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Climate change is topical yet, complex with several dynamics spanning different 

disciplines. The 21st-century development pathway is characterized by a roller 

coaster of climate change events––because of natural resource exploitation, 

fossil fuel utilization, energy intensity, population growth, and environmental 

pollution. Under this global environmental threat, development cooperation 

made several efforts to rally economies into sustainable policies that mitigate 

current and future threats. The Brundtland Report, “Our Common Future”, 

outlines the importance of “protecting the environment while meeting current 

demand without compromising available resources, but leaving the environment 

as a bequest for future generations”. This infers the importance of achieving 

environmental sustainability through sustainable development, addressing 

institutional gaps, and developing policy measures that control urban challenges, 

resource-dependent, energy-intensive industrial processes, fossil-driven energy 

portfolio, biodiversity loss, ecosystem challenges, food security, population 

growth, and human resources. Climate change econometrics provides 

opportunities for assessing potential policy implications of historical alterations 

of climate events. Thus, understanding the various philosophical underpinnings 

of climate change and its impacts is useful in future policy development with 

mitigation effects. Here, we bring to the fore cyclical climate chain—a term 

coined to understand how climate change processes mimic typical “food chain”. 

Philosophical perspectives of existing pollution theories including energy-

growth, pollution halo/haven, environmental convergence, displacement effects, 

and environmental Kuznets curve hypotheses are examined using econometric 

techniques. This compendium contributes to the extant literature in both spirit 

and letters while criticizing, contrasting, and/or validating the status quo in 

climate change econometrics.  We incorporate the concept of sustainability in 

the hypotheses and research design useful in developing conceptual tools for 

policy formulation while highlighting the policy implications of empirical results. 

Our empirical studies presented herein demonstrate the complexity of climate 

change, however, climate change mitigation and adaptation to climate impacts 

are possible through climate-resilience pathways––coping mechanisms of 

new and existing systems to modulate the harmful effects of climate change on 

sustainable development.
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ABSTRACT 

Climate change is topical yet, complex with several dynamics spanning different disciplines. 

The 21st-century development pathway is characterized by a roller coaster of climate change 

events––because of natural resource exploitation, fossil fuel utilization, energy intensity, 

population growth, and environmental pollution. Under this global environmental threat that 

development cooperation made several efforts to rally economies into sustainable policies 

that mitigate current and future threats. The Brundtland Report, “Our Common Future”, 

outlines the importance of “protecting the environment while meeting current demand 

without compromising available resources, but leaving the environment as a bequest for 

future generations”. This infers the importance of achieving environmental sustainability 

through sustainable development, addressing institutional gaps, and developing policy 

measures that control for urban challenges, resource-dependent, energy-intensive industrial 

processes, fossil-driven energy portfolio, loss of biodiversity, ecosystem challenges, food 

security, population growth, and human resources. Climate change econometrics provides 

opportunities for assessing potential policy implications of historical alterations of climate 

events. Thus, understanding the various philosophical underpinnings of climate change and 

its impacts is useful in future policy development with mitigation effects. Here, we bring to 

the fore cyclical climate chain—a term coined to understand how climate change processes 

mimic typical “food chain”. Philosophical perspectives of existing pollution theories including 

energy-growth, pollution halo/haven, environmental convergence, displacement effects, and 

environmental Kuznets curve hypotheses are examined using econometric techniques. This 

compendium contributes to the extant literature in both spirit and letters while criticizing, 

contrasting, and/or validating the status quo in climate change econometrics.  We incorporate 

the concept of sustainability in the hypotheses and research design useful in developing 

conceptual tools for policy formulation while highlighting the policy implications of empirical 

results. Our empirical studies presented herein demonstrate the complexity of climate 

change, however, climate change mitigation and adaptation to climate impacts are possible 

through climate-resilience pathways––coping mechanisms of new and existing systems to 

modulate the harmful effects of climate change on sustainable development. 
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SAMMENDRAG 

Klimaendringene er dagsaktuellt, men er et komplekst tema med dynamikker som spenner 

over flere ulike fagområder. Utviklingen i det 21. århundre er preget av en berg-og-dal-bane 

av hendelser relatert til klimaendringer – på grunn av utnyttelse av naturressurser, bruk av 

fossilt brensel, energiintensitet, befolkningsvekst og miljøforurensning. Under denne globale 

utfordringen for klima og miljø har det vært gjort mange forsøk på å utviklinge samarbeidet 

for å få verdens økonomier til å føre en bærekraftig politikk som reduserer nåværende og 

fremtidige trusler. Brundtland-rapporten, "Vår felles framtid", skisserer viktigheten av å 

"beskytte miljøet samtidig som vi møter dagens etterspørsel uten å gå på bekostning av 

tilgjengelige ressurser, men etterlater miljøet som en arv til fremtidige generasjoner". Dette 

innebærer at det er viktig å oppnå miljømessig bærekraft gjennom bærekraftig utvikling, tette 

institusjonelle hull og utvikle politiske tiltak som tar høyde for urbane utfordringer, 

ressursavhengige, energiintensive industriprosesser, fossildrevet energiportefølje, tap av 

biologisk mangfold, økosystemutfordringer, matsikkerhet, befolkningsvekst og menneskelige 

ressurser. Klimaøkonometri gir muligheter for å vurdere mulige politiske konsekvenser av 

historiske klimaendringer. Det er derfor nyttig å forstå de ulike filosofiske grunnlagene for 

klimaendringene og konsekvensene av dem for å kunne utforme en politikk som reduserer 

negative virkninger i fremtiden. Her setter vi søkelyset på den sykliske klimakjeden - et begrep 

som er skapt for å forstå hvordan klimaendringsprosessene etterligner en typisk 

"næringskjede". Filosofiske perspektiver på eksisterende forurensningsteorier, inkludert 

energi-vekst, forurensning glorie/havne, miljøkonvergens, fortrengningseffekter og 

miljømessige Kuznets-kurvehypoteser, undersøkes ved hjelp av økonometriske teknikker. 

Dette kompendiet bidrar til den eksisterende litteraturen i både ånd og bokstav, samtidig som 

det kritiserer, kontrasterer og/eller validerer status quo innen klimaesøkonometri.  Vi 

inkorporerer begrepet bærekraft i hypotesene og forskningsdesignet som er nyttig for å 

utvikle konseptuelle verktøy for utforming av politikk, samtidig som vi fremhever de politiske 

implikasjonene av empiriske resultater. De empiriske studiene som presenteres her, viser hvor 

komplekse klimaendringene er, men at det er mulig å redusere klimaendringene og tilpasse 

seg klimakonsekvensene ved hjelp av klimatilpasningsmekanismer i nye og eksisterende 

systemer for å dempe de skadelige effektene av klimaendringene på bærekraftig utvikling. 
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Chapter 1. Introduction 

1.1 Overview 

The rising level of anthropogenic emissions over the past decades has received global 

attention. The magnitude of extreme climate-related events and their impact on humanity 

and natural systems lead to increasing trends of extreme temperature (cold and warm), 

droughts, irregular precipitation levels, cyclones, floods, and wildfires––foreshadowing future 

risks and effects attributed to climate change (IPCC, 2014b; Sarkodie et al., 2019a). The 

observed climate change and its causes have human and external attributes including carbon 

dioxide (CO2) emissions from the combustion of fossil fuels, forestry, land use, cement 

production, and flaring (Pachauri et al., 2014). Thus, the mitigation of climate change and its 

impact requires effective climate change management policies that reduce forcing and human 

influence on climate systems. The Sustainable Development Goals (SDGs) raise awareness of 

climate change mitigation through adaptation readiness, human and institutional capacity, 

and technological advancement among others––to assist in reducing global surface 

temperature to below 2°C (United Nations, 2015b). Future climate change uncertainties and 

their related risks have triggered scientific research from different disciplines. Several studies 

in energy and environmental economics have thus far examined the direct impact of 

immediate climate drivers (income level, population growth, carbon intensity, and energy 

intensity) on greenhouse gas (GHG) emissions (Apergis et al., 2010; Asumadu et al., 2016; 

Bekun et al., 2019; Bouznit et al., 2016; Ozturk et al., 2010). Here, we present cyclical climate 

chain, theoretical framework, philosophical perspectives, viz. verification & falsification, and 

research design of climate change econometrics––useful in developing mitigation options for 

environmental pollution and degradation. 

1.2 Cyclical Climate Chain 

Cyclical Climate Chain is a term coined herein due to the complexity and mutual coupling of 

causal effects of climate change drivers. Climate change and its effects pose a long-term threat 

to humanity by altering the lithosphere, hydrosphere, and atmosphere. Anthropogenic GHG 

emissions involving CO2, methane (CH4), nitrous oxide (N2O), sulfur hexafluoride (SF6), 

perfluorocarbons, and hydrofluorocarbons underpin climate alterations (DiSano, 2002). 
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Global GHG emissions grew from 50.911 mmtCO2eq in 2010 to approximately 53.523 

mmtCO2eq in 2012, however, global CO2 emissions per economic productivity declined from 

0.347 kg of CO2 per constant 2010 US$ in 2010 to 0.320 kg of CO2 per constant 2010 US$ in 

2014 (UNEP, 2020). The immediate and underlying drivers of manmade-attributed climate 

change include economic productivity, livelihood demands, population growth, socio-political 

pressures, consumption, and lifestyle patterns. These manmade-attributed climate drivers 

distort both carbon and energy intensity, hence, contributing significantly to global emissions. 

While global GDP per capita declined from 3.03% in 2010 to 1.95% in 2011, a further decline 

was observed from 2.37% in 2018 to 1.71% in 2019. However, carbon intensity dropped from 

1.20% in 2011 to -0.85% in 2019 whereas energy intensity dropped from 1.10% in 2010 to -

1.43% in 2019. Similarly, global population fell from 1.22% in 2009 to 1.08% in 2019 (IMF, 

2020).  

While there are naturally occurring causes of climate change, manmade causation fast-

tracks the deteriorating effect on the environment. The manmade causation includes direct 

determinants such as urban sprawl (Sarkodie, Owusu, et al., 2020), transport (Chapman, 

2007), buildings, energy production, and consumption (Bruckner T., 2015), industrialization, 

agriculture, forestry, and land use. Global urban population growth grew from 52.11% in 2011 

to 56.19% of the total population in 2020 (UNTCD, 2020). Global urban population growth 

expanded the demand for electricity supply, increasing global urban access to electricity from 

95.95% to 97.23% of the urban population in 2017 (SE4All, 2020). Global fossil fuel production 

(from oil, gas, and coal) and consumption from alternative energy sources (nuclear, hydro, 

bioenergy, wind, and solar) have increased significantly in the last decades (BP, 2020a). 

However, energy supply from renewables is inadequate to offset the growth in global fossil 

energy utilization despite a decline in both carbon and energy intensities (Blanco et al., 2014). 

While the global area designated for agriculture and forestry has declined significantly in 

developing countries, forest plantation is increasing in developed countries (FAO, 2020b). This 

perhaps elucidates the role of agriculture and forestry practices in environmental 

sustainability. Agriculture and forestry play a crucial role in reducing atmospheric emissions 

through sequestration, however, its demand-side using crude methods to meet the growing 

population and economic productivity hampers environmental sustainability (Smith et al., 

2014). Food production and consumption contribute significantly to climate change and its 

impacts. Food consumption patterns alter the food balance sheet and increase demand for 
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food supplies. For example, changes in dietary patterns increased the global food supply from 

2,825 kcal/capita/day in 2008 to 2,927 kcal/capita/day in 2018. Specifically, fat supply quantity 

grew from 80.14 g/capita/day in 2008 to 86.17 g/capita/day whereas protein supply quantity 

grew from 78.73 g/capita/day in 2008 to 82.72 g/capita/day in 2018 (FAO, 2020a). Besides, 

socio-economic factors, urbanization, market and trade liberalization, income level, consumer 

attitude and lifestyle, and women’s employment status underpin food consumption patterns 

(J, 2010). 

In contrast, climate change impacts facilitate changes in weather patterns such as 

temperature, and precipitation––which lead to event occurrences including wildfire, 

heatwaves, droughts, floods, famine, earthquakes, and cyclones. Doubling of anthropogenic 

GHG concentrations escalates global temperature while changing pressure, rainfall, humidity, 

wind speed, dew-frost point, and cloudiness (Liu et al., 2013; Rosenzweig et al., 2008). The 

expected alterations in climatic patterns influence the variability of meteorological conditions 

that affect weather-related events. Likewise, alteration in weather frequencies affects 

aeroallergens and atmospheric pollutants including sulfur dioxide, methane, nitrous dioxide, 

carbon monoxide, ozone, and particulate matter (Reid et al., 2009). Ambient intensities of air 

pollutants including black smoke suspended particulate matter, and volatile organic 

compounds are often high in urban areas reducing air quality (Hou et al., 2016). Growth in 

concentrations of urban pollution can be attributed to energy utilization, infrastructure, 

overpopulation, transport-induced emissions, deforestation, carbon & energy-intensive 

industrial processes, and production & consumption patterns. The resultant effects of 

weather changes define health impacts, behavioral changes, food security, water security, 

energy security, land security, and ecosystem security (Patz et al., 2006). Climate-driven 

weather-pollutant interaction, allergen-pollutant interaction, and weather-allergen 

interaction leads to allergic responses and affect respiratory health––leading to respiratory 

diseases and premature deaths (De Sario et al., 2013; Wu et al., 2016). 

The conceptual framework presented in Figure 1 shows the cyclical climate chain 

outlining climate drivers, climate-driven weather changes & events, and climate effects. To 

the best of our knowledge, this thesis “Compendium of Climate Change Econometrics” is the 

first to introduce the concept of cyclical climate chain––which posits a mutualistic relationship 

between causal-effects of climate change and its impacts. This implies the understanding of 
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climate chain is useful in the assessment of climate change vulnerabilities, climate adaptation 

mechanisms, and readiness to curb climate impacts. 

 
Figure 1. Conceptual framework depicting Cyclical Climate Chain. 

1.3 Theoretical Framework 

This section outlines the theoretical framework underpinning the selection of variables 

presented in the various compiled articles. Figure 2 presents the contribution of the economic 

sector to GHG emissions. The impact of land use, land-use change, and forestry sector on 

anthropogenic GHG emissions has declined by 6% since 2014, showing the positive 

development of land use and forestry-related policies namely conservation and management. 

Energy remains the crucial driver of economic development, however, its impact on 

environmental pollution is alarming. Figure 2 shows the role of energy supply as the main 

contributor to GHG emissions still prevails—intensifying global emissions by 28%. The 

transport sector contributes about 19% of global GHG emissions whereas industrial sector 

accounts for 18%. This justifies the role of sustainable industrial sector reforms in the 

sustainable development goal (SDG) 9. Other sectoral contributions to GHG emissions include 

agriculture, CO2 emissions from biomass, residential & commercial buildings, waste 

management, international aviation, and navigation. 
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Figure 2. Economic sector contribution to GHG emissions. Data source: IPCC (2014a). 
 

The theoretical framework presented in Figure 3 shows immediate drivers, underlying drivers, 

and policy and measures of GHG emissions. The immediate drivers of GHG emissions include 

population growth, GHG intensity, energy intensity, and income level. These indicators have 

direct impact on anthropogenic emissions caused by intensive human activities. Population 

growth increases the demand for food, water, and energy security, hence, expanding natural 

resource exploitation. Economic productivity increases the demand for energy services by 

promoting energy production and consumption. However, energy production increases GHG 

intensity only if the composition of the energy mix is dominated by fossil fuels. The underlying 

drivers include technology, governance, trade, resource availability, behavior & lifestyle, 

development, industrialization, infrastructure, and urbanization. In contrast, policy and 

measures of GHG emissions comprise planning, research & development, information 

provision, direct regulation, awareness creation, non-climate policies, and economic 

incentives. This theoretical framework implies no single cause of anthropogenic emissions, 

thus, underscoring the complexities of climate change and its impact. 
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Figure 3. Theoretical Framework showing immediate drivers, underlying drivers, and policy and 
measures of GHG emissions. Source: Adapted from Blanco et al. (2014). 
 

Several theories in the existing literature including environmental convergence, sustainability, 

environmental Kuznets curve (scale, composition, & technique effects), feedback, growth, 

conservation, neutrality, Pollution-Halo, and Pollution-Haven hypotheses underpin climate 

change economics and environmental sustainability. The theories presented herein are 

extracted from our published articles1 during the candidature. 

1.3.1 Pollution-Halo/Haven Hypothesis 

The theoretical framework explaining the nexus between external funding [i.e., foreign direct 

investment (FDI)] and environmental pollution can be categorized as Pollution-Halo and 

Pollution-Haven hypotheses (Figure 4). The Pollution-Haven hypothesis suggests external 

funding, typically FDI spurs environmental pollution by expanding economic productivity 

through investment inflows and production efficiency (Adams, 2008). Besides, environmental 

policies & laws of recipient economies, viz. developing countries are often weak––in efforts 

to attract funding (external) from foreign investors (Walter & Ugelow, 1979). This scenario 

 
1 Sarkodie, S. A., Adams, S., & Leirvik, T. (2020). Foreign direct investment and renewable energy in climate 
change mitigation: does governance matter?. Journal of Cleaner Production, 263, 121262.; Sarkodie, S. A., 
Ahmed, M. Y., & Leirvik, T. (2022). Trade volume affects bitcoin energy consumption and carbon 
footprint. Finance Research Letters, 48, 102977. 
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shifts production from high-income economies to developing countries, and/or from high 

energy-intensive and carbonized economies to energy-efficient and decarbonized 

economies––promoting industrial development in developing economies. The Pollution 

Haven hypothesis is further explained by the “Heckscher-Ohlin” theory, where environmental 

indicators act as factors of production, hence, environmental policy stringency increases the 

production cost (Leontief, 1953). Economies with weak environmental laws will typically have 

a comparative advantage in attracting more external funding and financing––with the 

potential of increasing emissions. Similarly, if factors of production are readily mobile across 

frontiers, regulated industries from developed economies move to less regulated economies 

due to comparative advantage (McGuire, 1982). This implies carbon-intensive industries from 

high-income countries with stringent environmental laws, policy instruments and regulations 

will move to developing countries with lax environmental standards (Sarkodie, Adams, et al., 

2020). Thus, host economies of external funding become production hubs for pollution, viz. 

pollution haven. However, foreign contributors of pollution-based external funding often 

improve industrialization and economic development of recipient countries (Jiang et al., 

2018). 

The Pollution-Halo hypothesis posits external funding that supports transfer of 

innovations, new green investment projects, and advanced technologies from developed 

economies to developing countries via knowledge spillover and value addition. The influx of 

external funding to developing economies encourages technological transfer and sustainable 

management practices with climate mitigating effects in developing economies (Zarsky, 

1999). The cost of production and externalities of economic productivity may increase energy 

efficiency while improving environmental sustainability. Accordingly, the rate of external 

funding could motivate industrial competitiveness and sustainability in developing economies 

(Stavropoulos et al., 2018). This implies external funding could trigger the adoption of clean 

technology in developing economies through knowledge spillover from foreign-owned firms 

(Jiang et al., 2015). Classic model specification to examine Pollution- Haven/Halo Hypothesis 

follow the linear relationship expressed as: 

 

𝑌 = 𝑓(𝑍, 𝑍!, 𝑋) 
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where 𝑌 denotes environmental indicators, viz. emissions, 𝑋 represents control variables, 𝑍 

and 𝑍! denote external funding, viz. FDI inflows and quadratic (second-degree polynomial) 

FDI inflows. While pollution-haven hypothesis underpins natural resource seeking through 

external funding, pollution halo hypothesis promotes efficiency-seeking of existing natural 

resources through innovations, knowledge spillover, R&D, and abatement technologies 

(Sarkodie, 2021). Thus, the concept of pollution-halo involving green external funding is 

essential for developing economies to achieve sustainable development. 

 
Figure 4. Representation of Pollution halo and haven hypotheses. 
 

1.3.2 EKC Hypothesis 

The environmental Kuznets curve (EKC) hypothesis is a widely known concept that postulates 

the “pollute now to get rich and clean later” ideology. This infers the effect of increasing levels 

of income determines environmental pollution and sustainability (Figure 5). The EKC 

hypothesis gained much attention following the seminal work of Grossman et al. (1991), which 

plays a crucial role in environmental policy formulation. The EKC hypothesis further argues 

that the initial stages of development (i.e., agrarian sector-driven economic productivity) are 

characterized by high pollution levels, resource exploitation, and waste generation (scale 

effects) but pollution declines after reaching a turning point in income level––due to paradigm 
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shift to industrial and service sectors––with high income, knowledge spillover of 

environmental awareness, environmental sustainability, circular economy, investments in 

abatement technologies, and willingness to pay for cleaner environment (composition and 

technique effects) (Dinda, 2004; Panayotou, 1993; Sarkodie et al., 2019b). 

Three forms of transition effects presented in Figure 5 underpin the EKC hypothesis 

namely scale, composition, and technique (Copeland et al., 1994, 2013; Vilas-Ghiso et al., 

2007). The scale effect posits rising levels of environmental degradation due to outgrowth in 

the exploitation of natural resources to meet human demand. Factors influencing the 

exploitation and consumption of productive assets of scale effect transitional pathway include 

trade openness, economic productivity, and FDI. The composition effect suggests an 

alteration in environmental degradation due to structural changes in economic productivity. 

This implies the level of environmental degradation depends on the composition of the 

economic structure, viz. either carbonized and energy-intensive economy (brown economy) 

or decarbonized and energy-efficient economy (green economy). In contrast, the technique 

effect hypothesizes environmental awareness, innovation, R&D, stringent environmental 

policies & regulations, and technological advancement with abatement technologies 

attributable to higher income. The traditional brown economy comprising the exploitation of 

natural resources, waste generation, and environmental pollution is shifted towards green 

economic development where sustainable development, specifically environmental 

sustainability is paramount. This implies using the EKC framework is useful in deriving policies 

across income groups. The linear relationship between emissions and income level connotes 

the EKC framework expressed as: 

 

𝑌 = 𝑓(𝑈, 𝑈!, 𝑋) 

 

where 𝑌 and 𝑋 are the dependent and control variables, 𝑈 and 𝑈! represents income level 

and quadratic of income level. Thus, the EKC hypothesis can be assessed from the outlined 

equation if coefficient of 𝑈 is positive whereas the estimated parameter of 𝑈! is negative––

implying inverted U-shaped relationship between environmental indicator (emissions or 

degradation) and income level (see Figure 5). 
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Figure 5. Representation of the EKC hypothesis. 
 

1.3.3 Energy-Economic Growth 

The dynamics in climate change are further driven by the role of energy-economic growth 

nexus and its effect on environmental pollution. The rate of pollution effects is determined by 

the mode of interaction between energy utilization and economic development existing in 

four hypotheses namely––feedback, conservation, growth, and neutrality (see Figure 6).  

The feedback hypothesis postulates long-term mutualistic relationship between 

energy utilization and economic development. The coupling effect between energy and 

growth implies the institutionalization of environmentally friendly policies that decline energy 

intensity will affect sustained economic development and vice versa. In contrast, the coupling 

effect with limited green growth has implications on climate change and its impacts. Because 

of the feedback effect of energy consumption and economic development, energy production 

often increases to meet consumption demands triggered by economic activities. In the 

scenario where energy composition is dominated by fossil fuels, increasing level of energy 

intensity exacerbates pollution intensity––driving climate change due to increased 

concentrations of anthropogenic emissions. However, if the carbonized energy portfolio is 

replaced with clean and alternative energy sources while maintaining economic demand, the 

mitigation effects of clean energy technologies will decline long-term emissions attributed to 
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economic activities. Thus, while decoupling energy from economic developments appears 

useful in energy-intensive and carbonized economies, the coupling effect of clean and 

alternative energy, and growth could be more practical to achieve sustainable economic 

development while fostering green energy. 

The conservation hypothesis posits sustainable economic productivity driven by long-

term energy utilization. This infers energy infrastructure determines the composition of 

economic pathway. Conservation hypothesis supports the notion of eco-sufficiency––where 

environmental footprint declines through sustainable production and utilization of energy and 

its services (Princen, 2005). Existing literature argues that the introduction and adoption of 

energy conservation and management options hinder sustainable economic development. In 

contrast to the notion, energy conservation may not always thwart economic productivity if 

energy portfolio is efficiently diversified with clean and renewable energy technologies. This 

implies that energy efficiency and eco-sufficiency can be achieved while meeting energy 

demand for economic activities. In this scenario, countries can shift from brown economic 

pathway to green economic growth. 

In contrast, the growth hypothesis posits energy utilization driven by economic 

productivity. This hypothesis is useful in examining healthy economic pathways––by 

accounting for both energy intensity and energy efficiency. Energy intensity entails energy 

required per unit of economic productivity. High energy intensity represents inefficient 

growth-energy interaction where high energy cost is required for economic activity. However, 

low energy intensity represents efficient growth-energy interaction where low energy cost is 

needed for economic productivity. Thus, energy efficiency occurs when energy requirement 

per economic productivity declines due to enhanced energy infrastructures. Here, the 

composition of economic structure determines energy portfolio (fossil fuels vs. alternative 

sources), production, and consumption. 

The neutrality hypothesis postulates no relationship between economic development 

and energy utilization. The decoupling effect between energy and growth implies effective 

measures and institutionalization of environmental policy stringency––from brown growth to 

green growth. From a policy perspective, the neutrality hypothesis infers that improving 

energy efficiency and environmental sustainability does not affect sustainable economic 

development and vice versa. 
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Figure 6. Representation of the Energy-Economic growth Nexus. 
 

1.4 Philosophical Perspective 

Climate change is topical yet complex with several dynamics spanning different disciplines. 

The 21st century development pathway is characterized by a roller coaster of climate change 

events––because of natural resource exploitation, fossil fuel utilization, energy intensity, 

population growth, and environmental pollution. Under this global environmental threat, 

development cooperation has made several efforts to rally economies into sustainable 

policies that mitigate current and future threats (United Nations, 2015a, 2015b, 2017; UNTC, 

2015). The Brundtland Report, “Our Common Future”, outlines the importance of protecting 

the environment while meeting current demand without compromising available resources, 

but leaving the environment as a bequest for future generations (Brundtland et al., 1987). This 

explains the importance of achieving environmental sustainability through sustainable 

development, addressing institutional gaps, and developing policy measures that control for 

urban challenges, resource-dependent, and energy-intensive industrial processes, fossil-

driven energy portfolio, loss of biodiversity, ecosystem challenges, food security, population 

growth, and human resources (Brundtland, 1987). Thus, understanding the various 

1
Feedback

Mutualistic effect between 
economic growth and 
Energy consumption

2
Conservation
Energy consumption 

drives Economic growth

3
Growth

Economic growth drives 
Energy consumption 

4
Neutrality

Economic growth and 
Energy consumption are 
exclusively independent

Growth Energy Hypothesis



13 
 

philosophical underpinnings of climate change and its impacts is useful in future policy 

development with mitigation effects. 

1.4.1 Verification & Falsification 

While several theories underpinning climate econometrics exist, several concerns are raised 

via the lenses of the logic of scientific discovery by Karl Popper (Popper, 2005). Accordingly, 

Karl Popper assumes provisional scientific knowledge that is finite and works best within a 

specific period. While there are positivist interpretations of climate change theories and 

econometric techniques, the empirical results from these theories and techniques are often 

subjected to several factors including data periodicity, location, data characteristics, and 

estimation methods used for the investigation. In this regard, induction reasoning becomes 

redundant while deductive reasoning is useful in verifying scientific theories. The deductive 

reasoning utilized herein comprises climate change theories, hypothesis testing, observation, 

and confirmation using econometric techniques. Hence, climate change theories can be 

verified using the falsification principle that involves testing hypotheses using econometric 

techniques to prove existing theories are false. By using the falsification principle, an attempt 

is made to disprove the EKC hypothesis, Pollution-halo/haven hypotheses, and energy-growth 

theories––rather than supporting the already established theory. While the existing literature 

confirms the outlined theories, we refute several of the climate theories using novel 

estimation methods including Romano-Wolf multiple hypotheses that control specification 

bias that rejects false null hypothesis (Clarke et al., 2020). 

1.5 Research Design 

This thesis utilizes both qualitative and quantitative research design to conceptualize 

underlying drivers, immediate drivers, and policy implications of climate change. The 

qualitative part of the research design entails literature review through meta-analysis and 

bibliometric techniques. In contrast, the quantitative research design encompasses empirical 

assessment of causal relationships, and causalities using machine learning and econometric 

techniques. Several factors determine the adoption of estimation techniques including data 

structure (i.e., cross-sectional data, time series data, and panel data), data attribute (i.e., 

distribution, and quality), data properties (i.e., stationary, nonstationary, or mixed 

properties), a priori expectation, and proposition(s) of the study. In this research, data 
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structure mainly focuses on both time series and panel data. The time series dataset 

comprises country-specific attributes with time dimensions, typically in annual frequency. 

Contrary, the panel data setting covers cross-sectional units (i.e., collection of countries 

utilized herein) with time dimensional attributes. Hence, the model specifications presented 

in the various articles are influenced by data characteristics, and pre-conditions underlying 

econometric techniques. We use both machine learning-inspired algorithms, time series, and 

panel-based econometric models. 

1.5.1 Data 

Data utilized herein are sourced from different verified and reliable databases with annual 

periodicity-based aggregated methods of either sum or weighted average. The selection of 

data was based on theoretical underpinnings, SDGs, variable importance, and selection 

techniques including Variable Importance of Projection and FreeViz explorative algorithm. 

Popular SDGs utilized herein include modern and clean energy (SDG 7), sustained economic 

development (SDG 8), industry, innovation and technology (SDG 9), sustainable cities (SDG 

11), sustainable production and consumption (SDG 12), climate change mitigation (SDG 13), 

sustainable marine resources (SDG 14), sustainable land resources (SDG 15), institutional 

quality (SDG 16), and global partnership (SDG 17) (United Nations, 2015b). 

Data series on ecological footprint, biocapacity, and carbon footprint were collected 

from the Global Footprint Network (GFN, 2017). Data on anthropogenic greenhouse gas (GHG) 

emissions, fossil emissions, and sectoral-based emissions were derived from Emissions 

Database for Global Atmospheric Research (Crippa et al., 2021). Data on energy, 

environmental and socio-economic indicators namely energy utilization, electricity access, 

carbon dioxide emissions, income, population, foreign direct investment, trade, and sectoral 

economic growth (i.e., agriculture, industry, and services) were collated from the world 

development indicators of the World Bank (World Bank, 2020). Data on ambient air pollution, 

environmental policy stringency, human capital, environmental performance index, and green 

energy innovation (i.e., patent count on green technologies) were extracted from the OECD 

database (OECD, 2018). Data on energy production and consumption––fossil fuels, and clean 

and renewable energy technologies including nuclear, wind, and solar were derived from the 

International Energy Agency (IEA, 2019), and British Petroleum (BP, 2020b).  
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In the event of unevenly spaced data, several mechanisms were utilized to deal with 

such structural limitations. First, data trimming was employed to balance the data set. Second, 

we used existing data imputation algorithms such as missing-not-at-random and missing-

completely-at-random (Sarkodie & Owusu, 2020b). Third, we employed econometric 

techniques that control for unevenly spaced and unbalanced data structures. Our sampled 

observations (cross-sections) consisted of 217 countries and territories for longitudinal design 

and country-specific observations for the time series design.  

