
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grew by 172.63 % within the same period (Fig. 1c–d). The top 10 fish 
importers in 2021, representing 50.61 % of global importation include 
the US (5446 thousand tonnes, indicating 20.45 % of global fish im-
ports), China, Japan, Thailand, Korea, the UK, Egypt, Nigeria, Russia, 
and Malaysia (Supplementary Table 4). Imports in developing countries 
grew by 315.24 % (from 1990 to 2021) compared to 88.66 % in 
developed economies. This is consistent with the yearly average change 
in imports in developing (4.82 %) and developed (2.12 %) countries 
(Supplementary Fig. 1a). The top 10 fish exporters in 2021 comprise 

China (6907 thousand tonnes, indicating 23.21 % of global fish exports), 
Vietnam, Russia, Norway, Chile, Thailand, the US, Indonesia, the UK, 
and Canada (Supplementary Table 5). These countries account for 
58.02 % of total global fish export. Fish export increased by 300.51 % 
(from 1990 to 2021) in developing countries compared to 74.23 % in 
developed countries, corroborating the mean annual changes in exports 
by 4.82 % and 2.12 %, respectively (Fig. 1e). While fish import in 
developed countries outweighs export by 60.75 %, fish export in 
contrast exceeds import in developing economies by 59.85 %. Thus, the 

Fig. 1. Trends of fish distribution & trade. (a) Production [Thousand Tonnes] (b) Human Consumption [kg/capita] (c) Imports [Thousand Tonnes] (d) Exports 
[Thousand Tonnes] (e) Change in Exports [%] (f) Ratio of Imports:Exports. Panel a, average changes in production are 3.28 % (Developing), − 1.02 % (Developed) & 
2.02 % (Global). Panel b, average changes in human consumption are 2.37 % (Developing), − 0.77 % (Developed) & 1.30 % (Global). Panel c, average changes in 
imports are 4.82 % (Developing), 2.12 % (Developed) & 3.11 % (Global). Panel d-e, average changes in exports are 4.70 % (Developing), 1.88 % (Developed) & 3.54 
% (Global). Panel f, average ratios of intensities [imports:exports] are 0.65 (Developing), 1.54 (Developed) & 1.02 (Global). 
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ratio of fish imports to exports is 1.54 and 0.65 in developed and 
developing economies, respectively (Fig. 1f). 

3.2. Changes in fish distribution 

The global distribution was generated using either the raw data or 
normalized mean samples from the panel dataset while controlling for 
periods across economies. The top 10 hotspots with high mean annual 
fish footprint (0.41–2.16 gha/person) include Norway, Belize, Solomon 
Islands, Denmark, Papua New Guinea, Chile, Fiji, South Korea, Japan, 
and United Arab Emirates. In contrast, the top 10 economies with low 
mean annual fish footprint (i.e., 0.001–0.005 gha/person) comprise 
Afghanistan, Ethiopia, Tajikistan, Sudan, Nepal, Uzbekistan, Mongolia, 
Somalia, Rwanda, and South Sudan (Fig. 2a). These economies have the 
highest or lowest mean of maximum harvestable fishing with production 
from various species (Teorell et al., 2021). Global economies with high 
population-weighted fishing biocapacity include the Bahamas, Suri-
name, Guyana, Australia, Canada, Qatar, Estonia, Norway, Guinea- 
Bissau, and Sweden. Yet, Central African Republic, Lesotho, South 
Sudan, Afghanistan, Serbia & Montenegro, Luxembourg, Niger, Czech 
Republic, Slovakia, and Iraq have the lowest mean annual fishing bio-
capacity (Fig. 2b). The high (low) ranked countries represent high (low) 
regenerating tendencies of the fish ecosystem to meet demands. Coun-
tries with increased levels of overexploited stocks include Bangladesh, 
Yemen, Vietnam, Comoros, Sierra Leone, Libya, Dominican Republic, 
Estonia, Madagascar, and Oman. On the contrary, Portugal, Italy, El 
Salvador, Denmark, Japan, Jamaica, Barbados, Canada, Spain, and 
Panama have the lowest average share of fish catches from collapsed 
stocks (Fig. 2c). The status of fish stock is an important environmental 
performance indicator that assesses how fishing practices increase stock 
overexploitation, leading to smaller fish catches. We further estimated 
the ecological status of nations using both fish footprint and biocapacity 
over time. Using the mean score of ecological status, we classified 

