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Abstract 

 

This study builds on the Efficient market Hypothesis (EMH) and the Adaptive Market 

Hypothesis (AMH) to explore the time-varying characteristics of market efficiency in global 

equity markets. The research applies Adjusted Market Inefficiency Magnitude (AMIM) and the 

Hurst exponent to measure efficiency in various markets. This study additionally investigates 

the impact of commodity futures prices on market efficiency, revealing a heightened sensitivity 

during periods of market turmoil. The relationship between commodity futures and market 

efficiency is explored through binomial and multinomial regression in generalized linear 

models. We find that market efficiency and its dependency on commodities varies substantially 

over time, with large and abrupt changes during times of global market turmoil. In North 

America, Far East, and Europe, market efficiency’s dependence on corn during covid-19 is 

consistent across our models. Further discrepancies between models show that there is evidence 

on long memory under volatile regimes. 
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Sammendrag 

 

Denne studien bygger på hypotesen om effisiente marked (EMH) og hypotesen om adaptive 

marked (AMH) for å utforske tidsvarierende markedseffisiens i globale aksjemarkeder. 

Oppgaven benytter to mål på effisiens, Adjusted Market Inefficiency Magnitude (AMIM) og 

Hurst-eksponenten, for å måle effisiensen i diverse finansmarkeder. Resultatene indikerer 

varierende markedseffisiens i respektive marked. I studien vurderes det også om prisendring i 

råvare-futures påvirker effisiensen i markedet, hvor det avdekkes en økende grad av 

avhengighet under markedskriser. Vi benytter binomial og multinomial regresjon i en 

generalisert lineær modell for å identifisere forhold mellom råvarefutures og 

markedseffisiens. Funnene i denne oppgaven antyder at forholdet mellom råvare-futures og 

markedseffisiens er dynamisk, og varierer betydelig over tid, med brå og plutselige endringer 

under volatile regimer. Markedseffisiensen i indeksene for Nord-Amerika, Øst-Asia, og 

Europa, viser i alle modellene våre en gjennomgående sammenheng med futures-prisen for 

mais under Covid-19. Videre avsløres varierende resultater mellom modellene som benytter 

Hurst-eksponenten og AMIM, noe som indikerer langsiktig selv-likhet i tidsserier, under 

ustabile marked.  
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Extended Introduction 

Our master thesis follows a scientific article format, which comprises two main parts. Firstly, 

we provide an extended introduction that encompasses a comprehensive literature review, 

research methodology, and essential concepts necessary for the investigation of our chosen 

topic. This section serves as a foundation for our subsequent scientific article, where we present 

our original research findings and analysis. The inclusion of an extended introduction allows 

us to contextualize our study within the existing body of knowledge and provide a robust 

framework for our scientific article. 

1 Theory 

In this chapter we present topics that are relevant for our master thesis, and review literature 

related to these topics. Our topics can be divided into the sections “Efficient Market 

Hypothesis”, “Adaptive Market Hypothesis”, “Autoregressive models and time-varying market 

efficiency”, “Fractal models and dimensions” and “Commodities”. By the end of this chapter, 

readers will have gained a fundamental understanding of the existing research related to our 

thesis. 

 

1.1 Efficient market hypothesis 

The Efficient Market Hypothesis (EMH) was introduced in the seminal paper by Fama (1970), 

where he describes markets to be of varying degrees of efficiency, categorized as weak, strong, 

and semi-strong efficiency. Research reviews by Ţiţan (2015) and Yen and Lee (2008) show 

that market efficiency is a complex topic and exists in all three forms. Fama (1991) argues that 

stock prices are random at each increment and independent of past values, meaning they display 

no consistent pattern and would be impossible to predict. Multiple authors have provided 

evidence of market efficiency moving from one state to another, proving that market efficiency 

is time-variant as well (Ito and Sugiyama (2009); Kim et al. (2011) Lim et al. (2013); Lim & 

Brooks, 2011; Urquhart & McGroarty, 2016). For stock markets, Jegadeesh and Titman (1993) 

shows that predictability exists within a three-year period for most stocks, which is evidence 

that stock markets typically are not strongly efficient. Furthermore, De Bondt and Thaler (1985) 

show that markets tend to overreact to dramatic events, which also is not reconcilable with the 

EMH as it is a direct violation of Bayes’ theorem. Extending on this, Mensi et al. (2022) show 

how markets for multiple asset classes become less efficient during volatile periods in contrast 

to benign periods.  
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Malkiel (2003) show that market anomalies tend to self-destruct upon discovery, which is 

consistent with EMH as it would mean markets absorb newly available information. In contrast, 

Banz (1981) shows how the size of the company disproportionately affects its returns but argues 

that size effect persistence is evidence of model misspecification in the current paradigm rather 

than market inefficiency. This is supported by Chan and Chen (1991), who show that small 

firms tend to react differently to the same news as compared to large firms and argues that it is 

the result of a common model misspecification. Overall, Schwert (2003) argues that persistent 

market anomalies are likely the result of model misspecification. Further examples are shown 

by Ariel (1987, 1990), who find that stock returns are higher in the beginning of the month and 

prior to holidays, which is evident that human income and consumption patterns affect equity 

valuations. 

 

Declining trend of autocorrelations in stock markets, as shown by Gu and Finnerty (2002), 

indicates that markets are more efficient today than before, which they partly credit to 

increasing information availability. As found by Broadstock and Zhang (2019) and L. Jiang et 

al. (2018), social media has pricing power on stock markets and extend on this by showing that 

equities with high uncertainty become more efficiently priced when frequently interacted with 

on online financial forums. This is supported by Chen et al. (2014), who find that efficiency for 

specific equities increase with frequency of searches on finance websites. In contrast, Drake et 

al. (2017) found that interactions on social media platforms by non-finance professionals tend 

to hinder efficiency. This is supported by Polyzos and Wang (2022), who find that only parts 

of information available on social media platforms regarding clean energy equities is 

incorporated into its prices, indicating semi-strong efficiency. Examples included show that 

market efficiency varies across sectors and asset classes (Mensi et al., 2021; Naeem et al., 

2022). 

 

In this chapter we showed how research provides varying signals regarding the validity of 

EMH. In short, the primary concerns about EMH relate to predictability, personal biases, and 

incomplete incorporation of information. The complexity and time-varying characteristics of 

market efficiency makes it an interesting topic of analysis, and in this study additional attention 

will be directed towards the changes that occur during volatile regimes. 
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1.2 Adaptive market hypothesis 

As an alternative to EMH, the Adaptive Market Hypothesis (AMH) is proposed by Lo (2004, 

2005), which explains through evolutionary theory how traditional economic financial models 

can coexist alongside behavioural models. Specifically, Lo argues that through the application 

of heuristic techniques, individuals will allow behavioural bias to influence their decisions as 

they adapt to a dynamic environment. Kahneman et al. (1982) explain such deviation from 

rationale through recency biases and goes on to state that an efficient market is not reconcilable 

with human nature. This is supported by De Bondt and Thaler (1990), who shows that cognitive 

biases can be found also among professional security analysts and economic forecasters. 

 

Literature indicates that stock market prices can be predicted through specific market conditions 

(Urquhart & McGroarty, 2016), which indicates both weak efficiency and adaptivity in markets. 

In certain cases, there are examples of stock market returns being both predictable and biased 

as displayed by the existence of calendar anomalies (Reinganum, 1983; Urquhart & McGroarty, 

2014). This is extended on in an article by Ito et al. (2015), who find that efficiency in stock 

markets, in addition to being time-variant, is also long-term cyclical. This is specifically 

expressed during special events, such as during a crisis or during varying economic conditions. 

In addition, Gu and Finnerty (2002) show that cognitive biases have affected stock market 

returns for over a century.  

 

The AMH provides an alternative to the EMH as well as a solution to its shortcomings. As 

research indicates, there is evidence to suggest that AMH explains behaviours in financial 

market better than EMH. This thesis builds on both hypotheses of market efficiency, as it will 

examine the effects of uncertainty and common cognitive biases in volatile regimes.  

 

1.3 Autoregressive Models and Time-Varying Market Efficiency 

The application of autoregressive models to assess market efficiency was pioneered by Fama 

(1970), who utilized autoregressive techniques to test the Efficient Market Hypothesis. Nyblom 

(1989) asserted a drawback in using the autoregressive approach to gauge market efficiency, 

highlighting the possibility of drawing false conclusions. Nevertheless, this issue can be seen 

as a phenomenon not exclusive to autoregression. Building upon this technique, Ito et al. (2015) 

and Noda (2016) expanded its applicability to time series analysis. Examples showcase how 

these techniques have been applied to demonstrate contrasting perspectives to existing research 

(Khuntia & Pattanayak, 2018). 
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Ito et al. (2015) identified a limitation of time-varying market efficiency measures, specifically 

their lack of robustness when faced with insignificant autocorrelations. In response, Tran and 

Leirvik (2019) proposed a solution through the development of the Adjusted Market 

Inefficiency Magnitude (AMIM), providing an example of its application in multiple equity 

markets. Additionally, the AMIM model has been employed to measure time-varying market 

efficiency in cryptocurrency and fiat currency exchange rates (Puertas et al., 2023; Tran & 

Leirvik, 2020), as well as in commodity markets (Lauter & Prokopczuk, 2022; Okoroafor & 

Leirvik, 2022). 

 

Parfenov (2022) demonstrated that the AMIM is linearly dependent on the size of the sample 

window, which has implications for comparability across studies utilizing different window 

sizes. Furthermore, when applying autoregressive market efficiency models, researchers have 

the flexibility to employ an AR(q) model where q can either be stationary or varied through 

optimization, such as using the Akaike Information Criterion (AIC). However, it is important 

to note that since AIC assumes stationarity in autoregressive models, the error regarding 

estimation of optimal lag length of an autoregressive model increases under non-stationarity. 

Granger and Ding (1995, 1996) and Cont (2007) demonstrated the slow decay rate of 

autocorrelation functions for absolute returns in stock markets, indicating the presence of 

volatility clustering. This finding is supported by Tseng and Li (2012), who suggested that 

volatility clustering exhibits time variation and varies across markets, specific stocks, and 

commodities. Consequently, a drawback of the autoregressive approach is its inability to 

distinguish between predictable patterns and volatility-induced non-stationarity. 

 

Building upon the assumption of predictability in Fama’s efficient market hypothesis, this thesis 

will employ the AMIM in a rolling window analysis to assess time-varying market efficiency. 

This test is derived using an AR(q) model and AIC optimization, which means that caution to 

recency bias and non-stationarity must be considered in interpretation of the results.  

 

1.4 Fractal models and dimensions 

Fractional Brownian motion was first introduced by Mandelbrot and Van Ness (1968), arguing 

models following a fractional Brownian motion is better suited to capture heterogeneity and 

volatility clustering in financial markets compared to model utilizing ordinary Brownian 

motion. This perspective is extended by Ilalan (2016) who incorporates Elliot waves to support 
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the theory of fractional Brownian motion in Japanese equity markets. Extensions have been 

made by introducing a deterministic scaling function to transition into fractional geometric 

Brownian motion models, which are applicable to equity markets (Angstmann et al., 2019), 

commodity markets (Ibrahim et al., 2021), and option markets (Azmoodeh et al., 2009).  

 

Rogers (1997) presents an opposing argument, suggesting that as the lags between two 

increments increase in fractional Brownian motion, the correlation decreases. Hence, it is not 

true Brownian motion, implying the potential for statistical arbitrage exploitation. In practice 

however, fractional Brownian motion models has shown to be less effective at exploiting mean-

reverting patterns compared to simple correlation pairs trading (Bui & Ślepaczuk, 2022). 

Mandelbrot and Van Ness (1968) explain the properties of a fractional Brownian motion and 

extract the fractional Brownian motion exponent, also called the Hurst exponent, which is equal 

to 0.5 if the process is a standard Brownian motion.  

 

Examples of application of the Hurst exponent in market efficiency analysis exists in both a 

static approach (Aloui et al., 2018; Gaio et al., 2022; Galluccio et al., 1997; Mensi et al., 2021; 

Scalas, 1998) and dynamic approach (Engelen et al., 2011; Y. Jiang et al., 2018; Morales et al., 

2012; Tzouras et al., 2015). However, critiques identify issues with artificially high Hurst 

exponents in finite Brownian motions (Couillard & Davison, 2005) and sensitivity to time-

dynamic scaling characteristics with exceedingly large sample sizes (Vogl, 2023), indicating 

that stock markets in reality follow a geometric Brownian motion. In a paper by Ghazani and 

Ebrahimi (2019) it is solidified that a dynamic Hurst exponent varies with sample size in oil 

price data. 