Estimation techniques often assume homoskedasticity of residuals––by assuming 

residuals have constant variance. However, this assumption is often violated, especially 

among cross-sectional time series data. To prevent heteroskedasticity (i.e., eliminate varying 

variance), the application of logarithmic transformation prior to model estimation provides 

residuals with a constant variance. To do this, the Jarque-Bera test with null hypothesis of 

normal distribution was utilized. Where the probability of the Jarque-Bera test statistics 

exceeds the 5% significance level, the variable is deemed as normally distributed, and vice 

versa. 
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Chapter 2. Summary of Articles 

This section presents a summary of the various articles, specifically 6 research articles based 

on panel model techniques and 1 paper centered on time series models collated herein. We 

present the objectives of the research articles and their contributions to the extant literature. 

2.1 Contributions to Literature 

2.1.1 Research Article 1 

Studies have been conducted to advance the scientific understanding of climate vulnerability 

and adaptation, however, literature on sectoral assessment including food, health, water, 

ecosystem, infrastructure, and economic activities is sporadic. The existing literature focuses 

on immediate drivers and damages of emission effects, failing to account for underlying 

mechanisms occurring through the nexus between emission levels, economic, social, and 

governance adaptation readiness. Our study contributed to the existing literature on climate 

change mitigation and adaptation readiness by broadening the scope of previous attempts in 

assessing climate change vulnerability across several sectors through the selection of 

indicators in line with the methodologies and guidelines of the sustainable development goals. 

We examined the spatial-temporal severity of climate vulnerability across six sectors namely 

food, water, infrastructure, human habitat, health, and ecosystem services. Second, we 

assessed the geographical readiness to combat climate change and its impacts. Third, we 

investigated the long-term impact of climate change readiness and income expansion on 

sectoral-climate vulnerabilities. We simultaneously tested multiple hypotheses of climate 

vulnerabilities across sectors in 192 economies with the Romano-Wolf correction technique 

that controls the over-rejection of null hypotheses. Advantageously, the Romano-Wolf 

correction technique (Clarke et al., 2020) accounts for the tendency of rejecting the estimated 

true null hypotheses in contrast to traditional testing techniques. Hence, produces robust and 

consistent p-values via bootstrap resampling of the original climate data––considering the 

dependence structure of the instrumental-variable-based single-equation test statistics. Our 

study found the stocks of periodic GHG emissions spur sectoral climate change vulnerability 

across countries––with much impact on developing countries. Outgrowth in income level and 

investment (i.e., economic, social, and governance adaptation readiness) declines investment 
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costs by reducing long-term environmental damage. This implies income level and adaptation 

readiness play essential roles in mitigating climate change and its impacts. This study provides 

primary inputs for policymakers in decision-making towards a broader iterative cycle including 

planning, managing, designing, implementing, and monitoring resilient climate change 

vulnerability-based development actions. Empirical evidence from this study could be used to 

prioritize limited natural resources in addressing and managing adaptive actions of extreme 

climate change vulnerabilities. 

2.1.2 Research Article 2 

To date, no existing literature examines the progress of energy sustainability from pre-

millennium development goals (MDGs), MDGs, and SDGs. This information is useful to assess 

the historical development of energy sustainability across countries, territories, and income 

groups, given the numerous ambitious global goals to promote sustainable development. This 

research developed and compared energy sustainability indicators using 11 targets and 15 

indicators of the SDGs across 217 countries and territories from 1960-2019. Besides, we 

accounted for the coupling effect of several dimensions of sustainable development covering 

energy production and consumption, economic policy (i.e., adjusted savings, private sector 

and trade, external funding, and income), and national resource accounting (i.e., water and 

domestic materials, e.g., fossil fuels). The adoption of the SDG goals and indicators is based 

on their usefulness as tools for policy formulation (Taylor et al., 2017). The existing literature 

assumes a global common shock and spillover effects for anthropogenic emissions, however, 

the notion appears inconsistent with energy sector dynamics. This implies that homogeneous 

behavior towards energy sustainability is erroneous, producing biased statistical inferences. 

Countries appear to have heterogeneous consumption patterns attributable to differences in 

economic structure, environmental priorities, and commitment to achieving sustainability. To 

compare countries from economic level, we further categorized countries into income groups 

per the existing income convergence of the World Bank. Using the constructed SDG indicators, 

we examined the winners and losers of energy sustainability while assessing global and 

country-specific spatial-temporal advancements toward achieving energy sustainability. 

Second, we evaluated the role of income convergence on energy diversity, economic 

development, and GHG emissions in developing and developed economies while controlling 
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for income inequality. Our study finds significantly large heterogeneous characteristics of 

energy sustainability across income groups. 

2.1.3 Research Article 3 

Climate change vulnerability (i.e., exposure, climate sensitivity, and adaptive capacity) 

determines the magnitude of climate consequences across economies (Sarkodie et al., 2022; 

Sarkodie et al., 2019; Smit et al., 2006). This demonstrates the importance of climate resilience 

including adaptation and mitigation in reducing the worst consequences of climate change 

effects (Smit et al., 2006). Yet, empirical studies that examine drivers, adaptation, and co-

benefits of climate change vulnerability through the lenses of diversified energy portfolios are 

limited. Several studies in the extant literature have assessed the energy-growth-emission 

nexus (see (Ozturk, 2010)). However, existing literature on the energy-growth-climate change 

nexus (Stern, 2011; Zheng et al., 2020) assumes data exhibit a stochastic process––but, 

masqueraded as such due to poor conventional panel techniques to identify and solve 

dynamic systems. This implies existing techniques assume the causes of climate change are 

distinct from the effects (Sugihara et al., 2012). However, there is a strong dynamic coupling 

between energy, economic growth, and climate change. Thus, we show that the coupling 

effect among energy, economic development, and climate change vulnerability exhibits 

dynamic systems that are driven by deterministic processes which cannot be modeled by 

existing traditional panel models. Here, we employed empirical dynamic modeling techniques, 

viz. convergent cross-mapping causality, and kernel regularized least-squares that go beyond 

equilibrium, linearity, and stability assumptions expounded in conventional panel models, yet 

control for heterogeneous and nonlinear effects. Our research evaluated the role of energy 

innovation, social, and governance adaptation readiness in offsetting global climate change 

vulnerability. Second, we investigated whether existing country-specific climate profiles and 

diversified energy portfolios show deterministic processes with policy implications. Third, we 

identified the winners and losers of sustainable development including energy sustainability, 

and human development. Fourth, we investigated whether alternative (renewables) and 

nuclear energy have displacement effects on fossil fuels. Our empirical models showed the 

interconnectedness (mostly mutual coupling) between energy portfolio, socio-economic 

drivers, adaptation readiness, and climate change vulnerability. From a policy perspective, our 
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study suggests the complexity of decoupling the above-mentioned dependencies to achieve 

sustainable development. 

2.1.4 Research Article 4 

While the extant literature has reported spatial-temporal trends of ecological portfolio, and 

trade-embodied drivers of ecological resources (Hoang et al., 2021), no study has assessed 

the symbiotic relationships existing between land-use intensity, demo-economics, and 

changes in emission levels. Understanding these dynamic relationships are crucial to 

unearthing historical trends useful for developing conceptual tools for climate change 

adaptation and mitigation of climate vulnerability. Second, country-specific, regional, and 

other global crises including the recent Covid-19 pandemic, and economic recessions affected 

business-as-usual which shifted production and consumption, leading to explosive behaviors 

across countries. These episodes of explosive behaviors that capture extremes are indicative 

of climate change and land-use intensity. Besides, this explains unusual events in emission 

patterns, resource, and biodiversity exploitation (deforestation, land degradation, ecological 

footprint, and domestic material consumption) that often contradict existing fundamental 

patterns. Yet, global multi-region input-output (MRIO) models may fail to capture explosive 

behaviors that are significant to tilt the balance between production and consumption. Here, 

we examined the drivers of global anthropogenic emissions and land-use intensity. We further 

assessed the feedback mechanisms, synergies, and trade-offs that underpin emission 

reduction from agricultural land, forestry, and land use. Using novel econometric techniques, 

viz. dynamic panel models that capture cross-section dependence, heterogeneity, 

nonlinearity, and chaotic functions––we examined the global symbiotic relationships and 

date-stamping explosive behaviors existing between land-use intensity, demo-economics, and 

changes in emissions–––by capturing the complexities of climate change across countries and 

income groups. Our study identified episodes of explosive behavior highlighting country-

specific events of influx or excesses in emissions, land-use intensity, urban sprawl, and income. 

We opine that these unusual periods of extremely low or high trends could have been 

triggered by country-specific economic structure and disparities in income distribution. 
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2.1.5 Research Article 5 

Owing to limitations and sporadicity of existing literature on green energy, this study 

contributed to the global debate by exploring the effect of fossil-based CO2 emissions in 

improving green energy innovation across 21 industrialized high-income countries. We used 

a novel convergence estimation method to classify industrialized high-income IEA member 

countries into similar emission, and energy transition pathways. We applied econometric and 

machine learning techniques to investigate the complexities of anthropogenic emissions and 

develop conceptual tools valuable for policy design. The employed novel techniques including 

panel-bootstrap bias-corrected fixed-effects, panel-kernel regularized least-squares, panel 

log-t regression-based convergence, panel threshold fixed-effects, and dynamic ARDL 

stochastic simulations. The selection of the estimation tools was useful in controlling for 

historical and inertial effects, transboundary correlation, heterogeneity, fixed-effects, 

omitted-variable, and misspecification bias. We investigated the heterogeneous effects of 

anthropogenic emissions, green energy innovation, energy intensity, energy research and 

development, and service-based industrial structure. We further estimated the forty-year 

trend of emissions and policy measures across countries and identified winners and losers of 

environmental sustainability through hotspot identification and ranking. We developed both 

aggregate emissions and economic sectoral fossil-based (buildings, power, industry, 

transport, and other sectors) models to explore the effects of immediate, underlying drivers, 

and policy measures. We predicted the counterfactual change in GHG emissions from 2014 to 

2064 using the business-as-usual scenario of 1% growth in energy intensity across IEA member 

countries. Our study demonstrated that investment and integration of green energy 

innovation, energy research and development, and expansion of service-based industrial 

structures have mitigating effects on GHG emissions. The empirical analysis suggests countries 

with historical green energy orientation may invest over 58% more in achieving green growth 

through green innovation. Thus, higher GHG emission countries may improve green energy 

innovation in efforts toward achieving environmental sustainability while sustaining economic 

prosperity. 
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2.1.6 Research Article 6 

While tons of studies have utilized CO2 emissions as proxy for assessing environmental stress, 

very few studies have considered ecological footprint as a comprehensive proxy indicator for 

environmental degradation (Baabou et al., 2017; Lenzen et al., 2001; Wackernagel et al., 

1999). Given the limitation of anthropogenic CO2 emissions (atmospheric in nature), the 

ecological footprint covers the biosphere. Using ecological footprint rather than CO2 emissions 

provides true and inclusive perspective for assessing environmental deterioration. The 

ecological footprint accounts for built-up land, carbon emission levels, cropland, fishing 

grounds, forest land, and grazing land (GFN, 2017), thus, capturing all facets of environmental 

dynamics. This missing link in CO2 emissions might have misled the assessment of 

environmental degradation across countries in the extant literature. Contrary to previous 

attempts, we investigated the ecological footprint, carbon footprint, biocapacity, and 

ecological status of nations using cross-sectional time series data over five decades in 188 

countries and territories. To assess the ecological performance of nations, we used empirical 

methods to calculate ecological status from ecological footprint and biocapacity. We 

estimated the relative change of socio-economic and environmental indicators across nations 

and identified the hotspot countries. To understand the drivers of environmental 

performance, ecological footprint, and carbon footprint of nations, we used two novel 

estimation techniques with characteristics of machine learning and econometrics. The panel 

kernel regularized least-squares algorithm and the dynamic panel bootstrap-corrected fixed-

effects are consistent and robust, with the advantage of controlling for convergence, cross-

section dependence, omitted variable bias, misspecification error, country-specific 

heterogeneity, and non-additive effects. Our study estimated the overarching effect of 

economic development, population density, and international trade on ecological 

performance from a global perspective. The empirical results validated the scale effects 

hypothesis rather than the popular EKC hypothesis of nations. The scale effect hypothesis 

confirmed economic development is characterized by natural resource exploitation leading to 

environmental degradation, a situation that has global policy implications. Our study found 

that diversification of the economic structure by replacing fossil fuels will decline the 

international trade capacities of carbon-embedded resources transferred from countries with 

higher carbon concentrations to countries with lower carbon concentrations. This then 
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explains the possibility of long-run environmental convergence. This infers developing and 

harvesting renewable energy sources across nations declines the multiple emission-driven 

processes of fossil fuel extraction and consumption from cradle to grave. While fossil fuels are 

transportable and tradable across nations, renewable energy sources are localized, hence, 

eliminating the transboundary flow of emissions. Thus, global adoption of renewable energy 

technologies, increased efficiency of renewables to compete with fossil fuels, reduction in the 

price of renewables, and strong political will for clean and modern energy has long-term 

emission-reduction effects. 

2.1.7 Research Article 7 

The extant literature appears to focus on aggregate economic productivity and energy 

demand in assessing emission risks, however, such pathway provides very little knowledge for 

country-specific policies on environmental sustainability. In using disaggregate energy 

(namely fossil fuels, clean, and renewables) and economic growth (namely agriculture, 

industry, and services), several trends, policies, and measures became evident. For example, 

the magnitude of sectoral-based impact was quantified while identifying optimal resource 

investment that maximizes yield while reducing emissions. Second, the rebound effect is 

reported to affect both direct and indirect emission consequences. However, several studies 

failed to capture the importance of rebound effects evident in socio-economic and 

environmental factors. The rebound effects are reported to mediate the effectiveness of long-

term energy and environmental-related policies and measures, specifically in emerging 

economies (Chakravarty et al., 2013). Our study accounted for possible rebound effects of 

sectoral economic growth, energy utilization, and foreign direct investment. The impact of 

transboundary effects through global partnership was examined through FDI inflows. We 

assessed whether pollution trends that hamper environmental performance are domestically 

generated or induced by external funding. We employed innovative accounting techniques 

that graphically project minimum resource allocation while maximizing yield in one breath 

and maximum resource investment with limited gains. We further used stochastic simulation 

models to project the counterfactual change in environmental performance using the 

business-as-usual scenario with changes in FDI and environmental policy stringency. We 

observed the failure to account for economic sectoral inefficiencies by institutionalizing 

environmental policy stringency will disrupt environmental performance. The assessment of 
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country-specific economic sectoral accounting highlights how linear economies can be shifted 

towards a circular economy by maximizing yield while reducing wastage, environmental 

pollution, and resource consumption. Our study demonstrated that the allocation of scarce 

resources should be based on long-term prospects rather than short-term gains. Contrary to 

the traditional EKC hypothesis, we showed that sectoral-based economic productivity is useful 

in understanding pollution-reduction policies. 
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Global adaptation readiness and income mitigate sectoral 
climate change vulnerabilities 2 

Abstract 

Climate change has become a global burden, requiring strong institutional quality and 

willingness to mitigate future impacts. Though emissions are transboundary and have the 

tendency of spreading from high emitting countries to low emitting countries, regional 

exposure, sensitivity, and adaptation readiness determine the extent of climate effects. The 

existing literature focuses on immediate drivers and damages of emission effects, failing to 

account for underlying mechanisms occurring via the nexus between emission levels, 

economic, social, and governance adaptation readiness. Here, this study broadens the scope 

of previous attempts and simultaneously examines climate change vulnerability across sectors 

including ecosystem services, food, health, human habitat, infrastructure, and water. We use 

the Romano-Wolf technique to test multiple hypotheses and present the spatial-temporal 

severity of climate vulnerability and readiness to combat climate change and its impacts. 

Besides, we assess the long-term impact of climate change readiness and income expansion 

on sectoral-climate vulnerabilities. We find that high-income economies with high social, 

governance, and economic readiness have low climate vulnerability whereas developing 

economies with low income have high climate change exposure and sensitivity. Our empirical 

evidence could be used to prioritize limited resources in addressing and managing adaptive 

actions of extreme climate change vulnerabilities. 

3.1 Introduction 

The global climatic condition is changing––as data collected over four decades show the earth 

is warming at an unprecedented level (IPCC, 2021). There is high probability that climate 

change will persist for decades and will continue to hamper humanity (IPCC, 2018). The 

majority of scientists associate the earth’s warming trend with the greenhouse effect caused 

by greenhouse gas (GHG) emissions (Kerr, 1990; Wigley et al., 1990). The main causes can be 

attributed to––the burning of fossil fuel such as crude oil, natural gas, and coal to meet the 

 
2 Published article: Sarkodie, S.A., Ahmed, M.Y. & Owusu, P.A. Global adaptation readiness and income 
mitigate sectoral climate change vulnerabilities. Humanit Soc Sci Commun 9, 113 (2022). 
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increasing global energy demand––and intensive agricultural practices to meet the growing 

global food demand. Today, the world is experiencing climate change in the form of extreme 

weather and variations. For example, the average global temperature and sea level are 

estimated to rise between 1.8-4.0ºC and 0.09-0.88m by the end of the 21st century, 

respectively (SEEFCCA, 2012). Extreme climate events are threat to the considerable progress 

made on eradicating global hunger and malnutrition in the last decades. The global food 

market is already experiencing the effect of climate change particularly in rural areas where 

harvest crops have declined (Gitz et al., 2016). The increase in food supply to meet demand is 

most often accompanied by deforestation (FAO, 2011). Persistent meteorological drought due 

to climate change affects water storage, reducing global water supply (Stagge et al., 2015). 

Global studies indicate one in three people are already facing the threat of water security due 

to challenges with water shortage (IWMI, 2007; Vörösmarty et al., 2010). Under current 

climate conditions, the availability of reliable surface water is estimated to decline due to 

rising variability in river flows triggered by increased variability in precipitation, and reduction 

in ice storage and snow (Kundzewicz et al., 2009). Thus, climate change causes the global 

average sea level to rise by melting ice sheets and glaciers. Warming of the water from melting 

ice sheets and glaciers causes ocean volume to expand while declining the number of rivers, 

reservoirs, lakes, aquifers, and soil moisture (Lindsey, 2021). The degree and frequency of 

droughts are estimated to increase due to future climate change vulnerability, primarily due 

to regional decline in precipitation and rising levels in evapotranspiration driven by climate 

change variability (IPCC, 2013, 2021). Climate change vulnerability and environmental 

degradation induced human activities have affected the current habitat loss and 

fragmentation resulting in global biodiversity crisis (Hoffmann et al., 2010). 

The Kyoto protocol signed by developed countries in 1997 and Paris Agreement 

adopted in 2015 by 196 countries and territories with the sole commitment of reducing 

emissions is stalling, even though many countries are undertaking vigorous emission 

reduction policies. The GHG emissions emitted today will cause decades of climate change 

effects. Mitigating GHGs has been unsuccessful due to ineffective governance structures and 

institutions in creating effective climate policies, however, adaptation to climate change 

effects is possible (Denton et al., 2014; SEEFCCA, 2012). The barriers to climate change 

adaptation include lack of human and institutional capacity, lack of awareness and 

communication, and financial constrain (Bergsma et al., 2012; Stuart-Hill et al., 2010). For 
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example, the $100 billion broken promise of climate financing in developing could hamper 

trust and effort toward reducing emissions in developing economies (Timperley, 2021). In the 

last two decades, the world has witnessed extensive studies on the potential impacts of 

climate change on regional, national, and local development. The existing literature advances 

the scientific understanding of climate vulnerabilities across sectors including inter alia, 

economic, ecosystem, food, health, human habitat, infrastructure, and water. Climate change 

vulnerability can be classified as three interacting functions of exposure, sensitivity, and 

adaptive capacity (Smit et al., 2006). Thus, climate vulnerability encompasses a range of 

methodologies drawn from multi-disciplinary fields offering valuable insights into reducing 

climate risks (USAID, 2014). Vulnerability to climate change assessment aims to provide 

insights on developmental policies that reduce the risk associated with the effects of climate 

change (Schneider et al., 2001). The two primary response options to climate change effects 

involve mitigation and adaptation. While mitigation aims to reduce GHG emissions––thereby 

limiting the global climate change, adaptation refers to approaches that moderate adverse 

effects associated with climate change through a wide range of policies and responses 

targeted at vulnerable systems (Füssel et al., 2006). Thus, climate change adaptation requires 

knowledge, awareness about exposure, viz. early warning signs, and adaptation options to 

deal with climate variabilities (Nunfam et al., 2018). The extent of climate change vulnerability 

and its related risks are location-specific and depends majorly on the effectiveness of 

governance, quality public healthcare infrastructure, level of material resources, and timely 

access to critical weather threat information, viz. early warning signs (Mateeva, 2020).  

Studies have been conducted to advance the scientific understanding of climate 

vulnerabilities and adaptation, however, literature on sectoral assessment including food, 

health, water, ecosystem, infrastructure, and economic activities is sporadic. The existing 

literature focuses on immediate drivers and damages of emission effects, failing to account 

for underlying mechanisms occurring via the nexus between emission levels, economic, social, 

and governance adaptation readiness. The proposed study contributes to the global debate 

on climate change mitigation and adaptation readiness through the selection of indicators in 

line with the methodologies and guidelines of the sustainable development goals. Here, we 

examine:  
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1. the spatial-temporal severity of climate vulnerability across six sectors namely 

food, water, infrastructure, human habitat, health, and ecosystem services. 

2. the geographical readiness to combat climate change and its impacts. 

3. the long-term impact of climate change readiness and income expansion on 

sectoral-climate vulnerabilities. 

 

Thus, this study broadens the scope of previous attempts by assessing climate change 

vulnerability across several sectors. We simultaneously test multiple hypotheses of climate 

vulnerabilities across sectors in 192 economies with Romano-Wolf correction technique that 

controls the over-rejection of null hypotheses. Advantageously, Romano-Wolf correction 

technique (Clarke et al., 2020) account for the tendency of rejecting the estimated true null 

hypotheses in contrast to traditional testing techniques. Hence, produces robust and 

consistent p-values via bootstrap resampling of the original climate data––considering the 

dependence structure of the instrumental-variable based single-equation test statistics. 

Because awareness creation is critical to enhancing the knowledge of early warning signs of 

climate change and its impact, this study proposes the engagement of policymakers and 

researchers to improve capacity building. Our results could be adopted by environmental 

agencies in defining the baseline of climate change exposure, sensitivity, and adaptive 

capacity, before implementing and monitoring adaptive actions. 

The subsequent sections of this paper present the conceptual framework, data sources 

and characteristics, model estimation and validation, empirical results and discussion, 

summary of findings, and policy implications. 
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Figure 1. Conceptual framework of sectoral vulnerabilities to climate change and its impacts. Source: 
Author’s construction based on ND-GAIN indicators. Legend: The first two rows of each column 
designate climate exposure, the third and fourth rows represents climate change sensitivity whereas 
the fifth and sixth rows denote adaptive capacity. 
 

3.2 Methods 

3.2.1 Conceptual Framework 

The conceptual framework presented in Figure 1 provides an overview of climate 

vulnerabilities across sectors namely food, water, health, ecosystem services, human habitat, 

and infrastructure. Climate change vulnerability entails exposure, sensitivity, and adaptive 

capacity (Smit et al., 2006), hence, the adoption of ND-GAIN (2018) indicators is crucial to 

assessing sectoral climate change vulnerabilities. For example, the sectoral exposure to 

climate change includes variations in cereal yield and population growth, variabilities in annual 

runoff and groundwater recharge, climate-related vector-borne morbidities and mortalities, 

modifications in biome and marine biodiversity, changes in temperature and flood hazards, 

and alterations in hydropower generation and sea-level rise (GFN, 2017; ND-GAIN, 2018; 

United Nations, 2015b; World Bank, 2020). In contrast, sectoral climate change adaptive 

capacity comprises agricultural production capacity, access to clean and reliable water 

supplies, access to clean and improved sanitation conditions, biomes protected, trade quality 

and transportation structure, access to electricity, and disaster readiness (GFN, 2017; ND-

GAIN, 2018; United Nations, 2015b; World Bank, 2020). 

Water 
Sector

Food 
Sector

Health 
Sector

Ecosystem
Services

Human 
Habitat

Cereal Yield

Population Growth

Food Import

Rural Population

Agriculture Size

Child Malnutrition

Warm Period

Flood Hazard

Urban Sprawl

Age Dependency

Trade Quality

Paved Roads

Annual Runoff

Water Recharge

Water Withdrawal

Water Dependency

Clean Water Access

Dam Capacity

Climate Deaths

Diseases

Slum Population

Health Services

Medical Staffs

Proper Sanitation

Biome Distribution

Marine Biodiversity

Natural Capital

Ecological Impact

Protected Biomes

Env. Int. Alliance

Hydro Generation

Sea Level Rise

Energy Imports

Under Sea Level

Electricity Access

Disaster Readiness

Infrastructure
Sector



40 
 

3.2.1.1 Food Sector 

Positive strides have been made to address the global impact of climate change in the past 

decades. For example, global food production (1986-2009) has increased by 121% in South 

America, 81% in Africa, 58% in Asia, and 57% in North America (D'Odorico et al., 2014). 

However, based on the estimated 2050 population by United Nations and 2.5% global income 

growth, global crop production is projected to increase by 100-110% before 2050 (Tilman et 

al., 2011). Agriculture is an important sector of the economy that provides livelihood to ~36% 

of the global workforce––particularly, 50% workforce in Asia and Pacific, and 66% of the 

working population in Sub-Saharan Africa (FAO, 2015). Extreme weather events due to climate 

change are reported to affect the agricultural sector in developing countries. The post-disaster 

events of 48 developing countries covering 10 years indicate 25% losses and damages caused 

by climate hazards such as floods, droughts, and storms (FAO, 2015). The climate change 

effect from 1981 to 2010 is found to decrease the global mean yield of corn, soybeans, and 

wheat relative to preindustrial climate (Iizumi et al., 2018). The findings from existing 

literature suggest a growing strong relationship between crop yield and climate variables––

inferring future increase in climate change may have severe impact on crop production 

(Mavromatis, 2015).   

A recent study using the IPCC's highest climate change scenario shows global crop 

yields such as wheat, rice, and coarse grains will decline by 17% before 2050––given the 

scenario remains unchanged (FAO, 2015). The earth's landmass constitutes 40% dryland which 

is home to about 2.5 billion people (FAO, 2011). However, the dryland region particularly in 

developing countries, typically in Africa faces challenges with food security due to challenges 

to effectively manage and mitigate decreasing crop yield (Nellemann et al., 2009). Climate 

variables including temperature above or below a certain threshold by a few days may damage 

cereal or fruit tree yield (Wheeler et al., 2000). During the 2003 European heatwave, crops 

yield dropped drastically including 36% of maize harvest in Italy, and 25-30% of fruit and 

forage harvest in France (SEEFCCA, 2012). The impact of climate change affects the nutritional 

quality of food products including rice, maize, millet, and cassava––due to elevated CO2 

reducing the concentrated level of vitamins, minerals, or protein (FAO, 2015). The adverse 

effect of climate change may hamper agriculture production, particularly in developing 
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countries (specifically in Asia and Africa) where the livelihood of rural folks depends majorly 

on farming, hence, may increase the vulnerability of food insecurity (Nellemann et al., 2009). 

3.2.1.2 Water Sector 

Global water resources are already under threat even without climate change. The rise in 

water scarcity is more pronounced in expanding cities around the globe. The estimated 

population growth in the next few decades is projected to double in size by an estimated 5 

billion from 1995 to 2025 in urban areas (Vörösmarty et al., 2000). It is estimated that climate 

change variability along with rampant extreme events including floods, drought, storms, and 

cyclones––will escalate the existing situation in countries already threatened with water 

insecurity whereas similar problems threaten areas that have not been severely affected (UN, 

2020). 

Irrigation remains the largest human water usage, accounting for 70% of annual water 

withdrawal—implying limited water supply is the bottleneck of sustainable agricultural 

production (Siebert et al., 2010). However, some regions in the Middle East are reported to 

use water resources as a tool for political leverage (Cartier, 2021). Studies indicate that 

decrease in participation affects the availability of water resources (Gosling et al., 2016; 

Hayashi et al., 2010; Lionello et al., 2018). Climate change is estimated to decrease global 

groundwater recharge, thus, affecting renewable groundwater resources (Kundzewicz et al., 

2009). For example, future water availability in the Maghreb and the Middle East while 

accounting for demand and supply will lead to a 12% decrease in water supply and a 50% 

increase in water demand (Droogers et al., 2012). A rise in global temperature could increase 

permafrost degradation, and runoff from glaciers, affecting soil erosion and sediment loads in 

colder places (Lu et al., 2010). The rise in temperature in the region is linked to a potential 

increase in evapotranspiration––which is mostly visible in late spring and early fall seasons––

that are responsible for the decline in annual surface runoff (Schilling et al., 2020). 

Infrastructure improvement and operation practices could help change the volume and timing 

of water supply systems (Connell-Buck et al., 2011). Addressing the uncertainty associated 

with climate change variability would require, for example, water resource managers to move 

from the traditional approach, viz. “predict and provide" toward the adaptation of water 

resources management approach (Gersonius et al., 2013; Short et al., 2012). 
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3.2.1.3 Health Sector 

The effects of climate change exposure on global health vary between countries. For instance, 

the loss of healthy life years in low-income countries in Asia and Africa is estimated to be 500 

times more severe than that in Europe and the United States (McMichael et al., 2008). The 

climate warming of 1.5ºC is considered hazardous to human lives, which is expected to 

exacerbate the physical and mental health of the vulnerable and poor population. Extreme 

poverty is reported to affect health outcomes (viz. morbidity and mortality) and health equity 

(Murray, 2006). Hence, individuals with lower economic status have higher risks of poor health 

(WHO, 2018b). Thus, climate change is considered an indicator of the poverty multiplier, 

which is estimated to force 100 million vulnerable populations into severe poverty by 2030 

(WHO, 2018a). Evidence from literature is becoming increasingly clear that climate change 

variabilities have a severe impact on human health (WorldBank, 2018). An increase in warmer 

temperatures is associated with the rise in morbidity across countries (Campbell et al., 2018). 

Prolonged exposure to heat may exacerbate pre-existing cardiovascular and chronic 

respiratory diseases among the aged and people with underlining health conditions 

(McGeehin et al., 2001). Socioeconomic factors such as income, housing, education, and 

employment are highly sensitive to climate change vulnerability and exposure, which may 

result in uneven access and distribution of health facilities. For instance, the Chicago heatwave 

saw a vulnerable community experience high rate of heat-related deaths than community 

residents that felt secure and safe (Pasquini et al., 2020). Large-scale environmental changes 

are reported to unlikely cause entirely new disease outbreaks, but rather alter the intensity, 

range, and seasonality of existing health diseases (McMichael et al., 2008). Evidence shows 

the necessity of optimizing the health infrastructure, improving the know-how, and technical 

competence of health professionals to curb climate-induced health risks through treatment, 

and monitoring (Mateeva, 2020; McMichael et al., 2008). 

