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Simple Summary: Farmed fish are commonly exposed to stressors, which have a detrimental effect
on their health and welfare. The present study explores how lumpfish, a species recognized for its
potential role in alleviating the sea lice burden on farmed salmon, responds to acute stress. This is
particularly important for this species, since there are concerning reports regarding their health and
welfare. In our stress challenge lumpfish were exposed to air for one minute. We then examined
several stress and energy metabolism biomarkers and concluded that i) lumpfish tolerates well a one-
minute air exposure, and ii) cortisol is a reliable stress biomarker in this species. Our results contribute
to our current understanding of how lumpfish handle a common stressor, and this knowledge is key
to allow a better decision-making when it comes to welfare management in farms.

Abstract: This study aimed to expand knowledge on lumpfish stress physiology by investigating the
effects of acute stress on primary (i.e., cortisol) and secondary (e.g., metabolites) stress responses, as
well as oxidative stress biomarkers, from stress exposure to a recovery phase. The results showed
that the lumpfish physiological response to 1 min air exposure is mild, in line with recent studies, and
comparable to that described for white sturgeons. Cortisol seems to be the most reliable acute stress
biomarker in lumpfish, with a significant increase in plasma 30 min after stress exposure, returning
to resting levels 2 h after exposure. In contrast, glucose and lactate were not significantly altered by
short-term air exposure. Effects on hepatic energy mobilisation were also detected following the acute
stress. This study showed that acute 1 min air exposure seems tolerable, allowing a swift recovery.
However, more studies on the impacts of air exposure and repeated acute stressors on lumpfish
stress and immune responses are required to develop industry standards for lumpfish health and
welfare monitoring.
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1. Introduction

One of the main constraints that Atlantic salmon (Salmo salar) aquaculture faces is the
persistent ectoparasite infestation caused by sea lice, in particular, Lepeoptheirus salmonis
and other Caligidae member species [1,2]. In response to the persistent impact of sea lice,
causing an estimated economic impact of more than USD 500 million [3], research has
increasingly focused on treatment, prevention and alternative delousing methods [4–6].
Lumpfish (Cyclopterus lumpus, L.) is a species of interest in the salmon aquaculture sec-
tor, due to its role in the biological control of sea lice. As such, lumpfish aquaculture
gained traction in recent years as a reaction to this urgent need for efficient delousing
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alternatives [7–10]. In fact, lumpfish individuals deployed in salmon pens increased from
approximately 10 million in 2015 to more than 40 million in 2019 [11]. This rapid devel-
opment has led to an increasing amount of concerning evidence regarding the health and
welfare of these animals under farming operations [12]. A recent report by the Norwegian
Food Authorities, based on a 2018/2019 campaign [13] on the use of lumpfish by Nor-
wegian Atlantic salmon farmers, presented disturbing data regarding the mortality and
fate of deployed lumpfish. In this campaign, farmers reported mortality above 40%, often
associated with disease outbreaks. Lumpfish are exposed to several stressful events under
farming operations, from hatchery rearing to transportation and deployment in salmon
sea pens [14–16]. It is well known that stress significantly influences the immune status in
teleosts [17,18]. Accordingly, the acute and chronic stress experienced by lumpfish could
contribute to the frequently reported disease outbreaks and high mortalities [19–22]. Given
the current limited understanding of lumpfish biology, optimal rearing conditions, dietary
needs and welfare monitoring, it is crucial to direct scientific efforts towards expanding
knowledge in these areas [20,23,24].

Organisms employ various strategies to regain homeostasis by regulating physiologi-
cal processes that compensate for, adjust to, and mitigate stress. An organism’s ability to
cope with stress and regain homeostasis depends on the severity of the stressor. When
the severity of the stressor pushes the organism’s ability to cope with the stress over a
critical limit, physiological mechanisms are disrupted, welfare condition deteriorates and
ultimately, the organism succumbs [25,26].

Teleost fish have evolved a stress response that can be categorised into three different
levels. A primary response, which starts with the detection of the stressor, triggers an
immediate neuroendocrine cascade of events that results in the release of catecholamines
and cortisol. A secondary response to stress is coordinated by the primary response
hormones, where energy mobilisation is regulated through metabolic and osmoregulatory
adjustments, to meet the increased energy demands to fuel the stress response. The
tertiary response is an outcome of the inability of an organism to regain homeostasis and
is characterised by changes and impairments at the systemic level, such as suppressed
immunity and reduced growth [27–29].