 

In the seminal paper on self-similarity in fractal sets, Mandelbrot (1967) shows that fractal 

geometric shapes depend on scaling of fractal dimensions. The relationship between the fractal 

dimension (D) and the Hurst exponent (H) is defined as D = 2-H (Mandelbrot, 1985; Voss, 

1989). This implies that when the Hurst exponent approaches one, the time series move towards 

a one-dimensional, predictable flat structure. Conversely, when the Hurst exponent approaches 

zero, the time series move towards a two-dimensional jagged structure, which is more volatile, 

but not necessarily unpredictable. Examples demonstrating the linear relationship between the 

Hurst exponent and fractal dimensions for fractal Gaussian noise processes are presented by 

Bassingthwaighte and Bever (1991). For specific markets, issues persist regarding the linear 

relationship between the Hurst exponent and fractal dimensions (Chen et al., 2011; Gneiting & 
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Schlather, 2004; Li & Lim, 2008). Furthermore, the Hurst exponent and fractal dimensions have 

been beneficial for exploring the long-term memory of commodity futures markets (Fernandez, 

2010; Kristoufek & Vosvrda, 2014).  

 

In this chapter, we showed that fractal techniques can be applied to test for self-similarity, and 

ultimately, to test for Brownian motions. In this thesis we will employ the Hurst exponent in a 

rolling window analysis, to act as measure of market efficiency. This is a fractal approach, 

which can be used to determine if the market follows a Brownian motion. Furthermore, whether 

it deviates negatively or positively from its benchmark value can be analysed to determine the 

dimensional structure of the dataset, to specify the characteristics of the inefficiency. While the 

Hurst exponent tests for the presence of Brownian motion, it is reasonable to assume that stock 

markets follow a geometric Brownian motion, which is a Brownian motion with drift. 

Therefore, results can be of inflated, and how much of the stock market drift is captured in our 

sample must be considered. 

1.5 Commodities 

Various research indicates that spot prices and future contract prices are positively correlated 

and that future contract prices lead spot price for multiple asset classes (Asche & Guttormsen, 

2002; Bannigidadmath & Narayan, 2022; Choi & Hammoudeh, 2010; Huth & Abergel, 2014; 

Zhang & Liu, 2018). Expected supply tightening roughly explains divergence of future contract 

price from spot price (Fama & French, 1988; Gorton et al., 2013; Ng & Pirrong, 1994), which 

implies that commodity future contract prices increase disproportionate to the spot price when 

uncertainty regarding its underlying commodity’s scarcity increases. 

 

Commodity futures are also subject to efficiency variation, as many studies show. Bilson (1981) 

argues that commodity future markets are particularly prone to speculative trading, while Bohl 

et al. (2021) found a negative relation between speculation and efficiency in commodity 

markets. Ramírez et al. (2015) found evidence of AMH on the returns of agricultural 

commodity futures. Okoroafor and Leirvik (2022) study the time-varying properties of Brent 

and WTI oil prices, finding that even though highly related, the prices does not react equally to 

various shocks in global financial markets. Berger and Uddin (2016); López (2014); Wadud et 

al. (2023) and Nguyen et al. (2020) show that correlation between commodity and equity is 

positive in benign periods, and generally increases during times of crisis. 
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Intersectoral commodity future contract price co-movement is generally positively correlated 

and of varying strength (Fan & Qiao, 2023; Wadud et al., 2023). Especially, agricultural 

commodities stick out with very high intersectoral correlation (Dai et al., 2022). Evidence also 

exists to suggest that commodities are interconnected to related equity, such as agricultural 

commodities and the Food & Beverage Index (Billah et al., 2023) and oil commodities and oil 

corporations (Diaz & de Gracia, 2017). Additionally, there is evidence of correlation between 

future contracts of similar underlying commodity from the American and Chinese markets (Fan 

& Qiao, 2023; Li & Lu, 2012), implying interconnectedness through globalization.  

This thesis explores the impact of commodity futures prices on market efficiency during benign 

and volatile regimes. Overall, research indicates that commodities are weakly dependent and 

responds similarly as equity markets to crisis, as well as increasing in price when uncertainty 

regarding its scarcity increases. Therefore, if a crisis impacts resource uncertainty, commodity 

prices and equity market efficiency must follow suit. 

 

2 Data 

This thesis employs the Morgan Stanley Capital International (MSCI) global equity indices as 

the primary research objects. By utilizing a comprehensive range of statistical testing methods, 

this study aims to investigate and elucidate the variability in market efficiency inherent within 

these datasets. In order to identify potential regional disparities, the following MSCI indices 

have been specifically chosen for analysis: World, North America, Europe, Far East, and 

Emerging Markets. The broad market index data will be obtained from the official MSCI 

website. To provide insight into the sources of variation in market efficiency, a diverse array of 

commodity futures contracts incorporating common industrial input factors will be utilized. 

These input factors encompass metals, agricultural and food resources, as well as fossil energy 

sources. To accomplish the research objectives, the following five datasets have been selected:  

• Copper Futures – Ticker: HGK3 – Exchange: COMEX 

• US Corn Futures – Ticker: ZCK3 – Exchange: CBOT 

• Crude Oil WTI Futures – Ticker: CLK3 – Exchange: NYMEX 

• Live cattle Futures – Ticker: LCc1 – Exchange: CME 

• Natural Gas Futures – Ticker: NGK3 – Exchange: NYMEX 
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The commodity futures are gathered from Investing.com. We consider both the MSCI webpage 

and Investing.com as reliable sources when considering price data. The data contains ten 

timeseries of 6310 daily observations over the period March 1999 through March 2023, 

formatted in logarithmic returns ln(Pt/Pt-1). Utilizing daily observations is considered the 

optimal approach for examining high liquidity equity markets through the implementation of 

responsive autoregressive and fractal models.  

3 Methodology 

In this chapter we will briefly present which methods we will apply in our thesis. The metrics 

range between risk measures, as well as statistical testing and a market efficiency test.  

 

3.1 Statistical testing 

The Augmented Dickey-Fuller (ADF) test is a statistical technique employed for the 

identification of unit roots in time series data, which signifies non-stationarity. By assuming the 

existence of a unit root, the ADF test assesses whether the data displays stationary 

characteristics. One of the key distinctions between the ADF test and the Dickey-Fuller test is 

its ability to account for autocorrelation within the time series. The result of the ADF test is 

contingent upon comparing the test statistic with the critical value. 

In addition, we will utilize a Jarque-Bera test, which serves as a goodness-of-fit test to assess 

the skewness and kurtosis of the data in relation to a normal distribution. For the data to conform 

to a normal distribution, a Jarque-Bera statistic close to zero is desirable. 

3.2 Adjusted Market Inefficiency Magnitude (AMIM) 

To investigate the presence of market inefficiency during the test period, our study will utilize 

the adjusted market inefficiency magnitude (AMIM) test, as extensively described in the paper 

by Tran and Leirvik (2019). The AMIM model assumes that if the timeseries follows a random 

walk pattern the lagged values of the AR(q) model seen in Equation (1) in an efficient market 

will not have any predictive value. 

 𝑟𝑡 = 𝛼 + 𝛽1𝑟𝑡−1 + ⋯ + 𝛽𝑞𝑟𝑞−1 + 𝜀𝑡 (1) 

In AMIM an autoregressive model is ran on a given number of lags. We plan to use backwards 

selection with the Akaike information criterion to determine the number of lags. The significant 

slope coefficients are stored in a vector, which is used to find a variance-covariance matrix. 

Since the covariance matrix is equal to Equation (2), then we know that we can use Cholesky 
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decomposition to extract the inverse triangular matrix from the variance-covariance matrix and 

multiply it by the beta vector to create a vector of standardized betas. 

1. The slope coefficients are stored in a vector (β1̂, β2̂, β3̂ … β�̂�), which can be separated 

into two triangular matrices through application of Cholesky decomposition as 

illustrated.  

 ∑ = ℒℒ′ (2) 

2. The standardized beta vector β�̃� is extracted through multiplication of the inverse 

triangular matrix. 

 β̃ = ℒ−1β̂ (3) 

3. The absolute values of the beta vector are used to create the market inefficiency 

magnitude (MIM). 

 
𝑀𝐼𝑀 =

∑|β�̃�|

1 + ∑|β�̃�|
 

 

(4) 

4. The AMIM is derived by subtracting the confidence interval from the MIM, and then 

divided by the distance between the maximum value of the MIM, which is 1, and the 

confidence interval. 

 
𝐴𝑀𝐼𝑀 =

𝑀𝐼𝑀 − 𝐶𝐼

1 + 𝐶𝐼
  

 

(5) 

The equation for AMIM will have a maximum value of 1, and no set minimum value. AMIM-

estimates between 0 and 1 indicate inefficient markets, while estimates lower than 0 indicate 

efficient markets. Because of the AR(q) models’ affinity towards recent observations, some 

recency bias must be considered in the interpretation of the results. The AMIM model is robust 

against insignificant autocorrelations. This process is applied in a one year rolling window 

analysis. 

 

3.3 R/S Hurst exponent 

The Hurst exponent, also known as the Hurst coefficient or Hurst index, is a measure used to 

quantify the long-term memory or persistence in a time series data set. The Hurst exponent is 

based on the concept of self-similarity or fractal behaviour. In time series, self-similarity refers 

to the property that patterns observed at one scale are similar to patterns observed at different 
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scales. The Hurst exponent helps to quantify the degree of self-similarity in the data. The value 

of the Hurst exponent, denoted as H, ranges between 0 and 1.  

The Hurst exponent is computed by partitioning a time series, denoted as x(i), divided into s 

subsets of length n. For each subset, α = 1, 2, …, s, xk,α signifies the element in subset α where 

k = 1, 2, …, n. The rescaled range is calculated as follows:  

1. Calculate the cumulative deviate series using a mean adjusted series: 

 

𝑦𝑘,𝛼 = ∑(𝑥𝑖,𝛼 −
1

𝑛
∑ 𝑥𝑘,𝛼

𝑛

𝑘=1

)

𝑘

𝑖=1

 

 

(6) 

2. Calculate the range Rα and standard deviation Sα of the subsets: 

 𝑅𝛼 = max(𝑦𝑘,𝛼) − min (𝑦𝑘,𝛼) (7) 

 

 
𝑆𝛼 = (

1

𝑛
∑ 𝑥𝑘,𝛼

𝑛

𝑘=1

− 𝐸𝛼)2)0.5, 𝛼 = 1,2, … , 𝑠 
 

(8) 

3. Calculate the mean of the rescaled range (Rα/Sα) for every subset of length n: 

 
(

𝑅

𝑆
)

𝑛
=  

1

𝑠
∑(𝑅𝛼/𝑆𝛼)

𝑠

𝛼=1

 
 

(9) 

Mandelbrot (1969) and Mandelbrot and Wallis (1969) show that the rescaled range 

asymptotically follows the power-law relation (R/S)n ∝ cnH, where c is a constant and H denotes 

the fractional Brownian motion exponent, also called the Hurst exponent. The Hurst exponent 

is found as the slope coefficient of the log linear regression: 

 
log ((

𝑅

𝑆
)

𝑛
) = log 𝑐 + 𝐻 log 𝑛 

 

(10) 

Mandelbrot and Van Ness (1968) show that according to the model of fractional Brownian 

motion a Hurst exponent of 0.5 indicates a Brownian motion. If H > 0.5, then the time series 

is considered persistent and containing long range dependencies, or a directional trend. If H < 

0.5, then it is considered anti-persistent, signalling short term dependencies, and indicating 

mean reversion. According to the process of fractional Brownian motion, the scaling 

properties shift inversely between fractal dimensions as H moves between 0 and 1 

(Mandelbrot, 1985). This means that a high Hurst exponent results in a lower fractal 

dimension, indicating more short-term predictability, while a low Hurst exponent results in a 

higher fractal dimension, indicating more short-term volatility. To examine the time varying 

properties of the Hurst exponent in a time series, we apply a one year rolling window. This 

creates a series of Hurst exponents, which is applicable in time series analysis. 
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3.4 Regression analysis 

The primary objective of this thesis is to provide an explanation for market efficiency through 

the utilization of industrial input factors. To achieve this goal, commodity future data will be 

incorporated as exogenous variables in regression models, while market efficiency metrics will 

serve as endogenous variables. The relationship between these two datasets will be assessed by 

analysing the direction and significance of the slope ratios. Given the distinct nature of the 

market efficiency models, it is most appropriate to employ separate regression models for their 

analysis. The AMIM data will be applied in a binomial logistic model, while the Hurst exponent 

data will be used in a multinomial logistic model. The two models produce results in different 

measurement units, namely odds ratios and relative risk ratios. Although these ratios are subject 

to slightly different interpretations, they share the same relationship with the number 1. 