countries under ecological reserve (i.e., the top 10 countries include 
Bahamas, Suriname, Guyana, Australia, Canada, Qatar, Estonia, Guinea 
Bissau, Sweden, and Gabon) and ecological deficit (i.e., top 10 econo-
mies comprise Belize, Portugal, Japan, Spain, Barbados, Singapore, 
Solomon Islands, Switzerland, Philippines, and France). The ecological 
reserve herein identifies economies with fishing biocapacity out-
weighing fish footprint whereas ecological deficit classifies countries 
with fish footprint exceeding fishing biocapacity (Fig. 2d). 

3.3. Global fish price volatility 

Using the estimated ratio of returns, we examined the effect of fish 
price volatility on fish production, consumption, and trade in line with 
SDG 2(c). The shift estimation was derived using cross-sectional time 
series operators that account for both first-difference and historical ef-
fects across income classifications (see Empirical analysis). We observe a 
strong positive relationship (R2 = 0.72–0.81) between global fish price 
returns and global production, consumption, imports, and exports 
(Supplementary Fig. 2). However, the decomposition of fish distribution 
by income classifications shows otherwise. The average price intensities 
against fish distribution are positive in developing countries but nega-
tive in developed economies. The average rate of change in global fish 
prices increases production and consumption by 105–107 % in devel-
oping countries but declines by 5–16 % in developed economies (Sup-
plementary Fig. 3a–b). The average price intensities stimulate fish 
import and export by 79–99 % in developing countries and 20–43 % in 
developed countries (Supplementary Fig. 3c–d). These scenarios are 
consistent with historical trends and demonstrate possible price returns 
embodied in fish production, consumption, imports, and exports, espe-
cially in developing economies. 

We further examined the effect of global fish price returns on fish 
distribution dynamics across economies using the bias-corrected cross- 
wavelet power technique (Veleda et al., 2012). Using the bivariate 

Fish Footprint (gha/person)

0.00 0.61 1.2 2.1

a

Fish Biocapacity Per Capita

0 2.8 5.6 7.8 12

b

Fish Stock Status (Score)

0 0.2 0.4 0.6 0.8 1

c

Ecological [Fish] Status (gha/capita)

2 0 2 4 6 8 10 12

d

Fig. 2. Global mean distribution. (a) fish footprint [gha/person] (b) fish biocapacity per capita (c) fish stock status [score] (d) ecological fish status [score]. Panel a-b 
shows the generated mean samples from the cross-sectional time series dataset while controlling for time periods across economies. Panel c is the normalized [0,1] 
mean samples from 1995 to 2020. Panel d, ecological fish status was calculated by subtracting fish footprint consumption from fish biocapacity to classify economies 
under either fishery reserve (112 of 161 economies) or fishery deficit (49 of 161 economies). 
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signals, the time-varying spectral characteristics can show the link 
(phase relationship) between variables, thus, validating causality. The 
wavelet power spectrum emanates from the bivariate wavelet analysis of 
nonstationary series with short-lived signals containing time-frequency 
localization (see Model estimation). 

The wavelet power spectrum shows weak relationships between fish 
distribution and trade against global fish price but statistically signifi-
cant periodicity from 1990 to 2000 and 2009–2021 at the scale of 
5.7–9.0. In both developing and global scenarios, we observe strong 
statistical phase relationships between fish distribution or trade and fish 
price from 2001 to 2008 (Fig. 3, Supplementary Fig. 4). However, the 
periodicity extends for exports and fish price nexus from 2001 to 2015 in 
both developing and global scenarios (Fig. 3j, k). The seeming similarity 
between the power spectrum of both developing and global scenarios 
demonstrates the dominance of fish distribution and trade dynamics of 
developing economies. The power spectrum of the wavelet analysis 
shows the relationship between global fish price and fish distribution & 
trade in developed economies is largely non-significant. Yet, the import- 
fish price nexus is the only strong statistical relationship observed in 
developed economies spanning 2006–2019. The upward movement of 
the arrows shows global fish prices drive fish importation in developed 
economies (Fig. 3h). We observe the non-significant relationship be-
tween global fish price returns and human fish consumption in all in-
come classifications across the annual time spectrum (Supplementary 
Fig. 5). 