3.2.1.4 Ecosystem Services 

Climate change affects individual species and how different organisms interact with others, 

hence, changing the structure and functioning of the ecosystem, benefits, and services 

provided to society (Weiskopf et al., 2020). The periodic evaluation of the current and 

potential future impact of climate change on the ecosystem can allow society to better 
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anticipate, plan, manage and adapt to the necessary changes (West et al., 2009). The duration, 

degree, and frequency of extreme climate events including heatwaves, drought, flood, and 

forest fires are altered by long-term climate change (Hayhoe et al., 2018). Recent studies 

indicate a 66% probability of increasing the impact of habitat loss and fragmentation in 18.5% 

of global ecoregions—with an estimated 54.1% of all known biodiversity including birds, 

mammals, reptiles, and terrestrial amphibians (Segan et al., 2016). 

Ecosystems and biodiversity provide vital regulation services including easing the 

impact of extreme events, soil and air quality maintenance, sequestering carbon, and 

controlling the spread of diseases. With the accelerated increase in climate change, carbon 

storage remains threatened. Given the increase in forest area in the last decades, it is still 

unclear whether the afforestation rate will continue to outweigh the rate of deforestation 

(Weiskopf et al., 2020). The climate-driven threat to forestry production varies depending on 

forest type and may likely decrease in forests where soil water supply is limited in planting 

seasons (Halofsky et al., 2020; Latta et al., 2010). Existing studies remain unclear whether the 

use of fertilization is still effective as forest ages (Latta et al., 2010). Additionally, human-

induced climatic events enhance the introduction and spreading of non-native species––that 

capitalizes on the changing environment to colonize native species. The non-native species 

may dominate by reproduction, and in some cases lead to the extinction of native species 

(Schmitt et al., 2019; Yeruham et al., 2020). Climate change is predicted to exacerbate the 

impact of species invasion, with a global economic cost estimated at $1.4 trillion (Burgiel et 

al., 2014). 

Climate change adaptation and proactive techniques based on scientific methods to 

meet the emerging, anticipated, and extreme weather events are required to sustain the 

ecosystem and enhance biodiversity (Holsman et al., 2019). For instance, the scientific-based 

data system employed by the US to capture and detect changes in fish productivity, catch, and 

abundance. This approach provides adequate information for decision-making and 

management of fisheries including seasonality, annual quota, stock rebuilding policies, and 

spatial closures (Weiskopf et al., 2020). In creating adaptive climate change strategies, 

institutional managers could determine relative risks exposure, sensitivity, and adaptability 

through climate change vulnerability assessment of species, and exposure to non-climate 

stressors (Glick et al., 2011; Spencer et al., 2019). 
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3.2.1.5 Human Habitat 

Drought and heat waves are significant climate events that increase risks associated with 

wildfire. The destructive wildfire that occurred in California in 2017-2018 is reportedly caused 

by extreme summertime forest fire (Williams et al., 2019). Similarly, Macedonia in the summer 

of 2007 experienced wildfire which destroyed an estimated 40,000 acres of forest whereas 

severe drought in 2003 caused an economic loss of $330 million in Croatia (SEEFCCA, 2012). 

Climate change exposure such as flooding has become a global phenomenon with varying 

degrees. For instance, long heavy rain that occurred in early 2000 caused the Nzoia river to 

flood western Kenya, affecting over 800,000 people,  killing 237 people, and destroying 

properties (Cartier, 2021). The climate change effect extended beyond Africa, with heavy 

floods in the Middle East that ruined farmlands, particularly in Iran, affecting crop yield 

(Cartier, 2021). 

Global Urbanization is one of the 21st-century megatrends which cannot be stopped 

or adjusted. Urbanization is considered one of the most sensitive sectors to climate change 

vulnerability. The 55% of the world’s population constituting 4.2 billion (i.e., est. 2018) of the 

total 7.6 billion lives in urban cities. The estimate of urban settlement in the future reveals 

60%, and 66.4% of the total world’s population of 8.6 billion by 2030 and 9.8 billion by 2050, 

respectively (UN, 2020). The majority of urban dweller population growth is estimated to 

occur in developing countries within East Asia, South Asia, and Sub-Saharan Africa (UNDESA, 

2019). Urban sprawl is expected to increase, affecting the already limited resources such as 

energy, water, sanitation, and waste management––that can further spur climate change 

effects (Sarkodie, Owusu, et al., 2020). Unstable and rapid urbanization with slums 

proliferation and overcrowding often exposes people to related health risks due to lack of 

clean and safe water, poor sanitary conditions, among others. Thus, population growth and 

economic development are dominant contributing factors influencing the increase in the 

number of people affected by coastal and river floods (PBLNEAA, 2014). 

3.2.1.6 Infrastructure Sector 

It is reported that 8 of the world’s largest top 10 cities are located near coastal areas. In the 

US alone, about 40% of the population lives in density-populated coastal provinces prone to 

rising sea levels––leading to shoreline erosion, flooding, and storms (Lindsey, 2021). The rising 
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sea level has a direct impact on humanity by increasing sea floods and coastal erosions unless 

costly climate change adaptation including sea defense and relocation of communities is 

undertaken. The sea level has risen at a rate averaging 0.11-0.14 inches yearly since 2013—

which is relatively twice faster than the projected long-term trend (EPA, 2016a). For instance, 

significant coastal areas sensitive to climate change vulnerability in European countries 

(including Denmark, England, Germany, The Netherlands, and Italy) are already below normal 

high tide levels and prone to flooding from storm surges (McCarthy et al., 2001). A projected 

9% of all European coastal zones are below 5m elevation, particularly in The Netherlands and 

Belgium where 85% of the coastal areas are below the 5m elevation level. These areas below 

the 5m elevation level are potentially vulnerable to sea-level rise and inundations (EEA, 2005). 

The effect of rising sea level on groundwater may result in a short-term and long-term 

decrease in terrestrial water resources, ecosystem, and infrastructure (Kirwan et al., 2019; 

Knott et al., 2018; Nicholls et al., 2011). 

Climate change effect is certain, but adverse impacts or exposure on the water sector 

are uncertain. The energy sector is estimated to take 10% of the world’s freshwater (IEA, 

2016b). The dependence of industry and energy sectors on global freshwater is predicted to 

grow to 24% by the end of 2050, specifically in Europe and Asia (UN, 2020). The global 

freshwater withdrawal for energy sectors is projected to grow more than 2% by 2040, with a 

60% increment in consumption (IEA, 2016b). The global plan to accelerate the agenda towards 

switching from fossil fuel consumption to renewable energy is critical to climate change 

mitigation. The global installed renewable power generation capacity is dominated by 70% 

hydropower resources (Trace, 2019). While hydropower is considered a sustainable, clean, 

and low-carbon source of renewable energy, climate change variability threatens the future 

of hydropower. Extreme climate change events including high recorded temperature and 

drought could have exacerbated the already threatened arid and semi-arid areas in Africa 

(IPCC, 2007). For instance, the impact of climate change is estimated to decline hydropower 

generating capacity from the Zambezi river basin over the next 60 years (Yamba et al., 2011). 

Similarly, the increase in temperature is reducing the Nile river basin, which is projected to 

negatively affect the Aswan dam (Beyene et al., 2010). Besides the impact of climate change 

variability, the expansion of hydropower reservoirs has a potential threat to the indigenous 

settlement, loss of habitat and fragmentation, and transboundary conflicts (Ferreira et al., 

2014; Zarfl et al., 2015).  
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Existing studies showed the impact of extreme climate change on energy demand 

(Bradshaw, 2010; Sailor, 2001). For instance, extreme temperature affects the daily peak of 

energy demand in Eastern European countries, due to the intensive use of air condition during 

the summer season, and this trend is expected to continue (EEA, 2004). For climate change 

vulnerability adaptive strategy of an engineering-based solution, existing literature suggests 

an expansion of hydropower dams, management of wetland ecosystems and floodplains with 

improved coordinated policies and legislations (Watts et al., 2011). Other effective adaptation 

strategies in reducing the vulnerability of hydropower include increasing power plant 

efficiency, cohesive management of dams, and renewable energy diversification such as wind, 

solar, and bioenergy (Guerra et al., 2019; Owusu et al., 2016).  Climate change uncertainty 

could be considered in planning hydropower projects including location, dam type, integrated 

energy development, and water management policies (Cole et al., 2014). 

3.2.2 Data 

This study employs time-frequency data spanning 1995-2017 from the Emission Database for 

global atmospheric research (EDGAR, 2020), development indicators database of the World 

Bank (World Bank, 2020), and Notre Dame global adaptation index (ND-GAIN, 2018). The 

selection of data series for subsequent empirical assessment incorporates the concept and 

indicators of the sustainable development goals into our hypotheses. Our data include: 

greenhouse gas emissions per capita (ton CO2eq/cap)––used as a proxy for climate change 

while accounting for population dynamics, GDP per capita (US$)––used to examine the role 

of income level in climate change, climate change readiness (measured in scores)––consist of 

economic, social and governance investment for climate change mitigation and adaptation 

mechanisms, and climate change vulnerability (measured in scores)––comprising of 

ecosystem services, food sector, health sector, human habitat, infrastructure sector, and 

water sector (ND-GAIN, 2018). Economic readiness involves easiness of doing business––a 

form of climate financing, whereas governance readiness incorporates political stability, 

corruption control, regulatory quality, and rule of law. In contrast, social readiness includes 

social inequality, innovation, ICT, and education (World Bank, 2020). Based on the ND-GAIN 

pre-defined indicators (Figure 1), the six categories of climate change vulnerability consist 

score generated aggregated inputs of two adaptive capacity indicators for each category 

(6×2), two sensitivity indicators for each category (6×2), and two exposure indicators for each 
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category (6×2). Thus, each of the six categories of climate change vulnerability consists of 6 

input indicators (6×6).  

3.2.3 Model Estimation 

The empirical procedure presented herein follows a linear panel regression model with 6 

target variables regressed on several individual regressors separately in multiple models. For 

brevity, the model specification can be expressed as (Clarke et al., 2020): 

 

𝑦",$% = 𝛽&% 	+ 	𝛽'%𝑥",$ 	+ 	𝜀",$%  (1) 

 

where, 𝑦",$%  denotes the multiple target variables 𝑎 = 1,… , 6 namely ecosystem services, food 

sector, human habitat, health sector, infrastructure sector, and water sector across countries 

𝑖 = 1,… , 192, in annual period 𝑡 = 1995,… , 2017; 𝛽&% represents the constant across 

multiple target variables, 𝑥",$ represents the regressors including economic readiness, 

governance readiness, social readiness, income level, and GHG emissions as control variable; 

𝛽'% is the estimated parameter of regressors across the 6 target variables, and 𝜀",$%  denotes 6 

stochastic white noise from a normal distribution with multivariate specification. To examine 

the long-term relationship between climate change vulnerabilities and readiness to combat 

climate change and its impacts, we test several multiple hypotheses. The Romano-Wolf 

correction technique is employed to investigate the multiple hypotheses using the baseline 

model specification (equation 1) –– following the instrumental-variable based single-equation 

via two-stage least squares estimator, expressed as: 

 

𝐸cos𝑦𝑠𝑡𝑒𝑚	𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠",$ 	= 	𝛽& + 𝛽'𝑍",$ +	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (2) 

𝐹𝑜𝑜𝑑	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& + 𝛽'𝑍",$ +	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (3) 

𝐻𝑢𝑚𝑎𝑛	ℎ𝑎𝑏𝑖𝑡𝑎𝑡",$ 	= 	𝛽& + 𝛽'𝑍",$ +	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (4) 

𝐻𝑒𝑎𝑙𝑡ℎ	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& + 𝛽'𝑍",$ + 𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (5) 

𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& + 𝛽'𝑍",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (6) 

𝑊𝑎𝑡𝑒𝑟	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& 	+ 	𝛽'𝑍",$ + 𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (7) 
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where 𝐸cos𝑦𝑠𝑡𝑒𝑚	𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠",$ (Sector 1), 𝐹𝑜𝑜𝑑	𝑠𝑒𝑐𝑡𝑜𝑟",$ (Sector 2), 𝐻𝑢𝑚𝑎𝑛	ℎ𝑎𝑏𝑖𝑡𝑎𝑡",$ 

(Sector 3), 𝐻𝑒𝑎𝑙𝑡ℎ	𝑠𝑒𝑐𝑡𝑜𝑟",$ (Sector 4), 𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	𝑠𝑒𝑐𝑡𝑜𝑟",$ (Sector 5), and 

𝑊𝑎𝑡𝑒𝑟	𝑠𝑒𝑐𝑡𝑜𝑟",$ (Sector 6) denote the outcome variables, 𝑍 represents the regressors, viz. 

economic readiness, governance readiness, and social readiness, respectively. Equations 2-7 

are run simultaneously with income level as endogenous variable used as instruments 

alongside country-specific resampling clusters, 𝐺𝐻𝐺",$ denotes greenhouse gas emissions––

implemented as control variable. 

 

𝐸cos𝑦𝑠𝑡𝑒𝑚	𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (8) 

𝐹𝑜𝑜𝑑	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (9) 

𝐻𝑢𝑚𝑎𝑛	ℎ𝑎𝑏𝑖𝑡𝑎𝑡",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (10) 

𝐻𝑒𝑎𝑙𝑡ℎ	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (11) 

𝐼𝑛𝑓𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (12) 

𝑊𝑎𝑡𝑒𝑟	𝑠𝑒𝑐𝑡𝑜𝑟",$ 	= 	𝛽& 	+ 	𝛽'𝐼𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙",$ 	+ 	𝜆𝐺𝐻𝐺",$ 	 +	𝜀",$ (13) 

 

where 𝑖𝑛𝑐𝑜𝑚𝑒	𝑙𝑒𝑣𝑒𝑙 denotes income level across country 𝑖 and time 𝑡, whereas 𝜀",$ is the 

white noise. Similarly, equations 8-13 are run simultaneously with economic readiness, 

governance readiness, and social readiness as treatment variables used as instruments beside 

country-specific resampling clusters. The Romano-Wolf multiple-hypothesis testing 

procedure incorporates model specifications in equations 2-13 as baseline models whereas 𝜆 

is the estimated parameter for control variable 𝐺𝐻𝐺",$, with country-specific resampling 

clusters based on bootstrapping technique for null distributions. 

3.2.4 Model Validation 

The 24 estimated baseline models are validated graphically using the Romano-Wolf multiple-

hypothesis correction expressed as (Clarke et al., 2020): 

 

𝑚𝑎𝑥$,)
∗,+ ∶= 𝑚𝑎𝑥U𝑡())

∗,+ , … , 𝑡(.)
∗,+V for 𝑗 = 1,… , 𝐴 and 𝑘 = 1,… , 𝐾 (14) 
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where, 𝑚𝑎𝑥$,)
∗,+is the max value of vector U𝑡())

∗,+ , … , 𝑡(.)
∗,+ V. Here, we test 6 hypotheses 𝐻%	 (i.e., 

𝑎 = 1,… , 𝐴) each for the specified equations 2-7, and 8-13. Each of the 6 hypotheses has 

corresponding coefficient of interest 𝜕%, an estimator of 𝜕\% with standard error 𝜎̂%. The 

alternative hypothesis using the instrumental-variable-based single-equation via two-stage 

least squares estimator is based on two-sided tests expressed as: 𝐻′%:	𝜕% ≠ 0 assuming 𝜕%& =

0, for 𝑎 = 1,… , 𝐴. Studentization of the test statistic based on data (𝐷) resampling using 

bootstrapping technique can be expressed as (Clarke et al., 2020): 

𝑐%
∗,+ ∶= 	 /

0!
∗,$1/0!
23!
∗,$  (15) 

where, 𝑐%
∗,+ is the test statistics centered around zero assuming the resampled estimate 𝜕\%

∗,+ 

minus the baseline (original) estimate 𝜕\%, 𝑘 denotes each resample of the original data for 

each 𝐻%, and 𝜎̂%
∗,+ represents the standard errors of resampled estimates. Thus, each null 

hypothesis is rejected if the multiple-testing adjusting probability value is less than 5% 

significance level. 
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Figure 2. Geographical distribution of (A) GHG Emissions (B) Income Level. Legend: From green to red 
in Fig. 2A denotes low to high GHG emissions, whereas from red to green in Fig. 2B denotes low to 
high-income level. The method of country-level data categorization was based on quantiles, used to 
capture continuous intervals with uniform distribution. Fig. 2A––mean: 7.95, minimum: 0.49, and 
maximum: 105.58, (N = 192); measured in ton CO2eq/cap. Fig. 2B––mean: 14423, minimum: 616, and 
maximum: 106471, (N = 183); measured in US$. 

 

3.3 Results 

3.3.1 Geographical trends 

The spillover effect of GHG emissions is undeniable, however, varies in concentrations across 

global economies as depicted in Figure 2A (i.e., N = 192, mean = 7.95, median = 4.01, min = 

0.49, and max = 105.58, measured based on average in tonCO2eq/cap). The geographical 

distribution of GHG emissions presented in Figure 2A accounts for country-specific population 
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growth dynamics, identifying Palau (105.58 tonCO2eq/cap) as the highest emitter of GHG 

emissions whereas DR Congo (0.49 tonCO2eq/cap) is the lowest GHG emitter. It is noteworthy 

that while Palau is a high-income country in the East Asia & Pacific region, DR Congo is 

classified as low-income country in Sub-Saharan Africa. The other top 5 GHG emitters include 

Qatar (79.23 tonCO2eq/cap), Falkland Islands (58.28 tonCO2eq/cap), Curaçao (43.18 

tonCO2eq/cap), Kuwait (79.23 tonCO2eq/cap), and Botswana (79.23 tonCO2eq/cap). In 

contrast, other 5 low emitters aside DR Congo includes Burundi (0.49 tonCO2eq/cap), Malawi 

(0.53 tonCO2eq/cap), Rwanda (0.54 tonCO2eq/cap), Faroes (0.57 tonCO2eq/cap), and 

Solomon Islands (0.65 tonCO2eq/cap). Aside from both GHG concentration limits (i.e., min: 

0.49 tonCO2eq/cap, and max: 105.58 tonCO2eq/cap), the average global GHG emissions is 

pegged at 7.95 tonCO2eq/cap––of which 60 economies exceed the average while 132 

economies are below average. Thus, economies with considerably low GHG emissions are 

concentrated in Sub-Saharan Africa and Southern Asia whereas high emitting countries are 

found in North America, Europe, Central Asia, Middle East & North Africa, and Central Asia 

(see Figure 2A). 

The environmental Kuznets curve (eKc) hypothesis underscores the importance of 

income level in assessing emission concentrations across economies. The geographical 

disparities of income distribution are evident in Figure 2B (i.e., N = 183, mean = 14423, min = 

616, and max = 106471, measured based on average in US$). The top 5 countries with high 

average income levels comprise Qatar, Brunei Darussalam, Luxembourg, United Arab 

Emirates, and Kuwait. It is evident that majority of low-income economies are geographically 

located in Sub-Saharan Africa, Eastern Asia, and Southern Asia––however, DR Congo, Burundi, 

Central African Republic, Mozambique, and Niger are 5 hotspot countries with low-income 

distribution (Figure 2B). 
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Figure 3. Vulnerability of (A) Food Sector (B) Ecosystem Services (C) Human Habitat (D) Health Sector 
(E) Water Sector (F) Infrastructure Sector––to climate change and its impacts. Legend: From green to 
red denotes low to high vulnerability. The method of country-level data categorization was based on 
quantiles, used to capture continuous intervals with uniform distribution. Fig. 3A–– mean: 0.57, 
minimum: 0.20, and maximum: 0.84, (N = 188); measured in scores, dimensionless. Fig. 3B–– mean: 
0.47, minimum: 0.22, and maximum: 0.74, (N = 181); measured in scores, dimensionless. Fig. 3C–– 
mean: 0.50, minimum: 0.26, maximum: 0.75, (N = 178); measured in scores, dimensionless. Fig. 3D–– 
mean: 0.46, minimum: 0.18, maximum: 0.84, (N = 188); measured in scores, dimensionless. Fig. 3E–– 
mean: 0.33, minimum: 0.05, maximum: 0.69, (N = 177); measured in scores, dimensionless. Fig. 3F–– 
mean: 0.37, minimum: 0.08, maximum: 0.79, (N = 152); measured in scores, dimensionless. 

 

The climate change vulnerability presented herein indicates the tendency of economies to 

experience the negative impacts of climate risks. We examined the geographical risk 

distribution of sectoral climate vulnerabilities across economies presented in Figure 3. As 

shown in Figure 3, countries with high-risk sectoral climate vulnerabilities are mostly located 
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in Sub-Saharan Africa, Southern Asia, Eastern Asia, and South-East Asia. The top 5 countries 

with high-risk food sector vulnerability (i.e., N = 188, mean = 0.57, min = 0.20, and max = 0.84, 

measured in scores––dimensionless) include Niger, Timor-Leste, Burkina Faso, Chad, and 

Eritrea––whereas Denmark, United Kingdom, Germany, Iceland, and Luxembourg represent 5 

principal economies with low-risk food sector climate vulnerability (Figure 3A). Figure 3B (i.e., 

N = 181, mean = 0.47, min = 0.22, and max = 0.74, measured in scores––dimensionless) shows 

that while Spain, Germany, Hungary, Switzerland, and Denmark are 5 leading countries with 

low-risk ecosystem service vulnerability, Kiribati, North Korea, Sudan, Tonga, and Solomon 

Islands are the top 5 countries with high-risk ecosystem service vulnerability. In terms of 

human habitat climate vulnerability (i.e., N = 178, mean = 0.50, min = 0.26, and max = 0.75, 

measured in scores––dimensionless), Congo, Solomon Islands, Gabon, Timor-Leste, and 

Central African Republic are the top 5 countries with high-risk whereas Spain, Switzerland, 

Barbados, United Arab Emirates, and Germany are low-risk countries (Figure 3C). The principal 

5 countries with high-risk health sector vulnerability (i.e., N = 188, mean = 0.46, min = 0.18, 

and max = 0.84, measured in scores––dimensionless) include Somalia, Ethiopia, Guinea-

Bissau, Tanzania, and Chad whereas Monaco, Denmark, Netherlands, Iceland, and Switzerland 

are low-risk economies (Figure 3D). Figure 3E (i.e., N = 177, mean = 0.33, min = 0.05, and max 

= 0.69, measured in scores––dimensionless) shows that while Niger, Sudan, Pakistan, Somalia, 

and Turkmenistan are high-risk countries with water vulnerability, Suriname, Dominica, Saint 

Vincent, and the Grenadines, Djibouti, and Bahamas are low-risk economies. The top 5 

countries with high-risk infrastructure sector vulnerability (i.e., N = 152, mean = 0.37, min = 

0.08, max = 0.79, measured in scores––dimensionless) include Niger, Timor-Leste, Burkina 

Faso, Chad, and Eritrea––whereas Denmark, United Kingdom, Germany, Iceland, and 

Luxembourg are 5 major economies with low-risk food sector climate vulnerability (Figure 3F). 

Climate change readiness underpins long-term climate change mitigation and impact 

reduction strategies across global economies. The geographical distribution of the three forms 

of readiness viz. governance (i.e., N = 188, mean = 0.50, min = 0.08, and max = 0.88, measured 

in scores––dimensionless), economic (i.e., N = 178, mean = 0.39, min = 0.03, max = 0.81, 

measured in scores––dimensionless) and social (i.e., N = 180, mean = 0.31, min = 0.09, max = 

0.74, measured in scores––dimensionless) are presented in Figure 4. The top 5 economies 

with high governance readiness comprise Finland, New Zealand, Denmark, Switzerland, and 

Sweden whereas Myanmar, Sudan, Iraq, Afghanistan, and Somalia are countries with very low 
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governance readiness (Figure 4A). Governance readiness entails stable investment and 

institutional environment that reassures investors of growth and sustained invested capital 

devoid of governance and institutional disruptions––hence, stimulating climate adaptation 

actions (Chen et al., 2015). Countries with low governance have similar characteristics of 

political instability, high perceived levels of public corruption, low regulatory quality, and lack 

of rule of law (TI, 2022). Poor governance, social unrest, and terrorism are found to have a 

negative impact on economic development and vice versa (McGowan, 2006). Evidence from 

Figure 4B shows the top 5 countries with high economic readiness include Norway, Singapore, 

New Zealand, United States, and Iceland while 5 hotspot countries with low economic 

readiness comprise Myanmar, Chad, Central African Republic, Eritrea, and DR Congo. 

Economic readiness involves the investment environment that makes it easy to do business 

and facilitates private sector capital mobilization for climate adaptation strategies (Chen et 

al., 2015). Countries with high economic readiness have similar characteristics of good 

governance, high regulatory quality, political stability, and rule of law, hence, creating a 

conducive environment for investment and ease of doing business. The top 5 economies with 

high social readiness comprise South Korea, Finland, Denmark, Norway, and New Zealand, 

however, countries with low social readiness include Lesotho, Equatorial Guinea, Samoa, 

Eritrea, and Zimbabwe (Figure 4C). Social readiness captures societal conditions that enable 

the effectiveness, equitable use, and profitability of investments that facilitate climate change 

adaptation (Chen et al., 2015). Hence, countries with low social readiness have either high 

social inequality, low literacy rates, or low innovation/ICT integration. 

3.3.2 Empirical relationships 

The nexus between sectoral climate vulnerabilities and climatic drivers are examined and 

reported in Table 1. Because GHG emissions, specifically CO2 have transboundary effects, the 

empirical assessment presented herein accounted for spillover effects and heterogeneity 

across 192 countries and territories. We used novel panel estimation techniques capable of 

solving the complexities of emissions and cross-country time series data. Following standard 

econometric standards, we validated the estimated parameters using error metrics and 

multiple hypotheses testing via Romano-Wolf technique (see Methods). The resampled p-

values and Romano-Wolf p-values in Figure 5 confirm the null hypothesis of the estimated p-

values of multiple models, hence, validating the instrumental-variable-based single-equation 
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model via two-stage least squares. This implies the model specifications and estimated 

parameters are robust to make unbiased statistical inferences. 

We observe differing effects of anthropogenic GHG emissions, income, and climate 

change readiness on health sector, food sector, human habitat, ecosystem services, 

infrastructure sector, and water sector (Table 1). The empirical results presented in Table 1 

show improvements in economic, governance, and social readiness across countries decline 

sectoral climate vulnerability of ecosystem services by 0.28-1.48%. However, the mitigation 

effect of social readiness across sectors is relatively high compared to governance and 

economic readiness. Similarly, rise in income level mitigates sectoral climate vulnerability by 

0.02-0.15%. The empirical assessment is confirmed by the linear relationship between income 

and climate change vulnerability presented in Figure 6. In accounting for income convergence, 

vulnerability falloff as countries move up the ranks from low income®lower middle 

income®upper middle income to high income. For example, low-income countries, 

predominantly in Sub-Saharan Africa, comprising Niger, Sierra Leone, Eritrea, Madagascar, 

Burkina Faso, Ethiopia, Uganda, Chad, Rwanda, Guinea, and Mali have high climate 

vulnerability whereas developed economies namely Luxembourg, Denmark, Sweden, Finland, 

Norway, the US, Iceland, Austria, Singapore, Qatar, UAE, and New Zealand exhibit low climate 

vulnerability (Figure 6). Thus, as income level increases across economies in long term, climate 

change vulnerability declines. In contrast, rising levels of anthropogenic GHG emissions 

intensify climate vulnerability across sectors. Among various sectors, the climate reduction 

effect of readiness and income is fairly high in health services compared to water services. 

Thus, the climate reduction effect is in the order health> food> habitat> ecosystem services> 

infrastructure> water. This infers high-income level, social, governance, and economic 

readiness minimizes climate change exposure and sensitivity but improves adaptive capacity 

across vulnerable sectors, predominantly in climate-prone regions. For example, long-term 

climate readiness and sustainable income improve the health sector by reducing climate-

related deaths and diseases caused by warm periods and flood hazards. Sustainable economic 

readiness reduces dependency on foreign aids for health service delivery, especially in 

developing countries but strengthens domestic capacity to lessen climate-related sensitivity 

in the health sector. Thus, strengthening adaptive capacity of the health sector involves 

improving health and sanitation facilities, increasing the quantity and quality of medical staff, 

and healthcare access for slum and poor population. 
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Figure 4. Mitigation of climate change (A) Governance Readiness (B) Economic Readiness (C) Social 
Readiness. Legend: From red to green denotes low to high readiness. The method of country-level 
data categorization was based on quantiles, used to capture continuous intervals with uniform 
distribution. Fig. 4A–– mean: 0.50, minimum: 0.08, and maximum: 0.88, (N = 188); measured in 
scores, dimensionless. Fig. 4B–– mean: 0.39, minimum: 0.03, maximum: 0.81, (N = 178); measured in 
scores, dimensionless. Fig. 4C––mean: 0.31, minimum: 0.09, maximum: 0.74, (N = 180); measured in 
scores, dimensionless. 

 

Governance Readiness (Score)
0.11 0.3 0.39 0.44 0.52 0.62 0.72 0.87

A

Economic Readiness (Score)
0.021 0.2 0.29 0.34 0.41 0.48 0.56 0.83

B

Social Readiness (Score)
0.083 0.13 0.17 0.19 0.23 0.27 0.37 0.72

C



57 
 

 
Figure 5. Multiple-hypotheses testing and model validation for sectoral vulnerability vs. economic 
readiness using Romano-Wolf p-value. 
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Figure 6. Linear relationship between GDP per capita and climate change vulnerability. This plot 
captures income convergence (i.e., High income, Low income, Lower middle income, and Upper 
middle income) of sampled economies based on average annual frequency. 
 

3.3.3 Country-specific linking of climate drivers 

As presented in Figures 7-11, we graphically investigated country-specific effects of climate 

and its related drivers by accounting for either income or regional convergence. Figure 7 

reveals the nexus between anthropogenic GHG emissions and income across income groups. 

We observe a positive monotonic relationship with lower emission levels for low-income 

countries, typically Sub-Saharan Africa, and high emission levels for high-income economies, 

predominantly North America, Europe, and Central Asia. While the eKc hypothesis highlights 

decline in environmental pollution due to stringent environmental regulations after achieving 

high-income status (Dasgupta et al., 2002), our empirical assessment contradicts the theory 

to some extent, even in the era of the SDGs. Using average data spanning 2016-2017 to 

examine GHG-income relationship, it is evident that agrarian economies in Sub-Saharan Africa 
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namely inter alia, Comoros, Rwanda, Burundi, Niger, and Benin emit less anthropogenic 

emissions whereas service sector countries like the US, Australia, Russia, Japan, and Germany 

produce more emissions, violating the tenets of eKc hypothesis. In contrast, some high-

income countries including Palau, Saint Kitts & Nevis, Antigua & Barbuda, Malta, Bahamas, 

Iceland, Barbados, Cyprus, Latvia, and Luxembourg have reduced emissions with sustained 

income levels, validating the eKc hypothesis (Figure 7). The common denominator across 

these countries is the small population size (below 2 million, World Bank est. 2020), implying 

that neither do economic growth alone declines anthropogenic emissions, especially in high 

income but changes in population composition and other unobserved factors are crucial to 

achieving environmental quality (Menz et al., 2011). 