Specifically, in both ratios, values close to 0 indicate a negative relationship, values close to 1 

indicate no relationship, and values greater than 1 indicate a positive relationship. 

 

3.5 Binomial Logistic Regression 

The AMIM metric differentiates between efficient markets, indicated by a value smaller than 

or equal to 0, and inefficient markets, indicated by a value above 0. Consequently, the 

regression analysis will be structured as a binomial or binary logistic regression within a 

generalized linear model, where the response variable takes on the dichotomous values of 0 or 

1. In the binomial logistic regression, the continuous independent variables are utilized to 

generate output ranging between 0 and 1, following a logistic distribution. The logarithm of the 

odds ratio (log odds ratio) is expressed as: 

 ln (
𝜇

1 − 𝜇
) =  𝛽0 + 𝛽1𝑥1 +∙∙∙ +𝛽𝑖𝑥𝑖  

 

(11) 

Where the 𝜇 is the probability of the dependent variable being 1, 𝛽0 is the intercept, and the 

slope coefficient is gathered from 𝛽𝑖 = (1, 2, 3 … ). Consider a sample size of 100. The 

observations are classified as 1 for inefficient, and 0 for efficient. If we identify 70 observations 

of value 1, and 30 of value 0, the 𝜇 would then be 
70

100
= 0.70. Putting this result in equation 

(11), we get ln (
0.70

1−0.70
) ≈ 0.85 which is the log odds ratio of success. As log odds ratios can 

be challenging to interpret, both sides of equation (11) can be exponentiated to provide the odds 

ratio: 
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 𝜇

1 − 𝜇
= 𝑒𝛽0+𝛽1𝑥1+∙∙∙+𝛽𝑖𝑥𝑖    

(12) 

Where the same example as above would present the odds ratio of 
0.70

1−0.70
≈ 2.33. As such, we 

can discern that the odds of the binary outcome variable being 1, are 2.33 times greater than of 

it being 0. Note that odds ratio and relative risk ratios, as described in chapter 3.6, are not the 

same, nor is the interpretation. As an example, the odds of a coin flip returning heads is 1 

(
0.50

1−0.50
= 1), while the risk of returning heads is 0.5 (

1

2
= 0.5). This contrast occurs due to the 

odds ratio dividing the odds of the desired outcome on the odds of the undesired outcome, while 

the risk divides the probability of the desired outcome on all possible outcomes. Followingly, 

odds ratios may appear heavily inflated opposed to risk/probability. 

 

In this study, the response variable will be classified as 0 or 1 dependent on the AMIM:  

𝑌 = {
0, 𝐴𝑀𝐼𝑀 ≤ 0
1, 𝐴𝑀𝐼𝑀 > 0

 

As the market is deemed efficient if AMIM is 0 or below, and inefficient when AMIM is above 

0, the two outcomes are classified as Y =0 and Y = 1, respectively. The binomial logistic 

regression model will predict the probability of a specific market being efficient. 

3.6 Multinomial logistic regression 

For the Hurst exponent the properties of a time series are determined through analysis of the 

exponent’s oscillation around a 0.5 benchmark, arriving at polytomous conclusions. Therefore, 

it is not appropriate to use an ordinary linear regression. Instead, a generalized linear model is 

constructed using multinomial logistic regression. In this case, the results are matched to a 

natural integer of three numbers, representing each possible conclusion and stored into a 

variable y(λ)i. 

𝑈 = {
1,                         𝐻𝑢𝑟𝑠𝑡 > 0.525
2,        0.475 ≤ 𝐻𝑢𝑟𝑠𝑡 ≤ 0.525
3,                         𝐻𝑢𝑟𝑠𝑡 < 0.475

 

Here the value of two represents the conclusion that the time series follows a Brownian motion. 

Correspondingly, the values one and three represent the conclusion that the market is 

inefficient, or specifically anti-persistent and persistent respectively. In the multinomial logistic 

model, these values, and the data of logistic returns in commodities will be processed through 

multiple binary regressions βkXi to arrive at a marginal probability that observation i is equal 

to value in U. If the probabilities add up to one, for outcome k with K possible outcomes, the 

marginal probability is given as: 
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𝜋𝑖

(𝑈) = 𝑃[y(λ)𝑖 = 𝑘] =
ℯ𝛽𝑘𝑋𝑖

1 + ∑ ℯ𝛽𝑘𝑋𝑖  𝐾−1
𝑘=1

 
 

(13) 

The probability of being in the baseline category is calculated by subtraction. 

 
𝜋𝑖

(2) = 1 − ∑ 𝜋𝑖
(𝑘)

𝐾−1

𝑘=1
 

 

(14) 

The multinomial logistic regression model with one covariate x(θ)i is expressed in the following 

equation: 

 
log (

𝜋𝑖
(𝑈)

𝜋𝑖
(2)

) = β0
(𝑈) + β1

(𝑈)x(θ)𝑖 + 𝜀𝑖 
 

(15) 

Through statistical software, neural network iterative methods are applied to find the unknown 

slope coefficients β1
(U).  Because the beta coefficients follow logarithmic scaling it can 

complicate the interpretation of the results, and it is therefore more appropriate to convert the 

coefficients to relative risk ratios (RRR), which range from zero to infinity. Deriving the RRR 

can be done simply by exponentiating the coefficient, as seen in equation 16. 

 𝑅𝑅𝑅
β1

(𝑈) = ℯβ1
(𝑈)

  

(16) 

The ratio is interpreted as if the explanatory variable has a one-unit increase, then a RRR = 1 

indicates no relationship, RRR < 1 indicates negative relationship, and RRR > 1 indicates 

positive relationship. Consider the following results from a multinomial logistic regression 

(Crude oil: 𝑅𝑅𝑅
β1

(1) = 0.5, 𝑅𝑅𝑅
β1

(3)= 2). The interpretation here is that following a 100% 

increase in crude oil prices, the number of Hurst exponents classified as anti-persistent are 50% 

of what they were under no price fluctuation, while the number of Hurst exponents classified 

as persistent are 2 times as many. The distance from 1 of the RRR will be used to conclude on 

the dependence of the categorical Hurst exponent data y(λ)i on logistic returns in commodity 

future contracts x(θ)i. 

 

3.7 Summary statistics and correlations: 

In Table 1.1, the descriptive statistics of the cumulative log returns of the five regional indices 

are displayed. The correlation matrix in Table 1.2 provides indication of some highly correlated 

market pairs, like World-North America, and World-Europe which are 92.4%, and 81.3% 

correlated, respectively. This is not considered an issue for this study, as the indices are treated 

and analysed separately. 
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Descriptive statistic of regional indices       
  W NA FE EM EU 

Mean 3.3% 4.4% 2.5% 4.7% 1.1% 

Standard deviation 16.3% 19.3% 18.4% 18.6% 20.9% 

Kurtosis 13.4 13.4 7.6 10.5 11.7 

Skewness -0.57 -0.45 -0.23 -0.51 -0.36 

JB 28910 28575 5692 15009 19788 

p-value 0.000 0.000 0.000 0.000 0.000 

ADF -18.3 -18.4 -18.0 -17.2 -18.6 

p-value 0.010 0.010 0.010 0.010 0.010 

Maximum drawdown 19.5% 23.2% 18.1% 19.6% 24.8% 

Cumulative returns 80.3% 108.0% 61.0% 114.2% 26.3% 

Table 1.1: Descriptive statistics of the MSCI equity indices World (W), North America (NA), Far East 
(FE), Emerging Markets (EM), and Europe (EU). The table includes annualized means and standard 
deviation, as well as kurtosis, skewness, two tests relating to normality, and the minimum and maximum 
value in each time series. 

 

Correlation matrix for indices         

  W EU NA FE EM 

W 1 0.813 0.924 0.401 0.649 

EU 0.813 1 0.573 0.364 0.658 

NA 0.924 0.573 1 0.172 0.457 

FE 0.401 0.364 0.172 1 0.721 

EM 0.649 0.658 0.457 0.721 1 

Table 1.2: Correlation matrix for the five indices. 

 

Table 1.3 provides the descriptive statistics of the cumulative log returns of commodity futures. 

The standard deviation unveils the increased volatility present in the energy materials, 

compared to the other three futures contracts. The correlation matrix of the commodity futures 

contracts is displayed in Table 1.4.  

Descriptive statistic of commodity futures contracts     

  Live cattle Corn Copper Crude oil Natural gas 

Mean 4.8% 5.9% 9.3% 12.3% 0.6% 

Standard deviation 20.9% 27.6% 26.4% 51.5% 56.4% 

Kurtosis 152.7 9.0 7.1 487.5 7.7 

Skewness 0.24 -0.30 -0.15 -9.06 0.30 

JB 5874289 9581 4346 61665365 5891 

p-value 0.000 0.000 0.000 0.000 0.000 

ADF -20.3 -17.4 -16.8 -17.8 -17.0 

p-value 0.010 0.010 0.010 0.010 0.010 

Maximum drawdown 51.6% 31.5% 23.1% 204.7% 53.6% 

Cumulative returns 116.6% 144.4% 222.5% 289.2% 14.0% 

Table 1.3: Descriptive statistics of commodity futures contracts for five industrial input factors. The table 
includes annualized means and standard deviations, as well as kurtosis, skewness, two tests relating to 
normality, and the minimum and maximum value in each time series. 
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Correlation matrix for commodity futures       

  Copper Live cattle Corn Crude oil Natural gas 

Copper 1 0.096 0.199 0.260 0.083 

Live cattle 0.096 1 0.057 0.059 0.018 

Corn 0.199 0.057 1 0.161 0.093 

Crude oil 0.260 0.059 0.161 1 0.183 

Natural gas 0.083 0.018 0.093 0.183 1 

Table 1.4: Correlation matrix for the five commodity futures contracts. 

 

3.8 Participants and instruments 

Since we will study the behaviour of large financial markets, where the data are mostly 

anonymous and public, there are very few ethical implications for this study. Even if the names 

of the managers and people in positions of power are public information, it will not be necessary 

to mention anyone by name. On the topic of software, for this study, we will primarily utilize 

R to process our data into graphs, statistics, and regressions. To efficiently process data, 

Microsoft Excel will be used to prepare data for import into R, as well as refining tables. The 

R packages used for this thesis include “zoo”, “ggplot2”, “pracma”, “tseries”, “nnet” and 

“moments”. 

 

3.9 External and internal validity 

The commodity future contracts will be tested against multiple global and regional equity 

indices, and it is therefore fair to assume that the results of the study will be applicable to most 

developed countries. Special consideration must be made to developed countries with relatively 

large publicly listed sectors, such as Norway, where the energy sector makes up 31,6% of the 

index as of March 31st (Euronext, 2023). However, it is possible to make some assumptions 

regarding such markets based on the results from the relevant regional market index and 

commodity future contract. 

It is important for the reader to remember that market efficiency is an extensive and complex 

topic, and its relationship with commodity future contracts is minimally explored. Therefore, it 

is important to keep in mind the exploratory nature of this research. In extension, this means 

that omitted variable bias needs to be kept in mind both while writing and reading this study. 

In conclusion, this study cannot claim to fully explain variations in market efficiency. Instead, 

it will aim to expose the existence of a relationship between industrial input factors and market 

efficiency under benign and volatile regimes.  
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A drawback related to data in this study is the application of broad market equity indices. The 

implications following are first that we do not know for certain whether results for these indices 

are applicable to specific markets. Furthermore, the behaviour of the selected indices and 

commodities could have been the result of an unidentified anomaly which affects our study. 

Awareness also needs to be raised regarding the exclusivity of commodity futures contract data. 

The data used in this study includes five open license data sets, which are deemed representative 

of the general commodity market. Despite this, researchers with more funding could solidify 

the results of this study by inclusion of additional commodity futures contracts. 

