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Abstract: RNAs originating from mitochondrial genomes are abundant in transcriptomic datasets
produced by high-throughput sequencing technologies, primarily in short-read outputs. Specific
features of mitochondrial small RNAs (mt-sRNAs), such as non-templated additions, presence of
length variants, sequence variants, and other modifications, necessitate the need for the development
of an appropriate tool for their effective identification and annotation. We have developed mtR_find,
a tool to detect and annotate mitochondrial RNAs, including mt-sRNAs and mitochondria-derived
long non-coding RNAs (mt-lncRNA). mtR_find uses a novel method to compute the count of RNA
sequences from adapter-trimmed reads. When analyzing the published datasets with mtR_find,
we identified mt-sRNAs significantly associated with the health conditions, such as hepatocellular
carcinoma and obesity, and we discovered novel mt-sRNAs. Furthermore, we identified mt-lncRNAs
in early development in mice. These examples show the immediate impact of miR_find in extracting
a novel biological information from the existing sequencing datasets. For benchmarking, the tool
has been tested on a simulated dataset and the results were concordant. For accurate annotation
of mitochondria-derived RNA, particularly mt-sRNA, we developed an appropriate nomenclature.
mtR_find encompasses the mt-ncRNA transcriptomes in unpreceded resolution and simplicity,
allowing re-analysis of the existing transcriptomic databases and the use of mt-ncRNAs as diagnostic
or prognostic markers in the field of medicine.

Keywords: mitochondria; mitochondrial long non-coding RNAs; mitochondrial small RNAs; mito-
chondrial tRFs; multiprocessing; read count algorithm; small RNA tool

1. Introduction

Mitochondria are organelles present within all eukaryotic cells, performing oxidative
phosphorylation [1] and apoptosis processes [2], among others. Metazoan mitochondria
possess their own genomes, which are relatively small (usually 15–20 kb) and contain
14 to about 40 genes, typically 37 in vertebrates [3]. Owing to the multiple cellular copies of
mitochondrial DNA, the abundance of mitochondrial transcripts can range from 5 to 30%
(depending on the cell type) of the total cellular RNA [4,5]. Mitochondrial non-coding RNAs
(mt-ncRNAs) are referred as those encoded in the mitochondrial genome, although nuclear
genome-encoded non-coding RNAs (ncRNAs) can be present in mitochondria [6]. Both
mitochondrial small non-coding RNA (mt-sRNA) and long non-coding RNA (mt-lncRNA)
have been identified both inside mitochondria and in other cellular compartments, and
some of their implicated gene regulatory functions have been proposed [4,5,7–9]. Despite
the growing evidence of regulatory functions of mt-ncRNAs, no appropriate bioinformatic
tools to identify them are available up to date.

There are tools such as MITOS [10] or DOGMA [11] to annotate mitochondrial genome,
but these tools cannot identify and quantify mt-ncRNAs. Although DOGMA can annotate
nucleotide sequences to the mitochondrial genome, the tool requires the entire mitochon-
drial genome sequence as input and does not work with mt-ncRNAs, which are much
shorter. The current analysis of the high-throughput sequencing data relies on the use
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of tools designed for the nuclear genomic RNA. These tools, as well as DOGMA, cannot
identify mt-sRNAs effectively for mt-sRNAs, and frequently have non-templated additions,
as well as sequence and length variants [12]. Tools such as tDRmapper [13], SPORTS [14],
or MINTmap [15] can be used to analyze mitochondrial tRNA derived fragments (mt-tRFs).
However, there is no tool to simultaneously analyze all small RNAs (sRNA) mapping to
the mitochondrial genome.