The primary stress response in teleosts begins with activating the sympatho-chromaffin
tissue (SC axis) and the hypothalamus–pituitary–interrenal tissue (HPI axis) [30]. The SC
axis is quickly mobilised upon perceiving a stressor, increasing heart rate, stroke volume,
blood flow and increasing glucose supply to critical tissues [29,31,32]. Subsequently, the
HPI axis is activated. The central nervous system stimulates neurons in the hypothalamus
to produce a corticotropin-releasing hormone (CRH), leading to the release of corticotropin
(ACTH), which in turn will stimulate the production of cortisol, by the interrenal cells.
Cortisol and catecholamines play pivotal roles in orchestrating the subsequent stages of the
stress response. These hormonal responses primarily prepare the organism for increased
energy demands during the “fight or flight” response, where glucose serves as the primary
energy substrate in the brain and muscle [29]. This energy cost is met, initially, by the
activation of the SC axis, releasing epinephrine in seconds, and sustained by the activation
of the HPI axis, which results in the release of cortisol, inducing and maintaining a hypergly-
caemic state [32–34]. Cortisol regulates blood glucose levels, sustains hyperglycaemia and
influences the mobilisation of amino acids, fatty acids and lactate for gluconeogenesis [35].

Acute stressors are not rare during aquaculture operations involving lumpfish, which
shows the urgent need for stress monitoring. From being introduced into net pens with
Atlantic salmon without prior interaction, or transportation, to the grading of salmon
and mechanical delousing, lumpfish are often handled and exposed to stressors, which
usually involve temporary air exposure [16,19,36]. These highly stressful conditions such
as hypoxia, handling and osmotic stress can induce marked metabolic variations. Besides
cortisol, lactate and glucose concentrations can change significantly upon stressful events
and are often used as indicators of primary and secondary stress responses [37–39]. Oxida-
tive damage parameters such as lipid peroxidation also display the potential to be used as
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stress biomarkers. In healthy individuals, the antioxidant defences neutralise the reactive
oxygen species (ROS) produced from regular metabolic activity, maintaining an optimal
equilibrium [40–43]. However, stress can disrupt the oxidative balance by inducing a higher
metabolic turnover, increasing ROS and causing oxidative damage [42–45]. The lumpfish,
a peculiar species, exhibits a mild increase in cortisol and other stress biomarkers upon
acute stress exposure. This subtle response can often be misunderstood as an absence of
stress, potentially unnoticed by salmon farmers and lumpfish hatcheries. Stress studies
with lumpfish have identified modest cortisol, glucose and lactate increases post-stress,
comparable to several sturgeon species [36,46,47]. Understanding the metabolic changes
upon acute stress in lumpfish is paramount and will allow the development of early detec-
tion tools as well as the accurate monitoring of lumpfish stress status. This study aimed to
understand the influence of brief air exposure on lumpfish metabolism and stress markers.

2. Materials and Methods
2.1. Fish Acquisition and Aare

Juvenile lumpfish with a mean weight of 70.0 g were transferred from Artic Seafood
Group (Mørkvedbukta, Bodø, Norway) and maintained for 2 weeks in indoor 1000 L
flow-through seawater tanks at Mørkvedbukta research station (Nord University, Mørkved-
bukta, Norway), using a 12 h light–dark photoperiod. Water parameters were checked
daily, including salinity (34.6 ± 0.5‰), dissolved oxygen (7.9 ± 0.3 mg L−1) and water
temperature (9.4 ± 0.6 ◦C). The health status of the fish was assessed immediately after
transfer using the Lumpfish Health Scoring System guidelines [19]. Lumpfish in all tanks
were fed a commercial lumpfish feed (Skretting’s Clean Assist, 1.8 mm pellet size, Skretting,
Stavanger, Norway). The feeding regime was based on 2% BW per day using mechanical
feeding automats, with 6 meals throughout the day.