A strength of this study is that it includes a long enough period to include multiple events of 

varying characteristics. Events explored in this study include the Global Financial Crisis of 

2007-08, European Debt Crisis of 2009-11, Global Oil crisis of 2014-16, Covid-19 pandemic 

of 2020-21, European energy crisis of 2022, and the Banking crisis of 2023, among several 

other periods of heightened volatility in the financial markets.
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Abstract 

This study builds on the Efficient market Hypothesis (EMH) and the Adaptive Market 

Hypothesis (AMH) to explore the time-varying characteristics of market efficiency in global 

equity markets. The research applies Adjusted Market Inefficiency Magnitude (AMIM) and the 

Hurst exponent to measure efficiency in various markets. This study additionally investigates 

the impact of commodity futures prices on market efficiency, revealing a heightened sensitivity 

during periods of market turmoil. The relationship between commodity futures and market 

efficiency is explored through binomial and multinomial regression in generalized linear 

models. We find that market efficiency and its dependency on commodities varies substantially 

over time, with large and abrupt changes during times of global market turmoil. In North 

America, Far East, and Europe, market efficiency’s dependence on corn during covid-19 is 

consistent across our models. Further discrepancies between models show that there is evidence 

on long memory under volatile regimes. 

1 Introduction 

The Efficient Market Hypothesis (EMH) was introduced in the seminal paper by Fama (1970), 

where he describes markets to be of varying degrees of efficiency, categorized as weak, strong, 

and semi-strong. The EMH states that participants in the market make decisions on account of 

information open and accessible for all. As such, the financial markets become rational, and 

subject to stochastic price movement. Market efficiency has proven to be a complex topic, and 

research indicates that market efficiency exists in all the forms and is varying across time, 

sector, and asset classes (Ito & Sugiyama, 2009; Ito et al., 2015; Kim et al., 2011; Lim & 

Brooks, 2011; Lim et al., 2013; Mensi et al., 2021; Naeem et al., 2022; Ţiţan, 2015; Urquhart 
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& McGroarty, 2016; Yen & Lee, 2008). In this paper we compute several established measures 

of market efficiency and analyse how and why these change over time.  

In alignment with EMH, numerous researchers demonstrate that market efficiency tends to 

increase as information availability rises (Broadstock & Zhang, 2019; Chen et al., 2014; Gu & 

Finnerty, 2002; L. Jiang et al., 2018). Building upon this, Drake et al. (2017), and Polyzos and 

Wang (2022) highlight the intricate relationship between market efficiency and information 

availability. As evidence of efficient markets, Malkiel (2003) asserts that market anomalies 

self-destruct upon discovery. This idea is also supported by earlier work from Schwert (2003), 

Banz (1981), and Chan and Chen (1991), who argue that persistent market anomalies could 

merely result from model misspecification. Fama (1991) contends that stock prices are random 

and independent of past values at each increment, resulting in no discernible pattern or 

predictability. In contrast, various researchers suggest that predictability exists in stock markets 

(Jegadeesh & Titman, 1993; Reinganum, 1983; Urquhart & McGroarty, 2014; 2016). If stock 

prices are predictable, then past prices and returns are significantly correlated with current and 

future prices and returns. As such, tests for efficiency examine whether past and future returns 

are related. In this study, we apply two such measures and investigate the degree of efficiency 

across a wide range of markets. 

Extending on EMH, Lo (2004; 2005) proposes the Adaptive Market Hypothesis (AMH). It 

offers an alternative to the EMH by incorporating insights from behavioural finance and 

evolutionary biology. The AMH suggests that financial markets are adaptive systems in which 

participants, driven by competition and natural selection, evolve their behaviour over time. 

According to the AMH, investors use heuristic techniques to adapt to changing market 

conditions. As a result, their behaviour is influenced by cognitive biases and psychological 

factors, leading to market inefficiencies and anomalies. The AMH argues that market efficiency 

is not a fixed characteristic but rather varies over time due to changing market conditions, 

participants’ behaviour, and the evolution of investment strategies. Examples provided suggest 

that cognitive biases persist in asset pricing (Ariel, 1987; 1990; De Bondt & Thaler, 1985; 1990; 

Gu & Finnerty, 2002; Kahneman et al., 1982; Mensi et al., 2022). This research investigate how 

market efficiency varies over time and find that there is substantial variation in how efficient 

our selected financial markets are in the specified period. 
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Application of autoregressive models to examine the market efficiency for differing markets 

exist in multiple examples (Fama, 1970; Ito et al., 2015; Khuntia & Pattanayak, 2018; Noda, 

2016). However, there are several drawbacks of the autoregressive approach, including 

insignificance of lagged variable (Ito et al., 2015; Nyblom, 1989), linear dependence on sample 

size (Parfenov, 2022), time and market-varying volatility clustering (Tseng & Li, 2012), and 

stationarity assumptions in the selection of optimal lag length (Cont, 2007; Granger & Ding, 

1995, 1996). Tran and Leirvik (2019) proposed a solution to these drawbacks by deriving the 

Adjusted Market Inefficiency Magnitude (AMIM), with multiple examples existing for 

differing markets (Lauter & Prokopczuk, 2022; Okoroafor & Leirvik, 2022; Puertas et al., 2023; 

Tran & Leirvik, 2019; 2020). In this paper, one of the measures for market efficiency we use, 

is the AMIM. We find that the AMIM indicates that markets are often efficient, but with periods 

of inefficiency. 

Mandelbrot and Van Ness (1968) challenged the sufficiency of an ordinary Brownian motion 

model in describing financial markets, suggesting that a fractional Brownian motion model is 

better suited for capturing heterogeneity and volatility clustering. They illustrated the advantage 

of fractional Brownian motion in quantifying market efficiency using the Hurst exponent. This 

exponent serves as a measure of the persistence or memory exhibited by a time series. Ilalan 

(2016) provided evidence through Elliot waves to justify the use of fractional Brownian motion 

in equity markets, with extensions made to model equity markets (Angstmann et al., 2019), 

commodity markets (Ibrahim et al., 2021), and option markets (Azmoodeh et al., 2009). 

However, Rogers (1997) argued that the utilization of fractional Brownian motion enables the 

potential for statistical arbitrage, and therefore, cannot effectively describe an efficient market. 

Despite this, empirical evidence suggests that practical implementation of statistical arbitrage 

using fractional Brownian motion has demonstrated inferiority to existing trading models (Bui 

& Ślepaczuk, 2022). Applications of the Hurst exponent in market efficiency analysis exist in 

both static (Aloui et al., 2018; Gaio et al., 2022; Galluccio et al., 1997; Mensi et al., 2021; 

Scalas, 1998) and dynamic approaches (Engelen et al., 2011; Y. Jiang et al., 2018; Morales et 

al., 2012; Tzouras et al., 2015). However, drawbacks of utilizing fractional Brownian motion 

to gauge market efficiency relate to sensitivity of sample size (Couillard & Davison, 2005; 

Ghazani & Ebrahimi, 2019; Vogl, 2023). In this paper we compute the Hurst exponent for 

several markets over a relatively long period of time. We find that the Hurst exponent varies 

over time, indicating time-varying market efficiency. 
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Mandelbrot (1985), and Voss (1989) defined the fractal dimension of the Hurst exponent. The 

authors showed that as the Hurst exponent approaches one, the time series converges towards 

a one-dimensional flat structure indicating positive autocorrelations, while as it approaches 

zero, the structure becomes a two-dimensional jagged one indicating volatility and negative 

autocorrelation. Practical examples in Gaussian processes are shown by Bassingthwaighte and 

Bever (1991), and Chen et al. (2011). On the other hand, research indicates that a positive linear 

relationship is not consistent for all models and processes (Gneiting & Schlather, 2004; Li & 

Lim, 2008). 

Various research indicates that spot prices and future contract prices are positively correlated 

and that future contract prices lead spot price for multiple asset classes (Asche & Guttormsen, 

2002; Bannigidadmath & Narayan, 2022; Choi & Hammoudeh, 2010; Huth & Abergel, 2014; 

Zhang & Liu, 2018). Expected supply tightening roughly explains divergence of future contract 

price from spot price (Fama & French, 1988; Gorton et al., 2013; Ng & Pirrong, 1994), 

implicative of commodity future contract prices reflection of uncertainty regarding its 

underlying commodity’s availability. Further studies on co-movement in the commodity future 

contract markets are listed regarding intersectoral correlation (Dai et al., 2022; Fan & Qiao, 

2023; Wadud et al., 2023), correlation to related equity (Billah et al., 2023; Diaz & de Gracia, 

2017), for varying volatility (Berger & Uddin, 2016; López, 2014; Nguyen et al., 2020; Wadud 

et al., 2023), and transnational interconnectedness (Fan & Qiao, 2023; Li & Lu, 2012). This 

study explores the impact of commodity futures prices on market efficiency, considering them 

a possible indicator of market sentiment. Although there is limited evidence to support any 

significant relationship under benign markets, the market appears to be more sensitive towards 

futures prices during market turmoil.  

2 Data 

 

To account for regional differences, events with dissimilar cross-country effects on financial 

markets, and the exploratory element of this paper, the markets selected for investigation are 

broad and diversified indices. Utilizing a range of statistical testing, this study aims to examine 

and elucidate the variation in market efficiency present within the selected dataset. The data 

contains ten timeseries of 6310 daily observations over the period March 1999 through March 

2023, formatted in logarithmic returns ln(Pt/Pt-1). Utilizing daily observations is considered the 

optimal approach for examining high liquidity equity markets through the implementation of 
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responsive autoregressive and fractal models. The five market indices selected for this study 

are MSCI-World, MSCI-North America, MSCI-Europe, MSCI-Far East, and MSCI-Emerging 

Markets, while the five futures contracts comprise of copper, corn, crude oil, live cattle, and 

natural gas. 

 

2.1 Market indices 

The MSCI World index represents 23 developed markets, with United States the largest 

member by some margin. For European equity, The MSCI Europe index is spread across 15 

developed markets across Europe. The MSCI Far East index involves 3 developed Asian 

markets, heavily weighted on China. The MSCI Emerging Markets Index consist of 24 

emerging markets countries. The MSCI North America index inhabits mostly United States and 

some Canadian publicly traded firms. All indices capture large and mid-cap firms within their 

specific markets. The data for the indices and the futures contracts is gathered from the MSCI 

website.  

 

Table 2.1 illustrates the descriptive statistics of the regional indices, the Jarque-Bera (JB) and 

Augmented Dickey-Fuller (ADF) test stats, and calculations of the maximum drawdown and 

cumulative returns of each respective market index. The distribution of logarithmic returns is 

presented in histograms in Figure 2.1.  

 

Descriptive statistic of regional indices       
  W NA FE EM EU 

Mean 3.3% 4.4% 2.5% 4.7% 1.1% 

Standard deviation 16.3% 19.3% 18.4% 18.6% 20.9% 

Kurtosis 13.4 13.4 7.6 10.5 11.7 

Skewness -0.57 -0.45 -0.23 -0.51 -0.36 

JB 28910 28575 5692 15009 19788 

p-value 0.000 0.000 0.000 0.000 0.000 

ADF -18.3 -18.4 -18.0 -17.2 -18.6 

p-value 0.010 0.010 0.010 0.010 0.010 

Maximum drawdown 19.5% 23.2% 18.1% 19.6% 24.8% 

Cumulative returns 80.3% 108.0% 61.0% 114.2% 26.3% 

Table 2.1: Descriptive statistics of MSCI equity indices World (W), North America (NA), Far East (FE), 
Emerging Markets (EM), and Europe (EU). The table includes annualized means and standard deviations, 
as well as kurtosis, skewness, two tests relating to normality, and the minimum and maximum value in 
each time series. Cumulative returns from December 1999 through March 2023.  



30 

 

Figure 2.1: Distribution of log returns of five MSCI equity indices (World, North America, Far East, 
Emerging markets, and Europe). Outliers greater than 5% or less than -5% not included. 

 

2.2 Commodity futures contracts 

Commodities play a pivotal role in equity markets, exerting wide-ranging influences. They have 

a direct impact on corporate earnings, as changes in commodity prices can significantly affect 

the profitability of businesses operating in commodity-dependent industries. Additionally, 

commodities serve as important economic indicators, reflecting shifts in global supply and 

demand, inflationary pressures, and overall economic health. Certain sectors, such as energy, 

mining, and agriculture, have a more direct relationship with commodities and are highly 

sensitive to price movements. Moreover, commodities offer investment opportunities for 

hedging and diversification. Due to this, we investigate how commodities impact the variation 

in market efficiency.  