The regional and country-specific relationship between climate change readiness and 

climate change vulnerability is presented in Figure 8. Similarly, the nexus between climate 

vulnerability and disaggregate climate readiness namely social, governance, and economic 

readiness are depicted in Figures 9-11. We observe a negative relationship between climate 

change readiness and climate change vulnerability. Countries with high readiness, primarily 

high-income economies including Norway, Finland, Switzerland, Iceland, Australia, Austria, 

and the US have low vulnerability. While this hypothesis is largely true, recent occurrences 

show high-income does not protect against extreme weather events such as hurricanes, 

storms, wildfires, and droughts (Geiger et al., 2016).  In contrast, low-income countries from 

Sub-Saharan Africa namely Niger, Somalia, Chad, Guinea-Bissau, Mali, Sudan, Liberia, Eritrea, 

Burkina Faso, Benin, Uganda, Ethiopia, DR Congo, Burundi, and Central African Republic with 

low climate readiness exhibit high climate change vulnerability (Figure 8). Besides, economies 

in East Asia & Pacific, North America, and Europe & Central Asia with high social, governance, 

and economic readiness have low climate change vulnerability compared to developing 

economies (Figures 9-11). In contrast, the high climate vulnerability across sectors in 

developing countries can be attributed to low social readiness (Figure 9), poor governance 

readiness (Figure 10), reduced income level, and low economic readiness (Figure 11). Second, 

developing countries typically have high climate exposure and sensitivity but often fail to take 

precautionary measures due to limited social, governance, and economic resources, hence, 

becoming highly vulnerable to climate change and its impacts. The income convergence 

depicted in Figure 11 reveals the importance of income in reducing climate change 

vulnerability in climate-exposed and sensitive regions with high poverty rates. While high-
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income countries have the financial muscle to take economic precautions against future 

climatic events, low-income countries with low or no financial capabilities are often caught 

unaware of future climate consequences. 

 

Table 1. Parameter estimates 

Parameters Economics Governance Social Income 

Ecosystem -0.5026*** 

[0.0152] 

-0.5135*** 

[0.0140] 

-0.5429*** 

[0.0151] 

-0.0658*** 

[0.0017] 

Food -0.7834*** 

[0.0166] 

-0.7885*** 

[0.0183] 

-0.9902*** 

[0.0214] 

-0.1180*** 

[0.0021] 

Habitat -0.5985*** 

[0.0169] 

-0.5963*** 

[0.0182] 

-0.6492*** 

[0.0180] 

-0.0815*** 

[0.0002] 

Health -1.1857*** 

[0.0211] 

-1.2079*** 

[0.0246] 

-1.4752*** 

[0.0329] 

-0.1510*** 

[0.0021] 

Infrastructure -0.3467*** 

[0.0195] 

-0.3898*** 

[0.0213] 

-0.4218*** 

[0.0226] 

-0.0211*** 

[0.0027] 

Water -0.2801*** 

[0.0158] 

-0.2798*** 

[0.0156] 

-0.3073*** 

[0.0188] 

-0.0338*** 

[0.0023] 

GHG→Ecosystem 0.0013*** 

[0.0002] 

0.0015*** 

[0.0002] 

-0.0002 

[0.0002] 

0.0032*** 

[0.0002] 

GHG→Food -0.0004** 

[0.0002] 

-0.0001 

[0.0002] 

-0.0012*** 

[0.0002] 

0.0025*** 

[0.0002] 

GHG→Habitat 0.0002 

[0.0002] 

0.0003 

[0.0003] 

-0.0019*** 

[0.0002] 

0.0025*** 

[0.0025] 

GHG→Health 0.0005*** 

[0.0002] 

0.0012*** 

[0.0003] 

-0.0008*** 

[0.0003] 

0.0033*** 

[0.0002] 

GHG→Infrastructure 0.0007*** 

[0.0002] 

0.0010*** 

[0.0002] 

0.0003* 

[0.0002] 

0.0005** 

[0.0002] 

GHG→Water 0.0008*** 

[0.0002] 

0.0011*** 

[0.0002] 

-0.0001 

[0.0002] 

0.0014*** 

[0.0003] 

Constant→Ecosystem 0.6497*** 

[0.0055] 

0.7070*** 

[0.0064] 

0.6262*** 

[0.0044] 

1.0206*** 

[0.0143] 
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Constant→Food 0.8749*** 

[0.0063] 

0.9553*** 

[0.0087] 

0.8688*** 

[0.0065] 

1.5893*** 

[0.0180] 

Constant→Habitat 0.7242*** 

[0.0060] 

0.7839*** 

[0.0082] 

0.7020*** 

[0.0053] 

1.1966*** 

[0.0178] 

Constant→Health 0.9130*** 

[0.0081] 

1.0441*** 

[0.0118] 

0.9058*** 

[0.0099] 

1.7686*** 

[0.0178] 

Constant→Infrastructure 0.5013*** 

[0.0079] 

0.5579*** 

[0.0106] 

0.4943*** 

[0.0072] 

0.5511*** 

[0.0233] 

Constant→Water 0.4286*** 

[0.0057] 

0.4561*** 

[0.0071] 

0.4231*** 

[0.0056] 

0.6167*** 

[0.0195] 

Obs (N)1 3,676 3,697 3,676 3,550 

Obs (N)2 3,739 3,760 3,697 3,571 

Obs (N)3 3,634 3,655 3,655 3,529 

Obs (N)4 3,739 3,760 3,697 3,571 

Obs (N)5 3,088 3,088 3,109 3,004 

Obs (N)6 3,592 3,613 3,592 3,466 

p-value1 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

p-value2 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

p-value3 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

p-value4 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

p-value5 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

p-value6 0.0000*** 0.0000*** 0.0000*** 0.0000*** 

R-square1 –– 0.1412 0.1154 0.3749 

R-square2 0.3228 0.2081 0.2755 0.4747 

R-square3 0.1603 0.0449 0.2212 0.4000 

R-square4 0.2980 0.0779 –– 0.6741 

R-square5 –– –– –– 0.0914 

R-square6 0.0680 0.0948 –– 0.0922 

 
Notes: ***, **, * denote statistical significance at 1, 5, 10%; 1, …, 6 represent Sector 1, …., Sector 6; [.] 
denotes standard errors, and → represents the causal effect relationship across 192 countries and 
territories. 
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Figure 7. Nexus between anthropogenic GHG emissions and income level across income groups. 
Using average data spanning 2016-2017 helps to account for the inception and impact of the SDGs, 
specifically the 13th target of climate change mitigation. This plot captures regional convergence (i.e., 
East Asia & Pacific, Europe & Central Asia, Latin America & Caribbean, Middle East & North Africa, 
North America, South Asia, and Sub-Saharan Africa) of sampled economies. 
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Figure 8. Relationship between climate change readiness and climate change vulnerability. This plot 
captures regional convergence (i.e., East Asia & Pacific, Europe & Central Asia, Latin America & 
Caribbean, Middle East & North Africa, North America, South Asia, and Sub-Saharan Africa) of 
sampled economies based on average annual frequency. 
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Figure 9. Relationship between climate change social readiness and climate change vulnerability. This 
plot captures regional convergence (i.e., East Asia & Pacific, Europe & Central Asia, Latin America & 
Caribbean, Middle East & North Africa, North America, South Asia, and Sub-Saharan Africa) of 
sampled economies based on average annual frequency. 
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Figure 10. Relationship between climate change governance readiness and climate change 
vulnerability. This plot captures regional convergence (i.e., East Asia & Pacific, Europe & Central Asia, 
Latin America & Caribbean, Middle East & North Africa, North America, South Asia, and Sub-Saharan 
Africa) of sampled economies based on average annual frequency. 
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Figure 11. Relationship between climate change economic readiness and climate change 
vulnerability. This plot captures income convergence (i.e., High income, Low income, Lower middle 
income, and Upper middle income) of sampled economies based on average annual frequency. 
 

3.4 Discussion 

Although climate change impact cannot be overemphasized, significant evidence shows the 

magnitude of the response differs across the globe as a function of relative vulnerability due 

to disparities in terms of exposure, sensitivity, and adaptability (Foden et al., 2016; Kovach et 

al., 2019; Sarkodie et al., 2019a). We find that high governance readiness coupled with high 

social and economic climate readiness decline climate change vulnerability in developed 

countries. This implies high governance readiness with reduced corruption, political 

instability, and violence while upholding rule of law and institutional quality enables effective 

investments into climate change adaptation options that have long-term effects on 

environmental sustainability (Hope Sr, 2020). Second, the ease of doing business trigger both 

domestic and foreign investments that could facilitate climate financing and assist sustainable 
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development, especially in developing economies. Third, reduced social inequality, improved 

education, innovation, and modern ICT infrastructures promote high social readiness––which 

has the potential of accelerating the agenda towards achieving clean and sustainable 

environment. 

The empirical results show increasing levels of anthropogenic GHG emissions 

exacerbate the vulnerability of ecosystem services, typically in sub-Saharan Africa, Eastern 

and Southern Asia. Human-induced climate change is likely to exacerbate habitat loss, which 

is the greatest threat to biodiversity and ecosystems. Existing studies indicate climate effects 

on the Arctic marine environment increase temperature, ocean acidification, and changes in 

sea ice cover, thereby hampering the survival and existence of marine habitat (EPA, 2016; 

Weiskopf et al., 2020). The direct impact of habitat loss and fragmentation is predicted to 

continue and exacerbate the pressure on ecosystems and species in decades (Segan et al., 

2016). Increasing occurrence and intensity of extreme events triggered by climate change 

variabilities may diminish the already threatened population by habitat loss and 

fragmentation (McKechnie et al., 2010). 

The lingering effect of anthropogenic GHG emissions if not curtailed with sustained 

economic development, exacerbate the vulnerability of human habitat to climate change and 

its impacts. Yet, we observe the limiting effect of economic, governance, and social readiness 

on the vulnerability of human habitats to climate change. Likewise, upsurge in income level 

lessens the exposure and sensitivity of human habitat to climate change effects. The degree 

and occurrence of drought are estimated to increase due to future climate vulnerability, 

predominantly due to regional decline in precipitation and rising levels in evapotranspiration 

(IPCC, 2013). 

Long-term food sector vulnerability declines with increasing levels of economic, 

governance, and social readiness. The mitigation effect of economic readiness is reinforced by 

the impact of income growth on the exposure and sensitivity of the food sector to climate 

change vulnerability. However, the escalation of GHG emissions amidst weak income levels 

strengthens the food sector's vulnerability to climate change and its impacts. Climate change 

vulnerability will likely contribute to food price fluctuation due to its sensitivity that may stall 

access to the global market, especially among the poorest countries with low purchasing 

power (Schilling et al., 2012). High market price of food is usually associated with inadequate 

supply whereas persistent increase in food prices can force low-income people to reduce 
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consumption levels required to meet the standard for healthy and good life––which may 

result in social uprising and food riot (FAO, 2008; Schmidhuber et al., 2007). The rise in global 

population in the past decades coupled with urban sprawl, dietary changes, and the rising 

effect of climate change has enormous pressure on food production (Sahay, 2000). The global 

population is estimated to increase by 2.5 billion in 2050 (i.e., 9.1 billion), thus, increasing food 

demand (Carvalho, 2006). Therefore, producing higher yields per unit of input such as land, 

plant, nutrient, and water––is essential to meet future food demands (FAO, 2008). 

Continues increase in anthropogenic GHG emissions bolsters the vulnerability of 

health sector to climatic shocks. Nevertheless, the effect of income outgrowth, economic, 

governance, and social readiness in reducing exposure and sensitivity of health sector 

dynamics is evident in its mitigation of climate change vulnerability across countries. Evidence 

from literature is becoming increasingly clear that climate change variabilities have severe 

impact on human health (WorldBank, 2018). Climate change variability such as heatwaves, 

floods, cold spells, and ultraviolet radiation directly affects human health, leading to 

morbidities including stroke, cancer, stress-related disorder, respiratory diseases, 

neurological diseases, and water-borne, food-borne, and vector-borne diseases (Cissé, 2019; 

Mateeva, 2020). Extreme climate change events including heat waves spur annual death toll 

than other extreme weather events combined (Luber et al., 2008). Studies show strong 

relationship between extreme temperature, ambient air pollution, and all-cause mortality 

rate (Owusu et al., 2020; Scovronick et al., 2018; Wu et al., 2014). 

The rising level in income and improvements in economic, governance, and social 

readiness hamper the vulnerability of infrastructure sector to climate change effects––by 

reducing exposure and sensitivity to climatic events. However, increasing levels of GHG 

emissions strengthen infrastructure sector vulnerability to climate exposure and its 

consequences. With the many impacts of climate change, the rising sea level is considered 

more threatening to sustainable infrastructure, economic development, and longevity 

(Nicholls et al., 2010). Sea level rise may significantly contribute to estimated hundreds of 

million people displaced settlement globally––resulting from extreme climate change event 

over the next century (Nicholls et al., 2011). For instance, prior studies indicate climate 

change-induced overland flooding could threaten more than 600,000 people and 

infrastructure expansion of $15 billion across urbanized coastal cities in California (Befus et 

al., 2020). 
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The persistent effect of GHG emissions spurs the vulnerability of water sector to 

climate change––by increasing climatic exposures and sensitivities. Conversely, increasing 

levels of income and advancement in economic, governance, and social readiness decline 

water sector vulnerability to climate change effects. Currently, 2.2 billion people around the 

globe do not have access to clean drinking water (UN, 2020). Hence, climate change effects 

could hinder the achievement of sustainable development goal 7 of ensuring access to safe 

drinking water for all by 2030 (UN, 2020). Besides, several studies have established a 

relationship between the future decline in groundwater recharge and decline in surface runoff 

over the past decades (Benabdallah et al., 2018; Schilling et al., 2020). About 8% of the global 

population is reported to experience severe decline in water resources resulting from ~20% 

reduction in annual runoff––with 1% increase in global mean temperature (Schewe et al., 

2014). Climate change effects alter rainfall patterns, hence, affect water availability for food 

and livestock production. However, water harvesting adaptation policies undertaken in 

vulnerable regions can improve and sustain agricultural production across seasons (Bunclark 

et al., 2018). 

Because the effect of climate change is not country-specific but transboundary, 

climate change adaptation could be undertaken on cross-border cooperation to enhance 

collaboration across countries. The adaptation to climate change vulnerability requires strong 

cooperation at regional and international levels to facilitate the exchange of research findings, 

vulnerability risk assessment, adaptation options, and transboundary pest and disease control 

and prevention (FAO, 2015). Besides, investment in climate-smart agriculture, provision of 

timely weather warning forecasts, and appropriate adaptation measures can limit long-term 

climatic effects at the farm level (Kogo et al., 2020). Adaptation measures involve improving 

policy and governance, moderating demand, reducing food waste, and increasing food 

production where needed (Godfray et al., 2010). This implies adaptation technologies improve 

the food system to be resistant to climate change, and improve crop yield to feed the growing 

world population (Mbow et al., 2014). Thus, drastic measures are required at both the local 

and national levels through climate change adaptation policies that strengthen the global 

agriculture sector and food production to meet the growing population. 
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3.5 Conclusion 

Motivated by the 2030 agenda, this study modeled the mitigation effect of adaptation 

readiness on climate change from economic, social, and governance perspectives. Besides, we 

assessed the spatial-temporal severity of climate vulnerability across sectors in 192 global 

economies. Second, we examined the geographical readiness (i.e., social, governance, and 

economic) to combat climate change and its impacts. Third, we investigated the long-term 

impact of climate change readiness and income expansion on sectoral-climate vulnerabilities. 

The empirical procedure presented herein denotes first-best solution to mitigate 

climate change vulnerabilities across sectors including ecosystem services, food, health, 

human habitat, infrastructure, and water. We examined global common shocks and spillover 

effects using the cross-section dependence test and further assessed heterogeneity, for which 

heterogeneous effects across 192 countries were accounted for using the novel Romano-Wolf 

estimation technique. Besides, both noncooperative business-as-usual scenarios and dynamic 

games were indirectly accounted for––by assuming countries emit too much periodically. 

Climate change readiness denotes investments in abatement technologies, and among other 

sustainable options––to limit climate change vulnerability. In contrast, the business-as-usual 

scenario examines the historical effects of anthropogenic GHG emissions on different sectors 

presented herein. The study found the stocks of periodic GHG emissions spur sectoral climate 

change vulnerability across countries––with much impact on developing countries. Outgrowth 

in income level and investment (i.e., economic, social, and governance adaptation readiness) 

decline investment cost by reducing long-term environmental damage. This implies income 

level and adaptation readiness play essential role in mitigating climate change and its impacts. 

As a limitation, our study fails to account for discount factors and punishment essential to 

examine the sustainable first-best solution to climate change effects. This infers future studies 

could consider these limitations and investigate how countries could achieve environmental 

sustainability through stringent or rewarding climate reduction measures. 

From a policy perspective, this study provides primary inputs for policymakers and 

government in decision making towards a broader iterative cycle including planning, 

managing, designing, implementing, and monitoring resilient climate change vulnerability-

based development actions. Empirical evidence from this study could be used to determine 

the strength and weaknesses of vulnerability reduction and prioritize limited natural resources 
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in addressing and managing adaptive actions of extreme climate change vulnerabilities. 

Interested third parties may use our results to monitor and assess country-specific 

vulnerability exposure, sensitivity, and adaptation. 
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Winners and losers of energy sustainability—Global 
assessment of the Sustainable Development Goals 3 

Abstract 

Energy sustainability plays a crucial role in achieving environmental sustainability, hence, 

underpins climate change mitigation. Yet, studies assessing the overarching effect of existing 

sustainability frameworks on energy production and consumption are limited. Here, we 

provide comprehensive assessment of energy sustainability across 217 countries and 

territories spanning 1960-2019. Using 11 targets and 15 indicators of the Sustainable 

Development Goals (SDGs), we present winners and losers of energy sustainability by 

accounting for pre-millennium development goals (MDGs), MDGs, and SDGs across income 

groups. While the inception of the 2030 agenda has improved energy and environmental 

performance across economies, low-income countries are still struggling to meet several of 

the SDGs. We find that sustained economic growth with reduced income inequality improves 

energy sustainability in developing economies. However, sustainable climate policies that 

reduce trade-offs between energy resources and environmental threats are highly 

recommended in climate-prone regions that depend heavily on water resources to boost 

power generation capacity. 

4.1 Introduction 

The concept of sustainability has enhanced global efforts toward mitigating climate change 

and its impacts (Blanco et al., 2014). The Brundtland report titled, “our common future” 

highlights the significance of developmental options that meet present demand without 

compromising the environment for the sake of future generations (Brundtland, 1987). In this 

regard, several global goals have been formulated to address and guide present demands 

while attaining environmental sustainability. However, such ideal developmental pathway 

appears problematic, owing to the trade-off between energy sustainability and sustained 

economic development. Energy production and consumption are critical for economic 

 
3 Published article: Sarkodie, S. A. (2022). Winners and losers of energy sustainability—Global assessment of 
the Sustainable Development Goals. Science of The Total Environment, 154945. 
https://doi.org/10.1016/j.scitotenv.2022.154945 
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development, hence, remain the major driver of anthropogenic GHG emissions that underpin 

climate change (Edenhofer et al., 2011). This implies the extraction, composition, and 

adoption of energy resources to meet “present demand” and “future supply” is crucial to 

achieving sustainable development. In contrast, economic development (i.e., income level 

and income inequality) is reported to affect a country’s energy production and consumption 

patterns (Fouquet, 2016). Despite the significant policy implications, existing literature merely 

examines the drivers of energy consumption, emissions, and economic development––

ignoring the progress towards attaining energy sustainability targets. The only existing 

literature examines the trade-offs between Sustainable Development Goals (SDGs) and 

energy services, however, calls for extensive energy research that links targets and goals to 

country-specific and global energy-related issues (Nerini et al., 2018). To date, no existing 

literature examines the progress of energy sustainability from pre-millennium development 

goals (MDGs), MDGs, and SDGs. This information is useful to assess the historical development 

of energy sustainability across countries, territories, and income groups, given the numerous 

ambitious global goals to promote sustainable development. 

Here, we develop and compare energy sustainability indicators using 11 targets and 

15 indicators of the SDGs across 217 countries and territories (Supplementary Table 1) from 

1960-2019. Besides, we account for the coupling effect of several dimensions of sustainable 

development covering energy production and consumption, economic policy (i.e., adjusted 

savings, private sector and trade, external funding and income), and national resource 

accounting (i.e., water and domestic materials, e.g., fossil fuels). The quantifiable metrics 

include SDG 6.4 (increasing H2O efficiency across sectors by ensuring sustainable H2O 

withdrawals & addressing scarcity in freshwater supplies), SDG 7.1 (ensuring availability and 

accessibility to modern energy and its services), SDG 7.2 (increasing renewable energy 

penetration), SDG 7.3 (improving global energy efficiency), SDG 7.4 (enhancing clean energy 

technologies), SDG 7.5 (infrastructural expansion of sustainable energy), SDG 8.1 (sustained 

economic growth), SDG 8.4 (decoupling growth from pollution), SDG 9.4 (expansion in 

resource-efficient and clean technologies that ensure sustainable production and 

consumption in infrastructures and industries), SDG 12.2 (sustainable and efficient use of 

natural resources in production and consumption), and SDG 13 (mitigating climate change and 

its impacts). The adoption of the goals and indicators is based on their usefulness as tools for 

policy formulation (Taylor et al., 2017). The existing literature assumes a global common shock 
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and spillover effects for anthropogenic emissions, however, the notion appears inconsistent 

with energy sector dynamics. This implies assuming homogeneous behavior towards energy 

sustainability will be erroneous, hence, producing biased statistical inferences. Countries 

appear to have heterogeneous consumption patterns attributable to differences in economic 

structure, environmental priorities, and commitment towards achieving sustainability. To 

compare countries from economic level, we further categorized countries into income groups 

per the existing income convergence of the World Bank. Using the constructed SDG indicators, 

we address the following research questions: first, are SDG indicators homogeneous or 

heterogeneous across income groups while accounting for pre-MDGs, MDGs, and SDGs? 

Second, who are the winners and losers of energy sustainability? Third, what are the global 

and country-specific spatial-temporal advancements toward achieving energy sustainability? 

Fourth, how does income convergence affect energy diversity, economic development, and 

GHG emissions in developing and developed economies? Fifth, what is the impact of income 

level on energy sustainability indicators while controlling for income inequality? The research 

questions are addressed by employing statistical techniques to compute the weighted average 

of indicator-specific effect estimates across income groups classified based on income 

convergence. Due to differences in economic structure across economies, we use 

normalization technique to develop scores for the SDG indicators to examine energy 

sustainability performance. We utilize meta-analysis to assess similar pre-MDG, MDG, and 

SDG indicators across income groups, while comparing them to global pre-MDGs, MDGs, and 

SDGs. The adoption of income group-specific fixed-effects in the statistical model controls for 

heterogeneous effects. Historical changes of energy and its related services are captured and 

compared from pre-MDGs, MDGs, and SDGs periods. A graphical comparison of performance 

across economies is presented using linear regression technique that controls for country-

specific effects. We find significantly large heterogeneous characteristics of energy 

sustainability across income groups. 
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4.2 Methods 

4.2.1 Data 

We employed data from world development indicators––a World Bank database (World Bank, 

2020) with collection of reliable data sources including International Monetary Fund (IMF), 

International Financial Statistics (IFS), and Balance of Payments (BOPs) databases, 

International Debt Statistics, OECD, Sustainable Energy for All (SE4ALL) database from WHO 

Global Household Energy database, SE4ALL Global Tracking Framework, IEA Statistics, Food, 

and Agriculture Organization (FAO), AQUASTAT data, Carbon Dioxide Information Analysis 

Centre, Environmental Sciences Division––Oak Ridge National Laboratory in the US, Private 

Participation in Infrastructure Project Database, European Commission, Joint Research 

Centre––Netherlands Environmental Assessment Agency (PBL), and Emission Database for 

Global Atmospheric Research (EDGAR). We used weighted average annual frequency data 

spanning 1960-2019 across 217 countries and territories (Supplementary Table 1). We further 

used aggregated data at the global level (WLD), and across income groups namely low-income 

countries (LIC), lower-middle-income countries (LMC), low- & middle-income countries (LMY), 

middle-income countries (MIC), upper-middle-income countries (UMC), and high-income 

countries (HIC) (World Bank, 1978). Using over six decades of data across several topics, 

country-specific and income group dynamics provide broader coverage to capture historical 

changes in energy sustainability from pre-MDGs (1961-1999), MDGs (2000-2015), and SDGs 

(2016-2019) epochs. 
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Table 1| SDG targets, & indicators for energy sustainability assessment 

№  SDG targets SDG indicators Our series 
1 6.4 Increasing H2O 

efficiency across sectors 
by ensuring sustainable 
H2O withdrawals & 
addressing scarcity in 
freshwater supplies 

6.4.1 Periodic changes in 
H2O consumption 
efficiency  

Total water productivity (constant 
2010 US$ GDP/m3 of total 
freshwater withdrawal) 
 
Annual freshwater withdrawals for 
industrial use (% of total 
freshwater withdrawal) 
 
Total renewable internal 
freshwater resources (billion m3) 

6.4.2 Dynamics of water 
stress: factors affecting 
freshwater withdrawals 
and regeneration of H2O 
resources 

2 7.1 Ensuring availability 
and accessibility to 
modern energy and its 
services 

7.1.1 Share of population 
with access to electricity  

Access to electricity (% of 
population) 
 
Rural access to electricity (% of 
rural population)  
 
Urban access to electricity (% of 
urban population) 

7.1.2 1 Share of 
population relying on 
clean technologies 

Access to clean fuels and 
technologies for cooking (% of 
population) 

3 7.2 Increasing renewable 
energy penetration in 
global energy portfolio 

7.2.1 Share of renewables 
in final energy utilization 

Renewable energy consumption (% 
of total final energy consumption) 

4 7.3 Improving global 
energy efficiency 

7.3.1 Energy intensity 
comprising primary 
energy and economic 
growth 

Energy intensity level of primary 
energy (MJ/$2011 PPP GDP) 

5 7.a Enhancing clean 
energy technologies and 
cleaner fossil fuel 
technologies 

7.a.1 Support of clean and 
renewable energy 
production through R&D 

Alternative and nuclear energy (% 
of total energy use) 
 
Combustible renewables and waste 
(% of total energy) 

6 7.b Infrastructural 
expansion of sustainable 
energy and its related 
services from external 
funding 

7.b.1 Foreign direct 
investments in energy 
efficiency and 
technologies to achieve 
sustainable development 

Investment in energy with private 
participation (current US$) 
 
Foreign direct investment inflows 
(% of GDP) 

7 8.1 Sustained economic 
growth 

8.1.1 Annual growth rate 
of GDP per capita 

GDP per capita (constant 2010 
US$) 
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8 8.4 Decoupling growth 
from pollution by 
ensuring natural resource 
efficiency in production 
and consumption 

8.4.1 Material footprint Adjusted savings: energy depletion 
(% of GNI) 

8.4.2 Domestic material 
consumption 

Fossil fuel energy consumption (% 
of total) 
 
Net energy imports (% of energy 
use) 

9 9.4 Expansion in 
resource-efficient and 
clean technologies that 
ensure sustainable 
production and 
consumption in 
infrastructures and 
industries 

9.4.1 Industrial-based 
emissions 

CO2 emissions from electricity and 
heat production (% of total fuel 
combustion) 
 
CO2 emissions from gaseous fuel 
consumption (% of total) 
 
CO2 emissions from liquid fuel 
consumption (% of total) 
  
CO2 emissions from solid fuel 
consumption (% of total) 
 
Energy related methane emissions 
(% of total) 
 
Nitrous oxide emissions in energy 
sector (% of total) 

10 12.2 Sustainable and 
efficient use of natural 
resources in production 
and consumption 

12.2.1 Reducing material 
footprint 

Adjusted savings: energy depletion 
(% of GNI) 

12.2.2 Sustainable 
domestic material 
consumption 

Fossil fuel energy consumption (% 
of total) 
 
Net energy imports (% of energy 
use) 

11 13.0 Mitigating climate 
change and its impacts 

13.3.1 Impact reduction of 
climate change 

Total greenhouse gas emissions (kt 
of CO2 equivalent) 

 
Notes: The SDG targets and indicators presented are based on the Sustainable Development Goals 
(United Nations, 2015b). Our series denote global data variables used as proxy to assess the various 
indicators and classify countries meeting the target. 
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4.2.2 Proxy SDG Indicators 

The energy sector is not standalone but depends on other sectors, thus, our SDG targets and 

indicators for assessing energy sustainability account for natural resource efficiency, 

environmental pollution, and economic dynamics. The 11 SDG targets presented herein (Table 

1) are adopted from the SDG framework by the United Nations. Owing to the difficulty in 

retrieving data on exact SDG targets/indicators, we utilized proxy data options. For example, 

to account for SDG 8.4, “Decoupling growth from pollution by ensuring natural resource 

efficiency in production and consumption”, we utilized adjusted savings: energy depletion, 

fossil fuel energy consumption, and net energy imports. Adjusted savings: energy depletion 

denotes the ratio of the rate of coal, crude oil, and natural gas energy resource supply to the 

unexpended reserve lifetime (World Bank, 2020). Fossil fuel energy consumption entails the 

utilization of coal, oil, natural gas, and petroleum products whereas net energy imports cover 

energy utilization less production. Hence, these indicators are used to capture both material 

footprint and domestic material consumption. Second, SDG 13.0, “Mitigating climate change 

and its impacts” is assessed and reported using the total greenhouse gas emissions (i.e., 

include carbon dioxide, methane, nitrous oxide, and Fluorinated gases) as proxy to capture 

the impact of climate change. In this way, our variable selection is based on several factors 

including––data availability, and data series that explicitly capture SDG indicators or function 

as proxy indicators. 

4.2.3 Periodic Assessment 

To capture and compare historical changes of energy and its related services from pre-MDGs, 

MDGs, and SDGs periods. We calculate the arithmetic mean of the yearly data across countries 

and territories expressed as:  

 

𝑌" =
'
4
∑ 𝑧54
56'  (1) 

 

where 𝑌 denotes the calculated arithmetic mean of the data across countries, or territories 𝑖, 

𝑛 represents the periods spanning 1961-1999 for pre-MDGs, 2000-2015 for MDGs, and 2016-

2019 for SDGs, and 𝑧5 denotes the sum of data series under consideration for epoch 𝑛. 

Similarly, we estimate the standard deviation of the data using the expression: 
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𝑆" = f∑(8%18̅)&

41'
 (2) 

 

where 𝑆 represents the estimated standard deviation of the sampled series across countries 

and territories 𝑖, while accounting for pre-MDGs, MDGs, and SDGs. 𝑧̅ denotes the mean of 

data series 𝑧5 for period 𝑛. 

4.2.4 Settings for Meta-analysis 

Using the expressions in equations 1-2, we derive the mean and standard deviation of both 

experimental and control groups. From here, we compute the effect size of income groups 

and global measurements––by designating income groups namely LIC, LMC, LMY, MIC, UMC, 

and HIC as experimental groups whereas the global measurements, viz. WLD represents the 

control group. The effect sizes for pre-MDGs and MDGs are computed using Hedges’ g statistic 

(Hedges, 1981) with approximate bias correction to control for upward bias in computing for 

standardized mean difference whereas Cohen’s d statistic (Cohen, 2013) is used to control for 

small sample bias due to small data sample for computing standardized mean difference for 

the SDG epoch. The specification for the meta-analysis comprises the number of observations, 

mean, and standard deviation of both experimental and control groups, income group-specific 

fixed-effects model to capture heterogeneous effects using the inverse-variance estimation 

technique (Cooper et al., 2019). Existing studies adopt meta-analysis (Glass, 1976) as statistical 

technique to analyze results from existing studies with related research questions, however, 

we utilized this technique to assess similar pre-MDG, MDG, and SDG indicators across income 

groups, by comparing them with the global pre-MDGs, MDGs, and SDGs. In this scenario, we 

compute the weighted average of indicator-specific effect estimates to validate the possibility 

of substantial variations across income groups. Thus, using the estimated effect of interest, 

we can draw useful conclusions to ascertain the causes of variations in energy sustainability 

across income groups. 