2.2. Study Design

Ten duplicate groups of lumpfish with an initial mean (± SD) weight of 70.0 ± 5.0 g
(n = 16; N = 160) were established from the original population (groups 30minS, 30minC,
1hS, 1hC, 2hS, 2hC, 4hS, 4hC, 24hS, 24hC). Numbers in the group name indicate the time
of sampling (in min or hours) after the start of the experiment. The letter “S” indicates
groups exposed to stress, and the letter “C” indicates control groups, where fish were left
undisturbed until sampling. Each fish group was kept in a separate tank. The fish were
allowed to acclimate for a period of 2 weeks before the start of the trial, when they started
exhibiting normal swimming and hovering behaviour as well as a good feeding response.
The trial commenced with the induction of stress (1 min air exposure) of “S” groups. To
allow for better time management for the collection of samples, group 30minS was exposed
to stress before the remaining groups. One day before the stress challenge and on the day
of this challenge fish were not fed, to avoid the influence of feeding on the stress biomarker
levels [48].

Fish from S groups (“S”, Stressed) were air-exposed for 1 min using a large net.
Catching the fish with the net lasted less than 30 s in each tank. To ensure adequate
sampling time, we stressed each duplicate tank from the same group 30 min after the air
exposure of the first duplicate tank (Figure 1). The group 30minS was the exception, which
had a 1 h window between replicate stress exposures to ensure suitable time management
for sampling and processing of samples. Groups 1hS, 2hS, 4hS and 24hS were subsequently
air-exposed (with 30 min intervals between duplicates, as mentioned above).
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2.3. Blood and Liver Sampling and Tissue Preparation 
For sampling, all individuals were quickly removed from each tank at a time and 

euthanised with 1600 mg L−1 metacaine (Tricaine methanesulphonate, Sigma Aldrich Co, 
St. Louis, Missouri, USA) until fish reached stage IV of anaesthesia, with no detectable 
operculum movement. Blood was taken from the caudal vein using 21-gauge needles and 
4 mL heparinised vacutainers. 

Blood collection lasted less than 3 min to avoid a cortisol increase due to 
manipulation during sampling. Blood was centrifuged (3000 rpm for 5 min at 4 °C) to 
obtain plasma, which was transferred to 1.8 mL cryotubes, snap-frozen in liquid nitrogen 
and stored at −80 °C until the analysis was performed. 

Liver tissues were taken using sterilised steel scalpels and immediately transferred 
to two aliquots, in two separate 1.8 mL cryotubes to allow the preparation of liver samples 
for both oxidative stress and metabolite analyses, which require different homogenisation 
procedures. Liver samples were immediately snap-frozen in liquid nitrogen and stored at 
−80 °C. 

Homogenisation of liver samples was necessary for metabolite and oxidative stress 
analyses. For metabolite analysis, the frozen liver was finely minced in a 50 mL Falcon 
tube, mixed and homogenised by mechanical disruption using a high-performance 
dispersing instrument (SilentCrusher M, Heidolph Instruments, Schwabach, Germany) in 
7.5 vol. ice-cold 6% (w/v) perchloric acid. The homogenate was then neutralised with an 
equal volume of 1M KHCO3 and centrifuged (13,000 × g for 30 min at 4 °C). Before 
centrifugation, aliquots of each homogenate were separated for the measurement of 
triglycerides and lactate. The remaining homogenates were then centrifuged (30 min, 
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Figure 1. Diagram of the acute stress trial. Timeline of the 1 min air exposures (“Stress”) and sampling
of each tank. “S” stands for stress group, “C” represents control (undisturbed) groups and “a” and
“b” stand for each replicate within each group.

2.3. Blood and Liver Sampling and Tissue Preparation

For sampling, all individuals were quickly removed from each tank at a time and
euthanised with 1600 mg L−1 metacaine (Tricaine methanesulphonate, Sigma Aldrich
Co, St. Louis, MI, USA) until fish reached stage IV of anaesthesia, with no detectable
operculum movement. Blood was taken from the caudal vein using 21-gauge needles and
4 mL heparinised vacutainers.

Blood collection lasted less than 3 min to avoid a cortisol increase due to manipulation
during sampling. Blood was centrifuged (3000 rpm for 5 min at 4 ◦C) to obtain plasma,
which was transferred to 1.8 mL cryotubes, snap-frozen in liquid nitrogen and stored at
−80 ◦C until the analysis was performed.

Liver tissues were taken using sterilised steel scalpels and immediately transferred to
two aliquots, in two separate 1.8 mL cryotubes to allow the preparation of liver samples
for both oxidative stress and metabolite analyses, which require different homogenisation
procedures. Liver samples were immediately snap-frozen in liquid nitrogen and stored
at −80 ◦C.