 

To capture both prices and expectations about future prices, we apply commodity futures 

contracts, which incorporate common industrial input factors. These input factors comprise 

metals, agricultural and food resources, as well as fossil energy sources. The following five 

futures have been selected to achieve the research objectives: copper, corn, crude oil, live cattle, 

and natural gas. The data for the commodity futures contracts is gathered from investing.com. 

Table 2.2 presents the descriptive statistics of the selected commodity futures, while the 

distribution of logarithmic returns is displayed in histograms in Figure 2.2. The intended period 

for this study will extend from 1999 up until March 2023, the time of the analysis. 

 

Descriptive statistic of commodity futures contracts     

  Live cattle Corn Copper Crude oil Natural gas 

Mean 4.8% 5.9% 9.3% 12.3% 0.6% 

Standard deviation 20.9% 27.6% 26.4% 51.5% 56.4% 

Kurtosis 152.7 9.0 7.1 487.5 7.7 

Skewness 0.24 -0.30 -0.15 -9.06 0.30 

JB 5874289 9581 4346 61665365 5891 
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p-value 0.000 0.000 0.000 0.000 0.000 

ADF -20.3 -17.4 -16.8 -17.8 -17.0 

p-value 0.010 0.010 0.010 0.010 0.010 

Maximum drawdown 51.6% 31.5% 23.1% 204.7% 53.6% 

Cumulative returns 116.6% 144.4% 222.5% 289.2% 14.0% 

Table 2.2: Descriptive statistics of commodity futures contracts for five industrial input factors. The table 
includes annualized means and standard deviations, as well as kurtosis, skewness, two tests relating to 
normality, and the minimum and maximum value in each time series. Cumulative returns from December 
1999 through March 2023. 
  

 

Figure 2.2: Distribution of log returns of five commodity future contracts (Crude oil, natural gas, copper, 
corn, and live cattle). Outliers greater than 10% or less than -10% not included. 

 

3 Methodology 

 

3.1 Market efficiency 

Market efficiency is examined by employing the Adjusted Market Inefficiency Magnitude 

(AMIM) and the R/S Hurst exponent. 

3.1.1 Adjusted market inefficiency magnitude 

The adjusted market inefficiency magnitude (AMIM) as described in the paper by Tran and 

Leirvik (2019), will be applied to examine the properties of the time-varying market efficiency 

in the data. The AMIM model assumes that the lagged values of the AR(q) model seen in 

Equation (1) in an efficient market will not have any predictive value.  Backwards selection 

through the Akaike information criterion will be applied to determine the number of lags.  

 𝑟𝑡 = 𝛼 + 𝛽1𝑟𝑡−1 + ⋯ + 𝛽𝑞𝑟𝑞−1 + 𝜀𝑡 (1) 

The quantification of market inefficiency, denoted as the Market Inefficiency Magnitude 

(MIM), is calculated based on the standardized beta coefficients obtained from Equation (1). 

See appendix A for derivation of MIM. Nonetheless, it is necessary to adjust the MIM as it 

tends to yield higher values due to its positive correlation with the number of lags in the 
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underlying autoregressive AR(q) equation. This adjustment is performed using the adjusted 

MIM (AMIM) at time t, which is expressed in Equation (2). 

 
𝐴𝑀𝐼𝑀 =

𝑀𝐼𝑀𝑡 − 𝑅𝐶𝐼

1 + 𝑅𝐶𝐼
  

 

(2) 

Here, MIM corresponds to the Market Inefficiency Magnitude at time t, and CI denotes the 

range of confidence intervals for the MIM. The denominator provides a standardized basis for 

comparison across different time periods, assets, and regions. This process is applied in a one 

year rolling window analysis. The derivation of the equation and the specific range of 

confidence intervals employed are elaborated upon in the work of Tran and Leirvik (2019). 

When interpreting the model, a negative value of AMIM signifies market efficiency, while 

positive values indicate the presence of inefficiency within the asset or market.  

3.1.2 Dynamic Hurst exponent 

The Hurst exponent is a non-parametric measure calculated based on the rescaled range, which 

captures the normalized fluctuation amplitude in a time series. Through its relationship with 

power-law behaviour, the Hurst exponent provides a quantification of the long-term memory 

and fractal structure of the data. It is a valuable tool for analysing the persistence or anti-

persistence of time series by assessing autocorrelations and their decay rates. 

Consider a time series x(i), divided into s subsets of length n. For each subset, α = 1, 2, …, s, 

xk,α signifies the element in subset α where k = 1, 2, …, n. The rescaled range is calculated as 

follows:  

1. Calculate the cumulative deviate series using a mean adjusted series: 

 

𝑦𝑘,𝛼 = ∑(𝑥𝑖,𝛼 −
1

𝑛
∑ 𝑥𝑘,𝛼

𝑛

𝑘=1

)

𝑘

𝑖=1

 

 

(3) 

2. Calculate the range and standard deviation of the subsets: 

 𝑅𝛼 = max(𝑦𝑘,𝛼) − min (𝑦𝑘,𝛼) (4) 

 

 
𝑆𝛼 = (

1

𝑛
∑ 𝑥𝑘,𝛼

𝑛

𝑘=1

− 𝐸𝛼)2)0.5, 𝛼 = 1,2, … , 𝑠 
 

(5) 

3. Calculate the mean of the rescaled range for every subset of length n: 

 
(

𝑅

𝑆
)

𝑛
=  

1

𝑠
∑(𝑅𝛼/𝑆𝛼)

𝑠

𝛼=1

 
 

(6) 
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4. Fitting the rescaled range asymptotically to the power-law relation (R/S)n ∝ cnH, 

extract the Hurst exponent H through log linear regression: 

 
log ((

𝑅

𝑆
)

𝑛
) = log 𝑐 + 𝐻 log 𝑛 

 

(7) 

According to the model of fractional Brownian motion H=0.5 indicates a Brownian motion, 

H>0.5 indicates persistence, and H<0.5 indicates anti-persistence (Mandelbrot & Van Ness, 

1968). If the time series is persistent, it is evidence of long-range dependencies, and if it is anti-

persistent it is evidence of short-term dependencies. According to the process of fractional 

Brownian motion, the scaling properties shift inversely between fractal dimensions as H moves 

between zero and one (Mandelbrot, 1985). This means that a high Hurst exponent results in a 

lower fractal dimension, indicating more short-term predictability, while a low Hurst exponent 

results in a higher fractal dimension, indicating more short-term volatility. The Hurst exponent 

process is applied in a one year rolling window analysis. 

 

3.2 Regression analysis 

3.2.1 Binomial logistic regression 

The AMIM distinguishes between efficient markets with a value smaller or equal to 0, and 

inefficient markets with values above 0. Hence, the regression analysis will be structured as a 

binomial or binary logistic regression in a generalized linear model, where the response variable 

takes the dichotomous value of 0 or 1. The binomial logistic regression applies the continuous 

independent variables to produce output between 0 and 1 in a logistic distribution. The log odds 

are given as: 

 ln (
𝜇

1 − 𝜇
) =  𝛽0 + 𝛽1𝑥1 +∙∙∙ +𝛽𝑖𝑥𝑖 

 

(8) 

Where the 𝜇 is the mean of the dependent variable being 1, 𝛽0 is the intercept, and the slope 

coefficient is gathered from 𝛽𝑖 = (1, 2, 3 … ). Consider a sample size of 100. The observations 

are classified as 1 for inefficient, and 0 for efficient. If we identify 70 observations of value 1, 

and 30 of value 0, the 𝜇 would then be 70/100 = 0.70. Putting this result in Eq. (8), we get 

ln (
0.70

1−0.70
) ≈ 0.85 which is the log odds of success. As log odds can be challenging to interpret, 

both sides of Eq. (8) can be exponentiated to provide the odds ratio: 

 𝜇

1 − 𝜇
= 𝑒𝛽0+𝛽1𝑥1+∙∙∙+𝛽𝑖𝑥𝑖    

(9) 
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Where the same example as above would present the odds ratio of 
0.70

1−0.70
≈ 2.33. As such, we 

can discern that the odds of the binary outcome variable being 1, are 2.33 times greater than of 

it being 0. Note that odds ratio and relative risk ratios, as described in chapter 3.2.2, are not the 

same, nor is the interpretation. As an example, the odds of a coin flip returning heads is 1 

(
0.50

1−0.50
= 1), while the risk of returning heads is 0.5 (

1

2
= 0.5). This contrast occurs due to the 

odds ratio dividing the odds of the desired outcome on the odds of the undesired outcome, while 

the risk divides the probability of the desired outcome on all possible outcomes. Followingly, 

odds ratios may appear heavily inflated opposed to risk/probability. 

 

In this study, the response variable will be classified as 0 or 1 dependent on the AMIM:  

𝑌 = {
0, 𝐴𝑀𝐼𝑀 ≤ 0
1, 𝐴𝑀𝐼𝑀 > 0

 

As the market is deemed efficient if AMIM is 0 or below, and inefficient when AMIM is above 

0, the two outcomes are classified as Y =0 and Y = 1, respectively. The binomial logistic 

regression model will predict the odds of a specific market being efficient. 

 

3.2.2 Multinomial logistic regression 

The Hurst exponent characterizes time series properties by analysing its deviation from the 0.5 

benchmark, leading to polytomous categorical conclusions. Multinomial logistic regression is 

used to build a generalized linear model. The resulting outcomes are assigned to one of three 

integer values representing possible conclusions of arbitrary limits and saved as a variable y(λ)i. 

𝑈 = {
1,                         𝐻𝑢𝑟𝑠𝑡 > 0.525
2,        0.475 ≤ 𝐻𝑢𝑟𝑠𝑡 ≤ 0.525
3,                         𝐻𝑢𝑟𝑠𝑡 < 0.475

 

In this study, a value of two is indicative of a Brownian motion for the time series analysed. On 

the other hand, a value of one or three implies market inefficiency with anti-persistent and 

persistent behaviour, respectively. To process these values and logarithmic returns data for 

commodities, a multinomial logistic model is employed, where multiple binary regressions βkXi 

are utilized to obtain a marginal probability of the observation i equating to a value in U. Given 

K possible outcomes, the marginal probability for outcome k is expressed under the assumption 

that the probabilities add up to one, as follows: 

 
𝜋𝑖

(𝑈) = 𝑃[y(λ)𝑖 = 𝑘] =
ℯ𝛽𝑘𝑋𝑖

1 + ∑ ℯ𝛽𝑘𝑋𝑖  𝐾−1
𝑘=1

 
 

(10) 
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The probability of being in the baseline category is calculated by subtraction. 

 
𝜋𝑖

(2) = 1 − ∑ 𝜋𝑖
(𝑘)

𝐾−1

𝑘=1
 

 

(11) 

The multinomial logistic regression model with one covariate x(θ)i is expressed in the following 

equation: 

 
log (

𝜋𝑖
(𝑈)

𝜋𝑖
(2)

) = β0
(𝑈) + β1

(𝑈)x(θ)𝑖 + 𝜀𝑖 
 

(12) 

Through statistical software, neural network iterative methods are applied to find the unknown 

slope coefficients β1
(U).  Because the beta coefficients follow logarithmic scaling it can 

complicate the interpretation of the results, and it is therefore more appropriate to 

convert the coefficients to relative risk ratios (RRR), which range from zero to infinity. 

Deriving the RRR can be done simply by exponentiating the coefficient. The ratio is 

interpreted as if the explanatory variable has a one-unit increase, then a RRR = 1 indicates 

no relationship, RRR < 1 indicates negative relationship, and RRR > 1 indicates positive 

relationship. The distance from 1 of the RRR will be used to conclude on the dependence of 

the categorical Hurst exponent data y(λ)i on logistic returns in commodity future contracts x(θ)i. 

 

4 Empirical results 

 

Whitin the timeline investigated in this paper, there are several major events affecting global 

financial markets. The Dot-com bubble of 2000, the 2001, September 11th terrorist attacks, the 

financial crisis of 2008, the Covid-19 pandemic, and the Russian invasion of Ukraine in 2022 

are some of the major events that caused severe and rapid downturns in global equity markets. 

Although the entire dataset is explored, the periods of market turmoil will be particularly 

scrutinized as they, assumably, challenge the assumption of unpredictable, random price 

movement under the EMH.  