4.2.5 Empirical Estimation 

Following the Brundtland report titled, “our common future” (Brundtland, 1987), we define 

energy sustainability as meeting energy demand without compromising the environment and 

depleting energy resources for the sake of future generations (Tester et al., 2012). Our 



91 
 

empirical estimation accounts for three pillars of energy sustainability namely energy demand 

(i.e., energy access and utilization), energy supply (i.e., energy availability, and affordability), 

and energy footprint (i.e., energy intensity vs. energy efficiency, and energy eco-capacity). For 

energy footprint, we investigate energy resource exploitation and utilization by assessing 

characteristics including renewable (infinite) vs. non-renewable (finite), and sustainable 

(efficient) vs. unsustainable (inefficient). The energy footprint across countries and territories 

is examined using the composition of the energy portfolio, level of energy (in)dependence, 

and rate of environmental degradation (i.e., waste generation, resource depletion, and 

emissions). Consistent with SDG 6.4 of ensuring H2O efficiency and sustainable H2O 

withdrawals, we estimated H2O stress dynamics by assessing the role of energy sector 

production in changing H2O consumption efficiency and regeneration of H2O resources. The 

energy-water stress 𝐸𝑊𝑆 across country 𝑖,  is expressed as: 

 

𝐸𝑊𝑆" = 𝑓: h
𝜇𝑊𝑃"

(𝐴𝑊𝐸" ∗ 𝜇𝑅𝐹𝑅")
m n, 𝐴𝑊𝐸" = (𝜇𝐴𝑊𝐼" ∗ 0.6475) (3) 

 

where 𝜇 represents the population mean, 𝑊𝑃 denotes water productivity (i.e., estimated as 

gross domestic product in 2010 US$ prices divided by annual total H2O withdrawals), 𝐴𝑊𝐸 is 

the annual freshwater withdrawals for energy production, 𝐴𝑊𝐼 is the annual freshwater 

withdrawals for industrial use and 𝑅𝐹𝑅 represents total renewable internal freshwater 

resources. According to UNESCO, industrial water utilization accounts for ~20% of freshwater 

withdrawals––of which an average of 63% is used for hydro and nuclear power generation, 

1.75% (on average) for energy generation via thermal power plants, and the remaining for 

industrial processes (UNESCO, 2021). Using these approximations, the annual freshwater 

withdrawals for energy production is calculated by multiplying the annual freshwater 

withdrawals for industrial use by 0.6475. Though there are variations in water use for energy 

production, however, due to country-specific data limitations, we assume the global energy-

driven water withdrawal value (i.e., 0.6475) is fixed for all countries and territories. The SDG 

12.2 was evaluated to assess the progress of sustainable and efficient use of natural resources 

in production and consumption. We accounted for material footprint by estimating the 

sustainability of domestic material consumption expressed as: 
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𝐹𝑆" = 𝑓: q
𝜇𝐹𝐹𝐸"

𝜇𝐴𝐸𝐷"m r (4) 

 

where 𝐹𝑆 represents fossil stress, calculated using fossil fuel energy consumption 𝐹𝐹𝐸 divided 

by adjusted savings of energy depletion 𝐴𝐸𝐷. Fossil fuel encompasses coal, natural gas, oil 

and petroleum products while energy depletion accounts for the stock of coal, crude oil, and 

natural gas energy resources compared to its lifetime of remaining reserves. To examine the 

long-term impact of energy resource exploitation on future generations (i.e., energy security), 

we quantify for both energy deficit and energy reserve using our estimated benefit-cost 

formulation expressed as: 

 

𝐵𝐶" = 𝑓:(𝛿" − 𝛾") (5) 

 

𝛿" = ∑(𝐶𝐿𝑁" , 𝐴𝐶𝐶" , 𝐶𝐿𝐸" , 𝐼𝑁𝑉") (6) 

 

𝛾" = ∑(𝐹𝑆" , 𝐸𝑊𝑆" , 𝐸𝑀𝐼" , 𝐼𝑀𝑃" , 𝐼𝑁𝑇") (7) 

 

where BC is the benefit-cost assessment to classify countries and territories into winners and 

losers of energy sustainability, 𝛿"  represents the summation of SDG indicator scores with 

positive effects on energy sustainability whereas 𝛾"  denotes score summation of SDG 

indicators with poor energy sustainability performance. The best energy sustainability 

performance indicators include access to clean fuels and technologies for cooking 𝐶𝐿𝑁, access 

to electricity 𝐴𝐶𝐶, consumption of nuclear energy, renewable energy, and combustible 

renewables and waste 𝐶𝐿𝐸, and investment in energy with private participation 𝐼𝑁𝑉. In 

contrast, the poor energy sustainability performance indicators comprise fossil stress, energy-

water stress, CO2 emissions from fuel consumption, electricity and heat production, energy 

related CH4 emissions, and N2O emissions in energy sector 𝐸𝑀𝐼, energy imports 𝐼𝑀𝑃, and 

energy intensity 𝐼𝑁𝑇. From equation 5, countries can be categorized under either energy 

deficit––if energy cost exceeds benefits or energy reserve––if energy benefits exceed energy 

cost. Due to differences in economic structure, production, consumption, and population 

dynamics across countries and territories, using a comparable metric, viz. normalization 
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technique is critical for assessing SDG targets (Xu et al., 2020). The function 𝑓: in equations 3-

5 denotes the normalization function for scoring a specific SDG indicator 𝑦; expressed as: 

 

𝑓: ≈ 𝑦; = 100(𝑦 − 𝑦<"4)/(𝑦<%5 − 𝑦<"4) (8) 

 

where 𝑦; represents the score of SDG indicator 𝑦 via the normalization technique with scores 

ranging from 0-100 across countries over time. Thus, the lower bound (i.e., score 0) represents 

poor performance whereas the upper bound (i.e., score 100) represents best performance. 

Countries with score above 50 denotes transformation towards achieving best performance. 

Using this ratio, countries are ranked accordingly from pre-MDGs, MDGs, and SDGs periods–

–to ascertain the winners and losers of energy sustainability. 

4.2.6 Country-specific effects 

Here we use cross-country linear regression technique that controls for country-specific 

effects. The estimation technique has been used to investigate several within and between 

effects of economic dynamics on energy sector portfolio across several countries over 

specified periods (Hsiang, 2010). Contrary to historical periods used in existing literature, we 

adopt the periodic mean of sampled variables for the ease of graphical comparison across 

economies. The linear specification of the model can be expressed as: 

 

𝑦�" = 𝑥̅" + 𝑧"̅  (9) 

 

where 𝑦�"  denotes the mean target variables [i.e., energy sustainability target (pros & cons), 

benefit-cost, energy intensity, access to electricity, access to clean technologies, composition 

of clean energy technologies, and energy-related GHG emissions] across economies 𝑖, 𝑥̅ 

represents the independent variable, namely income level whereas 𝑧̅ denotes income 

inequality, the effect size of the regression. The empirical scenario in equation (9) allows the 

assessment of the nexus between the dynamics of energy sustainability and average income 

level while accounting for the effect of income inequality across countries and territories. 
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4.2.7 Income convergence 

Income homogeneity occurs in economies with similar economic structure, technology, and 

factors of production, hence, the likelihood of achieving economic convergence if growth in 

poor economies is faster than in wealthy economies (Tamura, 1991). This implies income level 

and technology spillover play a substantial role in achieving energy sustainability (Nordhaus, 

2010). Using the updated version (2020-2021) of World Bank’s country and lending group, 217 

sampled economies are classified into similar income groups (World Bank, 2021b). Thus, using 

the atlas conversion factor, countries and territories are classified based on gross national 

income (GNI) per capita. The atlas conversion factor helps to control for domestic and 

international inflation-driven changes to a country’s exchange rate (World Bank, 2021a). The 

income group classification entails––27 lower-income economies (≤$1045), 55 lower-middle-

income economies ($1046-$4095), 55 upper-middle-income economies ($4096-$12695), and 

80 high-income economies (≥$12696). Aside from country-specific rankings, the income 

convergence allows the assessment of energy sustainability across income groups compared 

to global ratings. The generic assessment of energy diversity, economic development, and 

GHG emissions across income groups can be expressed as: 

 

𝑔)= = 𝑘�)=  (10) 

 

where 𝑔)=  is the output proportion of SDG indicators 𝑅 namely––energy use, global GHG 

emissions, rural access to electricity, urban access to electricity, GDP per capita, foreign direct 

investment (FDI) inflows, FDI outflows, renewable energy and fossil fuel energy consumption–

–across income groups and global ratings 𝑗 (i.e., LIC, LMC, LMY, MIC, UMC, HIC, and WLD). 𝑘� 

denotes the mean of input of SDG indicators used to calculate income group-specific output 

proportions. 

4.3 Results 

4.3.1 Comparing pre-MDGs, MDGs, and SDGs 

To ascertain the progress towards achieving sustainable development, we compared energy 

sustainability dynamics from pre-MDG (1961-1999), MDG (2000-2015), and SDG (2016-2019) 

periods. Because past events foreshadow present and future occurrences, employing these 
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assessment criteria and conceptualization are useful tools for policy formulation. Using meta-

analytic statistical technique, we analyzed 20 data series (Supplementary Table 2) by 

comparing income-specific groups to global ratings. We find that access to electricity (i.e., 

rural and urban access) has increased substantially across income groups throughout the SDG 

era compared to both pre-MDG and MDGs (see Supplementary Figs. 1-6). In contrast, energy 

depletion (i.e., ratio of the stock of energy resources versus lifetime reserves) declined 

significantly during the SDG period compared to pre-MDG and MDGs. Among income groups, 

the SDG policies benefited low-income countries more than high-income countries, hence, 

improving lifetime reserves of energy resources. Failure of the MDGs to clearly highlight 

energy sustainability in the global policies may have worsened energy depletion, energy 

sector-related N2O emissions, energy-related CH4 emissions, and CO2 emissions from 

electricity and heat production during the MDG era compared to pre-MDG periods (see 

Supplementary Figs. 1-6). To rule out the notion of global common shocks and equality (i.e., 

cross-section dependence and homogeneity) of energy indicators across income groups, we 

require energy indicators to be inconsistent across income economies––implying a high level 

of heterogeneity. In this way, the independence of SDG indicators can be properly examined. 

To achieve this, we used the inverse-variance estimation technique that captures income 

group-specific fixed-effects, thus, accounting for heterogeneity (see Methods). The forest 

plots showing the estimated results were constructed based on means of both experimental 

and control groups, effect sizes, corresponding confidence intervals, and percentage of overall 

weight for each data series (Supplementary Figs. 1-6). The test for 𝜃 denotes the overall effect 

sizes––expressed as the weighted average of variable-specific effect sizes with corresponding 

significance test of 𝐻&: 𝜃 = 0 reported as p-value<0.01. This implies the overall effect sizes of 

the sampled energy indicators are statistically and significantly different from zero. The 

homogeneity test between variables, 𝐻&: 𝜃" = 𝜃)  is statistically significant at p-value<0.01, 

confirming heterogeneous effects (𝐼!) across variables. This infers sampled variables for 

energy sustainability across income groups have large heterogeneous (i.e., 𝐼!>75%) 

characteristics (Higgins et al., 2003). This confirms the expectation of a reverse output 

compared to standard empirical results. Thus, >90% variations in effect size estimation can be 

attributed to between-variable heterogeneity. 
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4.3.2 Assessing energy sustainability indicators 

Unlike the MDGs, the SDGs (i.e., SDG 7) explicitly highlights the importance of achieving 

energy sustainability, which mainly comprises a combination of the energy portfolio, 

economics, and emissions. Using six decades of energy sustainability indicators, we observe 

the average share of renewables in the energy portfolio is higher in low-income countries (i.e., 

68.7%) compared to the global average of 17.5%. However, the penetration of renewables in 

high-income countries (i.e., 8%) is lower than the global average (see Fig. 1a). Thus, 

LIC>LMC>LMY>MIC>UMC>WLD>HIC –– implying developing countries have higher renewable 

energy adoption compared to developed countries (Fig. 2b). In contrast, the energy portfolio 

in high-income countries is dominated by fossil fuel energy (i.e., 87.5%), slightly higher than 

the global average of 83.6%. This order (i.e., HIC>WLD>UMC>MIC>LMY>LMC>LIC) infers that 

developed economies consume fossil fuels compared to developing economies (see Fig. 1b). 

Urban-rural access to electrification (i.e., 60% & 21.4%) is much lower in low-income 

economies compared to the global average of 95.5% (urban) and 71.7% (rural) [see Fig. 1d]. 

Lack of electricity access in low-income countries (Fig. 2c) may have mirrored the low level of 

income (<$650, Fig. 1c), low energy use (<400 kgoe, Fig. 1f), but high foreign direct investment 

inflows (Fig. 1e). The high-income level (Fig. 1c) and FDI outflows (Fig. 1e) in high-income 

economies could have been driven by access to electricity (Fig. 1d), high energy use (Fig. 1f), 

and dominance of fossil fuels (Fig. 1b) in the energy mix. Yet, the proportion of global GHG 

emissions is higher in low- & middle-income countries (27.6%) and middle-income (24.7%) 

countries compared to high-income countries (20%) but lower in low income (3%) and lower-

middle-income countries (6.7%) [see Fig. 1g]. The score of population with access to clean 

fuels and technologies for cooking in high-income countries (score=98.80) far exceeds low-

income countries by 8.5 times (score=11.60) [see Fig. 2a].  

However, energy investment participation by the private sector is more visible in low- 

& middle-income countries (score=100) than in high-income countries (see Fig. 2d). Due to 

dependence on fossil fuels for economic activities, fossil energy stress is relatively high in 

developed economies than in developing economies (Fig. 2e). Energy-water stress is visibly 

high in low-income economies that depend on hydropower resources for energy generation 

(Fig. 2f). The benefit-to-cost ratio of energy sustainability across income groups is in the order 

MIC>LMY>UMC>HIC>LMC>WLD>LIC, implying the overall scores of energy sustainability is 
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fairly high in middle-income countries compared to low-income economies (see 

Supplementary Fig. 7d,e,f). 

 

 
Fig. 1| Trends of energy diversity, economic development, and GHG emissions across income groups. 
(A) Renewable energy (B) Fossil fuel energy (C) Average income level (D) Access to electricity (E) FDI 
inflows and outflows (F) Energy utilization (G) Global GHG emissions. The estimates presented across 
income groups were computed using the mean from 1961-2019. Income group abbreviations––
global average (WLD), low-income countries (LIC), lower-middle-income countries (LMC), low- & 
middle-income countries (LMY), middle-income countries (MIC), upper-middle-income countries 
(UMC), and high-income countries (HIC). 
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Fig. 2| Sustainability assessment of energy and its services across income groups (A) Access to clean 
fuels and technologies (B) Clean energy technologies (C) Access to electricity (D) Energy Investment 
(E) Fossil energy stress (F) Energy-Water stress. Legend: The indicators are estimated using the 
empirical procedure presented in the methods. Colors ranging from dark-green, lime-green, yellow, 
orange, and red represent the magnitude of estimated indicators in descending order. Missing filled-
rectangular shape with white background (D and F) denotes missing data. 

 

4.3.3 Spatial-temporal changes of SDG indicators 

Using the country-specific estimated scores from 1961-2019, we spatially map the SDG 

indicators to capture energy sustainability performance. In assessing the level of clean fuels 

and technologies for cooking, we find developed countries have the best performance 

(score³92) than most developing countries (Fig. 3a). Contrary, developing countries (i.e., DR 

Congo, Nepal, Ethiopia, Mozambique, Tanzania, Zambia, Nigeria, Cameroon, Niger, Myanmar, 

Paraguay, Haiti, Tajikistan, Kenya, Benin, Togo, Gabon, Cambodia, and Zimbabwe) have better 

performance (score³73) in the adoption and utilization of clean energy technologies (i.e., 

renewable energy, nuclear energy, combustible renewables, and waste) compared to 

developed countries excluding Iceland, and Norway (Fig. 3b). However, access to electricity is 

fairly high (score=100) in high-income economies compared to low-income countries (Fig. 3c). 

Private participation in energy investment is limited to few countries including Brazil, India, 
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Turkey, China, Russia, Indonesia, Lao, Mexico, South Africa, Morocco, Argentina, Thailand, 

Pakistan, Philippines, Romania, Vietnam, Algeria, Malaysia, Belarus, Peru, Bulgaria, Benin, 

Jordan, Egypt, Colombia, Ghana, Serbia, Zambia, Ukraine, and Nigeria (Fig. 3d). The over six 

decades of data used to assess fossil stress and energy-water stress show bad and worse 

performance across all countries and territories––a situation that has energy policy 

implications (Supplementary Fig. 9). We observe relatively high energy-related emissions 

(score³73) in Bahrain, Kuwait, Qatar, Russia, Brunei Darussalam, Trinidad & Tobago, Poland, 

Saudi Arabia, Estonia, Oman, Libya, UAE, Equatorial Guinea, Hong Kong, Singapore, 

Kazakhstan, Czech Republic, and Bosnia and Herzegovina (Fig. 4a). The fairly high scores in Fig. 

4b reveal the high energy required to produce one unit of output in Somalia (score=100), 

Liberia (score=77.50), Mozambique (score=74), and Ethiopia (score=70.10) –– whereas the 

remaining countries and territories have scores below 69.  

It is evident in Fig. 4c that 117 countries and territories are highly energy-dependent 

(score³92), which infers energy importation to supplement domestic generation capacity. The 

highest energy importers (score=100) include Singapore, Malta, Hong Kong, Gibraltar, and 

Curacao (Fig. 4c). Using the sampled SDG indicators, we accounted for both pros (Fig. 4d) and 

cons (Fig. 4e) of energy sustainability targets before deriving the overall sustainability index, 

viz. benefit-cost (Fig. 4f). The pros element comprises factors that drive the agenda toward 

energy sustainability whereas the cons element derails the progress. Evidence from Fig. 4d 

shows 3 best-performing countries (Iceland, Norway, and Sweden), 54 better-performing 

economies, and 88 good-performing economies with SDG indicators that favor energy 

sustainability. In contrast, 142 economies are good performers (score³44) of SDG indicators 

that disrupt the agenda toward energy sustainability (Fig. 4e). The overall sustainability index 

that examines the pros and cons of energy sustainability targets from 1961-2019 shows 13 

good-performing economies, 73 bad-performing economies, and 131 worse-performing 

economies. For example, the winners making progress towards achieving energy sustainability 

include inter alia, Bahamas, Belize, Monaco, Norway, and San Marino whereas the losers of 

energy sustainability comprise inter alia, North Korea, Mozambique, Liberia, Hong Kong, and 

South Sudan (Fig. 4f). We corroborate the robustness of the constructed energy sustainability 

indicator using between-group visualization with statistical features (Patil, 2021). The output 

statistics in Fig. 5 show significant (p-value<0.01) mean differences in energy sustainability 

between income groups. The mean score of energy sustainability increases across income 
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groups (Fig. 5). For example, the average scores in low-income, lower-middle-income, upper-

middle-income, and high-income economies are 27.04, 39.52, 48.82, and 55.32. This implies 

growth in income and/or economic development increases energy sustainability. 

 

 
Fig. 3| Global sustainability indicators of energy and its services (A) Access to clean fuels and 
technologies (B) Clean energy technologies (C) Access to electricity (D) Energy Investment (E) Fossil 
energy stress (F) Energy-Water stress. Legend: The indicators are estimated using the empirical 
procedure presented in the methods. Colors ranging from red, orange, yellow, lime-green and dark-
green represent the estimated indicators in ratio from 0-15.9 (worse), 16-43.9 (bad), 44-72.9 (good), 
73-91.9 (better), and 92-100 (best), respectively. 
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Fig. 4| Global sustainability indicators of energy and its services (A) Energy-related emissions (B) 
Energy intensity (C) Energy dependence (D) Pros of energy sustainability target (E) Cons of energy 
sustainability target (F) Benefit-cost of energy sustainability target. Legend: The indicators are 
estimated using the empirical procedure presented in the methods. Colors ranging from red, orange, 
yellow, lime-green, and dark-green represent the estimated indicators in ratio from 0-15.9, 16-43.9, 
44-72.9, 73-91.9, and 92-100, respectively. 
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Fig. 5| Comparison of energy sustainability across income groups. The output statistics show 
significant (p-value<0.01) mean differences in energy sustainability between income groups. 

 

4.3.4 Factors affecting energy sustainability 

In line with SDG 8 and 10, we assessed the role of sustained economic development (i.e., 

income level and income inequality) in achieving energy resource efficiency across global 

economies. We find a negative monotonic relationship between energy intensity and average 

income level (Fig. 6a). Developing economies with high-income inequality, typically sub-

Saharan Africa (i.e., inter alia, Ethiopia, Liberia, DR Congo, Burundi, and Zimbabwe) and Asian 

countries (i.e., inter alia, Uzbekistan, Bhutan, and Turkmenistan) have high energy intensity 

with corresponding low-income level. Contrary, developed economies (i.e., inter alia, 

Australia, United Arab Emirates, Bermuda, Japan, Liechtenstein, and Canada) with high-

income levels and reduced income inequality have low energy intensity (Fig. 6a). The Z-shape 

relation in Fig. 6b shows income level and income inequality have little impact on SDG 

indicators that disrupt energy sustainability. However, a positive monotonic relationship can 

be observed between: income level vs. SDG indicators that promote energy sustainability (Fig. 
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7a); and income level vs. overall sustainability index (Fig. 7b). Low-income level and extreme 

inequality in developing economies namely inter alia, Mozambique, South Sudan, Burundi, 

Burkina Faso, Central African Republic, Liberia, Ethiopia, DR Congo, and The Gambia hamper 

efforts towards attaining energy resource efficiency, hence, affecting energy sustainability 

(see Supplementary Fig. 9b,c). Conversely, high-income countries with reduced inequality 

(i.e., inter alia, Israel, Norway, Switzerland, Finland, and Austria) have high readiness in 

fulfilling the SDG targets (Fig. 7a) while achieving energy sustainability (Fig. 7b). 

 

 

 

 
 



104 
 

 
Fig. 6| Global nexus of sustainability indicators of energy and its services in income function while 
controlling for income inequality (A) Energy intensity (B) Cons of energy sustainability target. Legend: 
The trend indicates the relationship between sustainability indicators of energy and its services and 
average income level whereas the white filled-circles with black outline denotes the magnitude of 
income inequality. See Supplementary Table 1 for interpretation of ISO 3166-1 aplha-3 country codes. 
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Fig. 7| Global nexus of sustainability indicators of energy and its services in income function while 
controlling for income inequality (A) Pros of energy sustainability target (B) Benefit-cost of energy 
sustainability target. Legend: The trend indicates the relationship between sustainability indicators of 
energy and its services and average income level whereas the white filled-circles with black outline 
denotes the magnitude of income inequality. See Supplementary Table 1 for interpretation of ISO 
3166-1 aplha-3 country codes. 
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4.4 Discussion & conclusion 

While it appears premature to elucidate winners and losers of energy sustainability, 

investigating the past, and present state of affairs serves as a key performance indicator for 

assessing progress towards attaining the SDG targets of the 2030 agenda. Though the MDGs 

failed to explicitly highlight energy sustainability, yet, energy played a crucial role in the 

achievement of several goals (Sovacool, 2012). Since the inclusion of energy and its services 

as the central theme of the 2030 agenda, mitigating climate change and its impacts through 

energy sustainability has become eminent. Experts argue that the complexity between energy 

and sustainable development entails systemic, demand, and supply-side management 

(Grubler et al., 2018). Thus, assessing the complex global energy sector dynamics unveils the 

energy-SDG synergies and trade-offs. Contrary to the extant qualitative-based literature on 

SDGs (Nerini et al., 2018), we provide an empirical-based assessment that examines the 

progress of energy sustainability from pre-MDG, MDG, and SDG periods. 

There are over 2.6 billion people globally that depend on either kerosene, solid 

biomass (i.e., charcoal and fuelwood) or coal for heating and cooking purposes (IEA, 2020b). 

Evidentially, our empirical assessment shows access to clean fuels and technologies for 

cooking in developing countries is still limited. The estimated 11.6% population in low-income 

economies with access to clean cooking technologies is below the global adoption, averaging 

54.5%. This implies attaining universal access to clean cooking by 2030 requires significant 

climate policy interventions including shielding poor households from the distributional 

burden of carbon taxation (Cameron et al., 2016) and cost-effectiveness in switching from 

solid and carbon-intensive fuels to modern cooking fuels. Consistent with existing literature 

(Yadav et al., 2021), improving income, access to reliable power supply, and reducing income 

inequality enhance the adoption of clean cooking options. Global access to electricity in both 

rural and urban areas has increased significantly on average from 75.3% to 84.7% since the 

inception of the SDGs. However, electricity access remains relatively low in low-income 

countries, specifically in rural areas of sub-Saharan Africa, which has affected electricity 

consumption, hence, leading to energy poverty. Consistent with our empirical findings, the 

lack of electricity in rural areas is attributable to income and inequality (i.e., sparse population 

density, high upfront cost, and lack of energy infrastructure like grid extension) (Szabó et al., 

2016). This implies the achievement of universal access to electricity, particularly in low-
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income economies requires both internal and external interventions including political will 

and commitment, external funding through FDI and technology spillover, and private sector 

investment (Sachs et al., 2019). Private sector energy investment participation comprising 

generation, transmission, and distribution is quite evidential in low- & middle-income 

economies than in high-income countries. However, significant energy investments are still 

required in developing countries to improve infrastructures, boost power supply and increase 

access to attain SDG-7 (Foster et al., 2010). 

SDG-7 is not a magic bullet to achieving energy sustainability but depends on other 

SDGs with environmental and economic concerns (Taylor et al., 2017). We find that low-

income countries, typically sub-Saharan Africa have the highest renewable energy penetration 

(68.7%) with corresponding low fossil fuel consumption (41.2%) and low GHG emissions (3%), 

yet, far below (US$642) the global average income level (i.e., US$7,200). Though renewable 

energy sources are useful haven technologies for market price volatility, environmental and 

health impacts of climate change (Owusu et al., 2016), however, experts argue of the 

challenges of renewables including the risk of resource competition, viz.  land and water use 

intensity (Evans et al., 2009). Decarbonization pathways that rely on nuclear power, 

concentrating solar power (CSP) deployment, carbon capture, and biofuel production may 

escalate water stress without robust water-saving and harvesting technologies (IEA, 2016a). 

It is estimated that about ~63% of industrial water utilization (i.e., freshwater withdrawals) is 

used for hydro and nuclear power generation, whereas 1.75% is used for energy generation 

via thermal power plants (UNESCO, 2021). While water consumption for renewable energy 

generation (particularly wind and solar PV) is considerably lower than fossil fuel-based power 

plants, land-use footprint (i.e., ~1.31-809.74 km2/TWhr) is typically higher for renewables 

(Sarkodie & Owusu, 2020a; Trainor et al., 2016). Africa produces less emissions but its energy 

portfolio is more vulnerable to climate change sensitivity and exposure, hence, faces 

challenging water legacies (i.e., “hydrological variability and multiplicity of transboundary 

river basins”) that impede economic development (Foster et al., 2010).  

Our empirical analyses underscore the importance of addressing energy system - 

climate vulnerability that reduces pressure and trade-off between natural resources (i.e., 

domestic material, food, water, and land resources) and environmental threats (biodiversity 

loss, transboundary and domestic pollution) (Conway et al., 2015). Though the SDG indicators 

assessed herein are mere tools and not a finality in itself, yet, provide a snapshot of progress 
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towards attaining sustainable development from energy and environmental perspective––

which has long-term policy implications. 

 

Additional information 

Supplementary information. Supplementary material available. 
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Global land-use intensity and anthropogenic emissions 
exhibit symbiotic and explosive behavior 5 

Summary 

The intensification of land-use is accelerating and remains a threat towards achieving 

environmental sustainability. While prior literature identifies unsustainable demand for 

resources as crucial to ecosystem vitality, here we highlight explosive behavior and entangled 

indicators associated with changing global land-use intensity and anthropogenic GHG 

emissions. We assess emission footprints, forestry, and agricultural land-use intensity across 

income groups using econometric models and data spanning 27 years (1990-2016). We find 

that long-term income growth above US$1005 per capita has mitigation effects on emissions 

whereas anthropogenic emissions stimulate the global expansion of land-use for agricultural 

and forestry activities. Urban expansion has a diminishing return on agricultural lands in 

developed countries, which may alter future agricultural production and food consumption. 

The top 5 countries with high deforestation rates (0.9-2.39%) include Mali, Uganda, Nigeria, 

Algeria, and Pakistan whereas hotspots of agricultural expansion include Vietnam, Niger, Mali, 

Indonesia, and Myanmar. The heterogeneous effects across countries demonstrate the need 

for domestic context, including cultural and historical factors, in assessing forest decline, 

agricultural expansion, and land-use intensity. The co-benefits of Reducing Emissions from 

Deforestation and Forest Degradation (REDD+) in developing economies are crucial to 

mitigating emissions while improving the livelihoods of forest-dependent populations. 

6.1 Introduction 

Global land-use intensity is a crucial driver of land degradation, which may pose threat to 

ecosystem vitality, leading to loss of natural habitat and changes in landscape (DiSano, 2002). 

Unsustainable land-use affects ecological composition including productive lands for forestry 

and agriculture, which has long-term impacts on biodiversity and emissions. While the global 

forest cover is improving compared to historical trends decades ago, agricultural expansion, 

 
5 Published article: Sarkodie, S.A., & Owusu, P. A. (2022). Global land-use intensity and anthropogenic 
emissions exhibit symbiotic and explosive behavior. IScience, 25(8), 104741. 
https://doi.org/10.1016/j.isci.2022.104741 
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deforestation, and land degradation remain a threat to land conservation in developing 

countries, especially low-income economies. For example, the global forest area declined 

from 32.5% to 30.8% (i.e., 178 million ha) between the periods 1990-2020 due to human-

induced changes such as agricultural expansion (FAO, 2020). While South America observed 

an unprecedented decline in forest area spanning 1990-2010, Africa witnessed the highest net 

loss of forest area between 2010-2020, whereas the highest net gain between 2010-2020 

occurred in Asia (FAO, 2020). However, climate change mitigation and adaptation in 

agriculture, forestry, and land-use are intertwined via feedback mechanisms, synergies, and 

trade-offs (Krystal Crumpler et al., 2021; Smith et al., 2010). This implies sustainable land-use 

management (agroforestry, land-based mitigation options, and integrated landscape 

approach) is a key adaptation measure to reduce anthropogenic emissions and climate change 

vulnerability (Hosonuma et al., 2012; Rosenzweig et al., 2007; Verchot et al., 2007). However, 

a trilemma exists between agricultural land expansion, forestry, and GHG emissions, which 

are driven by population growth, economic development, and urbanization. The global 

population is increasing with increasing demand for food and resources for economic benefit, 

yet conservation practices require sustainable forest management to limit the rising levels of 

emissions. The complex nexus between climate change, socio-economic and ecological 

systems require attention due to the threat of climate change and its impacts on sustainable 

development (Denton et al., 2014).  