Homogenisation of liver samples was necessary for metabolite and oxidative stress
analyses. For metabolite analysis, the frozen liver was finely minced in a 50 mL Falcon tube,
mixed and homogenised by mechanical disruption using a high-performance dispersing
instrument (SilentCrusher M, Heidolph Instruments, Schwabach, Germany) in 7.5 vol.
ice-cold 6% (w/v) perchloric acid. The homogenate was then neutralised with an equal
volume of 1M KHCO3 and centrifuged (13,000× g for 30 min at 4 ◦C). Before centrifugation,
aliquots of each homogenate were separated for the measurement of triglycerides and
lactate. The remaining homogenates were then centrifuged (30 min, 13,000× g, 4 ◦C), and
the supernatants were recovered in different aliquots and stored at −80 ◦C.

Homogenisation of frozen liver samples was also performed for oxidative stress assays,
using a high-performance dispersing instrument (SilentCrusher M, Heidolph Instruments,
Schwabach, Germany), in 1:10 volume K phosphate buffer (KPB) (K2HPO4 0.1 M, KH2PO4
0.1 M, pH 7.4, Sigma Aldrich, St. Louis, MI, USA). Two hundred microlitres of homogenate
aliquots were used to measure lipid peroxidation. To prevent lipid peroxidation, 4 µL of
4% 3,5-di-tert-4-butylhydroxytoluene (BHT, in methanol, Sigma Aldrich, St. Louis, MI,
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USA) was added to each sample before centrifugation, making the aliquot for the lipid
peroxidation assay, following the protocol by Torres et al. [49]. The homogenates were
then centrifuged at 10,000× g for 20 min and 4 ◦C. The supernatants were kept in separate
aliquots at −80 ◦C until later use.

2.4. Plasma and Liver Parameters

Plasma cortisol was measured using a commercial ELISA kit (IBL International GMBH,
Hamburg, Germany). Plasma was diluted (1:20) in diethyl ether. After centrifugation,
the recovered supernatant was isolated, and once evaporated, phosphate buffer contain-
ing 1 g.L−1 gelatine (pH 7.6) was added. This kit was previously validated for teleosts
(Oliveira et al. [50]). We performed two tests to validate the lumpfish plasma samples:
dilution parallelism and recovery. The dilution parallelism test consisted of 4 consecutive
dilutions of a lumpfish plasma sample with a high concentration of cortisol, which was then
compared with the standard curve. The curve obtained from lumpfish plasma was parallel
to the standard curve, thus validating the test for this species (results not shown). The re-
covery test consisted of adding increasing amounts of cortisol to a lumpfish plasma sample,
using the standards of the kit (standards D, E and F). A recovery value of 83.9 ± 13.6% was
obtained, reinforcing the validity of the kit for this species. The main cross-reactivity (>1%,
given by the supplier) was 30% for prednisolone, 11% for 11-Desoxy-Cortisol, 4.2% for
cortisone, 2.5% for prednisone and 1.4% for corticosterone. Since cortisol is the principal
steroid produced by fish interrenal tissue, cross-reactivity with other steroids was assumed
to be negligible.

Plasma glucose, lactate and triglycerides, as well as hepatic lactate and triglycerides,
were determined using Spinreact kits (Spinreact, Girona, Spain) adapted to 96-well mi-
croplates [39]. Plasma total proteins were determined in 1:50 (v/v) diluted plasma samples
using Pierce™ BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), as re-
ported by Costas et al. [51]. Bovine serum albumin (Thermo Fisher Scientific, Waltham, MA,
USA) served as a standard. These parameters were analysed on a Synergy HT Microplate
Reader (BioTek Instruments, Winooski, VT, USA).

2.5. Liver Oxidative Stress Assays

Liver samples were thawed and homogenised (1:10) in phosphate buffer 0.1 M (pH
7.4) using Precellys evolution tissue lyser homogeniser (Bertin Instruments, Montigny-le-
Bretonneux, France).