 

4.1 AMIM Rolling window analysis 

Figure 2.3 illustrates the AMIM measure of all indices in a one year rolling window, 250 

observations per year. The oscillating nature of the timeseries, illustrating the time-varying 

propensity of market efficiency. Considering periods of market turmoil, the global financial 

crisis and Covid-19 are easily identifiable in the time periods of 2008-2010 and 2020 to mid-
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2021, respectively. The impact of these crises led to inefficiency in most markets. The 

descriptive statistics of AMIM are displayed in Table 2.3, where there are some dissimilarities. 

Noticeably, the mean score of AMIM differs between -0,55 in the European market to 0,27 in 

Emerging Markets. Considering that a negative AMIM score expresses efficient markets and 

positive AMIM expresses inefficient markets. This is signalling that overall, European, North 

American, and Far East markets have in the selected period been the more efficient markets. 

Simultaneously, the Emerging Markets and World indices have been less efficient, while also 

being less normally distributed. Figure 2.4 exhibit histograms of the observed AMIM scores in 

specific markets. 

 

 

Figure 2.3: Graph of time varying AMIM statistics in five markets (World (W), North America (NA), Far 
East (FE), Emerging Markets (EM), and Europe (EU)). Black horizontal lines passing through one and zero 
indicates maximum AMIM and limit between efficiency and inefficiency respectively. 

 

 

Figure 2.4: Distribution of AMIM in five markets (World (W), North America (NA), Far East (FE), 
Emerging Markets (EM), and Europe (EU)).  
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Descriptive statistics, AMIM         
  W NA EU EM FE 

Mean 0.04 -0.43 -0.55 0.27 -0.43 

Standard deviation 0.41 0.63 0.68 0.17 0.58 

Kurtosis 10.4 2.2 1.9 14.0 2.5 

Skewness -2.56 -0.40 -0.31 -1.85 -0.63 

Jarque Bera 20337 343 404 33996 469 

p-value 0.000 0.000 0.000 0.000 0.000 

Augmented Dickey-Fuller -5.7 -5.6 -5.9 -5.4 -6.2 

p-value 0.010 0.010 0.010 0.010 0.010 

Min -1.96 -1.96 -1.96 -1.79 -1.96 

Max 0.62 0.63 0.55 0.57 0.54 

Table 2.3: Descriptive statistics of AMIM statistics in five markets (World (W), North America (NA), Far 
East (FE), Emerging Markets (EM), and Europe (EU)). The table includes annualized means and 
standard deviations, as well as kurtosis, skewness, two tests relating to normality, and the minimum and 
maximum value in each time series. 

 

4.2 R/S Hurst exponent rolling window analysis 

Figure 2.5 presents the Hurst exponent in a one year rolling window with a window size of 250 

observations. From the figure it is assessable that equity markets have highly varying market 

efficiency over the sample period, with a tendency towards persistence. Multiple periods of 

synchronous movement are observed, such as in 2001-2003, 2008-2010, 2018, 2019-2020, 

2020-2021, and 2022. Judging by the descriptive statistics in Table 2.4, North America inhabits 

the overall most efficient market. Emerging Markets is also deemed the least efficient market 

by the Hurst exponent. The histograms in Figure 2.6 explain the distribution of Hurst exponents 

in specific markets. The shape of the bell curve for Emerging Markets reinforces the index’ 

deviation in normality from the other market indices. 
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Figure 2.5: Graph of time varying of R/S Hurst exponents in five markets (World, North America, Far East, 
Emerging Markets, and Europe). Black horizontal line passing through 0.5 indicates fractional Brownian. 

 

 

Figure 2.6: Distribution of R/S Hurst exponents in five markets (World, North America, Far East, Emerging 
Markets, and Europe). 

 

Descriptive statistic, Hurst exponent     

  
World 

North 
America Europe 

Emerging 
Markets Far East 

Mean 0.53 0.51 0.52 0.57 0.53 

Standard deviation 0.03 0.03 0.03 0.04 0.04 

Kurtosis 3.1 3.1 2.5 3.5 3.2 

Skewness -0.07 0.30 0.10 -0.45 0.08 

Jarque Bera-test 10 97 70 271 12 

p-value 0.010 0.000 0.000 0.000 0.000 

Augmented Dickey-Fuller -6.2 -5.2 -5.8 -6.3 -6.0 

p-value 0.010 0.010 0.010 0.010 0.010 
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Min 0.42 0.41 0.42 0.44 0.41 

Max 0.65 0.62 0.62 0.67 0.65 

Table 2.4: Descriptive statistics of Hurst exponents in five markets (World, North America, Far East, 
Emerging Markets, and Europe). The table includes annualized means and standard deviations, as well as 
kurtosis, skewness, two tests relating to normality, and the minimum and maximum value in each time 
series. 

 

4.3 Frequency analysis 

As this study enables two market efficiency-models, we analyse if there is any difference 

between them. The 6046 observations in the dataset are classified with categorical values for 

the Hurst and AMIM. For the Hurst exponent, the values 1, 2 and 3 express persistent, efficient, 

and anti-persistent market characteristics. For AMIM, 0 and 1 represent efficient and inefficient 

markets, respectively. Table 2.5 presents a comparison of the frequency of the AMIM and 

Hurst. Generally, the two measurements largely coincide in amount of efficiency detected in 

the respective markets. However, for Far East and Europe, AMIM considers markets efficient 

more often than the Hurst Exponent. This indicates the presence of more long memory for these 

two respective markets, in comparison to the remaining three. 

 

Frequency table of categorical variables           

Region Hurst Freq. Percent Cum. AMIM Freq. Percent Cum. 

World 1 238 3.94 3.94         

  2 2,171 35.91 39.84 0 1,734 28.68 28.68 

  3 3,637 60.16 100 1 4,312 71.32 100 

North 
America 

1 1,041 17.22 17.22         

2 3,462 57.26 74.48 0 3,998 66.13 66.13 

  3 1,543 25.52 100 1 2,048 33.87 100 

Far East 
  

1 532 8.8 8.8         

2 2,421 40.04 48.84 0 4,123 68.19 68.19 

  3 3,093 51.16 100 1 1,923 31.81 100 

Emerging 
markets 

1 149 2.46 2.46         

2 666 11.02 13.48 0 400 6.62 6.62 

 3 5,231 86.52 100 1 5,646 93.38 100 

Europe 1 511 8.45 8.45         

  2 2,891 47.82 56.27 0 4,028 66.62 66.62 

  3 2,644 43.73 100 1 2,018 33.38 100 

Table 2.5: Table displaying the frequency Hurst exponents in categories 1 (anti-persistence), 2 (fractional 
Brownian motion) and 3 (persistence) and AMIM in binary categories 0 (efficiency) and 1 (inefficiency) 
for five markets (World, North America, Far East, Emerging Markets, and Europe).  
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4.4 Logistic regression covariate analysis 

4.4.1 Binomial logistic regression 

Results of the logistic regression in the binomial generalized linear model are displayed in Table 

2.6. The regression investigates the relationship between AMIM market efficiency and 

commodity futures contract log returns in the selected indices. The strongest indication of a link 

is uncovered in the pairing of live cattle futures and the efficiency level of the European market. 

The constant of 0.5 signifies that the odds of the binary response variable being 0 is twice as 

high as the odds of the same variable being 1, implying a greater possibility of an efficient 

European market, when not considering the impact of any predictor variables. The odds ratio 

of 16.35 for live cattle can be interpreted as for every 100% increase in the log returns of live 

cattle futures, the odds of the market being inefficient escalates by 16.35, which when 

considering scale of the input data is close to 1. In addition to odds ratios varying close to 1, 

low statistical significance suggests there is an overall absence of compelling evidence that 

futures prices impact market efficiency. 

Table of odds ratios (OR)           

    World 
North 

America Far East 
Emerging 
Markets Europe 

Live cattle cons 2.49 0.51 0.47 14.11 0.50 

 OR 0.16' 1.12 1.17 1.71 16.35''' 

Corn cons 2.49 0.51 0.47 14.13 0.50 

 OR 0.20' 2.14 1.36 0.12 0.27' 

Copper cons 2.49 0.51 0.47 14.11 0.50 

 OR 2.37 0.87 0.52 2.10 0.98 

Crude oil cons 2.49 0.51 0.47 14.11 0.50 

 OR 0.83 1.33 1.16 1.19 1.85 

Natural gas cons 2.49 0.51 0.47 14.13 0.50 

  OR 0.99 1.01 2.09' 3.85' 1.47 

Table 2.6: Odds ratios (OR) of the binomial generalized linear model for the efficiency of five markets 
(World, North America, Far East, Emerging Markets, and Europe), and commodity futures contracts. 
The efficiency gathered from AMIM is classified as 0 or 1 for efficient and inefficient markets. Cons 
represent the constant, or baseline odds. OR are noted with their respective sign of significance. Range 
of p-values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

The results of model optimization through Akaike Information Criterion (AIC) of the binomial 

logistic regression including every continuous variable is presented in Table 2.7. The 

optimization returns models with no exogenous variable. From this it can be ascertained that 

no explanatory relationship exists between commodity future contract prices and market 

efficiency using an autoregressive approach. 
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Table of optimized binomial logistic models 

OR World North America Far East Emerging Markets Europe 

Constant 2.5*** 0.5*** 0.5*** 14.1*** 0.5*** 

Residual 
deviance 

7246 7741 7562 2946 7700 

AIC 7248 7743 7564 2948 7702 

 Table 2.7: Results of the AIC optimized binomial generalized linear model for the efficiency of five 
markets (World, North America, Far East, Emerging Markets, and Europe), and commodity futures 
contracts. The efficiency gathered from AMIM is classified as 0 or 1 for efficient and inefficient markets. 
Constants are noted with their respective sign of significance. Range of p-values: *** p<0.01, ** p<0.05, 
* p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

4.4.2 Multinomial logistic regression 

Results of the logistic regression in the multinomial generalized linear model are displayed in 

Table 2.8. The regression investigates the relationship between R/S Hurst market efficiency and 

commodity futures contract prices in the selected indices. Here, a Hurst category of one 

indicates anti-persistence and a Hurst in category three indicates persistence, while the baseline 

category two is a fractional Brownian motion. Constants greater than one indicate higher 

probability of inefficient markets and are consistent with the results from the frequency 

analysis. Relative risk ratios indicate that there is a generally weak relationship between 

commodity future contract prices and R/S Hurst exponents in the selected equity indices. 

Simultaneously, it is found that positive price movements in live cattle and copper is 

accommodated by anti-persistence in Emerging Markets. There is also an identifiable weak 

positive relationship between price movements in crude oil, copper and corn in Emerging 

Markets and anti-persistence, as well as for persistence and copper in Emerging Markets and 

North America. However, none of the relative risk ratios from the regression are supported by 

an alpha lower than 0.12. 

 

Tables of Relative Risk Ratios (RRR)               

  Region W W NA NA FE FE EM EM EU EU 

  Hurst 1 3 1 3 1 3 1 3 1 3 

Crude oil 
cons 0.11 1.67 0.30 0.45 0.22 1.28 0.22 7.85 0.18 0.91 

RRR 0.86 1.98 1.01 4.90''' 0.77 0.90 24.02'' 1.66 0.59 1.64 

Natural 
gas 

cons 0.11 1.68 0.30 0.45 0.22 1.28 0.22 7.86 0.18 0.91 

RRR 0.70 2.53'' 0.78 3.21''' 0.66 0.59 2.18 5.21''' 0.63 1.70 

Copper 
cons 0.11 1.67 0.30 0.45 0.22 1.28 0.22 7.86 0.18 0.91 

RRR 2.48 2.81 0.24 10.06'' 0.05' 3.47 120.46 40.19''' 1.98 10.59''' 

Live cattle 
cons 0.11 0.64 0.30 0.45 0.22 1.28 0.22 7.85 0.18 0.91 

RRR 7.97 1.67 7.73 3.80 1.14 0.27 2522.14''' 3.72 3.67 1.99 

Corn 
cons 0.11 1.67 0.30 0.45 0.22 1.28 0.22 7.86 0.18 0.92 

RRR 0.65 4.55' 0.10'' 1.06 8.16 6.19'' 16.72 0.25 0.14 0.16'' 
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Table 2.8: Relative risk ratios (RRR) of the multinomial generalized linear model for the efficiency of five markets 
(World (W), North America (NA), Far East (FE), Emerging Markets (EM), and Europe (EU)), and commodity 
futures contract prices. The market inefficiency gathered from the R/S Hurst exponent is classified as 1 or 3 for 
anti-persistence and persistence, respectively, while the baseline category represents a fractional Brownian motion. 
Cons represent the constant. Range of p-values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

The findings of the model optimization, based on the Akaike Information Criterion (AIC) for 

multinomial logistic regression, are displayed in Table 2.9. The optimized models, which 

include only continuous variables, do not incorporate any exogenous variables. Consequently, 

it can be inferred that there is no discernible explanatory relationship between commodity future 

contract prices and market efficiency using a fractal approach. 