While the extant literature has reported spatial-temporal trends of ecological 

portfolio, and trade-embodied drivers of ecological resources (Hoang et al., 2021), no study 

comprehensively assessed the symbiotic relationships existing between land-use intensity, 

demo-economics, and changes in emission levels. Understanding these dynamic relationships 

are crucial to unearth historical trends useful to develop conceptual tools for climate change 

adaptation and mitigation of climate vulnerability. Second, country-specific, regional, and 

other global crises including the recent Covid-19 pandemic, and economic recessions affected 

business-as-usual which shifted production and consumption, leading to explosive behaviors 

across countries. These episodes of explosive behaviors that capture extremes are indicative 

of climate change and land-use intensity. Besides, this explains unusual events in emission 

patterns, resource and biodiversity exploitation (deforestation, land degradation, ecological 

footprint, and domestic material consumption) that often contradict existing fundamental 

patterns. Yet, global multi-region input-output (MRIO) models may fail to capture explosive 
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behaviors that are significant to tilt the balance between production and consumption. Here, 

we ask the following research questions using 27-years of data: (a) what are the drivers of 

global anthropogenic emissions and land-use intensity? (b) what are the feedback 

mechanisms, synergies, and trade-offs that underpin emission reduction from agricultural 

land, forestry, land-use? (c) What are the current trends of ecosystem dynamics across 

countries (identifying winners and losers)? We use novel econometric techniques to examine 

global symbiotic relationships, and date-stamping explosive behaviors existing between land-

use intensity, demo-economics, and changes in emissions. Using dynamic panel models that 

capture cross-section dependence, heterogeneity, nonlinearity, and chaotic functions allow 

to capture the complexities of climate change across countries and income groups. Our study 

identified episodes of explosive behavior highlighting country-specific events of influx or 

excesses in emissions, land-use intensity, urban sprawl, and income. We opine that these 

unusual periods of extremely low or high trends could have been triggered by country-specific 

economic structure and disparities in income distribution. 

6.2 Results 

6.2.1 Current trends of ecosystem dynamics 

To assess performance, we use a normalization scale [0, 100] to develop country-specific 

scores from average changes of sampled variables over the 27-year period. For comparison, 

we categorize performance scores of countries based on income groups (Fig. 1). While average 

income level improved (between 0.13-2.25%) in all economies regardless of income group, 

Iraq, an upper-middle-income country in Middle East and North Africa observed the highest 

gain in income by 2.25% whereas Niger, a low-income country in Sub-Saharan Africa observed 

the lowest increase by 0.13%. GHG emissions witnessed an increase in developing countries 

typically low-income economies––Niger, Pakistan, Afghanistan, Ethiopia, and Mozambique 

are identified as the top 5 hotspot countries with rising anthropogenic emissions by 1-1.97% 

(score=70.10-100). In contrast, China, India, DR Congo, Germany, and Cameroon saw an 

average decline in yearly GHG emissions by 0.49-0.97% (score=0-16.05). The yearly expansion 

in agricultural land-use by 0.24-0.72% (score=52.92-100) can be observed in low-income and 

lower-middle-income economies in East Asia & Pacific, and Sub-Saharan Africa. The top 5 

gainers in agricultural land include Vietnam, Niger, Mali, Indonesia, and Myanmar whereas 



158 
 

the top 5 losers (i.e., declined by 0.15-0.30%) include Canada, Australia, Poland, Italy, and Iran. 

The yearly average urban population grew in almost all countries except Russia, and Poland 

with stabilized growth (0%), whereas Ukraine, and Romania declined by 0.02-0.04%. 

Conspicuously, the rate of urban population growth was higher in Sub-Saharan Africa, 

occupying the top 5 hotspots (i.e., Uganda, Burkina Faso, Angola, Mali, and Tanzania), and 7-

15 countries. Yet, countries with low urban population growth are located in North America, 

Europe, and Central Asia, and are predictably high-income economies. Top 5 countries that 

saw potential deforestation, viz. decline in forest area by 0.9-2.39% include Mali, Uganda, 

Nigeria, Algeria, and Pakistan whereas Niger, Syria, Vietnam, China, and Iran observed yearly 

average improvement/expansion in forest area by 0.34-61.09% (Extended Data Fig. 1). Niger 

is singled out in Extended Data Fig. 1 due to potential explosive behavior observed over the 

time period. While historical trends show a decline in forest area, average yearly change 

reports otherwise, due to unusual decline in 2005 by 106% and sudden rebound effect by 

1,780.7% increase in 2006, hence, showing a conspicuous behavior requiring attention. The 

high rate of deforestation (i.e., a decline in forest area) in low-income economies is driven by 

poverty, high demand for forestry products and resources to meet energy demands for 

cooking and heating purposes (Koop et al., 2001). Fuelwood charcoal and timber logging are 

reported as the main determinants of forest degradation in Africa whereas timber logging is 

the primary driver of forest degradation in subtropical Asia and Latin America (Hosonuma et 

al., 2012). Besides, agrarian economies often exploit forest resources through legal or illegal 

trade to improve economic productivity, especially among poor communities whose 

livelihood depends on. For example, illegal logging of wood, specifically extinction species 

such as rosewood has become popular in sub-Saharan Africa due to its high price value and 

demand in international markets (Barrett et al., 2010). Thus, these activities serve as a conduit 

for spillover of emissions and deforestation embodied trade (Hoang et al., 2021). In contrast, 

high-income countries are mostly high-tech and service-based economies, hence, depend less 

on environmental capital including forestry products (Ewers, 2006). 

 



159 
 

 
Fig. 1|Country-specific average change from 1990-2016 (a) income (b) GHG emissions (c) Agricultural 
land-use (d) urbanization. LIC, LMC, UMC, and HIC represent low-income countries, lower-middle-
income countries, upper-middle-income countries, and high-income countries. We use a 
normalization scale [0, 100] to develop country-specific scores from average changes over the 
sampled time period. 
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Fig. 2| Date-stamping explosive behavior of GHG emissions in top 3 low-performing and high-
performing countries using BSADF test (a) Niger (b) Pakistan (c) Afghanistan (d) China (e) India (f) DR 
Congo. Episodes of explosive behavior occur in 2013-2014 (Niger), 2006-2007 (Pakistan), 2013-2014 
(Afghanistan), 2004, 2014 (China), 2008-2012, 2015-2016 (India), and 2001, 2014-2016 (DR Congo). 
Explosive behaviors are assessed using backward supremum ADF (BSADF) test based on recursive 
window widths for data-stamping of episodes. 
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6.2.2 Date-stamping explosive behavior 

The unusual trend observed among variables across time periods reveals the existence of 

dynamic properties requiring further estimation. Explosive behavior of economic indicators 

often trickle-down to socio-demographic and environmental variables during distress or 

crises. Thus, explosive behavior may cause sampled variables to deviate from their 

fundamentals leading to “bubbles”. To account for this unusual behavior, we use the novel 

backward supremum right-tail augmented Dickey-Fuller unit root technique based on 

recursive window widths for data-stamping of episodes (Baum et al., 2021; Phillips et al., 

2011). The estimation technique is applied to the top 3 low-performing and high-performing 

countries of sampled variables (i.e., GHG emissions, forest, and agricultural land) to examine 

for potential explosive behaviors (Fig. 2, Extended Data Fig. 2, Extended Data Fig. 3). We 

observe a rejection of the null hypothesis of unit root corresponding to the right-tail 90-95% 

confidence interval, implying the existence of varying periods of explosive behavior across 

sampled countries. In Fig. 2, one episode of explosive behavior in GHG emissions is observed 

in Niger (2013-2014), Pakistan (2006-2007), and Afghanistan (2013-2014) whereas two 

episodes are detected in China (2004, 2014), India (2008-2012, 2015-2016), and DR Congo 

(2001, 2014-2016). The unusual rebound effect of forest expansion detected in Niger is 

corroborated with two episodes of explosive behavior occurring in 2001, 2009-2016 

(Extended Data Fig. 2). However, no evidence of explosive behavior is found for Nigeria and 

Syria in the forest model (Extended Data Fig. 2) and Iran in agricultural land model (Extended 

Data Fig. 3). Similar episodes of explosive behavior are confirmed among sampled variables 

using the US as a benchmark (Extended Data Fig. 4). The validation of explosive behavior of 

sampled variables across the top 3 low-performing and high-performing countries is 

suggestive of heterogeneous and/or nonlinear behavior driven by unobserved factors. This 

infers the adoption of business-as-usual estimation techniques for variables exhibiting 

sensitive behaviors may be erroneous. The identified episodes of explosive behavior highlight 

country-specific events of influx or excesses in emissions, land-use intensity, urban sprawl, 

and income. These unusual periods of extremely low or high trends could have been triggered 

by country-specific or global financial crises. 
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Fig. 3| Symbiotic relationship among sampled variables across countries. The parameters were 
estimated using convergent cross-mapping technique to examine causal-effects. The Sankey diagram 
presented shows the predictor (left) to target (right) causal relationship. We only presented causal 
effect relationships that are statistically significant. The arrow represents the causal links with width 
proportionate to the weight/coefficient of the flow whereas the rectangles with corresponding texts 
are the nodes. 

 

6.2.3 Assessment of symbiotic relationships 

Due to limitations of standard empirical techniques to examine dynamic systems with 

complex, nonlinear, and chaotic functions, we employ the nonparametric convergent cross-

mapping (CCM) algorithm (Li et al., 2021) to assess causality by mimicking biological symbiotic 

relationships. Contrary to standard econometric techniques that predict outcomes using 

causes, the CCM algorithm employs the reverse––arguing that the search for causes, in reality, 

begins with an outcome to ascertain whether its dynamic structure is embedded with the 
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signature of a cause (Schiff et al., 1996). Additionally, we control for transitivity and external 

forcing of non-coupled series that exists in ecological systems. Thus, the CCM models 

presented herein account for complexities that are problematic in the literature that examine 

causations (Sugihara et al., 2012). The validation of causality infers the paired variables share 

information about a common dynamic system that underpins the direction of causality 

(Sugihara et al., 2012). The Sankey diagram presented in Fig. 3 shows statistically significant 

causal networks among sampled variables. The unidirectional coupling observed from income 

to land-use, income to agriculture, and population to land-use shows commensal or amensal 

relationships that have policy implications. This confirms the effect of urban population on 

land-use, and the influence of income on land-use, and agriculture. In contrast, bidirectional 

coupling is validated between GHG emissions and land-use, GHG emissions and forest, GHG 

emissions and urban population, GHG emissions and agricultural land, agricultural land and 

urban population, income and forest, and forest and population. These mutualistic 

relationships validate known feedback mechanisms in biological systems where organisms are 

mutually dependent on each other. 
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Fig. 4| Distribution of across income groups (a) GHG emissions per Income (b) Land-use intensity per 
Income. The pairwise test using Games-Howell technique shows only statistically significant 
comparisons. (•) represents the within mean across income groups. The output of the frequentist 

analysis Fwelch (.) = #, p = #,  𝜔)!#  = #, CI95% [#, #], nobs = # denote the parameter test statistic, significance 
of the p-value, estimate of the effect size, confidence interval, and number of observations. 
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Fig. 5|Relationship between GHG emissions per Income and land-use intensity per Income across 
income groups. Both population and income dynamics are accounted for in both variables, hence, 
showing a positive monotonic relationship that validates the feedback coupling mechanism of GHG 
emissions and land-use in the convergent cross-mapping causality. 
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Another observation is that economies with low-income levels have higher GHG emissions 

and land-use intensity whereas high-income countries exhibit low emissions and land-use 

intensity. For example, DR Congo produces higher GHG emissions per income whereas 

Afghanistan is the lowest emitter per income in low-income countries (Fig. 4a). Countries with 

low-income levels often depend on vintage technologies for agriculture, forestry, and land-

use, with little or no sustainable practices and environmental consciousness––which coincides 

with pollution-driven growth trajectory at early stages of economic development (Sarkodie et 

al., 2019). In contrast, Romania exhibits the highest land-use intensity per income whereas 

Canada is the lowest land-use per income economy in high-income countries (Fig. 4b). To 

further strengthen the argument, Fig. 5 examines the relationship between GHG emissions 

and land-use by accounting for both population and income dynamics. The resultant nexus 

shows a positive monotonic relationship that validates the distribution plot and feedback 

coupling mechanism of GHG emissions and land-use in the convergent cross-mapping 

causality. In a similar ranking, while high-income economies are associated with low emissions 

and land-use intensity, low-income economies including inter alia, DR Congo, Mozambique, 

and Uganda have close linkage with high land-use intensity and GHG emissions (Fig. 5). In 

another scenario (Extended Data Fig. 5), the effect of urban population on land-use intensity 

is glaring, showing that income group with high urban population has lower land-use intensity 

whereas countries with low urban population rate have higher land-use intensity. A similar 

study found little impact of urban expansion on land-use intensity, viz. forest degradation in 

Africa and Latin America, yet, the impact is high as anticipated in Asia (Hosonuma et al., 2012). 

Noticeably, the lowest change in agricultural land in low-income countries far exceeds the 

highest agricultural land change in high-income economies. This describes a potential 

diminishing return of agricultural land in developed countries, altering agricultural production. 

6.2.5 Drivers of anthropogenic emissions and land-use 

To examine relationships that identify determinants of GHG emissions, agriculture, forestry, 

and land-use, we adopt panel dynamic estimation techniques that investigate global common 

shocks, spillover effects, heterogeneous effects, and controls for both endogeneity and 

omitted-variable bias. We use the panel bootstrap corrected fixed-effects regression based 

on cross-section dependence resampling and analytical heterogeneous initialization to 

achieve convergence (De Vos et al., 2015). We observe significant (P-value<0.01) inertia 
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effects in historical anthropogenic emissions that predict future rise in GHGs (Fig. 6, Extended 

Data Fig. 6). This explains why 60% (30/50) of the sampled countries including 11 of 15 Sub-

Saharan Africa economies show positive yearly average in emission levels. Due to the 

absorptive capacity of forests and crops, rising levels of anthropogenic GHG emissions 

significantly (P-value<0.05) trigger global expansion of land-use for agricultural and forestry 

activities (Extended Data Fig. 7). We find evidence of global shift from forestry to agricultural 

land-use, which may have been triggered by the increasing global demand for food to control 

threats of food insecurity––that permeates many low-income economies. Our model provides 

statistically significant (P-value<0.05) evidence supporting the escalation effect of urban 

population on GHG emissions, land-use (Extended Data Fig. 7), and agricultural land (Extended 

Data Fig. 8a), but has mitigating effects on forest land-use (Extended Data Fig. 8b). While 

urbanization is a threat to future land allocation, we identify opportunities for reducing forest 

loss with improved innovation and technology. The yearly fixed-effects predict (P-value<0.01) 

future forest expansion as innovation increases over time (Extended Data Fig. 9b), evidenced 

in several countries excluding Kazakhstan and Niger (Extended Data Fig. 9a). Such predicted 

threat of forest loss, aside from low forest cover in Kazakhstan may be linked to the failure to 

address climate change in forest policies (Sehring, 2012). The biological diversity loss of forest 

in Niger can be associated with degradation due to agricultural expansion, inadequate forest 

management, immature harvesting of forest products, and climate change driven 

desertification and wildfires (WA BiCC, 2020). Growth in income level exhibits insignificant 

positive effect on forest, but insignificant negative effect on land-use intensity. Contrary, 

income growth significantly (P-value<0.01) spur GHG emissions and agricultural land-use, 

however, the coefficient (P-value<0.01) on the quadratic of income is negative in both 

emissions and agricultural land-use models. This implies that income level exhibits a parabolic 

shape, hence, has diminishing effects on GHG emissions and agricultural land-use. From the 

estimated slope relationship, 1% growth in income exacerbates GHG emissions by 0.74% and 

agricultural land-use by 0.12%. Using the approximation [𝛽'𝐺𝐷𝑃� −2𝛽!𝐺𝐷𝑃!�⁄ ], the turning 

points for both models are calculated as 6.912 (in log) for GHG model and 7.333 (in log) for 

agricultural land-use model. This infers the return to income level becomes zero at ~US$1005 

per capita in GHG model and ~US$1530 per capita for agricultural land-use model. This has 

policy implications as the income data shows about 64% of countries have average income 

levels above the turning point in the GHG model whereas 52% of economies are beyond the 
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extremum point in the agricultural land-use model. Our model reveals the possibility of 

income level increasing anthropogenic GHG emissions until it reaches an extremum point of 

U$1005 per capita and declines thereafter. While the seemingly low turning points may have 

been influenced by the dominance of low- and lower-middle-income countries sampled in the 

model, many of these countries are still below the extremum point. This describes extreme 

income inequality where a large population in low-income countries are poor, hence, 

averaging income level affect the few wealthy population. Countries with average income 

below the turning point in the GHG model include Nigeria, Afghanistan, Pakistan, India, Ghana, 

Kenya, Vietnam, Bangladesh, Myanmar, Mali, Chad, Tanzania, Burkina Faso, Uganda, 

Mozambique, Niger, DR Congo, and Ethiopia. Similarly, income growth escalates agricultural 

land-use intensity until a turning point of U$1530 per capita before declining. Other countries 

below the extremum point in the agricultural land-use model including the listed economies 

in the GHG model comprise Indonesia, Philippines, Angola, Syria, Bolivia, and Cameroon. 
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Fig. 6| Parameter estimation (a) GHG emissions, income, and land-use (b) Model validation using 
bootstrap distribution for all autoregressive coefficients. A visual inspection of the histogram shows 
that the bootstrap-simulated distribution is normally distributed, which is informative for 
investigating residual stationarity. The parameter estimates of all variables excluding land-use are 
statistically significant at P-value<0.05. The heterogeneous slope testing––Standard delta test ∆)  
(9.030, p<0.01), adjusted delta test ∆)#=>  (10.240, p<0.01), and HAC robust delta test ∆)1?@  (3.664, 
p<0.01), confirms heterogeneous effects across countries. Bootstrap corrected dynamic fixed-effects 
regression (n = 1300) based on cross-section dependence resampling and analytical heterogeneous 
initialization to achieve convergence. The estimated model has bootstrapped standard errors, 
bootstrap 95% (percentile-based) confidence intervals, and statistical inferences performed with 
non-parametric bootstrap. Residual diagnostics: CD-test (-0.23) & p-value (0.821); Pesaran's CADF 
test (-1.375) & p-value (0.998). 
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Extended Data Fig. 1| Percentage change in forest area by comparing 1991, 2000, and 2016 time 
periods. The inside plot (a) represents the log historical trend of forest area in Niger (b) denotes 
country-specific average change in forest area from 1990-2016. LIC, LMC, UMC, and HIC represent 
low-income countries, lower-middle-income countries, upper-middle-income countries, and high-
income countries. Niger is singled out due to potential explosive behavior observed over time. While 
historical trends show decline in forest area, average yearly change reports otherwise, due to 
unusual decline in 2005 by 106% and sudden rebound effect by 1,780.7% in 2006, hence, showing a 
conspicuous behavior requiring attention. 
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Extended Data Fig. 2| Date-stamping explosive behavior of forest land-use in top 3 low-performing 
and high-performing countries using BSADF test (a) Pakistan (b) Algeria (c) Nigeria (d) Niger (e) Syria 
(f) Vietnam. Episodes of explosive behavior occur in 2002-2016 (Pakistan), 2001-2005 (Algeria), 2001, 
2009-2016 (Niger), and 2001-2003 (Vietnam) whereas no episodes of explosive behavior occur in 
Nigeria and Syria, since the estimated test is insignificant. 
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Extended Data Fig. 3| Date-stamping explosive behavior of agricultural land-use in top 3 high-
performing and low-performing countries using BSADF test (a) Vietnam (b) Niger (c) Mali (d) Iran (e) 
Italy (f) Poland. Episodes of explosive behavior occur in 2001-2002, 2014-2015 (Vietnam), 2001-2002, 
2005-2007 (Niger), 2012 (Mali), 2006, 2014-2016 (Italy), and 2001-2002, 2010 (Poland) whereas no 
episodes of explosive behavior occur in Iran, since the estimated test is insignificant. 
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Extended Data Fig. 4| Date-stamping explosive behavior of sampled variables in USA using BSADF 
test (a) Agricultural land (b) GHG emissions (c) Forest (d) Income (e) Urban population (f) Land-use. 
Episodes of explosive behavior occur in 2006 (Agriculture), 2013-2014 (GHG), 2002-2010 (Forest), 
2001 (Income), and 2006 (Land-use) whereas no episodes of explosive behavior occur for urban 
population, since the estimated test is insignificant. 
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Extended Data Fig. 5| Distribution of across income groups (a) Land-use intensity per urban 
population (b) Change in Agricultural land. Pairwise test using Games-Howell test showing only 
statistically significant comparisons. (•) represents the within mean across income groups. The 

output of the frequentist analysis Fwelch (.) = #, p = #,  𝜔)!#  = #, CI95% [#, #], nobs = #, denote the 
parameter test statistic, significance of the p-value, estimate of the effect size, confidence interval, 

and number of observations. The output of the Bayesian analysis loge (.) = #, 𝑅!#"#$%&'#(
)*&+%,'*,

 = #,  𝐶𝐼-.%	123  

[#, #], 𝑟456789	
:;< = #, represents the logarithm of Bayes Factor to test evidence in favor of the null 

hypothesis over the alternative, R2 estimate of posterior Bayesian, and prior value. 
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Extended Data Fig. 6| Parameter estimation (a) GHG emissions, income, agriculture, and forest 
nexus (b) Model validation using bootstrap distribution for all autoregressive coefficients. The 
parameter estimates of all variables excluding agricultural and forest land-use are statistically 
significant at P-value<0.05. Bootstrap corrected dynamic FE regression (n = 1300) based on Cross-
section dependence resampling and analytical heterogeneous initialization to achieve convergence. 
The estimated model has bootstrapped standard errors, bootstrap 95% (percentile-based) 
confidence intervals, and statistical inferences performed with non-parametric bootstrap. Residual 
diagnostics: CD-test (-0.21) & p-value (0.836); Pesaran's CADF test (-1.382) & p-value (0.997). 
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Extended Data Fig. 7| Parameter estimation (a) Land-use, GHG emissions, income, and urbanization 
(b) Model validation using bootstrap distribution for all autoregressive coefficients. The parameter 
estimates of all variables excluding income level are statistically significant at P-value<0.05. 
Heterogeneous slope testing––Standard delta test ∆)  (23.728, p<0.01), adjusted delta test ∆)#=>  
(26.286, p<0.01), and HAC robust delta test ∆)1?@  (-3.209, p<0.01). Bootstrap corrected dynamic FE 
regression (n = 1300) based on cross-section dependence resampling and analytical heterogeneous 
initialization to achieve convergence. The estimated model has bootstrapped standard errors, 
bootstrap 95% (percentile-based) confidence intervals, and statistical inferences performed with 
non-parametric bootstrap. Residual diagnostics: CD-test (7.24); Pesaran's CADF test (-1.079) & p-
value (1.000). 
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Extended Data Fig. 8| Parameter estimation for the nexus between (a) Agricultural land-EKC 
hypothesis (b) Forest, agriculture, urbanization, income, and GHG emissions. The parameter 
estimates of all variables in (a) excluding GHG emissions are statistically significant at P-value<0.05 
whereas estimates of all variables in (b) excluding agricultural land-use, income and GHG emissions 
are statistically significant at P-value<0.01. Model validation for (a) was executed using bootstrap 
distribution for all autoregressive coefficients. Bootstrap corrected dynamic FE regression (n = 1300) 
based on Cross-section dependence resampling and burn-in initialization to achieve convergence. 
The estimated model has bootstrapped standard errors, bootstrap 95% (percentile-based) 
confidence intervals, and statistical inferences performed with non-parametric bootstrap. Residual 
diagnostics: CD-test (7.67) & p-value (0.000); Pesaran's CADF test (-1.305) & p-value (0.999). In 
contrast, (b) entails heterogeneous slope testing––Standard delta test ∆)  (35.882, p<0.01), adjusted 
delta test ∆)#=>  (40.687, p<0.01), and HAC robust delta test ∆)1?@  (-6.775, p<0.01). Test of 
endogeneity using robust regression: F(1,49) = 3.690 [verdict: The test for endogeneity confirms the 
validity of adopting instrumental-variables estimator for the forest model], & p<0.1. Residual 
diagnostics: CD-test (27.52); Pesaran's CADF test (-0.607), & p-value (1.000). 
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Extended Data Fig. 9| Predictive margins of (a) Country-Specific-Fixed Effects on Forest Area (b) 
Yearly-Fixed Effects on Forest Area. The red vertical-bars represent 95% confidence intervals 
whereas the green dots are the linear predictions. 
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6.3 Discussion 

This study examines ecosystem dynamics to better understand historical trends and 

performance of nations. We further date-stamped episodes of analyzed explosive behavior 

for unusual trends observed among sampled variables. The convergent cross-mapping for 

causations showed both unidirectional and bidirectional coupling among network of variables. 

The validation of potential spillover effects across countries implies GHG emissions have 

transboundary tendencies through trade in agricultural and forestry products that affect land-

use intensity, especially in low-income countries. However, the magnitude of anthropogenic 

emissions, forestry, and agricultural land-use appears heterogeneous across income groups. 

While economic productivity has improved across countries, there is evidence of outgrowth 

in anthropogenic GHG emissions in developing countries, specifically in low-income 

economies. The turning point of income in both quadratic models shows GHG emissions and 

agricultural land-use intensity across high-income and upper-middle-income countries have 

lessened at some point but somewhat unclear if this decline occurred around US$1005-1530 

per capita. Nevertheless, we still found structural evidence confirming countries with low 

average income characterized by high GHG emissions and high land-use intensity whereas 

emissions and land-use intensity diminishes as income increases. This parabolic shape 

confirms the existence of the environmental Kuznets curve hypothesis, which posits income 

outgrowth characterized by extensive resource utilization, pollution, and waste intensity at 

developmental stages in weakly regulated countries. However, emissions levels, waste, and 

resource intensity decline after realizing a specific turning point of income in stringent and 

regulated countries with environmental awareness (Dasgupta et al., 2002; Sarkodie et al., 

2019). While income growth is not an exclusive determinant of anthropogenic emissions and 

land-use intensity, the fundamental difference between income groups in terms of production 

and consumption patterns is determined by income distribution. Similarly, income level 

underpins the dynamics of agriculture, forestry, and land-use intensity (FAO, 2022).  

Our date-stamping technique shows explosive behavior for forest lands, with many 

countries observing a structural decline in forest areas. Deforestation is reportedly increasing 

and becoming a global threat due to the decline in forest areas embodied in global supply 

chains (Hoang et al., 2021). The historical changes in forest area can be attributed to 

deforestation due to increase in commodity demand, a shift from forestry to agriculture––
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especially when food security is a threat, urbanization-driven infrastructure expansion, and 

wildfires (Curtis et al., 2018). Expansion of agricultural land remains the primary driver of 

forest degradation and deforestation, yet the resilience of food production systems and their 

adaptive capacity to future changes depend on forest biological diversity (FAO, 2022). 

Agricultural expansion is evident in countries, typically developing economies that depend 

heavily on agriculture to meet economic targets. For example, while subsistence agriculture 

is the main driver of deforestation in Africa and subtropical Asia, large-scale commercial 

agriculture is the primary determinant of deforestation in Latin America (Hosonuma et al., 

2012). The concept of scale effect applies here, given the expansion in agricultural land 

resources for productive use to meet the growing population and global demand for food and 

domestic material resources for global supply chains. This explains why anomalies identified 

in forest land-use and agricultural land expansion are mostly located in low-income countries 

with extreme poverty (FAO, 2022). While wealthy nations are reported to conserve 

disappearing forest and embark on further afforestation, low-income nations with little forest 

cover are reported to likely consume the remaining resources at faster rates than low-income 

economies with huge forest resources (Ewers, 2006). The presence of heterogeneous effects 

across countries demonstrates the need for domestic context, viz. cultural and historical 

factors in assessing agricultural expansion, forest decline, and land-use intensity (FAO, 2022). 

The interaction between local forces (i.e., cultural values, access to resources, corruption, 

markets), regional policies (i.e., trade and environmental policies, institutional quality, 

commodity markets), and global processes (i.e., subsidies, global commodity markets, 

international agreements) underpin local resources and responses that could determine 

conservation and management outcomes (Giller et al., 2008). Thus, achieving sustainable 

development requires tailoring global readiness, adaptation, and mitigation options to the 

local context and identifying opportunities that decline vulnerabilities and effects of climate 

change. 

6.3.1 Limitation of the study 

Our empirical estimation has limitations that may have affected statistical inferences. First, 

the land-use indicator consists of arable land, forests, permanent cropland, and pasture but 

excludes built-up areas and others, which may affect the ability to capture changes in land 

distribution, especially in urbanized countries. However, the adoption of a novel panel 
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heterogeneous technique allows controlling for unobserved heterogeneity and omitted-

variable bias. Second, our model doesn’t assess the equilibrium relationship between country-

specific supply and demand as in the case of production-side assessment in input-output 

models, yet, we use econometric models that examine historical patterns and drivers of inputs 

and outputs useful for policy formulation. Such information is useful to mitigate land-use and 

emission threats and prevent irreversible damage to natural resources. Besides, we identify 

opportunities for sustainable land management and land-use planning strategies. For 

example, we observe that most developing countries are more likely to address the ecological 

and economic benefits of land-use rather than climate change effects. This tradeoff highlights 

the role of Reducing Emissions from Deforestation and Forest Degradation (REDD+) in 

developing economies that has co-benefits in mitigating anthropogenic emissions while 

improving income and social equity of those whose livelihood depends on forestry (Denton et 

al., 2014). Extending the forest carbon partnership to include more developing countries 

would help in building REDD+ readiness, hence, has long-term impact on forest carbon stock 

conservation, sustainable forest management, and emission reduction from forest 

degradation and deforestation (FCPC, 2022).  

6.4 Star⋆Methods 

RESOURCE AVAILABILITY 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

Data: This paper analyses existing, publicly available data. These accession numbers for the 

datasets are listed in the key resources table.  

Code: This paper does not report original code. 

Additional Information: Any additional information required to reanalyse the data reported 

in this paper is available from the lead contact upon request. 
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6.4.1     Method details 

Data. The empirical assessment is based on over decadal (1990-2016) data derived from the 

World Bank database (World Bank, 2020) consisting of 50 countries in 7 regions [i.e., East Asia 

& Pacific ( 7 economies), Europe & Central Asia (12 economies), Latin America & Caribbean (5 

economies), Middle East & North Africa (5 economies), North America (2 economies), South 

Asia (4 economies), and Sub-Saharan Africa (15 economies)]. The sampled data comprises 

anthropogenic GHG emissions, income level, urban population, agricultural land, and forest 

area (used as proxy for forest land-use). The adoption of GHG emissions as indicator for 

environmental vitality enables the assessment of the direct effect of global emission status on 

climate change. While GDP per capita is used as indicator of income level, urban population is 

used to examine the role of urbanization on changes in land resources. Agricultural land used 

in this study captures cropland, arable land, and permanent pasture whereas forest area is 

the proportion of land covered by forests. The indicator used to comprehensively assess 

changes in land-use (𝐿𝑈) is constructed using the weights (𝑊., 𝑊E) of both agricultural land 

(𝐴) and forest area (𝐹) expressed as: 

 

𝐿𝑈 = (𝐴 ∗𝑊. + 𝐹 ∗𝑊E) 2⁄ , 𝑊. =
.