Most tools designed for small RNA data analysis deploy a three-step procedure with
some minor modifications [16]. This includes: (1) read count generation, (2) mapping the
unique set of sequences to a reference FASTA, and (3) parsing the mapped output files.
Read count generation is the most time-consuming step, but it can be significantly reduced
by parallelizing the processes on all the available CPU cores. We have developed mtR_find,
a bioinformatic tool for identification, annotation and analysis of mtRNA in new or existing
transcriptomic datasets produced in any type of sequencing technology. mtR_find uses
PYTHON’s multiprocessing functionality that helps to parallelize the analysis of multiple
sequencing files for read count generation, thereby massively reducing the data processing
time. Along with the tool, we propose a nomenclature to encompass the mt-RNA specificity.
The tool allows retrieving the important biological information from the existing datasets
in a high-throughput mode in an unpreceded efficiency.

2. Results
2.1. Performance

The total read counts for the three datasets were: 332.3 million (dataset-1, sRNA-seq of
liver samples from malignant tumor tissue of HCC patients and non-malignant tissue from
uninfected individuals), 318.2 million (dataset-2, sRNA-seq of semen samples from lean
versus obese men), and 93.4 million (dataset-3 (RNA-seq of mouse oocytes); Supplementary
File S1). The sRNA datasets were analyzed through parallel processing by mtR_find, and
the total execution time for datasets 1 and 2 was 3 min 44 s and 2 min 38 s, respectively.
For comparison, the total execution time using MINTmap for dataset-1 and dataset-2 was
48 min 2 s and 34 min 7 s, respectively. The mt-lncRNA analysis was not performed
using the parallel processing due to pickling limitations in PYTHON multiprocessing
module [17]), and the total execution time was 11 min 29 s. The duration of serial execution
of datasets 1 and 2 was 9 min 9 s and 11 min 40 s, respectively. Consequently, the serial
execution took ~2.75 times longer than the parallel execution, indicating the efficiency of
parallel execution. Besides parallel execution, there are other differences in the way the
tool handles mt-sRNAs and mt-lncRNAs. The tool does not consider sequences longer
than 50 nt for mt-sRNA computation and shorter than 50 nt for mt-lncRNA. For mt-sRNA,
every single sequence is considered unique by the tool. For mt-lncRNA, the tool outputs
the unique sequence count and, in addition, the counts of lncRNA sequences with same 5′

end but variable 3′ end are summed together. In addition to mt-lncRNAs that are longer
than 200 nt, mt-lncRNA option of mtR_find also identifies ncRNAs that are 50–200 nt long,
which are categorized as mid-size or intermediate RNAs. In order to study only lncRNAs
that are longer than 200 nt, users can use the “—filter 200” argument as a command line
option while running mtR_find.

2.2. Read Statistics

Datasets-1, -2, and -3 had, respectively, 36,136, 93,128, and 9222 unique sequences
with a total read count greater than 200 (Supplementary Files S2–S4). The numbers of
sequences that mapped to the mitochondrial genome were 2120 (constituting 1.2% of
total reads), 8899 (4.4%), and 178 (1.4%), respectively (Supplementary Files S5–S7). Out
of these, reads mapping to heavy strand composed 71.5%, 67.4%, and 43.5% of the total
mitochondria-derived sequences respectively, while the remaining reads mapped to the
light strand (Supplementary File S8, Figures S1–S3).
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2.3. Length Distribution and Annotation of mt-ncRNAs

We found a diverse size range (Supplementary File S8, Figure S4) and gene origins
(Supplementary File S8, Figure S5) of mitochondrial non-coding RNAs in the datasets
examined. Datasets-1 and -2 were enriched in mt-sRNAs in the size range of 31–32 nt and
27 nt, respectively, while the mt-lncRNAs in the dataset-3 were in the size range of 87 to
141 nt. Most of mt-lncRNAs in the dataset-3 had length variants (Supplementary File S7). The
majority of them belonged to three genes, namely, ATP6, ATP8, and CytB (Supplementary
File S8, Figure S5C).