3.4. Changes & drivers 

The average change in marine trophic level is relatively low in high- 
income countries, especially in countries within the North Atlantic re-
gion but insignificantly different when compared with other income 
groups (Fig. 4a). This somewhat corroborates studies that report a his-
torical decline in trophic levels, specifically in the North Atlantic region 
(Essington et al., 2006; Paiva et al., 2013). The top 10 countries with 
improved trophic levels comprise Iraq, Romania, Ecuador, Samoa, Ice-
land, Togo, Tonga, Tanzania, Dominica, and Ghana (i.e., mean annual 
increase of 0.59–1.48 %). Economies with a relatively high decline in 
mean trophic levels (i.e., an annual decrease of 0.42–1.23 %) include 
Montenegro, Eritrea, Cameroon, Chile, Benin, Singapore, Guyana, 
Argentina, Mauritania, and Croatia (Supplementary Fig. 6). The mean 
annual change in temperature is significantly higher in high- (P < 0.01) 
and upper-middle-income (P < 0.05) economies than in low- and lower- 
middle-income economies (Fig. 4b). Top global economies with 
increasing annual temperatures (i.e., a mean annual increase of 
0.59–0.92 %) include Montenegro, Mongolia, Switzerland, Kyrgyzstan, 
Bosnia & Herzegovina, Serbia, North Macedonia, Austria, Romania, and 
the Slovak Republic. Contrary, economies with declining annual tem-
peratures (i.e., mean annual decrease of 0.01–0.10 %) comprise Russia, 
Niger, Suriname, Papua New Guinea, Bolivia, Zambia, Zimbabwe, Chad, 
Nigeria, and Cameroon (Supplementary Fig. 7). This positive (negative) 
change in average annual temperature is indicative of rising 
(decreasing) temperatures in developed and emerging economies. Thus, 
while warm countries are becoming warmer, cold regions are becoming 
colder. Interestingly, we find evidence of increased wealth with a 
decline in mean temperatures and reduced income with rising levels of 
average temperatures (Supplementary Fig. 8), corroborating existing 
literature (Burke et al., 2015). The global levels of anthropogenic GHG 
emissions across income groups are achieving convergence—as we 
observe relatively high mean change in emissions in upper-middle- 
income economies but statistically insignificant from other income 
groups (Supplementary Fig. 9). The top 10 countries with positive 
change (i.e., mean annual increase of 4.02–13.6 %) in emissions are 
within the high-income or upper-middle-income classification name-
ly—Australia, Bosnia & Herzegovina, Barbados, Saint Kitts & Nevis, 
Grenada, Maldives, Cabo Verde, Trinidad & Tobago, Seychelles, and 
China. Historically, anthropogenic emissions have declined by 2.2–4.4 

% in Gabon, North Korea, Syria, Cameroon, Nigeria, Ukraine, Libya, 
Denmark, the United Kingdom, and United Arab Emirates (Fig. 4c). The 
estimated pairwise correlation with significant coefficients at P < 0.05 
shows a negative correlation (i.e., ρ = 0.16–0.54) between sampled se-
ries (i.e., climate change vulnerability, ruralization, and average tem-
perature) and fish footprint. However, a significant (P < 0.05) positive 
correlation (i.e., ρ = 0.03–0.61) is observed between sampled regressors 
(i.e., marine trophic level, urbanization, precipitation, fossil fuels, FDI, 
GHG emissions, energy use, HDI, and income level) and fish footprint 
(Fig. 4d). Using statistical techniques, the precursory assessment of 
temporal trends and data characteristics envisions the empirical analysis 
of sampled indicators. 