.	F	E
 and 𝑊E =

E
.	F	E

 (1) 

 

Multiple data transformations and quantifications including logarithm, normalization, first-

difference, and means were used to capture specific data features in the models. We 

quantified low- and high-performing countries across income groups using the average 

percentage change in sampled variables over time. The graphical relationship between GHG 

emissions and land-use intensity was investigated across income groups while accounting for 

both population and income dynamics (Fig. 6). Both variables were divided by income level 

and subsequently averaged over the sample period before being normalized to generate 

country-specific scores using the expression: score (0,1) = [Vi-Vmin]/[Vmax-Vmin], where Vmin 

represents the minimum data point whereas Vmax denotes maximum data point. 

 

Model estimation. To visualize the distribution across income groups, we used the Games-

Howell test (i.e., parametric technique with no equal variance but normally distributed 

residuals) for between-group pairwise comparison (Pohlert, 2014). The visualization produces 
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detailed statistical inferences (Patil, 2021) based on Welch’s one-way ANOVA (parametric 

technique) hypothesis testing procedure with parametric effect size estimation (Welch, 1951). 

Assessing unexplained characteristics of historical data across countries is a useful step in 

econometric modeling. Thus, the unusual characteristics observed among variables across 

time periods reveal the presence of dynamic properties among sampled variables requiring 

attention. Explosive behaviors in economic indicators have a trickle-down effect on 

demographic and ecological markers during crises. From a policy perspective, explosive 

behaviors may cause historical trends to deviate from their fundamentals leading to unusual 

and unexplained scenarios. Our empirical analysis accounted for such unusual behaviors in 

demo-economic and ecological variables using the backward supremum right-tail augmented 

Dickey-Fuller unit root technique based on recursive window widths for data-stamping of 

episodes (Baum et al., 2021; Phillips et al., 2011). The date-stamping explosive behaviors of 

demo-economic and ecological variables were examined for the top 3 low-performing and 

high-performing countries namely Niger, Pakistan, Afghanistan, China, India, and DR Congo. 

We further used the dataset of the US to validate the estimated behaviors over the time 

period. 

 

Global partnerships between countries and across income groups may stimulate spillover 

effects, pollution-embodied in trade, deforestation-embodied in trade, and land-degradation-

embodied in international trade. Besides, economies are prone to global common shocks such 

as the recent Covid-19 pandemic and other historical global economic recessions. Yet, the 

impact may be heterogeneous across economies depending on the economic structure and 

ecological status. Beyond the challenges of traditional panel data models, income groups 

exhibit economic diversification, income disparities between population structures, varying 

pollution levels, and diverse environmental policies that affect the specification of ecological 

models. To account for this, we examined panel cross-section dependence (CD) and 

heterogeneous effects using the Pesaran-CD test (Pesaran, 2004) for both variable and 

residual diagnostics and standardized Swamey-tests (i.e., Standard delta test ∆� , adjusted delta 

test ∆�%G), and HAC robust delta test ∆�H.I) (Pesaran et al., 2008) for panel slope homogeneity 

(i.e., a violation of the test implies heterogeneous effects). After confirming panel cross-

section dependence and heterogeneous effects, we used the panel unit root test (i.e., CADF 

is a 2nd generational panel unit root test for heterogeneous panels) to examine stationary 
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properties of sampled variables (Lewandowski, 2006). This technique curtails the possibility 

of spurious regression while improving model specification. We observed level stationary 

characteristics for almost all sampled series.  

 

Subsequently, we assessed symbiotic relationships using the convergent cross-mapping 

technique while accounting for complexities, and dynamics among variables. Contrary to 

standard panel techniques that fail to report true causality in non-linear dynamic systems, the 

empirical dynamic modeling technique, viz. convergent cross-mapping solves the challenges 

of traditional panel methods by predicting causality amidst variables that exhibit 

nonlinearities, explosive behaviors, and complexities (Li et al., 2021). The convergent cross-

mapping is a non-parametric technique where manifolds are reconstructed with one-to-one 

mapping if, for example, both GHG and Income variables occur within the same dynamic 

system with manifold M (Sugihara et al., 2012). Thus, causality (GHG ® Income) exists if the 

reconstructed manifold (MIncome) cross-maps GHG with accuracy in prediction for 

GHG|MIncome. 

 

After assessing the causal associations using the convergent cross-mapping method, we 

proceeded to estimate the determinants of anthropogenic emissions and land-use using 

bootstrap-corrected dynamic fixed-effects regression. For brevity, the generic dynamic panel 

model can be expressed as (De Vos et al., 2015; Everaert et al., 2007): 

 

𝑦",$ = 𝛼'𝑦",$1'+ . . +𝛼J𝑦",$1J + 𝛽𝑥",$ + 𝑢" + 𝜖",$ (2) 

 

where 𝑦 denotes the dependent variable across countries 𝑖 in time period 𝑡, 𝛽 is estimated 

parameters (coefficient vector) of exogenous variables 𝑥, 𝛼' − 𝛼J represent autoregressive 

coefficients of lagged-dependent variables, 𝑢"  denotes the fixed-effect across countries, and 

𝜖",$ is the observation-specific error across countries over the time period. Using the model 

specification in equation 2, we developed four models where the EKC hypothesis is examined 

using income, quadratic of income, urban population, and land-use in GHG emission function 

(Fig. 6). Second, we validate the EKC hypothesis using income, quadratic of income, urban 

population, disaggregated land-use, i.e., forestry and agricultural land in GHG emission 

function (Extended Data Fig. 6). Third, we assessed the effect of GHG emissions, income, and 
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urban population on land-use intensity (Extended Data Fig. 7). Finally, we examined the 

impact of GHG emissions, income, quadratic income, urban population, and forestry on 

agricultural land (Extended Data Fig. 8a). Advantageously, the bootstrap-corrected dynamic 

fixed-effects estimator controls for panel cross-sectional dependence and heteroskedasticity 

patterns that undermine standard correction techniques (Everaert et al., 2007). The 

bootstrap-corrected dynamic fixed-effects regression (n = 1300) is improved to incorporate 

cross-sectional dependence resampling and analytical heterogeneous initialization to achieve 

convergence (De Vos et al., 2015; Sarkodie et al., 2020). The cross-sectional dependence 

resampling enforces cross-section-specific error terms but with identical time indices across 

countries. Besides, the analytical heterogeneous initialization technique is utilized to generate 

the initial conditions, i.e., multi-variate normal distribution sample with country-specific 

means and variance-covariance matrices in the resampling procedure (De Vos et al., 2015; 

Everaert et al., 2007). The estimated model has bootstrapped standard errors, bootstrap 95% 

(percentile-based) confidence intervals, and statistical inferences performed with non-

parametric bootstrap. The estimated models are further diagnosed for residual independence 

using bootstrap distribution for all autoregressive coefficients, residual cross-sectional 

dependence (CD-test), and residual panel stationarity tests (Pesaran's CADF test). 
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Escalation effect of Fossil-based CO2 emissions improves 
Green Energy Innovation 6 

Abstract 

The 21st-century development pathway is facing a challenge between climate change 

mitigation, sustained economic prosperity, and energy security. While extant literature 

focuses on drivers of anthropogenic emissions, the role of policy measures including green 

energy innovation, and energy research and development are limited in scope. Here we 

develop conceptual tools across IEA member countries with four decades of data that 

demonstrate the role of green energy innovation, and research and development in reducing 

emissions. Our assessment reveals that sectoral fossil-based CO2 contributes directly to GHG 

emissions by 29.7-40.6% from transport, 24.6-32% from industry, 18.6-19.5% from buildings, 

15-18.4% from other sectors, and 0.5-1.1% from power. We highlight that industrialized high-

income countries converge on green energy innovation but diverge on emissions. The 

empirical evidence shows that achieving green growth is possible through green energy 

innovation amidst climate change and its impact. 

 

7.1 Introduction 

Climate change has become a global concern due to its longstanding impact on the biosphere. 

Adverse effects of climate change include variability in weather patterns leading to extreme 

conditions and events such as flooding, hunger, earthquake, tsunamis, wildfires, drought, and 

sea-level rise (Bowman et al., 2020; Bronselaer et al., 2020; Fujimori et al., 2019; Trnka et al., 

2014). However, climate change is inevitable owing to natural occurrences, increasing 

population, urban sprawl, growing energy, food, and water demands (Meehl et al., 2007). 

Nevertheless, the rate of biospheric deterioration driven by human activities can be curtailed 

through emission-reduction strategies (Meckling et al., 2020; Meckling et al., 2017).  

 
6 Published article: Sarkodie, S. A., & Owusu, P. A. (2021). Escalation effect of fossil-based CO2 emissions 
improves green energy innovation. Science of the Total Environment, 785, 147257. 
https://doi.org/10.1016/j.scitotenv.2021.147257 
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Energy intensity and fossil fuels are fundamental drivers of anthropogenic emissions, hence, 

mitigating climate change entails structural adjustment in energy systems––where 

renewables and new technologies can improve energy efficiency (IEA, 2020a). Majority of 

emissions come from sectors including buildings, industry, other sectors, power industry, and 

transport––with limited technological advancement. Decarbonization of these sectors 

requires technological advancement and innovation that improve sectoral efficiency while 

reducing energy intensity and emissions (Rockström et al., 2017). Efficient end-use 

technologies––where energy conversion drives economic development––are reported to 

contribute largely to emission reduction compared to energy-supply technologies. Similarly, 

end-use technologies provide relatively high social benefits, viz. environmental, economic, 

and energy security returns on technological investment compared to energy-supply 

technologies (Wilson et al., 2012). 

While there is no single pathway towards achieving net-zero emissions, adoption of 

green energy innovation can accelerate the agenda towards environmental sustainability (IEA, 

2020a). Global energy research and development spending increased by 3% (i.e., US$ 30 

billion) in 2019 with 80% of the budget allocated to low-carbon and clean energy technologies 

(IEA, 2020a). While several countries allocate high budgets for research and development, 

very little is known about the effect of research and development on green energy innovation, 

and sectoral-fossil-based GHG emissions. The existing studies have explored the immediate 

driving forces of anthropogenic emissions (Le Quéré et al., 2019; Rosa et al., 2012; Schmidt et 

al., 2017), however, very few studies have assessed underlying drivers of emissions––whereas 

studies on policy-drivers of GHG emissions are limited. Policy drivers including green energy 

innovation and energy research and development act as abatement strategies of global 

emissions (Meng et al., 2020; Sarkodie et al., 2021). In a century of carbon and energy-

intensive economic growth trajectory, studies on green energy innovation are useful in 

achieving decarbonized and energy-efficient growth while mitigating GHG emissions and its 

impacts (D’Alessandro et al., 2020; Wilson et al., 2012). 

Owing to limitations and sporadicity of existing literature on green energy, this study 

contributes to the global debate by exploring the effect of fossil-based CO2 emissions in 

improving green energy innovation in 21 industrialized high-income countries using annual 

occurrence data from 1975-2014. We use a novel convergence estimation method to classify 

industrialized high-income IEA member countries into similar emission, and energy transition 
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pathways. We apply both econometric and machine learning techniques to investigate the 

complexities of anthropogenic emissions and develop conceptual tools valuable for policy 

design. The novel techniques include panel-bootstrap bias-corrected fixed-effects, panel-

kernel regularized least-squares, panel log-t regression-based convergence, panel threshold 

fixed-effects, and dynamic ARDL stochastic simulations. The selection of the estimation tools 

is useful in controlling for historical and inertial effects, transboundary correlation, 

heterogeneity, fixed-effects, omitted-variable, and misspecification bias. We examine the 

heterogeneous effects of anthropogenic emissions, green energy innovation, energy intensity, 

energy research and development, and service-based industrial structure. We estimate the 

forty-year trend of emissions and policy measures across countries and identify winners and 

losers of environmental sustainability through hotspot identification and ranking. We develop 

both aggregate emissions and economic sectoral fossil-based (buildings, power, industry, 

transport, and other sectors) models to explore the effects of immediate, underlying drivers, 

and policy measures. We predict the counterfactual change in GHG emissions from 2014-2064 

using the business-as-usual scenario of 1% growth in energy intensity across IEA member 

countries. Our study demonstrates that investment and integration of green energy 

innovation, energy research and development, and expansion of service-based industrial 

structure have mitigating effects on GHG emissions. Our prediction model reveals that 1% 

shock in energy intensity will increase GHG emissions by over 5.56% in 2064. Further evidence 

shows that fossil CO2 emissions from IEA member countries with high GHG emission levels 

have a positive relationship with green energy innovation. The empirical analysis suggests that 

countries with historical green energy orientation may invest over 58% more in achieving 

green growth through green innovation. Thus, higher GHG emission countries like the US may 

perhaps improve green energy innovation in efforts toward achieving environmental 

sustainability while sustaining economic prosperity. 

7.2 Methods 

Our cross-country time series estimation modeling was based on data spanning 1975-2014—

retrieved from IEA, OECD, World Bank, and EDGAR databases. Due to periodic data limitations 

and completeness, our data comprises 21 industrialized high-income countries from the 30 

IEA member blocs. The selected countries in ISO 31661—alpha-3 code include AUS, AUT, BEL, 

CAN, CHE, DEU, DNK, ESP, FIN, FRA, GBR, GRC, IRL, ITA, JPN, NLD, NOR, NZL, PRT, SWE, and 
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USA. The sustainable development agenda underpins the numerous indicators selected for 

this study. From energy and environmental policy perspective, the utilization of aggregated 

fossil fuel-based CO2 limits the specificity of sectoral contributions toward anthropogenic 

emissions, hence, hamper climate control frameworks. We adopt disaggregate fossil-based 

CO2 namely industry, power, buildings, transport, and other sectors (agriculture and waste) 

(Crippa et al., 2019). Data on energy research and development are adopted via a perpetual 

system of stock inventory (Chakraborty et al., 2020). Total patent counts from OECD-

categorized GHG abatement technologies (carbon capture, storage, and sequestration) and 

service-based gross domestic product are used as surrogates for assessing green energy 

innovation and industrial structure following the extant literature (Popp et al., 2011). Green 

energy innovation is defined herein as energy-based innovations, technologies, and practices 

with emission reduction effect. The selection of service-based GDP as indicator for industrial 

structure stems from the popular environmental Kuznets curve hypothesis. It is assumed that 

the economic structure of the sampled countries shifts towards energy efficiency and 

environmental sustainability (Sarkodie et al., 2019b). In this regard, our a priori expects a 

negative parameter as a sign towards emission reduction. Second, the inclusion of services is 

essential to curtail omitted-variable bias—as other economic sectoral indices namely 

agriculture and industry are accounted for. Our empirical assessment includes several 

empirics, metrics, and structural adjustments including averages, minimum, maximum, 

aggregate, disaggregate, ranking, weighted, accounting, machine learning algorithm, and 

econometric modeling techniques. To achieve a constant variance of sampled variables across 

countries regardless of population and economic structure, we applied log transformation. To 

estimate the compound annual growth rate of sectoral-based fossil CO2 emissions, we use the 

mathematical expression: 

 

𝐹𝐶𝑂!,"(𝑡&, 𝑡K) = �LEIM&,'	
($))

LEIM&,'	($*)
�

+
,)-,* − 1       (1) 

 

where 𝐹𝐶𝑂! is the compound annual growth rate of fossil-based CO2 across countries 𝑖 and 

sectoral emissions 𝑗, 𝑡& and 𝑡K  are the initial and final years of emission trends considered, 

𝑆𝐹𝐶𝑂!,)	(𝑡K) is the final input of sectoral fossil-based CO2 whereas 𝑆𝐹𝐶𝑂!,)	(𝑡&) is the initial 

input of sectoral fossil-based CO2 emissions. Using the specified mathematical expression 
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allows circumventing periodical volatilities that affect arithmetic comparisons between 

countries and sectoral emissions using means (Chan, 2009).  

Traditional cross-country time series estimation techniques used in empirical 

assessment fail to account for global common shocks, spillover, and heterogeneous effects 

across countries. Failure to observe such comprehensive empirical procedure renders 

statistical inferences spurious. The Covid-19 pandemic accentuates the importance of 

accounting for global events with long-term transboundary effects. We implement robust 

cross-section dependence and homogeneity tests to examine potential transboundary 

correlation and heterogeneous effects (Ditzen et al., 2020; Pesaran, Ullah, et al., 2008). 

Several indicators used in empirical assessment often suffer from random-walk properties, 

hence, exhibit highly persistent characteristic that leads to estimation bias. To control this 

amidst cross-country dependence and heterogeneity, we examine stationarity across sampled 

indicators using panel-based unit root test from the second generation (Pesaran, 2007). In this 

regard, data series integrated of order one is first-differenced before model estimation to 

eliminate potential spurious regression. 

7.2.1 Empirical Procedure 

We first test convergence using traditional methods to examine the stationarity and 

cointegration properties of the cross-sectional time series data. However, such estimation 

procedures are limited in detecting asymptotic long-term relationships (Phillips et al., 2007). 

We initiate the novel estimation approach that examines convergence built on time-varying 

factor with nonlinear effect. The empirical log-t test procedure outweighs conventional 

techniques by controlling for heterogeneous and evolutional effects without imposing 

assumptions of stationarity (Phillips et al., 2007). The convergence theory posits that all 

economies of similar industrial and economic structures converge in the long run. The 

categorization of countries into income groups underpins several emission scenarios, energy, 

and environmental policies. However, such scenario remains in doubt owing to the 

heterogeneous distribution and unobserved factors across countries. Thus, rather than using 

traditional classification of countries to assume potential convergence of industrialized high-

income IEA countries, we test for convergence using the empirical procedure expressed as 

(Du, 2017): 
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𝑇𝑃",$ =
'
:
∑ �𝑡𝑝",$ − 1�

!:
"6' → 0	𝑖𝑓 lim

$→O
𝜓",$ = 𝜓, 𝑓𝑜𝑟	𝑖     (2) 

 

where 𝑇𝑃",$ is the cross-country variance of the comparative transitional pathway parameter 

𝑡𝑝",$— quantifying the coefficient of the panel means across transitional pathway of countries 

𝑖 at time 𝑡. The transitional pathway parameter is estimated by the imposition of restrictions 

on the time-varying component 𝜓",$ that calculates the distance between the input variable 

and stochastic term derived from the decomposition of input variable. The null hypothesis of 

convergence is rejected if the T-statistic from the log-t test is less than -1.65 after discarding 

33.3% of the data fraction before regression (Phillips et al., 2007). Next, we employ panel 

heterogeneous causality in a bivariate model as a general-to-specific test to examine the 

predictive power of the sampled series. This procedure is essential to identify the direction of 

causal influence across divergent countries confirmed from the convergence test 

(Supplementary Table 1). The novel procedure accounts for both cross-section dependence 

and heterogeneity, a scenario evident in this study. We apply a panel-based causality 

estimator using the expression (Dumitrescu et al., 2012): 

 

𝐷",$ = 𝛿" + ∑ 𝜆"
(+)𝐷",$1+ +	P

+6' ∑ 𝛽"
(+)𝐼",$1+ +	P

+6' 	𝜀",$     (3) 

 

where 𝐷",$ is the target variable, 𝐼",$ denotes the predictor variable, 𝐾 is the lag order, 𝛿"  is the 

country-specific (𝑖) effects fixed over time 𝑡, 𝜆"
(+)and 𝛽"

(+)signify the autoregressive constraints 

and slope coefficients of the regression. Using the predictive components, we assess the 

determinants of sectoral-based fossil fuel CO2 expressed as: 

 

∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$ = 𝛿" + 𝜆∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ +

𝛾!∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ + 𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ +

𝛾S∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$       (4) 

 

∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$ = 𝛿" + 𝜆∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ +

𝛾!∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ + 𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ +

𝛾S∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$       (5) 
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∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$ = 𝛿" + 𝜆∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ + 𝛾!∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ +

𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ + 𝛾S∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$ 

            (6) 

 

∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$ = 𝛿" + 𝜆∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ +

𝛾!∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ + 𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ +

𝛾S∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$       (7) 

 

𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$ = 𝛿" + 𝜆𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ + 𝛾!∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ +

𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ + 𝛾S∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$(8) 

 

where ∆ and 𝑙𝑛 denote first-difference and logarithmic transformation, 𝛿"  represents 

heterogeneous effects, that account for unobserved transboundary effects, 𝜆 is the estimated 

parameter of the lagged-dependent variable—which is typically <1—signifying dynamic 

stability of the relationship. 𝛾(..) denotes unknown coefficients of green innovation, GHG 

emissions, energy intensity, energy R&D, and industrial structure to be estimated. 	𝜀",$ is the 

unobserved error term with i.i.d. characteristics, thus, jointly uncorrelated across countries 

𝑖 = 1,… , 21 over time 𝑡 = 2,… , 40. While power, green innovation, and energy R&D are level 

stationary series, buildings, industry, other sectors, transport, GHG emissions, energy 

intensity, and industrial structure are first-difference stationary series (Table 1). This explains 

the estimation of equations 4-8 with level and first-difference variables. Because emissions 

have past occurrences that influence current trends, the inclusion of ∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$1' in 

equation 4, ∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$1' in equation 5, ∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$1' in equation 6,	∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$1' 

in equation 7, and 𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$1' in equation 8 is used as a proxy variable to control for omitted 

variable bias,  and account for unobserved historical factors. The sign of the corresponding 

coefficient results in two scenarios, i.e., permanent or transitory behavior of sectoral CO2. 

Thus, incorporating lagged-dependent sectoral CO2 helps to capture inertia effects across IEA 

member countries (Wooldridge, 2016). We further develop a comprehensive model that 

incorporates all sectoral-based fossil CO2, green innovation, energy intensity, energy R&D, and 

industrial structure in GHG emissions function, expressed as: 
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∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ = 𝛿" + 𝜆∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ +

𝛾!∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾Q𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ + 𝛾R∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ +

	𝛾S∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$ + 𝛾U∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$ + 𝛾V∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$ + 𝛾W∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$ +

𝛾X𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$ + 𝜀",$          (9) 

 

Using the resultant parameters of individual sector-based fossil CO2, we estimate observed 

and unobserved economic sectoral contributions to GHG emissions in IEA member countries 

using ranking. In this scenario, we can strictly assess the impact of disaggregate fossil CO2 

emissions on GHG emissions for policy purposes based on ceteris paribus assumption. The 

green energy innovation model specification is constructed using the following expression: 

 

𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ = 𝛿" + 𝜆𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$1'	+𝛾'∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ +

𝛾!𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ + 𝛾Q∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ + 	𝜀",$    (10) 

 

This model exclusively assesses the role of energy and its services and industrial structure in 

expanding green energy innovation amidst increasing levels of energy intensity. The dynamic 

model specifications expressed in equations 4-10 are estimated with panel biased-corrected 

fixed-effects estimator using bootstrapping for estimation and statistical inferences. In 

equations 4-9, we utilize the cross-sectional dependence scheme for the resampling pattern 

of the error terms and analytical heterogeneous method for generating the initialization 

conditions. In contrast, equation 10 applies four different resampling error schemes namely 

cross-sectional dependence, cross-sectional heteroskedasticity, wild bootstrap, and cross-

sectional heteroskedasticity based on Monte Carlo error sampling. Similarly, equation 10 

applies three methods for initialization conditions namely burn-in, analytical heterogeneous, 

and deterministic (De Vos et al., 2015; Everaert et al., 2007). The choice of optimal resampling 

scheme and initialization method depends largely on the stationary properties, cross-section 

dependence, and heterogeneous characteristics of the data series and the model 

specification. For model specifications in equations 4-10, we derive the corresponding 

standard errors using non-parametric bootstrap distribution of the dynamic panel estimator 

(Sarkodie & Owusu, 2020b). The estimated models are validated using the panel biased-

corrected fixed-effects distribution of the autoregressive coefficients expressed in histogram 

(Supplementary Figures 1-7). 
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To improve the consistency of the estimated model, we mimic the econometric-based 

model specification with panel Kernel-based regularized least squares. This machine learning-

based estimator eliminates linearity and controls for heterogeneity in lieu of misspecification 

bias, hence, produces consistent pointwise parameter estimates and marginal effects 

(Hainmueller et al., 2014). Contrary to the manual model specification using panel biased-

corrected fixed-effects estimator, the Gaussian-kernel based regularized least-squares 

automatically selects an optimal functional form by learning the data dynamics. For brevity, 

the panel Kernel-based regularized least squares can be expressed in a generic form as: 

 

𝑓(𝐼) = ∑ 𝑐"𝑘(𝐼, 𝐼"),:
"6' 														𝐷 = 𝑓(𝐼)       (11) 

 

where 𝐷 is the target variable, 𝐼 denotes the predictors, 𝑐"  represents the weight of the 

predictors, and 𝑘(𝐼, 𝐼") pulls similarity evidence from the observations. The estimator 

automatically selects an optimal kernel bandwidth and regularization parameter. Thus, the 

pointwise derivatives of the target variables (∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$, ∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$, ∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$, 

∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$, 𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$, and ∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$) and predictors can be estimated to 

explore the pointwise marginal effects using the estimator expressed as (Hainmueller et al., 

2014): 

 

𝐸: �
/Y

/Z.
(0)
� � = 1!

2&:
	∑ ∑ 𝑐"𝑒1[Z21Z'[

&

") 𝑘q𝐼"
(G) − 	𝐼)

(G)r      (12) 

 

where /Y

/Z.
(0)
�  is the partial derivative of the target variables to the predictors, 𝜎! is kernel 

bandwidth. The effect of regime-dependent fossil-based CO2 emissions on green energy 

innovation is modeled using the novel panel threshold fixed-effects expressed as (Wang, 

2015): 

𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ = 𝜇 + 𝑋",$	(𝛿",$ < 𝛾') ∗ 𝛽' + 	𝑋",$	�𝛾' ≤ 𝛿",$ < 𝛾!� ∗ 𝛽!	+	𝑋",$	�𝛿",$ ≥

𝛾!� ∗ 𝛽Q + 𝑢" + 	𝜀",$          (13) 

 

where 𝑢"  is the country-specific effects, and	𝜀",$ is the white noise. 𝑋",$ denote the covariates 

∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$, 𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ and ∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$. 𝛿",$ and 𝛾 
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represent the threshold variable and parameter splitting the panel equation into four regimes 

with corresponding coefficients 𝛽', …, 𝛽Q. Finally, we re-estimate equation 9 using dynamic 

autoregressive distributed lag model with stochastic simulations expressed as (Jordan et al., 

2018): 

 

∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ∆𝑙𝑛𝐺𝐻𝐺	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠",$1' +	𝛾'𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$ +

𝛾!𝐺𝑟𝑒𝑒𝑛	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛",$1' + 𝛾Q∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$ + 𝛾R∆𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦",$1' +

𝛾S𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$ + 𝛾U𝑙𝑛𝐸𝑛𝑒𝑟𝑔𝑦	𝑅&𝐷",$1' + 𝛾V∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$ +

𝛾W∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑖𝑎𝑙	𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒",$1' +	𝛾X∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$ + 𝛾'&∆𝑙𝑛𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔𝑠",$1' +

𝛾''∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$ + 𝛾'!∆𝑙𝑛𝐼𝑛𝑑𝑢𝑠𝑡𝑟𝑦",$1' + 𝛾'Q∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$ + 𝛾'R∆𝑙𝑛𝑂𝑡ℎ𝑒𝑟",$1' +

𝛾'S∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$ + 𝛾'U∆𝑙𝑛𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡",$1' + 𝛾'V𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$ + 𝛾'W𝑙𝑛𝑃𝑜𝑤𝑒𝑟",$1! + 𝜀",$ 

            (14) 

We use equation 14 to examine both long and short-term impacts of sectoral fossil-CO2, green 

energy innovation, energy intensity, energy research and development, and industrial 

structure. The proposed estimator is used to stochastically simulate the long-term GHG effects 

of a counterfactual change in energy intensity from 2014-2064 based on ceteris paribus 

assumption. The 50-year prediction is essential to test the business-as-usual scenario where 

there is 1% increase in energy-intensive based economic development. 

 

7.3 Results 

7.3.1 Forty-year trend estimation in IEA member countries 

The hotspot ranking of indicators identifies the minimum, mean and maximum activities of 

countries over 40 years. Using a lollipop plot presented in Fig. 1, we show that Finland and 

Portugal have the lowest (0.12) and highest (0.56) level of green energy innovation, 

respectively. This implies that Portugal has more CO2 abatement innovations compared to 

other IEA member countries. In connection with energy intensity, Switzerland records the 

lowest average (0.08) over 40 years whereas Canada ranks first (0.24). Higher energy intensity 

signifies lower energy efficiency due to higher levels of energy utilization per GDP. Greece 

ranks 21st (2.71) in terms of contribution towards energy research development and 

demonstration whereas the UK ranks 1st (11.28). Both France and the US (4.27) have the 



201 
 

largest industrial structure compared to Ireland (4.09). The US has the highest level of both 

fossil fuel-based CO2 and GHG emissions whereas Switzerland and New Zealand have the 

lowest emissions (Fig. 1). We examine the annual change of over decadal sectoral-based fossil 

CO2 using the compound annual growth rate formulation (Fig. 2). Using this expression enables 

easy comparison of persistent rate of reoccurrences of CO2 across sectors of the same 

component. In this way, we can base our judgment on the business as usual scenario of the 

RCP 8.5 assuming sectoral-based fossil CO2 grows at the same rate annually (van Vuuren et al., 

2011). The sectoral-based fossil CO2 includes Buildings, Industry, Other Sectors, Power 

Industry, and Transport. The highest compound annual growth rate of fossil CO2 occurs in the 

power industry of Norway, New Zealand, Portugal, Australia, and Greece by 7.95%, 5.07%, 

4.32%, 2.51%, and 2.45%, respectively. While GHG emissions declined in Norway, Australia, 

and Greece after 2009, historical high of GHG emissions is dominate from 1975-2009. Other 

sectors including agriculture, waste, indirect, and industrial activity emissions increased by 

3.19%, 1.16%, 1.02%, 1.01%, and 0.72% compound annual growth rate in New Zealand, 

Australia, Canada, Netherlands, and Portugal. Top five hotspot countries like Greece, Ireland, 

Portugal, Australia, and Spain saw transport-based fossil CO2 grow by 3.02%, 3.01%, 2.81%, 

2.13%, and 2.11%, respectively. Buildings-based fossil CO2 grew by 1.55%, 1.45% 1.17%, 

0.59%, and 0.22% compound annual growth rate in Spain, Australia, Portugal, Ireland, and 

New Zealand. Besides, industry-based fossil CO2 grew by 1.33%, 1.10%, 0.98%, 0.75%, and 

0.36% in New Zealand, Norway, Canada, Australia, and Portugal. In contrast, Buildings-based 

fossil CO2 saw the highest decline by 7.11%, 3.93%, 2.55%, 1.65%, and 1.37% compound 

annual growth rate in Sweden, Denmark, Finland, Germany, and Norway. Power industry-

based fossil CO2 dropped by 2.77%, 1.40%, 1.09%, 0.39%, and 0.17% in France, Belgium, the 

UK, Denmark, and Germany. Further assessment from historical data shows several EU 

countries saw a decline in GHG emissions from the power sector after the 2009 EU 

Renewables directive. Likewise, industry-based fossil CO2 declined by 2.53%, 2.29%, 2.29%, 

2.28%, and 2.24% in Sweden, France, the UK, Germany, and Italy, respectively. Other sector-

based fossil CO2 fell by 1.56%, 1.29%, 1.10%, 1.02%, and 0.98% in the UK, Italy, France, 

Norway, and Germany. It is important to note that transport is the only sector across IEA 

member countries that saw no decline (compound annual growth rate) in fossil CO2 (see Fig. 