2.4. Differential Expression of mt-ncRNAs

There were differences in number of reads mapping to mitochondrial genes between
the subject and control groups in both the dataset-1 and dataset-2 (Supplementary File S8,
Figure S5). PCA for mt-sRNAs (Supplementary File S8, Figures S6 and S7) and the heatmap
of top 50 highly variable read sequences (Figure 1) showed clustering of two different
groups consistent with the subject and controls, although there was a small variability
within groups resulting from biological replicates.
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Figure 1. Clustering of the top-50 highly variable small mt-ncRNAs in the dataset-1 (A) and dataset-2 (B).

Differential expression (DE) analysis of mt-ncRNAs was performed on the data from
dataset-1 (chronic hepatitis C-associated cancer vs. non-cancer liver samples; chronic
hepatitis B-associated cancer vs. non-cancer liver samples; chronic hepatitis C-associated
cancer vs. uninfected cancer liver tissue samples; and chronic hepatitis B-associated
cancer vs. uninfected cancer liver tissue samples, Table 1) and dataset-2 (semen from
obese vs. lean subjects). In the dataset-1, there was a significant reduction (p < 0.005) in
the relative abundance of tRNA half (tRH) mapping to tRNA genes of nuclear genome
origin, namely, tRFs from tRNAGly and tRNAVal in cancer tissue when compared to non-
cancer liver tissue [18]. We observed a similar trend for DE mitochondrial tRHs. For
example, when looking to chronic hepatitis C-associated cancer vs. non-cancer liver tissue
samples comparison, 13 out of 354 DE tRFs were tRHs and 10 of them were significantly
downregulated in the cancer cells (Supplementary File S9). Five of these ten mitochondrial
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tRHs originated from tRNAVal. In the dataset-2, 75 DE mt-sRNAs (39 up- and 36 down-
regulated in semen samples from obese vs. lean individuals) were identified, all of them
originating from the mitochondrial large subunit rRNA (Supplementary File S10). The
majority of them existed as length variants and all of them clustered at a region with
sequence start site between 2690 and 2706 in the mitochondrial large subunit (mtLSU)
rRNA gene, with 2704 and 2705 being the two most common sequence start sites.

Table 1. Differentially expressed (DE) mt-sRNAs (p-adj < 0.1) in pairwise comparisons of datasets
generated by [18] (dataset-1). Liver samples (n = 4 for each group) were obtained from subjects
suffering chronic hepatitis C (HC) or hepatitis B (HB), with either diagnosed hepatocellular carcinoma
or non-malignant tissue, as well as from uninfected subjects with hepatocellular carcinoma. Arrows
show significantly (p-adj < 0.1) up-or down-regulated mt-sRNAs.

Comparison
Total DE tRNA rRNA Non-Coding Protein-Coding Log2foldchange

Total ↑ ↓ Total ↑ ↓ Total ↑ ↓ Total ↑ ↓ Total ↑ ↓ Min Max

HC cancer vs.
uninfected 423 224 199 348 216 132 53 6 47 11 2 9 11 0 11 −25.88 7.05

HB cancer vs.
uninfected 369 206 163 304 154 150 55 48 7 4 0 4 6 4 2 −25.1 8.6

HB cancer vs.
non-cancer 369 208 161 265 143 122 82 51 31 9 6 3 13 8 5 −8.15 7.5

HC cancer vs.
non-cancer 437 255 182 354 220 134 56 22 34 13 11 2 14 2 12 −12.12 10.15

2.5. Novel Mitochondrial tRFs and Non-Coding RNAs Detected by mtR_find

The DE mt-tRFs (783 unique mt-tRFs) from the dataset-1 were compared with tRFs
downloaded from MINTbase, an extensive database of 28,824 nuclear and mitochondrial
tRFs obtained from 12,023 cancer datasets using MINTmap tool [19]. There were 365 (46.6%)
tRFs not found in MINTbase, including 214 tRFs-5, 42 tRFs-3, 43 i-tRFs-3, 56 i-tRFs-5,
8 tRNA-half-5, and 2 tRNA-half-3 (Supplementary File S11). All these novel tRFs had
normalized reads per million (RPM) value greater than one (Supplementary File S11), a
cut-off value in MINTbase.