Table of optimized multinomial logistic models 

Hurst RRR World North America Far East Emerging Markets Europe 

1 Constant -32.4** -34.0*** -31.6*** -16.5*** -36.1*** 

3 Constant 19.0*** -26.4*** 9.0*** 50.1*** -3.3*** 

 Residual deviation: 9684 11738 11164 5557 11165 

 AIC: 9688 11742 11168 5561 11169 

Table 2.9: Results of the AIC optimized multinomial generalized linear model for the efficiency of five 
markets (World, North America, Far East, Emerging Markets, and Europe), and commodity futures 
contracts. The efficiency gathered from the R/S Hurst exponent is classified as 1 or 3 for anti-persistence 
and persistence, respectively, while the baseline category represents a fractional Brownian motion. 
Constants are noted with their respective sign of significance. Range of p-values: *** p<0.01, ** p<0.05, 
* p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

4.5 Logistic regression indicator variable analysis 

To extend on the finding from chapter 4.4, indicator variables of nine volatile regimes are 

included. By involving periods of market turmoil in the regression, we can investigate whether 

the relationship of commodity futures prices and market efficiency differs under the duration 

of the crisis. The volatile regimes included are the Dotcom-bubble (DC), Twin Tower terrorist 

attack (TT), Global Financial Crisis (GO), Eurozone sovereign debt crisis (SD), Global oil crisis 

(GO), Chinese stock market turbulence (CS), Covid-19 (C19), Russo-Ukrainian war (RU), 

Silicon Valley banking crisis (SV). See Appendix B for extended information regarding the 

time interval of the indicator variables. 

 

4.5.1 Volatile regime indicator variables in binomial regression 

Table 2.10 exhibits the results of introducing dichotomous indicator variables in the binomial 

logistic regression analysis. Although not revealing considerable association between futures 

prices and efficiency in market indices outside of crisis periods, this same relationship does, in 

fact, reveal some interesting statistics during market turbulence. The interaction of the C19 and 
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SD volatile periods uncovered a certain degree of connectivity among efficiency and the rising 

prices of corn and copper. As the odds ratios for corn and copper in North America, Far East, 

and Europe suggest, a surge in these futures prices would greatly increase the odds of inefficient 

markets during C19. The same scenario is witnessed in the corn-Far East pairing during SD. 

Conversely, amidst SD, higher futures prices of corn would increase the odds of efficient 

markets in North America and Europe. Figure 2.7 shows how corn and copper trends upwards, 

while the AMIM statistic displays inefficiency for during C19, and similarly for corn during 

SD. 

 

Table of odds ratios (OR)           

Region D=k Crisis Live cattle Corn Copper Crude Oil Natural Gas 

NA 1 C19  2088.72'  6.89E+07**  8.08E+10***   1.24   47.47'''  

NA 1 SD 2.77  2.83E-04**   0.06   0.58   0.05''  

NA 0 C19  0.62   1.26   0.38   1.41   0.78  

NA 0 SD  1.06   12.81'''   1.35   1.38   1.44  

FE 1 C19  14.98  6.97E+08**  6.22E+11***   0.96   31.41''  

FE 1 SD  2.59E-03   5005.64**   14.85   2.07   3.75  

FE 0 C19  0.96   0.73   0.21'   1.39   1.73  

FE 0 SD  1.73   0.26   0.29   1.13   1.95  

EU 1 C19  4529.72''  2.20E+08**  3.93E+11***  1.42  101.24''' 

EU 1 SD  2.78E-04'   2.45E-04**   0.11   0.62   2.19  

EU 0 C19  10.35''   0.14''   0.41  2.31  1.09  

EU 0 SD  33.85'''   1.06   1.42   1.95   1.40  

Table 2.10: Odds ratios (OR) of the binomial generalized linear model for the efficiency of five markets 
(World (W), North America (NA), Far East (FE), Emerging Markets (EM), and Europe (EU)), and 
commodity futures contracts, with crisis periods as categorical indicator variables. D=1 and D=0 is indicative 
of the presence or absence of a recognized crisis period. The table only includes results where, at least one 
combination of market, commodity, and crisis, achieved statistical significance at the 95% confidence level. 
Crises represented in the table are the Eurozone sovereign debt crisis (SD), Covid-19 (C19), Range of p-
values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 
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Figure 2.7: Timeseries plots displaying the evolution of AMIM for three markets (North America, Far East, 
and Europe) and log returns for two commodities (corn and copper) during Covid-19 and the Eurozone 
sovereign debt crisis. Black horizontal line indicates the separation between efficient and inefficient test 
results. 

 

The results of model optimization through Akaike Information Criterion (AIC) of the binomial 

logistic regression including every continuous and indicator variable is found in Table 2.11. It 

reveals that for World, North America, Far East, and Europe, the inclusion of C19 as an 

indicator variable reinforces AMIM’s dependence on corn prices. Especially, it is observed that 

the dependence of market efficiency on corn in World and Europe switches from being weakly 

negatively in benign periods, to strong positive dependence during C19. It is also found that the 

inclusion of the CS improves AMIM market efficiency’s dependence on Crude Oil in the Far 

East market. For Emerging Market, market efficiency is not better explained by inclusion of 

the volatile regimes included in this study. Figure 2.7 visualizes how the model fit for crude oil 

and corn is improved by the inclusion of indicator variables in four markets. 
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Figure 2.8: Graphs displaying the fit of the logistic models including indicator variables (red dotted line) as 
specified in table 2.10 and excluding an indicator variable (purple solid line) for four markets (World, North 
America, Far East and Europe), for two industrial input factors (crude oil and corn). 

 

Table of odds ratios (OR)        

  World 
North 

America Far east 
Emerging 
markets Europe 

Constant 2.49*** 0.51*** 0.47*** 14.11*** 0.50*** 

Corn 0.13*** 1.26 0.75   0.14*** 

Crude oil     0.76     

Corn (C19) 9.11E+05*** 5.48E+07*** 1.31E+09***   1.56E+09*** 

Crude oil (CS)     7329***     

Residual 
deviation 7243 7737 7555 2945 7694 

AIC 7249 7743 7565 2947 7700 

Table 2.11: AIC optimized binomial log models for five markets (World, North America, Far East, 
Emerging Markets, and Europe) and five commodity future contracts (Crude oil, natural gas, copper, 
live cattle, and corn), including indicator variables for nine volatile regimes (Dotcom-bubble (DC), 
Global Financial Crisis (GO), Silicon Valley banking crisis (SV), Covid-19 (C19), Russo-Ukrainian war 
(RU), Twin Tower terrorist attack (TT), Global oil crisis (2014-16) (GO), Chinese stock market 
recession (CS), Eurozone sovereign debt crisis (SD)). Range of p-values: *** p<0.01, ** p<0.05, * 
p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

 

 
 

4.5.2 Volatile regime indicator variables in multinomial regression 

Table 2.12 displays relative risk ratios for anti-persistence in binary indicator variables in the 

multinomial logistic regression analysis. The table reveals increased polarization of ratios, as 

well as a considerable increase in statistical significance, for variables indicating volatile 

regimes. DC specifically increased the dependence of anti-persistence’s in North America for 

all five commodities, although only with strong statistical significance for natural gas and live 

cattle. Similar relationships are also observed to exist in this period for live cattle in World and 
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Far East, although surges in crude oil future contacts prices are observed to follow a reduction 

in anti-persistence in Europe. Further it is also observed that during GO. anti-persistence in 

World, North America, and Europe moved inversely of corn future contract prices. Finally, 

during RU, increases in natural gas prices has been observed to follow a reduction in anti-

persistence in Far East, while copper increases anti-persistence in Emerging Markets. 

 

Table of relative risk ratios (RRR) 
(Anti-persistence)         

Region D=k Event Live cattle Corn Copper Crude Oil Natural Gas 

      RRR RRR RRR RRR RRR 

W 1 DC 1.09E+31** 855.2 2.5 5.0E-6''' 0.7 

W 1 RU 0.0 0.2 6.48E+10''' 6.6 25.1 

W 1 GO 676.9 2.0E-12** 0.1 2.22E-03 0.2 

W 1 CS 7747.7 17.8 5.21E+07 12249.0 26248.3 

W 0 DC 1.3 0.5 2.4 1.4 0.3 

W 0 RU 10.7 0.7 0.7 0.8 0.5 

W 0 GO 5.0 12.8 3.1 1.4 0.8 

W 0 CS 6.5 0.6 1.7 0.7 0.6 

NA 1 DC 4.78E+16** 1.12E+8* 8854585'' 4564.6''' 25842.3*** 

NA 1 C19 6.8 1002730 38.9 2.1 2.2 

NA 1 RU 4510.7 0 2.06E+8** 0.1 0.6 

NA 1 GO 928373.5''' 1.0E-6** 0.01 0.1 0.3 

NA 0 DC 3.1 0.04''' 0.1' 0.7 0.3'' 

NA 0 C19 7.9 0.1'' 0.2 0.9 0.8 

NA 0 RU 6.9 0.1'' 0.1' 1.1 0.8 

NA 0 GO 2.1 0.3 0.3 1.3 0.9 

FE 1 DC 1.53E+26*** 3.92E+8''' 0.003 0.02 60.6' 

FE 1 RU 5.19E-11' 2.49E+8''' 6.0E-8''' 0.1 2.0E-4** 

FE 0 DC 0.2 3.7 0.1' 0.9 0.4 

FE 0 RU 1.8 3.6 0.1 0.8 1.7 

EM 1 RU 10359.2 5.09E+11'' 1.69E+22** 0.3 73.4 

EM 1 SD 2.43E+07 0.0 2027.2 852.2 0.8 

EM 0 RU 2775.8''' 5.0 9.4 28.2'' 1.5 

EM 0 SD 939.1'' 57.5 73.4 20.4'' 2.5 

EU 1 DC 1.28E+13''' 2.5 421.7 7.0E-7** 0.1 

EU 1 GO 0.6 1.0E-8** 0.2 4.7 1.5 

EU 0 DC 1.7 0.1 1.7 1.0 0.7 

EU 0 GO 4.5 0.8 2.3 0.5 0.6 

Table 2.12: Relative risk ratios (RRR) for anti-persistence from the multinomial generalized linear model 
for five markets (World (W), North America (NA), Far East (FE), Emerging Markets (EM), and Europe 
(EU)), and commodity futures contracts with crisis periods as categorical indicator variables. D=1 and 
D=0 is indicative of the presence or absence of a recognized crisis period. Crises represented in the table 
are the Eurozone sovereign debt crisis (SD), the Russo-Ukrainian war (RU), the Global Financial Crisis 
(GFC), Covid-19 (C19), the Chinese stock market recession (CS), and the Global oil crisis (GO). Range 
of p-values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 
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Table 2.13 displays relative risk ratios for persistence in dichotomous indicator variables in the 

multinomial logistic regression analysis. The table reveals increased polarization of ratios, as 

well as a considerable increase in statistical significance, for variables indicating volatile 

regimes. Increases in natural gas future contract prices followed a reduction in persistence in 

Far East during RU, but increased persistence in World during both RU and the CS. Increases 

in the price of live cattle future contracts follows an increase in the prevalence of persistence in 

Emerging Markets during SD. However, corn, another agricultural commodity, has an inverse 

relationship to persistence in North America during C19. It can also be noted that an increase 

in copper prices often increased the prevalence of persistence in every market for various 

volatile regimes, although none are statistically significant. 