Oxidative stress was investigated through enzymatic activity. Lipid peroxidation
(LPO), superoxide dismutase (SOD) and catalase (CAT) activities, as well as total protein
concentration, were quantified in the homogenised samples. CAT was determined by
measuring the decline of H2O2 concentration as described by Clairborne (1985) [52] and
adapted by Peixoto et al. [53]. Enzyme activity is expressed as enzyme units per milligram
of total protein (U mg−1 protein). SOD was measured using the protocol described by Lima
et al. [54] and adapted by Almeida et al. [55], where enzyme activity is calculated based
on the amount of enzyme necessary to inhibit 50% of cytochrome c reduction rate, which
occurs when superoxide radicals are present. Lipid peroxidation was measured using
thiobarbituric acid-reactive substances (TBARSs) [49,56]. Total proteins in liver samples
were analysed following the protocol adapted by Costas et al. [51] using the Pierce™ BCA
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

2.6. Data Analysis

The results presented below are expressed as mean ± standard error. All data were
subject to statistical analysis by testing for homogeneity and normality of variances using
Levene’s and Kolmogorov–Smirnov tests, respectively. To address skewed data on plasma
cortisol, plasma and liver lactate and liver triglycerides, the data of these parameters were
transformed logarithmically. Identification and comparison of significant differences in all
parameters were performed by one-way ANOVA (p-value < 0.05) [57], followed by Tukey
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HSD post hoc test. Statistical analyses were conducted using IBM SPSS v25.0 (IBM Corp.,
Armonk, NY, USA).

3. Results
3.1. Cortisol

Plasma cortisol levels increased significantly in air-exposed fish compared to undisturbed
counterparts, with the highest value found at 30 min post-stress exposure (38.61 ± 2.74 ng).
Cortisol levels in stressed fish remained significantly elevated (ANOVA, p < 0.05) until 1 h
after the acute stress exposure. Two hours after exposure cortisol returned to resting levels
(Figure 2).
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Figure 2. Plot showing cortisol levels (ng mL−1) in plasma (expressed as average ± SE) in undisturbed
lumpfish (light blue bars) and in lumpfish exposed to air for 1 min (dark blue bars). Letters a, b and c
indicate significant differences between different timepoints within the same group. Symbols * and
# indicate significant differences between control and stressed groups within the same timepoint
(ANOVA, Tukey, p < 0.05).

3.2. Metabolic Parameters

Glucose in the plasma of stressed and undisturbed lumpfish did not vary significantly
among them for each sampling time (Figure 3). However, there were significant differences
between different timepoints within the air-exposed group, with a considerable increase
from 1 h to 2 h post-stress.

There were no significant differences between control and stressed groups in both
plasma and hepatic lactate (Figure 4) and total protein levels. However, there were signifi-
cant differences in liver lactate levels between different timepoints within the air-exposed
group, with a significant increase from 30 min to 2 h post-stressor, and within the control
group, with a significant increase at 2 h. Liver lactate levels in undisturbed fish remained
high from 2 h onwards.

Analysis of triglyceride levels revealed significant differences between stressed and
undisturbed fish both in plasma and liver tissue (Figure 5). Regarding plasma triglycerides,
stressed fish showed a significant increase in triglycerides at 2 h post-stressor, compared to
undisturbed fish. There were also differences between timepoints within the same groups,
where stressed groups increased at 2 h post-stress exposure, with the levels remaining high
throughout all timepoints after that. The control group had a significant increase at 4 h and
remained high at the last timepoint (24 h). Hepatic triglyceride levels were more elevated
in undisturbed fish at 4 h post-stressor. There were also differences between different
timepoints within the same groups. Both undisturbed and stressed groups displayed higher
levels at the 2 h timepoint, remaining high in control groups during the 4 h timepoint.
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3.3. Oxidative Stress

Oxidative stress analyses of acutely stressed fish and control groups are presented
in Table 1. Fish exposed to acute stress had similar levels of catalase (CAT), superoxide
dismutase (SOD) and lipid peroxidation (LPO) as the control groups. Oxidative stress
was not affected by 1 min of air exposure. However, there were significant differences in
both CAT and SOD throughout the 24 h time course in the control group. CAT activity
was lower at 24 h compared to those sampled at 2 h, whereas SOD activity dropped its
values at 24 h compared to 30 min and 4 h groups. LPO did not vary between stressed
and undisturbed fish; however, it fluctuated throughout the 24 h sampling window within
stressed fish, as well as in undisturbed animals, showing both groups’ highest LPO levels
at 24 h post-air exposure.

Table 1. Oxidative stress levels 1 in lumpfish liver homogenates.