2.6. Performance of the Tool with Simulated Data Set

There were 16 simulated sequences of mt-lncRNA, including 7 from the heavy strand,
5 from the light strand, and 4 antisense to heavy strand genes with substitutions and
grouped as light strand transcripts. The simulation gave results concordant with the
mtR_find (Supplementary File S8, Table S1). The CSV files from both the simulation and
mtR_find analyses were loaded as data frames using PYTHON pandas module, element-
wise comparison was performed between the two data frames, and the results were similar
(Supplementary File S12).

3. Discussion

mtR_find is the first small RNA tool to incorporate parallel processing by reading mul-
tiple input files simultaneously and processing them at the same time. The mtR_find tool
performs much better when compared to published small RNA tools such as MINTmap [15].
Results from testing mtR_find on the simulated dataset shows that the sensitivity of
mtR_find is high. The read count algorithm of mtR_find can be used for developing tools
for the analysis of other sRNA types by replacing the reference and modifying the annota-
tion criteria. Even though the parallel processing significantly reduces the execution time,
it has to be noted that the execution time is CPU-dependent. Furthermore, if the number of
CPU is not commensurate with the available RAM, the script might run into memory errors.
In such a case, a user has to lower the CPU count manually by using the command line
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parameters to circumvent the issue. The execution time of mtR_find is much lower than
MINTmap and also includes the time to download both the GTF file and the mitochondrial
genome. If these files are provided manually as input files, then the execution time will be
further reduced. Moreover, mtR_find identified 365 tRFs that are not present in MINTbase
v2.0. Due to the presence of overlapping reading frames in several mitochondrial genes,
mt-sRNA sequence start and end sites of ±3 were used for annotating the mt-sRNAs in
our tool; indeed, 266 out of the 365 sequences had sequence start site or end site at ±3 nt
from the gene start or end boundary, respectively (Supplementary File S11). And, 42 out of
these 266 mt-sRNAs, had sequence start or end site either before or after the 5′ and 3′ end
of tRNA gene boundary, respectively. Hence, mtR_find is highly sensitive in capturing all
mtsRNAs from the mitochondrial genome.

mtR_find identified features in the test datasets that had not been identified before.
mtR_find identified reads mapping to the light strand in the range of 28.5–56.5%. This
result is discrepant with the previous studies on mt-sRNAs, where it has been shown
that the number of reads from the light strand constituted approximately 3–5% of all the
mitochondrial reads [4,12]. Notably, we found a considerable number of reads mapping to
the light strand in an anti-sense orientation to the heavy strand genes. Small RNAs derived
from a nuclear genome are classified based on their biogenesis pathways, and the length
of small RNAs acts as a proxy indicator for biogenesis. For example, tRNA half (tRH),
miRNAs, and piRNAs are typically 32–34 nt, 21–22 nt, and 26–31 nt in length, respectively,
in most studied species [20]. A quick review of the findings from the original studies
(dastasets-1 and -2; [18,21]) revealed that these datasets were enriched in tRHs and piRNAs
of nuclear genome origin, respectively. Interestingly, we found that a majority of mt-
sRNAs in the dataset-1 were tRH of 31–32 nt length, and this frequency of mitochondrial
tRH was strikingly similar to that of nuclear tRH [18], suggesting a similar biogenesis
pathway. In the case of dataset-2, majority of mt-sRNAs of 27 nt size mapped to mt-
rRNA. Although the size range is indicative of piRNA biogenesis, there is only a single
study showing the localization of PIWI proteins as well as piRNAs mapping uniquely
to the mitochondrial genome [22]. We found the sequence start sites of these putative 29
mitochondrial piRNAs [22] either exactly overlapped or were in the proximity of ±3 nt
of sequence start sites of 27-nt mt-sRNAs from the dataset-2. However, it is not known
whether these mt-sRNAs are processed through a particular biogenesis pathway with a
defined biological function. Except for tRFs, no curated database exists for mitochondria-
derived sRNAs or ncRNAs. Therefore, all the remaining differentially expressed mt-RNAs
from datasets 1 and 2, have been not catalogued before. In case of mt-lncRNAs in dataset-3,
the majority of sRNAs were derived from ATP6, ATP8, and CytB. lncCytB is among the
most abundant mitochondrial lncRNAs in HeLa cells [23] and its abnormal trafficking has
been demonstrated in human hepatocellular carcinoma cells [24]. To our knowledge, other
mt-lncRNAs found in mouse oocytes and 1-cell embryos (dataset-3) have no functional
annotations yet.