3.5. Drivers of fish footprint 

We used a machine learning-derived panel fixed effects estimator 
that controls nonlinearity, unobserved temporal effects, and time- 
invariant country-specific fixed effects (time-invariant heterogeneity) 
to investigate the global drivers of fish footprint (see Model estimation). 
Our empirical estimation lacking strict parametric assumptions reduces 
panel misspecification bias (i.e., we used orthogonal variables to 
improve numerical precision of panel estimations) although improving 
predictability (we achieved a predictive power of 93–99 %) and statis-
tical inferences (robust p-values for both point estimates and quantiles). 
Our empirical model shows a significant positive (p < 0.05) lag- 
dependent variable (fish footprintt-1), which demonstrates the persis-
tent effects of fish footprint, which may be driven by historical con-
sumption patterns (Fig. 5). Due to this tendency, fish footprint increases 
historically by at least 0.35 % across economies, regardless of unob-
served specificities. Growth in marine trophic levels typically in devel-
oping economies implies a decline in fishing pressures, however, its fish 
stocks become a source of exploitation to meet demands in developed 
countries, thus, exacerbating the global fish footprint in long term by 
0.27 %. This scenario corroborates the temporal trends of fish export in 
Fig. 1d. 

Assessing the demographic dynamics of consumption patterns con-
firms the mitigating effects of ruralization and aggravating effects of 
urbanization on fish footprint. While ruralization declines fish footprint 
by 0.01 %, urbanization intensifies fish footprint by 0.02 %. Over half of 
the global population is reported to live in urbanized areas (Steinberger 
et al., 2012), which may lead to purchasing economies of scale—a fish 
cost advantage over the rural folks, hence, increasing consumption 
patterns. Human development increases fish footprint by 0.28 % due to 
improved standard of living, knowledge, and healthy lifestyle. Consis-
tent with studies that report strong impact of energy on growth in pro-
duction and consumption (Steinberger et al., 2012), we observe both 
energy consumption and persistent levels of fossil fuels significantly (p 
< 0.05) drive fish footprint by nearly 0.03–0.07 %. We included GHG 
emissions as a proxy indicator for climate change effects on fish foot-
print. We observe climate change has both direct and indirect impacts on 
fish footprint (i.e., increasing by 0.03 %) by influencing patterns of fish 
migration, the abundance of fish stock, regional-specific species, and 
mortality rates (Brander, 2010; OECD, 2011). We find climate change 
vulnerability—a function of climate exposure and adaptive capacity—to 
decline fish footprint by 0.40 %. The threat of climate change vulnera-
bility to biodiversity triggers environmental consciousness to achieve 
sustainable production and consumption, thus, reducing threatened 
marine systems including the historical fish footprint using adaptation 
and climate-resilient options for resource management (Smith et al., 
2001). Increased level of precipitation declines fish footprint by 0.02 % 
through the development of connectivity (through migration) between 
particular fish habitats (Shaw, 2016). Changes in precipitation patterns 
alter stream flows affecting organisms in the marine ecosystem. 

We observe a diminishing effect of FDI, temperature, income level, 
and time trends on fish footprint estimated using the expression x* =
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Fig. 3. Wavelet spectrum showing the effect of global fish price on fish distribution dynamics across economies. (a) Developing: Production vs. global fish price (b) 
Developed: Production vs. global fish price (c) Global: Production vs. global fish price (d) Developing: Consumption vs. global fish price (e) Developed: Consumption 
vs. global fish price (f) Global: Consumption vs. global fish price (g) Developing: fish import vs. global fish price (h) Developed: fish import vs. global fish price (i) 
Global: fish import vs. global fish price (j) Developing: fish export vs. global fish price (k) Developed: fish export vs. global fish price (l) Global: fish export vs. global 
fish price. The wavelet coherence was estimated using the bias-corrected cross-wavelet power technique expounded in Veleda et al. The horizontal axis shows the 
time periods whereas the vertical axis shows the scale (a lower scale shows high frequencies and vice versa). The dark red-colored regions signify the high inter-
relationship between bivariate series whereas the dark blue-colored regions denote lower dependency between bivariate series. However, the dark blue-colored 
regions outside the area of significance depict the independence of time and frequencies from the bivariate series. The unshaded grey transparent layer with 
dotted lines represents the cone of influence (COI) demarcating regions not induced by edge effects. The shaded grey transparent layer of the COI is the region with 
suspected edge effects. The black-solid line denotes statistically significant (P < 0.05) levels of wavelet coherence computed from 2000 Monte Carlo randomizations. 
The phase plot shows black-colored arrows pointing right (implies both x & y variables are in phase), left (shows both x & y series are in anti-phase), upward (infers y 
leads x by π/2), and downward (infers x leads y by π/2). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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β̂1X/
(
− 2β̂2X2). The initial rise in FDI, temperature, income level, and 