Oxidative
Stress 30minC 30minS 1hC 1hS 2hC 2hS 4hC 4hS 24hC 24hS

CAT 56.2 ± 4.3 ab 55.2 ± 4.8 59.9 ± 2.7 ab 64.4 ± 5.3 69.4 ± 7.1 b 50.8 ± 2.4 63.9 ± 4.7 b 52.0 ± 3.3 42.3 ± 2.4 a 60.8 ± 4.5
SOD 2.0 ± 0.2 b 2.0 ± 0.1 1.8 ± 0.1 ab 1.7 ± 0.1 1.7 ± 0.2 ab 1.4 ± 0.1 1.9 ± 0.1 b 1.8 ± 0.1 1.3 ± 0.1 a 1.5 ± 0.1
LPO 25.3 ± 1.5 b 24.9 ± 1.2 bc 20.7 ± 2.4 ab 18.7 ± 1.4 a 16.7 ± 0.8 a 17.2 ± 1.2 a 22.8 ± 1.3 ab 26.0 ± 1.0 c 32.5 ± 1.8 c 29.7 ± 1.2 c

1 Levels expressed as CAT (U mg protein−1), SOD (U mg protein−1) and LPO (tbars nmol g tissue−1) in undis-
turbed lumpfish “C” (light blue highlighted cells) and in lumpfish exposed to air for 1 min “S” (expressed as
average ± SE). Letters a, b and c indicate significant differences between different timepoints within the same
group (ANOVA, Tukey, p < 0.05). CAT: catalase; SOD: superoxide dismutase; LPO: lipid peroxidation.

4. Discussion

There is a need for reliable, cost-effective and technically accessible stress monitoring
and profiling in lumpfish aquaculture. Besides the sub-optimal standardisation of practices
in hatcheries, lumpfish must endure the industrial operations adapted for salmonids such
as mechanical delousing, pumping, transfer and transportation and even slaughter [58,59].
Adapted for the salmon species, these processes are quite extreme and can be beyond the
lumpfish’s ability to cope. Norwegian government authorities, research groups, academia
and animal welfare-concerned aquaculture players have stressed the need for developing
and implementing such practices [13,19].
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The accuracy and usefulness of cortisol as a robust stress biomarker in teleosts are
well documented [34,35]. In this study, air exposure for 1 min was sufficient to successfully
activate the HPI axis. The acute stress challenge resulted in a detectable physiological
response to stress, confirmed by the significant increase in cortisol levels. The measured
cortisol peak at 30 min after exposure, which translates to a 107% increase in cortisol,
indicates that the highest levels of cortisol happen between 30 min and 1 h following
the stress exposure. The results are in line with the findings from other stress studies
conducted with lumpfish, where cortisol peak was achieved between 30 min and 1 h after
exposure [60,61]. For instance, a study where naive lumpfish (lumpfish that have never
interacted with salmon) were introduced to Atlantic salmon detected a mean cortisol peak
45 min after stress exposure of 114.94 nmol L−1 (or 41.67 ng mL−1) [16], which is similar to
the cortisol peak found in this study at 30 min following air exposure. Other studies also
showed increased cortisol levels after acute stressor exposure using exhaustive chasing with
a net [46], transport (76.3 ng mL−1 1 h after exposure) [62] and crowding stress (50 ng mL−1

between 40 min and 1 h after exposure) [21]. Nevertheless, the levels recorded in this
study were slightly lower than the peak achieved in the studies mentioned above. This
may be attributed to the use of a milder stressor, which involved a brief and gentle netting,
followed by 1 min air exposure. Selecting a severe stressor to achieve a marked stress
response was not the scope of this study. So, following the refinement recommendations in
the scope of PREPARE guidelines [63] inspired by the 3Rs [64] approach, we were able to
confirm and study the activation of the HPI axis and subsequent secondary stress response
using a less severe stressor.