mtsRNAs identified in datset-1 and daaset-2 might have biological implications. The abun-
dance of tRH of nuclear genome origin is positively correlated (Spearman’s rho = 0.67–0.87)
with angiogenin mRNA/protein abundance in non-cancer liver tissue [18]. Differences
in the expression of nuclear genome-derived tRFs produced through enzymatic cleavage
of angiogenin have been observed [25]. These nuclear genome-derived tRFs bind to cy-
tochrome C (a protein complex partially encoded by the mitochondrial genome) to prevent
cells from undergoing apoptosis [25] and it has also been showed that these tRFs improve
cell survival by acting in response to stress [26,27]. Although it is unknown whether tRFs
of mitochondrial origin act in a similar way, differences in the expression of mitochondrial
non-coding RNAs have been associated with cancer [8,28,29]. Moreover, it has been shown
that the processing of the mitochondrial tRNAs at both the 5′ and 3′ ends has a substantial
effect on mitochondrial gene expression [30,31]. Since mitochondrial tRFs are generated
from both the 5′ and 3′ end of the mitochondrial tRNAs, and aberrant expression of mi-
tochondrial genes leads to many disease conditions including cancer, DE mitochondrial
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tRFs in dataset-1 could potentially be implicated to disease condition. In dataset-2, the
authors have indicated that differences in expression of piRNAs between spermatozoa
from lean and obese men may increase the chances of offspring to develop obesity. No
studies investigating the expression of mt-sRNAs in obesity are available; however, it has
been shown that mitochondrial peptides are involved in regulating metabolism [32]. The
expression of mitochondrial peptides is hypothesized to be controlled by mt-sRNAs [4].
Hence, altered expression of mt-sRNAs may result in an impaired metabolic pathway,
which, in turn, might result in obesity.

Interestingly, no single mt-sRNA mapped to the termination association sequence
(TAS) in the mitochondrial DNA control region, neither in the dataset-1 nor in the dataset-2.
Small RNAs originating from the TAS region (co-ordinates 16,161 to 16,188 in the mouse
mtDNA sequence) within the mitochondrial control region were expressed in mice [33].

Studies on tRFs have shown that a disproportionately high number of unique tRFs was
derived from mitochondrial tRNA genes (n = 22) when compared to nuclear tRNA genes
(n = 625) in humans [34,35]. For example, a study on samples from prostate cancer patients
demonstrated that 62.0% tRFs originated from nuclear tRNA genes, while the remaining
38% originated from the mitochondrial tRNA genes [35]. This indicates the diversity of
mitochondrial tRFs. Many of these mt-sRNAs map uniquely to the mitochondrial genome
and not to the mitochondrial DNA-like sequences (NUMTs) in the nuclear genome [36].
Moreover, it has been shown that expression of mt-sRNAs is not associated with levels of
NUMT but varies across different tissues depending on the mitochondrial DNA content [36].
This indicates mt-sRNAs have biological roles and, hence, mt-sRNAs were found to be
differentially expressed in dataset-1 and 2 could be implicated in disease condition.

4. Materials and Methods
4.1. Implementation

The code for mtR_find is written in PYTHON 3.6.8 (also compatible with PYTHON
2.7.5) and requires dependencies that include PYTHON modules: pandas (version 0.21.0
and above) [37], multiprocessing, matplotlib [38] (optional) and other tools such as bowtie
(version 1.1.2 and above) [39] and samtools (version 1.9 and above) [40].