time trends have positive effects on fish footprint but the effect becomes 
zero when FDI, temperature, income level, and time trends increase by 
1.85 %, 0.10 %, 0.52 %, and 1 %, respectively, subsequently declining 
fish footprint. This highlights a parabolic shape of the fish footprint- 
income nexus, validating the F2KC hypothesis across income classifica-
tions illustrated in Fig. 6a. Further observation shows fish footprint in-
creases along income groups in the order: high-income > upper-middle- 
income > lower-middle-income > low-income countries (Fig. 6a). The 
country-specific effects show time-invariant between-country unmea-
surable variations and unobserved specificities including inter alia 
gender, race, culture, and religion that either stimulate (positive effects) 

or slow down (negative effects) fish footprint (Fig. 6b). For example, the 
effect of unobserved characteristics has the highest positive effects in 
Norway and the lowest negative effects in Angola (all coefficients across 
countries are significant at p < 0.01 except for 32 economies, see Sup-
plementary Table 6). External funding through foreign investments has 
resource efficiency effects that limit fish footprint. An increase in tem-
perature increases water temperature, leading to changes in the distri-
bution of species (Barange et al., 2018). The role of time trends shows 
changes in technology and innovation have long-term mitigating effects 
on fish footprint. 

Fig. 4. Statistical distribution of variables. (a) Changes in Marine trophic level (b) Changes in average annual temperature (c) Changes in GHG emissions (d) 
Correlation among variables. Panel a–b was generated using the mean shift estimation samples from the cross-sectional time series dataset that controlled for time 
periods across economies. Panel c denotes the shift estimation derived using panel data operators that capture both first-difference and historical effects. Panel d was 
developed using the estimated pairwise correlation with coefficients significant at P-value < 0.05. The dark pink-colored square represents a strong negative cor-
relation whereas the dark green-colored square signifies a strong positive correlation. Legend: HDI = human development index, VULNERA = Climate change 
vulnerability, ENERGY = Energy use, FDI = Foreign direct investments, PGDP = Income level, URBAN=Urbanization, RURAL = Ruralization, GHG = Greenhouse gas 
emissions, FOSSIL = Fossil fuel energy utilization, MARINE = Marine trophic index, PRECI = Average annual precipitation, TEMP = Average annual temperature, 
and FISH=Fish footprint. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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4. Discussion & conclusion 

In this study, we have documented empirical evidence of historical 
changes in fish footprint characterized by increased fish production and 
consumption (SDG 12). The existing research identifies high human 
dependence on the marine ecosystem (to provide coastal protection, 
cultural values, employment, and food) specifically in dense coastal 
populations in developing economies (Africa, Asia, and small island 
nations) (Selig et al., 2019). Regions with strong human dependence on 
marine resources coincide with social-ecological hotspots with high 
climate change vulnerability, highlighting the significance of inte-
grating human dependence into marine conservation and management 

policies (Sarkodie et al., 2022; Selig et al., 2019). 
The persistent levels of fish footprint show the effects of behavioral 

and lifestyle changes that affect global demand for fish resources and 
subsequently, fish consumption patterns. Studies associate the strong 
relationship between fish consumption patterns, and behavioral and 
lifestyle changes to health-conscious dietary choices (Oken et al., 2008), 
cultural and societal influences (Cornelsen et al., 2015), and concerns 
with sustainability and environmental awareness (De Boer et al., 2014). 
The increased fish consumption per capita in developed economies 
stimulates fish demand from developing countries through imports. 
With limited fishing grounds, viz. ecological deficit, and sustainable fish 
management, many economies meet their demand by importing fish 
resources, which may facilitate fish footprint-embodied in exports, 
especially when fish stock is overexploited using unsustainable fish 
practices. Similar results of global fishing inequality showing disparities 
in fisheries management are reported by Klein et al. (2022). The study 
showed that countries with weak fisheries management systems (i.e., 
lack the institutional quality to enforce sustainable fishing practices) 
face fishing pressure and are more likely to engage in unsustainable 
fishing practices leading to habitat degradation and overfishing—with 
long-term negative impacts on marine biodiversity (Klein et al., 2022). 