Several physiological alterations occur due to the primary stress response activation.
Cortisol and other stress hormones, such as catecholamines and β-endorphins, prompt
measurable metabolic alterations during the secondary stress response. Metabolic biomark-
ers such as glucose and lactate levels vary as a result of intense exercise and severe stress.
While glucose is a crucial source of energy in aerobic conditions, in anaerobic conditions the
Krebs cycle is hampered due to lack of oxygen availability, and pyruvate is converted into
lactate, accumulating in the muscle and bloodstream. Once oxygen is sufficiently available
again, lactate can be transported to other organs such as the liver to be converted back
into pyruvate for gluconeogenesis. Lactate can also play a role in helping to secure energy
demands during aerobic metabolism [31,34,35]. The increase in glucose as a response to
stress provides the fish with the energy substrate necessary to meet the elevated energy de-
mands [65,66]. In this study, glucose and lactate levels in plasma did not differ significantly
between stressed and undisturbed fish. These findings are in line with earlier investigations
in lumpfish, where glucose and plasma lactate did not alter significantly. Lactate levels
were barely detectable post-stress, even though a cortisol increase was observed, potentially
indicating that lumpfish were less reliant on anaerobic metabolism [21,46]. However, there
were significant differences within the stress group, with an increase of 2 h after exposure
to stress. The increase in glucose 2 h post-stressor can potentially be related to the hyper-
glycaemic effects of cortisol, suggesting a lag effect of increased cortisol release on plasma
glucose levels [35,67]. This is in agreement with previous reports in lumpfish, which did not
observe any significant increase in plasma glucose following stress. The lack of significant
effects on lactate in stressed fish has been reported for several other marine teleosts, which
might indicate fundamentally different energy metabolism strategies in some fish species
upon stress [29]. Furthermore, the cortisol effects on blood biochemistry and other com-
ponents of the secondary stress response can be substantially different between different
species of teleosts and depend on environmental factors [34,35]. Teleosts triglyceride re-
serves are stored in the liver, muscle and adipose tissues [68]. Mobilisation of triglycerides
occurs as a response to the increased energy demands arising from stress. Free fatty acids
are relevant energy substrates for teleosts and are released due to stress-promoted lipolysis
of triglycerides [34,35,69]. However, the relation between triglyceride levels and stress
in teleosts is not always straightforward and varies between teleost species and type of
stressor, with studies reporting different variations in triglycerides in plasma and liver
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upon stress challenges [39,70–73]. This underscores the importance of understanding the
species-specific effects and hypoxia tolerance. In this study, air exposure influenced the
mobilisation of plasma and liver triglycerides, confirmed by the increase in plasma after
2 h and decrease in liver levels 4 h post-stress exposure. These results suggest that stressed
lumpfish shifted the energy expenditure strategy to fatty acids as the preferred substrate.

The imbalance between the production and clearance of reactive oxygen species (ROS)
can be designated as oxidative stress. Under normal circumstances, organisms are able
to detoxify the reactive molecules and repair the oxidative damage using the organism’s
antioxidant defences [74]. Upon stress exposure, the metabolic shifts necessary to meet
the increased energy demands can lead to increased production of ROS, as a by-product
of cellular respiration and other metabolic processes. Moreover, cortisol can modulate the
expression and activity of antioxidant defences, such as superoxide dismutase, catalase and
glutathione peroxidase [74,75]. This can affect the oxidative balance and contribute to the
increased oxidative stress in the liver. Oxidative stress can contribute to oxidative damage,
which can have consequences such as mutations in DNA, protein denaturation, lipid
peroxidation and ultimately, cell death. The liver, being a crucial site for lipid metabolism,
is susceptible to ROS damage by disruption of cell membranes, compromising hepatic cells
and potentially impacting lipid metabolism [76]. In this study, the exposure of lumpfish
to air for 1 min did not significantly alter the levels of SOD and CAT in the liver, when
compared to undisturbed fish, despite a tendency for lower levels in stressed fish. This
tendency could potentially be exacerbated with more severe acute stress exposure, as
hypoxic conditions have been shown to modulate antioxidant defences [42,43,77]. In line
with the results from SOD and CAT analyses, lipid peroxidation was not affected by stress,
indicating that the oxidative stress in the liver of lumpfish is not affected by 1 min air
exposure. While this study found no significant differences in oxidative stress, a prolonged,
chronic exposure to stress could reveal a different outcome, highlighting the importance of
further studies on the influence of chronic stress on lumpfish metabolic responses.

5. Conclusions

Lumpfish, a novel aquaculture species, has garnered attention due to the severe wel-
fare concerns, and understanding species and stressor-specific physiological responses is
an important step to help improve practices that safeguard lumpfish welfare. In this study,
cortisol proved to be the most reliable indicator of stress in lumpfish exposed to a mild acute
stressor, while glucose and lactate seem to be less valuable as stress biomarkers in lumpfish.
Operations, such as salmon delousing, weighing and equipment maintenance, among
others, could occasionally result in hypoxic conditions, as they often involve handling,
capturing and regrouping of lumpfish. This information may be helpful for farmers in plan-
ning specific operations, where 1 min air exposure should not be surpassed, as this study
showed that it is sufficient to activate a stress response while allowing a swift recovery.
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