4.2. Data Resources, Extraction of Mitochondrial Genome, and Annotation File

Depending on the species of interest (input parameter), mitochondrial genomes of
Homo sapiens, Danio rerio, Gallus gallus, Mus musculus, and Rattus norvegicus have been
downloaded from Ensembl [41]. In the case of Xenopus laevis and Xenopus tropicalis, the
mitochondrial genomes have been downloaded from Xenbase [42]. A bowtie index cor-
responding to the particular genome was created using default parameters. The gene
annotations were obtained by downloading the gene transfer format (GTF) annotation file
for the species of interest from Ensembl/Xenbase and extracting the information pertinent
to the mitochondrial genes. For any other species not listed above, the FASTA and GTF files
have to be downloaded and provided manually by the user. The script mt_annotaion.py is
useful to pre-process the GTF file (https://github.com/asan-nasa/mtR_find/blob/master/
add-on/mt_annotation.py, accessed on 26 August 2022).

4.3. ncRNA Count Generation

In the ncRNA-count generation step, a dictionary of unique sequences was created
from the list of all input FASTQ files. Using this as a reference, the count number for
each unique sequence was determined for individual FASTQ files. The default cut-off
threshold value for sequences is <200, because the counting accuracy of low ncRNA-count
sequences can be erratic [5,43]. However, users can specify their own cut-off value tailored
for the specific needs of their analyses. The output read count file is in comma separated
value (CSV) format, in which the row names are unique sequences and column names
are file names. Individual rows display the count number of a particular sequence in the
corresponding library. In the case of SOLiD sequencing data, reads have to be mapped to

https://github.com/asan-nasa/mtR_find/blob/master/add-on/mt_annotation.py
https://github.com/asan-nasa/mtR_find/blob/master/add-on/mt_annotation.py
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the corresponding genome and converted from color-space to FASTQ files using adapt_find
script [44], available at https://github.com/asan-nasa/adapt_find/blob/master/adapt_
find.py (accessed on 26 August 2022) prior to the read-count generation step.

4.4. Mapping

Unique sequences from the read count file were extracted, converted to FASTA for-
mat, and mapped against the mitochondrial bowtie index using the following parameters:
bowtie –best –v 1 –p 20. The mapped and unmapped sequences from the resulting SAM
file were filtered out using samtools. Unmapped sequences carrying a non-templated CCA
motif at their 3′ ends were retrieved, the CCA motif was trimmed, and the sequences were
again mapped to the mitochondrial genome, this time under zero-mismatch stringent crite-
rion to avoid false positive findings. The sequences mapping to the 3′ end of mitochondrial
tRNA genes in the sense direction or to the 5′ end in the anti-sense direction were annotated
as having a non-templated CCA additions at their 3′ ends (Figure 2).
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4.5. Annotation

Genomic locations of mapped sequences were determined (Figure 3). Then, the gene
annotation was performed using individual mitochondrial genes (Supplementary File S8,
Table S2). The final sequence annotation was based on the position of a mapped sequence
and its length within a gene using the MINTbase criteria [19] with some modifications
(Supplementary File S8, Table S3). For both mt-sRNA and mt-lncRNA, if the sequence
start site is in one gene and the end site is in another gene (Figure 3D), the gene that has
the sequence start site is taken for annotation. The only exception to this rule is tRF-1.
MINTbase classification of mt-sRNAs includes tRH-5′ and tRH-3′, and tRNA derived
fragments (tRFs) include tRF-5′, tRF-3′, tRF-1, and i-tRF.
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Figure 3. Possible alignments of a mt-ncRNA: (A), falls within a gene boundary; (B), starts in a
non-coding region and overlaps a gene boundary; (C), falls in a non-coding region. (D), overlaps two
gene boundaries.