Achieving a nutritious and healthy lifestyle (SDG 3) involves 
increased availability, accessibility, and affordability of healthy options 
including fish and fish products. Yet, these three pillars of development 
appear dwarfed, endangering long-term food security, especially in low- 
income economies. Golden et al. (2016) showed that developing econ-
omies rely heavily on fish as a primary source of nutrition (essential fatty 
acids, high-quality protein, vitamins, and minerals) and income, hence, 
a decline in fish stocks overly affects (i.e., leading to nutritional de-
ficiencies and increased vulnerability to health outcomes) vulnerable 
populations, especially in developing countries. This infers that the 
alarming decline of global fish stocks and disruptions in fishing patterns 
have long-term effects on human health and food security while 
reducing income opportunities and exacerbating poverty (Blasiak et al., 
2017). 

We showed that global price volatility has a significant effect on fish 
production, consumption, import, and export in developing economies 
but is insignificant in developed countries. A similar study on income 
and price interactions (Cornelsen et al., 2015) corroborated our find-
ings, arguing that the price elasticity of food demand is higher for 
developing economies, specifically lower-income populations compared 
to high-income economies. This implies that changes in price have a 
relatively greater effect on food consumption patterns in developing 
countries, specifically lower-income groups. The advantage of fish 
purchasing power in developed nations regardless of global price vola-
tility explains why among other factors—fish stock collapse and small 
catches are highly prevalent in developing countries, especially low- 
income nations. 

We found strong effects of affluence, urbanization, and human 
development on fish footprint, especially in developed economies. 
Wealthy countries consume more fish to ensure a healthy lifestyle that 
declines diet-attributed morbidity and mortality whereas poor econo-
mies consume more fish resources as an alternative to expensive meat 
and meat products (Hirvonen et al., 2020). 

The empirical assessment of drivers and trends of fish footprint offers 
policy implications useful as mitigation options. The over-reliance on 
fish exploitation to end hunger (SDG 2) in food-insecure regions will 
only have a short-term impact on sustenance but will intensify both 
ecological deficits (because of fish depletion) and fish footprint in the 
long term. However, investments in the restoration of the marine 
ecosystem including fish resources (SDG 14) provide lasting co-benefits 
of reducing species extinction, providing economic opportunities 
(employment), and improving food security (Singh et al., 2018). 

Fig. 5. Estimated parameters showing the drivers of fish footprint. (a) Model 1 
(b) Model 2. The forest plots only show significant parameters estimated using 
the KRLS machine learning technique. The light-blue horizontal error bar ( ) 
represents the 95 % confidence interval whereas the solid-dot ( ) denotes robust 
coefficients statistically significant at P-value <0.05 for all models. Model 1: R2 

= 0.951, Eff. Df = 101.600, Tolerance = 0.724, Lambda = 0.279, Looloss =
61.66, Sigma = 58, Obs = 724, Trend = 0.063 (P-value < 0.01), Trend2 =

− 0.032 (P-value < 0.05), and Country-specific effects = Yes. Model 2: R2 =

0.992, Eff. Df = 548.700, Tolerance = 0.835, Lambda = 0.137, Looloss = 81.89, 
Sigma = 82, Obs = 835, Country-specific effects = Yes, and Yearly-fixed effects 
= Yes. Both models were validated using the panel quantile regression while 
controlling for heterogeneous effects across economies. The diminishing effect 
of FDI, temperature, and income level are estimated using the expression: x* =

β̂1X/
(
− 2β̂2X2). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 6. Parameter Estimates showing. (a) the fish- 
based footprint Kuznets curve across economies (b) 
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income. Panel a depicts the visualization of the fish 
footprint Kuznets curve (F2KC) hypothesis generated 
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income level while accounting for income groups 
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effect generated after validating the F2KC hypothesis 
while accounting for income convergence (i.e., this 
is the third model estimated with only income, 
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served and time-invariant country-specific fixed ef-
fects that account for time-invariant heterogeneity 
affecting fish footprint).   
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