 

Table of relative risk ratios (RRR) 
(Persistence)         

Region D=k Event Live cattle Corn Copper Crude Oil Natural Gas 

      RRR RRR RRR RRR RRR 

W 1 DC 4.6 4.6' 0.53 2.0 2.5'' 

W 1 RU 121.2 21.3 3857'' 2.5 331.1** 

W 1 GO 0.9 1.4 387.5' 0.1 2.9 

W 1 CS 826.1 4302 995492'' 2321''' 297630** 

W 0 DC 0.6 3.7 3.6 1.9 3.3''' 

W 0 RU 0.6 4.2' 2.0 2.0 1.4 

W 0 GO 0.6 5.1' 1.9 2.5'' 2.5'' 

W 0 CS 0.5 3.9' 2.1 1.7 2.1' 

NA 1 DC 0.9 13.8 3.3 74.6' 6.2 

NA 1 C19 1.0E-5' 2.3E-20** 7.82E-06 2.3 1.1 

NA 1 RU 0.02 0.03 887.7 2.5 5.9 

NA 1 GO 46.8 0.2 140009* 7.9 1.5 

NA 0 DC 3.9 0.9 10.4'' 4.4''' 3.0'' 

NA 0 C19 6.4 1.4 11.7''' 6.1''' 3.3''' 

NA 0 RU 4.2 1.3 8.1'' 5.0''' 3.0'' 

NA 0 GO 2.8 1.3 4.8 4.6''' 3.5''' 

FE 1 DC 193445' 47.7 960.4 2.3 2.6 

FE 1 RU 0.02 17.0 53.1 0.9 3.0E-3** 

FE 0 DC 0.2 5.7'' 2.9 0.9 0.5 

FE 0 RU 0.3 5.9'' 3.0 0.9 1.1 

EM 1 RU 3.71E-07 101.8 3.08E+11' 29.5 3.2 

EM 1 SD 2.95E+11** 0.1 45563' 7526''' 0.6 

EM 0 RU 5.0 0.2 12.2** 1.5 5.5''' 

EM 0 SD 0.7 0.3 12.2* 1.2 6.7''' 

EU 1 DC 129.0 4.0 24678'' 4.5 0.3 

EU 1 GO 0.3 37.8 0.8 0.2 0.04'' 

EU 0 DC 1.7 0.1'' 8.5''' 1.6 2.0' 

EU 0 GO 2.5 0.1''' 13.1''' 2.0 2.5'' 
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Table 2.13: Relative risk ratios (RRR) for persistence from the multinomial generalized linear model for 
five markets (World (W), North America (NA), Far East (FE), Emerging Markets (EM), and Europe 
(EU)), and commodity futures contracts with crisis periods as categorical indicator variables. D=1 and 
D=0 is indicative of the presence or absence of a recognized crisis period. Crises represented in the table 
are the Eurozone sovereign debt crisis (SD), the Russo-Ukrainian war (RU), the Global Financial Crisis 
(GFC), Covid-19 (C19), the Chinese stock market recession (CS), and the Global oil crisis (GO). Range 
of p-values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

The results of model optimization through Akaike Information Criterion (AIC) of the 

multinomial logistic regression including every continuous and indicator variable is found in 

Table 2.14. The table finds that inclusion of indicator variables improves the overall quality of 

the optimized models. For the World index, increasing crude oil future contract prices were 

accompanied by a reduction of inefficiencies during GO, and increased the prevalence of 

inefficiencies during CS. Price increases in corn future contracts reduces inefficiencies with 

some significance during GO, and specifically for anti-persistence during the GO. Natural gas 

future price increases the prevalence of inefficiencies during DC and for RU, although only 

persistence in the latter is statistically significant.  For live cattle during DC, the model indicates 

that price increases follow anti-persistence. 

 

For the North America index, anti-persistence is observed to accompany increases in live cattle 

and natural gas future contract prices for DC. Market inefficiencies are observed to increase 

with increasing prices in future contracts for copper during RU and corn during C19, although 

only statistically significant for anti-persistence and persistence respectively.  

For the Far East index, market efficiencies are reduced following price increases in corn during 

C19 and natural gas during RU, while it increases with price increases in live cattle during DC. 

For the Emerging Markets index, market efficiencies increase when prices in live cattle and 

natural gas increases, for SD and RU, respectively. 

 

For the Europe index, price increases in crude oil future contracts followed a reduction in anti-

persistence and an increase in persistence during CS. Similar behaviour is spotted for DC, 

however here there is no effect on persistence, indicating that crude oil uncertainty improved 

market efficiency in Europe. During GO, crude oil price surges followed an increase in anti-

persistence and a reduction in persistence. Corn future contracts display positive relative risk 

ratios for anti-persistence during CS, and for persistence during C19, but during GO were high 

for persistence and low for anti-persistence. It is also seen that live cattle future contracts prices 
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had high relative risk ratios for persistence and low for anti-persistence, but with low statistical 

significance. 

Table of relative risk ratios (RRR)                 

 
World 

North 
America Far east 

Emerging 
markets 

 
  Europe 

  1 3 1 3 1 3 1 3 1 3 

Constant 0.11*** 1.68*** 0.30*** 0.44*** 0.22*** 1.22*** 0.22*** 7.90*** 0.17*** 0.91*** 

Crude Oil 1.19 1.96             0.75''' 2.49' 

Natural gas 0.15' 1.73 0.34' 2.65'' 1.08 0.91         

Live cattle 1.63 0.57 4.50 2.68 0.24 0.18 635.7'' 0.46 19.7 0.96 

Corn 50.9' 18.3''' 0.10'' 0.20' 43.5'' 26.5*     1.24 0.03** 

Copper     0.15' 8.81''     4.29 8.22     

Live cattle (SD)             2055 4.65E+11** 1.57E-07 699426''' 

Crude oil (CS)                 6.60E-10 19759 

Corn (CS)                 2.19E+20** 0.03 

Crude oil (GO) 3.81E-05'' 9.36E-04*             5840''' 1.92E-03* 

Corn (GO) 6.45E-14** 0.10             7.47E-13*** 6162''' 

Corn (C19)     408.3 2.12E+14*** 2.89E-04'' 6.30E-04*     18.8 7.76E+08** 

Crude Oil (DC)                 1.29E-06** 1.85 

Crude oil (CS) 7.39E+08''' 9.71E+05**                 

Crude Oil (GO)                     

Natural gas (RU) 129.5 156.9**     3.92E-04* 2.29E-03**         

Corn (GFC) 5.11E-05 1.49E-05**                 

Natural Gas (DC) 21243''' 0.05'' 57746*** 2.48             

Live cattle (DC) 8.49E+28** 20.3 1.51E+15* 0.23 1.78E+25** 2.44E+05'         

Copper (RU)     2.99E+09** 100.0'     8.33E+20** 3.16E+10**     

                      

Residual deviation 9649   11702   11142   5542   11126   

AIC 9697   11738   11170   5562   11170   

Table 2.14: AIC optimized multinomial logistic models for five markets (World, North America, Far East, 
Emerging Markets, and Europe), five commodity future contracts (Crude oil, natural gas, copper, live cattle, 
and corn), and indicator variables for nine volatile regimes (Dotcom-bubble (DC), Global Financial Crisis 
(GFC), Silicon Valley banking crisis (SV), Covid-19 (C19), Russo-Ukrainian war (RU), Twin Tower terrorist 
attack (TT), Global oil crisis (2014-16) (GO), Chinese stock market recession (CS), Eurozone sovereign 
debt crisis (SD)). Range of p-values: *** p<0.01, ** p<0.05, * p<0.1, ''' p<0.2, '' p<0.3, ' p<0.4 

 

 

 
 

5 Conclusion 

 

Over the past decades market efficiency has proven to be a complex and dynamic concept. For 

many investors, understanding the impact of various market signals and anticipating the 

reaction of other market participants is crucial in their portfolio management. The purpose of 

this paper has been to investigate how market efficiency is impacted by changes in the 

commodity market. By deduction, it is inferable that since a commodity’s price is inflated by 



50 

scarcity; and scarcity in industrial commodities causes information asymmetry about how to 

obtain materials; that therefore price inflation in commodities will impact market efficiency. 

Additionally, it was examined whether scarcity in resources is tied to external shocks and events 

which could disrupt financial markets and cause inefficiencies. 

 

The analysis reveals the presence of regional disparities in market efficiency within global 

equity markets. We observe frequent synchronized movements across all five regional indices, 

implying potential spill-over effects and interdependence among markets in terms of market 

efficiency. In terms of normality, the deviation of the Emerging Markets index from the four 

alternate indices may be contributed to its flexible composition. Moreover, our findings indicate 

that World and Emerging Markets are more prone to inefficiency, while North America exhibits 

a higher frequency of efficiency. Discrepancies between Hurst exponents and AMIM statistics 

in Far East and Europe, suggests persistence of long memory in these markets. Overall, equity 

markets demonstrate a higher frequency of persistence compared to anti-persistence. 

 

We find that the relationship between market efficiency and uncertainty regarding industrial 

input factors is complex. While statistical evidence does not strongly support the hypothesis 

that uncertainty in availability of industrial input factors affect market efficiency in the selected 

markets and commodities, there are indications that specific commodity future contracts and 

market efficiency are influenced by volatile regimes. 

 

During Covid-19, the relationship between corn and copper had a strong, reinforcing impact on 

the AMIM in North America, Far East, and Europe indices. Similarly, during the Eurozone 

sovereign debt crisis market efficiency in North America, Far East, and Europe had an increased 

dependency on copper. Model optimizations employing Akaike information criterion solidify 

the effect of Covid-19 on the relationship between corn and AMIM-estimated market efficiency 

in North America, Europe, and Far East. 

 

Multinomial logistic regression results reveal that Hurst exponents depend on various volatile 

regimes and underlying commodities without an easily predicted structure. It provides evidence 

that certain commodity futures contracts can have efficiency-strengthening effects, wherein 

increases in commodity uncertainty seemingly enhances market efficiency. Noteworthy 

examples include corn in the World and Far East markets during the Global Financial Crisis 

and Covid-19, respectively, as well as natural gas in the Far East market during the Russo-
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Ukrainian war. Conversely, we find the opposite effect for copper in the Far East market during 

the Dotcom bubble period, copper in Emerging Markets during the Russo-Ukrainian war, and 

crude oil in the World market during the Chinese stock market turbulence of 2015-16. In these 

instances, uncertainty in commodities followed an increase in volatility and trend predictability 

in equity markets. The contrasting findings of the multinomial logistic regression underscore 

that uncertainty in commodities alone does not fully explain variations in equity markets under 

volatile regimes.  

 

The added complexity in the AIC optimized models for the Hurst exponents, compared to the 

AMIM-estimates, suggests the existence of long memory in global equity markets that are 

statistically dependent on changes in commodity futures contract prices. Furthermore, the 

results indicate a connection between the Hurst exponents of the North American, Far East, and 

European equity markets and corn futures during Covid-19. This is consistent with the findings 

of AMIM, hence reinforcing the conclusion that these variables are connected. 

 

In conclusion, we find that market efficiency is not impacted by commodities during benign 

periods. Presumably, this could be because benign periods are characterized by little variation 

and low information asymmetry. Therefore, slowly increasing scarcity impacts valuations 

appropriately. However, improved fit and polarized ratios strengthen the hypothesis that there 

exists a relationship between commodity futures contracts and market efficiency under volatile 

regimes. This is as expected because volatile regimes are characterized by disruption and 

uncertainty for both commodity and equity markets. In addition, we are successful in 

ascertaining the existence of long memory in several global equity markets for various 

commodity types and volatile regimes. This indicates that under volatile regimes where similar 

events occur that affect the market, investors will remember and look to the last time the event 

occurred, and potentially sell before the market crashes, causing self-fulfilling prophecies. 
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Appendix 
 

Appendix A 

Equation (13) includes the Market Inefficiency Magnitude (MIM). MIM is defined as: 

 

𝑀𝐼𝑀𝑡 =
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(13) 

Where MIM represents the Market Inefficiency Magnitude at time t, and 𝛽𝑗,�̃�
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

 is the 

standardized beta coefficient obtained from an autoregressive model with q number of lags 

AR(q), as described in Equation (1). 

 

Appendix B 

Chapter 4.5 introduces indicator variables for various volatile regimes. Time intervals and 

number of observations included for each indicator variable is included in Table 2.15. 

Table of indicator variables       

Description From To Observations 

DotCom bubble 2000 March 13th  2001 September 10th  388 

Twin Tower terrorist attack 2001 September 11th 2001 October 11th  21 

Global Finacial Crisis 2007 December 3rd 2009 June 1st 390 

Eurozone sovereign debt crisis 2009 June 2nd 2011 December 30th  673 

Global oil market turbulence 2014 January 1st  2016 December 30th  782 

Chinese stock market turbulence 2015 June 12th 2016 February 1st  166 

Covid-19 2020 February 7th  2021 February 19th  270 

Russo-Ukrainian war 2022 February 24th  2023 March 23rd  281 

Silicon Valley banking crisis 2023 March 10th  2023 March 23rd  10 

Table 2.15: The crisis periods investigated in the study, with specification of time intervals and number 
of observations. 

        

 