4.6. Nomenclature

Two levels of ID were produced. The specificID provides a unique annotation for
every possible isoform of a sequence. The general ID provides the annotation of the
family the given sequence belongs, in the terms of typical starting nucleotide, and skip-
ping information on the sequence length and modifications from the main form. The
nomenclature format for mt-sRNA is: “species_name”|”mt-sRNA”|”gene”|”sequence sub-
type”|”Strand”|”Orientation”|”Sequence start position”|”Sequence length”|Substitutions.
For mt-lncRNA, the format is “species name”|”mt-lncRNA”|“gene”|”strand”|”sequence
start position”|”sequence length”.

The species abbreviation is a three- or four-letter organism code as proposed in Ky-
oto Encyclopedia of Genes and Genomes (www.genome.jp/kegg/catalog/org_list.html
(accessed on 19 February 2023)). The species abbreviations used in the present study are
given in Supplementary File S8, Table S4. Gene name refers to one of the mitochondrial
genes (Supplementary File S8, Table S2). If the sequence falls in a non-coding region, then
it is denoted as “non-coding (“nc”) (Figure 3). The sequence subtype refers to the specific
location in a gene transcript (applicable only for mt-sRNAs), as defined in Supplementary
File S8, Table S3. Sequence start position refers to the genomic position of the 5′ nucleotide
of the sequence. Strand refers to either heavy or light strand. Antisense orientation indi-
cates anti-sense mapping of the sequence to a particular gene. Substitutions refer to any
mismatches in the sequence as compared to the reference genome; if they occur, nucleotide

www.genome.jp/kegg/catalog/org_list.html
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position (from the start of the sequence) is given, along with the base letter to which the
main form has been altered. The example nomenclature is given in Table 2.

Table 2. Examples of nomenclature for mt-sRNA and mt-lncRNA with individual field separator
values. The column “Specific-ID” shows the nomenclature and the values inside the field separators
correspond, in order, to the values in the column names “Species” through “Substitutions” (from left
to right).

Species ncRNA Gene Sequence
Subtype

Strand
(H or L)

Orientation
(Sense or

Anti-Sense)

Sequence
Start

Position

Sequence
Length Substitutions Specific-ID

mtsRNA

hsa mt-sRNA Glu tRH-3 L sense 14,676 34 NIL hsa|mt-sRNA|Glu|tRH-
3|L|14676|34

dre mt-sRNA Glu tRH-3 L anti-sense 14,675 32 NIL dre|mt-sRNA|Glu|tRH-
3|L|as14675|32

mmu mt-sRNA Arg tRF-5 H 10,406 25 24C0 mmu|mt-sRNA|
Arg|tRF-5|H|10406|25

mtlncRNA

rno mt-lncRNA ND1 L 3310 201 rno|mt-
lncRNA|ND1|L|3310|201

hsa mt-lncRNA COI H 6015 150 hsa|mt-
lncRNA|COI|H|6015|150

xen mt-lncRNA ATP6 L 8550 85 Xen|mt-
lncRNA|ATP6|L|8550|85

4.7. Training-Experimental Dataset

We tested the tool on two small RNA (sRNA) datasets [18,21] downloaded from
NCBI, and one long non-coding RNA dataset (unpublished study [45]) downloaded from
European Nucleotide Archive (ENA). MINTmap was also tested on the two sRNA datasets
to compare the performance of mtR_find with that of MINTmap. The two sRNA datasets
were generated in studies where mt-ncRNAs were not analyzed. The dataset-1 contained
information from sRNA-seq of hepatocellular carcinoma (HCC) versus non-malignant
liver samples from subjects with chronic hepatitis B or C (n = 4 for each group), as well
as uninfected subjects undergoing resection of metastatic tumors control group (n = 4,
Supplementary File S13). In the dataset-2, the information was obtained from sRNA-
seq of semen samples from 23 human subjects, classified as either lean (n = 13) or obese
(n = 10; Supplementary File S13). The dataset-3 has been generated from RNA-seq of mouse
oocytes (n = 2) and 1-cell embryos (Supplementary File S13).

In the case of sRNA datasets, the SRA files were downloaded using prefetch SRA
utility tool. The SRA file format was converted to FASTQ files using fastq-dump tool [46].
Adapter sequences were removed from the raw FASTQ files, bases with quality score less
than 20 were trimmed from the 3′ end. Sequences shorter than 15 nt were removed. The
read count of mt-sRNA sequences was extracted by running mtR_find and differential
expression analysis was performed using DESeq2 R package [47]. mt-sRNA sequences with
a Benjamini–Hochberg adjusted p-value of <0.1 were considered differentially expressed
(subject versus control). For mt-lncRNAs, paired-end FASTQ files obtained from ENA were
converted to single-read FASTQ files using FLASH [48] and then run on the mtR_find tool.
Due to the lack of biological replicates in the dataset-3, only the relative abundance of read
counts was reported in our analysis.

4.8. Training-Simulated Dataset

mtR_find was tested on simulated datasets for both mt-sRNA and mt-lncRNA using
separate scripts with the following command line parameters: (1) FASTA file (in this case,
zebrafish mitochondrial genome); (2) GTF file (zebrafish mitochondrial gene annotation
information); (3) desired number of unique sequences in each stimulated file; and (4) total
number of stimulated files to be created. The GTF file was read and separated into two lists.
The first list was based on the strand specificity: heavy strand or light strand, while the
second one was based on genes.
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The simulation script picked a random sequence start position from a random gene
or from the non-coding region, in either the heavy or the light strands. Then, a random
length was selected and added to the sequence start position to compute the sequence end
position. Using the sequence start- and end-positions as co-ordinates, the sequence was
extracted from the input mitochondrial genome. For the light strand sequences, the reverse
compliment of the forward strand sequence was extracted, and a random count number
for this particular sequence was assigned for each simulated file. This information was
then used to create a simulated FASTQ file using the sequence and count information for
each sequence. Random simulation of sequences and the corresponding read counts was
performed using PYTHON module “random”. The simulation script outputs a simulated
read count CSV file with sequence and annotation information, which should match the
output of the mtR_find when the simulated FASTQ files are being analyzed.

Simulation scripts used different strategies to distribute reads among different se-
quences as described in Supplementary File S8, and Tables S2, S4 and S5. However, in both
methods the total number of reads was split in such a way that 80–95% were simulated
from the heavy strand and the remaining 5–20% were from the light strand. The simulated
dataset has been tested using mtR_find tool, and the results were compared with the
results from the simulation. The four different parameters were calculated to check the
concordance: (1) number of unique sequences; (2) sequences mapping to the mitochondrial
genome and the distribution of sequences between the two strands; (3) total read count
and count of individual sequences in each file; and (4) annotation information and read
count distribution among four bio-types. The bio-types included rRNA, tRNA, non–coding
region, and protein-coding genes.

Simulation and testing of the tool were performed on a Linux server (Red Hat 4.8.5–28)
with Python 3.6.8 (64 CPU cores, 504 GB RAM).

4.9. Identification of Novel tRFs

tRFs were downloaded from MINTbase [19] as a tab delimited file, while the mito-
chondrial tRFs (test sequences), obtained from mtR_find, were in CSV format. Both files
were loaded as separate pandas data frames and the sequence column was extracted into
two separate lists. Then, the sequences from the two lists were compared (Supplementary
File S14). Only exact sequence matches were allowed.

5. Conclusions

Existing tools can identify only a sub-group of mtsRNAs. mtR_find is the first publicly
available tool to comprehensively analyze and annotate all mitochondrial non-coding
RNAs. The novel read count algorithm significantly reduces the execution time, making
a high-throughput analysis of multiple datasets possible. mtR_find does not create any
intermediate files and, hence, saves disk space. Moreover, mtR_find generates a single script
for pre-processing data, mapping reads, and then generating count data with annotation
information for files. mtR_find identifies novel mt-sRNAs, such as tRFs or mt-lncRNAs, in
the existing datasets. It opens a new analytical possibility to re-examine thematic RNA-seq
clusters of datasets in search for novel diagnostics markers.
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