2).  
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Fig. 1| 40-year cross-country trend of (a) Green energy innovation (b) Energy intensity (c) Energy 
Research and Development (d) Industrial Structure (e) GHG emissions (f) Fossil fuel-based CO2 
emissions. The lollipop plot shows horizontal line from left to right––representing minimum and 
maximum whereas the black dot signifies the mean with overlayed text in descending order. 
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Fig. 2| Sectoral compound growth rate accounting of fossil-based CO2 emissions. This figure shows 
the estimated compound annual growth rate (%) of sectoral-based fossil CO2 on the x-axis and Cross-
countries on the y-axis. The filled bars denote sectoral growth rates and colored dots are 40-year 
mean across IEA member countries. 
 

7.3.2 Convergence & heterogeneous causal effects 
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1996). While convergence may hold in terms of economic productivity, it may fail in terms of 

environmental sustainability. Meanwhile, the environmental Kuznets curve theory postulates 

in part that higher-income countries become sophisticated with technology and 

environmental awareness, hence, decline emissions over time (Panayotou, 1993). The decline 

of emissions can be attributed to environmental policy stringency and a shift from carbon and 

energy-intensive economy to decarbonized and energy-efficient economic structure. Thus, 
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high-income countries are expected to converge on anthropogenic emissions. To test this 

hypothesis, we first generate trend components of the data series using panel-based Hodrick-

Prescott smoothing filter method (Hodrick et al., 1997). This data filtering technique is 

necessary to estimate the long-term behavior of the indicators. We apply the proposed log-t 

regression test to examine the overall null hypothesis of convergence across countries (Phillips 

et al., 2007). Subsequently, we undertake sub-group formation into club membership and club 

merging for clubs satisfying the joint hypothesis of convergence (Du, 2017). We observe in 

Supplementary Table 1 that the overall log-t test statistic for all data series is less than < -1.65 

(i.e., rejecting 𝐻&: of convergence) except green energy innovation. This implies that 

industrialized high-income countries converge on green energy innovation but divergent on 

GHG emissions, energy intensity, energy R&D, industrial structure, and sectoral-based fossil 

CO2. To examine heterogeneous effects across IEA member countries, we first examine both 

cross-section dependence (CD) and stationarity using Breusch-Pagan LM (LM), bias-adjusted 

LM (LMadj), CD (LMCD), and CADF tests. We observe from Table 1 column 2 all the data series 

are first-difference stationary except for power industry, green energy innovation, and energy 

R&D. Besides, we confirm the presence of panel correlation across countries for the proposed 

models, rejecting 𝐻&: of cross-section independence. This infers that IEA member countries 

are susceptible to global common shock including Covid-19 pandemic, oil shocks, market 

volatility, and spillover effects. Subsequently, we apply panel slope homogeneity test after 

validating the preconditions. In this test, we examine whether slope parameters are equal 

across countries (Pesaran & Yamagata, 2008). The estimated slope parameters (∆, ∆adj) reject 

𝐻&: of identical slope coefficients at p-value<0.01, confirming slope heterogeneity. Now, we 

estimate the panel heterogeneous causal effects as general-to-specific approach for our 

proposed model (Fig. 3). The panel heterogeneous Granger-causality is useful in assessing the 

predictive components of data series. We notice a rejection of the null hypothesis of no 

causality for all countries in Figs. 3-4. Thus, there is causality from transport, green energy 

innovation, energy intensity, energy R&D, industrial structure, industry, other sectors, and 

power industry to GHG emissions for at least one country (Fig. 3a). The country-specific 

causality shows that green energy innovation predicts GHG emissions in Belgium, Italy, 

Netherlands, Spain, and the US. Additionally, energy intensity predicts GHG emissions in 

Australia, Belgium, Canada, Denmark, Germany, Italy, Norway, and Spain. Besides, the power 

industry predicts GHG emissions in Australia, France, Germany, Greece, Ireland, Italy, New 
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Zealand, Spain, and Switzerland (Supplementary Table 2). Similarly, we observe panel 

causality from transport, GHG emissions, energy intensity, energy R&D, industrial structure, 

industry, buildings, and power industry to green energy innovation (Fig. 3b). Besides, there is 

causality from transport, GHG emissions, energy intensity, industry, other sectors, green 

energy innovation, buildings, and power industry to energy research and development for at 

least one country (Fig. 4a). Likewise, causal relationship is observed from transport, GHG 

emissions, other sectors, energy R&D, industrial sector, industry, buildings, and power 

industry to energy intensity for at least one country (Fig. 4b). The country-pooled causality 

reveals that GHG emissions predict green energy innovation in Denmark, Finland, 

Netherlands, Norway, and Portugal. Energy R&D predicts green energy innovation in 

Denmark, Finland, Germany, Italy, Portugal, and Switzerland (Supplementary Table 4). The 

variations of empirical evidence across IEA member countries underpin our earlier findings of 

heterogeneous and divergence effect, highlighting the importance of using more 

sophisticated techniques to control these challenges. 
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Table 1| Assessment of fossil-based anthropogenic emissions 

 
Notes: a level stationary series, b LM test based on two-sided biased-adjusted estimation test, Y-(K/W) 
validation of long-term relationship with Kao (K) and Westerlund (W) cointegration tests, CSD means 
cross-section dependence, AHE denotes analytical heterogeneous, LM, LMadj, and LMCD represent 
Breusch-Pagan LM, Biased-adjusted LM and CD tests. ∆ƒ represents rejection of the null hypothesis of 
unit root. (1) Estimated using cross-sectional time series biased-corrected fixed-effects; (2) Estimated 
using panel-kernel based regularized least-squares. *, **, *** signify statistical significance at 99, 95, 
90% Confidence Interval. 

 

 

 

 

expressed in Eqs. (4)–(10) are estimated with panel biased-corrected
fixed-effects estimator using bootstrapping technique for estimation
and statistical inferences. In Eqs. (4)–(9), we utilize the cross-sectional
dependence scheme for resampling pattern of error terms and analyti-
cal heterogeneous method for generating the initialization conditions.
In contrast, Eq. (10) applies four different resampling error schemes
namely cross-sectional dependence, cross-sectional heteroskedasticity,
wild bootstrap, and cross-sectional heteroskedasticity based on Monte
Carlo error sampling. Similarly, Eq. (10) applies three methods for ini-
tialization conditions namely burn-in, analytical heterogeneous, and de-
terministic (De Vos et al., 2015; Everaert and Pozzi, 2007). The choice
of optimal resampling scheme and initialization method depends
largely on stationary properties, cross-section dependence, and
heterogeneous characteristics of data series and model specification.
For model specifications in Eqs. (4)–(10), we derive the correspond-
ing standard errors using non-parametric bootstrap distribution of
the dynamic panel estimator (Sarkodie and Owusu, 2020). The
estimated models are validated using panel biased-corrected fixed-
effects distribution of autoregressive coefficients expressed in
histogram (Supplementary Figs. 1–7).

To improve the consistency of the estimated model, we mimic the
econometric-based model specification with panel Kernel-based regu-
larized least squares. This machine learning-based estimator eliminates
linearity and controls for heterogeneity in lieu of misspecification bias,
hence, produces consistent pointwise parameter estimates and mar-
ginal effects (Hainmueller and Hazlett, 2014). Contrary to the manual
model specification using panel biased-corrected fixed-effects estima-
tor, the Gaussian-kernel based regularized least-squares automatically
selects an optimal functional form by learning the data dynamics. For
brevity, the panel Kernel-based regularized least squares can be
expressed in a generic form as:

f Ið Þ ¼ ∑
N

i¼1
cik I, Iið Þ,D ¼ f Ið Þ ð11Þ

where D is the target variable, I denotes the predictors, ci represents the
weight of the predictors, and k(I, Ii) pulls similarity evidence from the
observations. The estimator automatically selects an optimal kernel
bandwidth and regularization parameter. Thus, the pointwise deriva-
tives of the target variables (∆lnBuildingsi, t, ∆lnIndustryi, t, ∆lnOtheri, t,

Table 1
Assessment of fossil-based anthropogenic emissions.

∆ƒ GHG Buildings Industry Other Transport Power

(1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)

GHGt-1 – −0.063*
[0.035]

−0.002**
[0.001]

– – – – – – – – – –

Buildingst-1 – – – −0.064
[0.045]

−0.056***
[0.025]

– – – – – – – –

Industryt-1 – – – – – −0.095***
[0.040]

−0.059**
[0.028]

– – – – – –

Othert-1 – – – – – – – −0.064
[0.052]

−0.067**
[0.032]

– – – –

Transportt-1 – – – – – – – – – 0.272***
[0.056]

0.204***
[0.030]

– –

Powert-1 – – – – – – – – – – – 0.944***
[0.016]

0.774***
[0.007]

GHG −13.149*** – – 0.620***
[0.181]

0.557***
[0.061]

0.760***
[0.164]

0.656***
[0.051]

0.654***
[0.155]

0.597***
[0.057]

0.364***
[0.066]

0.251***
[0.032]

1.861***
[0.239]

1.712***
[0.354]

Buildings −13.703*** 0.116**
[0.018]

0.085***
[0.008]

– – – – – – – – – –

Industry −12.245*** 0.154***
[0.028]

0.139***
[0.011]

– – – – – – – – – –

Other −12.909*** 0.094***
[0.019]

0.080***
[0.011]

– – – – – – – – – –

Transport −9.864*** 0.254***
[0.031]

0.129***
[0.017]

– – – – – – – – – –

Power −2.380a*** 0.007**
[0.003]

0.002***
[0.000]

– – – – – – – – – –

Green energy
innovation

−3.207a*** −0.001
[0.013]

−0.010*
[0.006]

−0.028*
[0.016]

0.024
[0.022]

0.005
[0.019]

−0.005
[0.019]

−0.012
[0.017]

0.009
[0.021]

−0.018*
[0.011]

−0.036***
[0.011]

0.035
[0.043]

0.152
[0.123]

Energy intensity −12.793*** 2.231***
[0.580]

1.493***
[0.140]

4.002***
[1.375]

4.925***
[0.475]

0.277
[0.596]

0.227
[0.405]

−0.980*
[0.533]

−1.868***
[0.450]

−0.622
[0.400]

−0.242
[0.237]

2.132
[1.681]

−2.366
[2.765]

Energy R&D −3.178a*** −0.001
[0.002]

−0.001***
[0.000]

−0.002
[0.005]

0.001
[0.001]

−0.005**
[0.002]

−0.001*
[0.001]

−0.001
[0.004]

−0.001
[0.001]

−0.003
[0.005]

−0.001**
[0.000]

−0.003
[0.006]

0.014**
[0.006]

Industrial structure −11.443*** −0.111
[0.069]

−0.132***
[0.046]

0.511***
[0.154]

0.541***
[0.158]

−0.222
[0.272]

−0.612**
[0.135]

−0.755***
[0.164]

−0.609***
[0.153]

−0.015
[0.108]

−0.061
[0.081]

0.998*
[0.577]

1.123
[0.914]

Convergence – Y – Y – Y – Y – Y – Y –
Resample – CSD – CSD – CSD – CSD – CSD – CSD –
Initialization – AHE – AHE – AHE – AHE – AHE – AHE –
LM – 244.1* 244.1* 454.9*** 454.9*** 226.5 226.5 273.7*** 273.7*** 359.5*** 359.5*** 1087*** 1087***
LMadj

b – 2.354** 2.354** 35.89*** 35.89*** 0.867 0.867 8.187*** 8.187*** 21.33*** 21.33*** 133.4*** 133.4***
LMCD

b – 1.244 1.244 5.061*** 5.061*** 4.589*** 4.589*** 4.892*** 4.892*** 9.048*** 9.048*** 20.31*** 20.31***
∆ – 7.733*** 7.733*** 7.903*** 7.903*** 4.204*** 4.204*** 4.087*** 4.087*** 6.669*** 6.669*** 14.281*** 14.281***
∆adj – 9.126*** 9.126*** 8.725*** 8.725*** 4.641*** 4.641*** 4.512*** 4.512*** 7.363*** 7.363*** 15.766*** 15.766***
Cointegration – Y-K Y-K Y-K Y-K Y-K Y-K Y-K Y-K Y-K Y-K Y-W Y-W
Countries – 21 21 21 21 21 21 21 21 21 21 21 21
Obs – 798 819 798 798 798 798 798 798 798 798 819 819
R2 – – 0.825 – 0.597 – 0.569 – 0.516 – 0.552 – 0.977

Notes: a level stationary series, b LM test based on two-sidedbiased-adjusted estimation test, Y-(K/W) validation of long-term relationshipwith Kao (K) andWesterlund (W) cointegration
tests, CSDmeans cross-section dependence, AHE denotes analytical heterogeneous, LM, LMadj, and LMCD represent Breusch-Pagan LM, Biased-adjusted LM and CD tests. ∆ƒ represents re-
jection of the null hypothesis of unit root. (1) Estimated using cross-sectional time series biased-corrected fixed-effects; (2) Estimated using panel-kernel based regularized least-squares.
*, **, *** signify statistical significance at 99, 95, 90% confidence interval.
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Fig. 3| Heterogeneous causal effect of (a) sectoral-based fossil-driven CO2 and energy services on 
GHG emissions (b) sectoral-based anthropogenic emissions and energy services on green energy 
innovation. Estimated based on heterogeneous panel Granger non-causality test. The arrows depict 
the direction of causality whereas the p-values denote the rejection of the null hypothesis of non-
causality. 
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Fig. 4| Heterogeneous causal effect of (a) sectoral-based anthropogenic emissions and energy 
services on Energy R&D (b) sectoral-based anthropogenic emissions and energy services on Energy 
Intensity. Estimated based on heterogeneous panel Granger non-causality test. The arrows depict 
the direction of causality whereas the p-values denote the rejection of the null hypothesis of non-
causality. 
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7.3.3 Assessment of fossil-based anthropogenic emissions 

We assess the drivers of GHG emissions and sectoral-based fossil CO2 using both panel-

bootstrap bias-corrected fixed-effects and panel-kernel regularized least-squares. While the 

former is our choice econometric approach for estimation, the latter technique based on 

machine learning is used to validate the parameter estimates. Using these sophisticated 

estimation techniques allows accounting for omitted-variable and misspecification bias, cross-

section dependence, additivity, heterogeneity, and country-specific fixed-effects (Owusu et 

al., 2020). The overall models show statistical significance at 1% level, with corresponding R2 

between 0.52-0.98 and residual independence (Supplementary Figs. 1-7). Thus, the regressors 

explain 52-98% of variations in anthropogenic emissions (Table 1). The GHG model shows a 

negative and significant GHGt-1, signifying the recovery effect of historical GHG emissions. We 

find a positive and statistically significant parameter of sectoral-based fossil CO2, implying that 

emissions from buildings, industry, other sectors (agriculture, waste, indirect emissions), 

transport, and power industry escalates GHG emissions in the long-term. Similarly, historical 

increase in energy intensity exacerbates GHG emissions by 1.49-2.23%. In contrast, improving 

green energy innovation, increasing energy research and development, and expanding 

industrial structure have mitigating effects on GHG emissions. To corroborate the findings, we 

examine the relationship between green energy innovation and GHG emissions while 

accounting for industrial structure. We observe in Fig. 5 that countries with high green energy 

innovation and medium-high industrial structure have lower GHG emissions and vice versa. 

For example, Portugal, Ireland, Greece, New Zealand, Denmark, Norway, and Switzerland have 

lower levels of GHG emissions whereas the US, Germany, Italy, Australia, and Canada with 

low-medium green energy innovation but high industrial structure emit more GHG. This 

implies that diversification of energy portfolio with green energy innovation has GHG 

emission-reduction effect. In the sectoral-based fossil CO2 models, the coefficient on 

Buildingst-1, Industryt-1, and Othert-1 is negative and significant––inferring that historical 

emission factors from buildings, industry and other sectors correct anomalies with time. 

Contrary, the parameter on Transportt-1 and Powert-1 are significantly positive with a large 

magnitude, especially power––implying that past emissions influence current levels of 

emissions from transport and power. Unobserved factors may explain the inertial effect of 

historical emissions from transport and power industry. Increasing levels (1%) of GHG 
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emissions––the main cause of climate change––increase fossil CO2 emissions from buildings 

(0.56-0.62%), industry (0.66-0.76%), other sectors (0.60-0.65%), transport (0.25-0.36%), and 

power industry (1.71-1.86%). Growth in energy intensity by 1% spur CO2 emissions by 4.0-

4.93% from buildings but declines other sector-based fossil CO2 emissions by 0.98-1.87%. 

Expansion of industrial structure by 1% increases buildings-based fossil CO2 emissions by 0.51-

0.54% but declines industry and other sector-based fossil CO2 emissions by 0.61% and 0.61-

0.76%. Improving energy research and development by 1% decreases industry and transport-

based fossil CO2 emissions. Besides, accelerating green energy innovation declines long-term 

buildings and transport-based fossil CO2 emissions. In summary, the impact of long-term 

economic sectoral-based fossil CO2 on GHG emissions depicted in Fig. 6 can be expressed as –

– transport>industry>buildings>others>power. Empirically, power, and heat generation 

contribute 0.46-1.12% of GHG emissions. Other sectors including agriculture, waste, and 

indirect emissions contribute 15.04-18.39% of GHG emissions. The building sector is ranked 

as the third contributor to long-term GHG emissions by 18.56-19.54%. The industrial sector 

including manufacturing and fuel production is ranked 2nd determinant of GHG emissions, 

contributing about 24.64-31.95%. Transportation is identified as the main contributor to long-

term GHG emissions in a fossil-based CO2 regime, contributing about 29.66-40.64%. This 

corroborates our earlier findings of persistent transport-based fossil CO2 emissions across all 

countries depicted in Fig. 2. We examine the counterfactual change in GHG emissions from 

2014-2064 using dynamic ARDL stochastic simulations. Using the business-as-usual scenario 

of the RCP 8.5, we assume energy intensity will grow at the same rate (1%) annually based on 

the compound annual growth rate estimation. We observe in Fig. 7 that 1% shock in energy 

intensity will increase GHG emissions by over 5.56% in 2064. 
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Fig. 5| Relationship between green energy innovation and GHG emissions while accounting for 
industrial structure. 
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Fig. 6| Long-term contribution of sectoral-based fossil CO2 to GHG emissions. Percentages calculated 
from the estimated parameters based on ceteris paribus assumption––using both panel-based kernel 
regularized least-squares and panel bootstrap bias-correction fixed-effects. The numbering system 
ranks sectoral-fossil CO2 from lowest to highest. 
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Fig. 7| Counterfactual change in GHG emissions with 1% ∆ in Energy Intensity (%). The forecasting is 
executed based on the dynamic ARDL stochastic simulations. Olive teal, light blue and red spikes 
denote 75, 90, 95% Confidence Interval. 

 

7.3.4 Regime-based fossil CO2 effects on green energy innovation  

We used panel-bootstrap bias-corrected fixed-effects to estimate Models 1-6 whereas Model 

7 is estimated with panel threshold fixed-effects. The lagged-green energy innovation (λ) is 

positive and significant for all six models (Models 1-6) in Table 2. This suggests that countries 

with historical green energy orientation may invest ~58% more in achieving green growth 

through green innovation. Countries that have improved historical green energy innovation 

include Portugal, Ireland, Greece, New Zealand, Denmark, and Spain (Fig. 1a). This perhaps 

corroborates the findings in Table 1, explaining why countries with high investment in green 

energy innovation have low levels of GHG emissions (Fig. 5). Comparably, 1% investment 

increase in energy research and development expands green energy innovation by 0.01-

0.02%. Investment in energy research and development across industrialized high-income 

countries may shift towards other energy technologies that expand economic productivity 

with limited green energy innovation. This may justify why techno-economic giants like the 

UK, France, Belgium, the US, Japan, Canada, Italy, and Germany have huge investments for 
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energy research development and demonstration but limited green energy innovation (Fig. 

1c). In contrast, 1% growth in energy intensity and industrial structure expansion decline 

green energy innovation by ~0.78% and ~0.25%, respectively. In model 7, we validate the 

green energy innovation model by incorporating fossil CO2 emissions as regime-dependent 

variable and GHG emissions as the threshold variable. The model specification is useful in 

assessing multiple thresholds of GHG emissions––exogeneous indicator of green energy 

innovation in a fossil regime. Evidence from model 7 validates the estimated parameters of 

energy intensity, energy R&D, and industrial structure. We observe that fossil CO2 emissions 

from IEA member countries with very low and low-medium GHG emissions are significant and 

negatively related to green energy innovation. Contrary, fossil CO2 emissions from IEA 

member countries with high GHG emission levels have positive relationship with green energy 

innovation. Thus, strengthening the theory of divergent GHG emissions across industrialized 

high-income countries. This implies the likelihood of IEA countries with lower economic 

productivity expanding their fossil-driven industrial structure by lowering green energy 

innovation standards. In contrast, higher GHG emission countries like the US may perhaps 

improve green energy innovation towards environmental sustainability. 
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Table 2| Effect of regime-dependent fossil-based CO2 emissions on green energy innovation 

 
Notes: λ is the lagged-dependent variable (Green Energy Innovation); *,**,*** represents statistical 
significance at 10, 5 and 1% level; CSD denotes Cross-section dependence; WBOOT denotes Wild 
bootstrap, AHE denotes Analytical heterogeneous; CSHET denotes Cross-section heteroscedastic; 
MCHE denotes Monte Carlo heterogeneous; DET denotes Deterministic; (..) represents 95% Conf. 
Interval; [..] is the standard error. LM (819.3, p-value <0.01), LMadj (96.85, p-value <0.01), LMCD 
(19.07, p-value <0.01), Δ (19.343, p-value <0.01), and Δadj (20.679, p-value <0.01). 

 

7.4 Discussion 

This study investigates the impact of energy intensity and economic-sectoral-based fossil CO2 

emissions including buildings, industry, transport, power, and other sectors spanning 1975-

2014 across 21 IEA member countries. We caution that unobserved factors may affect GHG 

emissions and green energy innovations not addressed in this research, however, our 

empirical assessment is robust to estimation and misspecification bias. We further explore 

GHG mitigation effects of green energy innovation, energy research development and 

demonstration, and industrial structure. While existing literature largely focuses on the 

immediate drivers of aggregate anthropogenic emissions (Feng et al., 2015; Liang et al., 2016; 

and underlying drivers, and policy measures useful for policy formula-
tion. Our study shows that IEAmember countries converge on green en-
ergy innovation––accentuating the potential of achieving clean energy
through green growth. Contrary, achieving environmental sustainabil-
ity through emission reduction, energy efficiency, energy R&D, and
service-driven industrial structure remain divergent. This implies that
country-specific policies on environmental sustainability will yield bet-
ter results for mitigating anthropogenic emissions. Second, green en-
ergy innovation and energy R &D decline long-term GHG emissions by
reducing negative environmental externalities. Investment and integra-
tion of energy R&D are reported to increase clean energy transition
through sustainable electricity supply that is cost-effective and low in
CO2 emissions (Kittner et al., 2017). Additionally, green energy innova-
tion hampers CO2 emissions from buildings, implying that a transition
towards green buildings improves both indoor and outdoor emissions
(Nykamp, 2017). The variability in climatic patterns affects heating
and cooling degree days, hence, affecting energy demand. If the energy
requirement for these seasons is replaced with green energy technolo-
gies, energy consumption declines while reducing energy cost and
indoor pollution (Castleton et al., 2010). We find that transport sector
is the most persistent source of over-decadal CO2 emissions––
contributing about 29.66–40.64% of GHG emissions across IEA member
countries. However, replacing fossils in the transport sector with green
energy innovation-based alternative energy declines emissions by re-
ducing transport footprint (van Vuuren et al., 2018). Besides, we find

that fossil emissions increase green energy innovations in countries
with high GHG emissions. This infers that IEA member countries in a
fossil-based CO2 regime are more likely to invest and adopt green en-
ergy innovations and pursue environmental sustainability after achiev-
ing economic prosperity. Increasing investment in energy research
development and demonstration is critical for green energy innovations
and facilitates the transition towards clean energy and emission
reduction.

5. Conclusion

Reducing climate change and its related impacts remain critical to
achieving environmental sustainability. However, growing population
demand for energy and sustained economic productivity appears a hur-
dle for the mitigation target. While the extant literature has explored
the determinants of anthropogenic GHG emissions, studies on the role
of policy drivers including green energy innovation and energy research
and development are limited. These green growth drivers act as abate-
ment strategies of global emissions in carbonized and energy-intensive
economies. To advance global and policy discussions, we examined how
fossil emissions appear advantageous to green energy innovations, and
energy R&D across industrialized high-income IEA countries.

The forty-year trend estimation showed power sector-driven GHG
emissions declined substantially after 2009, coinciding with the 2009
renewables directive (Directive 2009/28/EC) by the EU. This perhaps

Table 2
Effect of regime-dependent fossil-based CO2 emissions on green energy innovation.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

λ 0.574***
(0.433–0.707)
[0.072]

0.576***
(0.419–0.735)
[0.079]

0.577***
(0.447–0.692)
[0.064]

0.564***
(0.428–0.729)
[0.070]

0.566***
(0.437–0.696)
[0.067]

0.566***
(0.434–0.666)
[0.064]

–

Energy intensity −0.741**
(−1.727 to
−0.246)
[0.368]

−0.734**
(−1.672 to
−0.141)
[0.360]

−0.761**
(−1.464 to
−0.115)
[0.341]

−0.755**
(−1.378 to
−0.164)
[0.326]

−0.776**
(−1.433 to
−0.231)
[0.329]

−0.772**
(−1.587 to
−0.245)
[0.362]

−1.534***
(−1.961 to −1.117)
[0.215]

Energy R&D 0.014*
(0.002–0.030)
[0.008]

0.014*
(0.000–0.030)
[0.007]

0.013*
(0.001–0.031)
[0.007]

0.014*
(0.002–0.033)
[0.008]

0.015*
(0.001–0.037)
[0.009]

0.014*
(0.002–0.034)
[0.008]

0.037***
(0.024–0.051)
[0.007]

Industrial
structure

−0.233**
(−0.477 to
−0.025)
[0.118]

−0.236**
(−0.442 to
−0.025)
[0.113]

−0.242**
(−0.420 to
−0.037)
[0.110]

−0.240**
(−0.488 to
−0.012)
[0.116]

−0.248**
(−0.435 to
−0.053)
[0.106]

−0.250**
(−0.442 to
−0.042)
[0.119]

−0.527***
(−0.645 to −0.410)
[0.060]

Constant – – – – – – 2.320***
(1.754–2.887)
[0.289]

Regime#Fossil
Very low – – – – – – −0.528***

(−0.833 to −0.222)
[0.156]

Low-medium – – – – – – −9.552***
(−15.226 to
−3.878)
[2.891]

High – – – – – – 0.297**
(−0.002–0.596)
[0.152]

Threshold
Single – – – – – – 13.430**
Double – – – – – – 8.640*
Triple – – – – – – 7.830
R-sq(within) – – – – – – 0.190
Observations 819 819 819 819 819 819 819
No. of countries 21 21 21 21 21 21 21
Resampling CSD WBOOT CSD CSHET MCHE MCHE –
Initialization Burn-in AHE AHE Burn-in AHE DET –
Convergence Yes Yes Yes Yes Yes Yes –

Notes: λ is the lagged-dependent variable (green energy innovation); *,**,*** represents statistical significance at 10, 5 and 1% level; CSD denotes cross-section dependence; WBOOT de-
notes wild bootstrap, AHE denotes analytical heterogeneous; CSHET denotes cross-section heteroscedastic; MCHE denotes Monte Carlo heterogeneous; DET denotes deterministic; (..)
represents 95% conf. interval; [..] is the standard error. LM (819.3, p-value < 0.01), LMadj (96.85, p-value < 0.01), LMCD (19.07, p-value < 0.01), Δ (19.343, p-value < 0.01), and Δadj

(20.679, p-value < 0.01).
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Rosa et al., 2012), this research examines both aggregate and disaggregate sectoral emissions, 

immediate and underlying drivers, and policy measures useful for policy formulation. Our 

study shows that IEA member countries converge on green energy innovation––accentuating 

the potential of achieving clean energy through green growth. Contrary, achieving 

environmental sustainability through emission reduction, energy efficiency, energy R&D, and 

service-driven industrial structure remain divergent. This implies that country-specific policies 

on environmental sustainability will yield better results for mitigating anthropogenic 

emissions. Second, green energy innovation and energy R&D decline long-term GHG 

emissions by reducing negative environmental externalities. Investment and integration of 

energy R&D are reported to increase clean energy transition through sustainable electricity 

supply that is cost-effective and low in CO2 emissions (Kittner et al., 2017). Additionally, green 

energy innovation hampers CO2 emissions from buildings, implying that a transition towards 

green buildings improves both indoor and outdoor emissions (Nykamp, 2017). The variability 

in climatic patterns affects heating and cooling degree days, hence, affecting energy demand. 

If the energy requirement for these seasons is replaced with green energy technologies, 

energy consumption declines while reducing energy cost and indoor pollution (Castleton et 

al., 2010). We find that transport sector is the most persistent source of over-decadal CO2 

emissions––contributing about 29.66-40.64% of GHG emissions across IEA member countries. 

However, replacing fossils in the transport sector with green energy innovation-based 

alternative energy declines emissions by reducing transport footprint (van Vuuren et al., 

2018). Besides, we find that fossil emissions increase green energy innovations in countries 

with high GHG emissions. This infers that IEA member countries in a fossil-based CO2 regime 

are more likely to invest and adopt green energy innovations and pursue environmental 

sustainability after achieving economic prosperity. Increasing investment in energy research 

development and demonstration is critical for green energy innovations and facilitates the 

transition towards clean energy and emission reduction. 

7.5 Conclusion 

Reducing climate change and its related impacts remain critical to achieving environmental 

sustainability. However, growing population demand for energy and sustained economic 

productivity appears a hurdle for the mitigation target. While the extant literature has 

explored the determinants of anthropogenic GHG emissions, studies on the role of policy 
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drivers including green energy innovation and energy research and development are limited. 

These green growth drivers act as abatement strategies of global emissions in carbonized and 

energy-intensive economies. To advance global and policy discussions, we examined how 

fossil emissions appear advantageous to green energy innovations, and energy R&D across 

industrialized high-income IEA countries.  

The forty-year trend estimation showed power sector-driven GHG emissions declined 

substantially after 2009, coinciding with the 2009 renewables directive (Directive 2009/28/EC) 

by the EU. This perhaps prompted several EU member countries to develop national goals for 

renewables––that declined the share of fossil fuels in the energy portfolio––leading to a 

decline in GHG emissions. The incorporation of green energy innovation amidst sectoral 

emissions showed 1% increase in energy intensity could spur GHG emissions from 5.47% in 

2014 to over 5.56% in 2064. While there is potential increase in GHG emissions from 2014-

2064, the rate of increase is relatively low. This infers green energy innovation is useful in 

energy diversification and decarbonization of economic productivity. Besides, we observed 

low concentration of GHG emissions from IEA countries including, inter alia, Portugal, 

Denmark, Sweden, Norway, Switzerland, and Austria––with high adoption of green energy 

innovation. Our empirical results support the European Green Deal agenda––of reducing 

emissions and preserving environmental quality through investment and adoption of green 

energy innovation. However, while our analysis showed evidence of convergence in green 

energy innovations, IEA member countries appear to diverge in GHG emissions. While IEA 

member countries are industrialized and developed economies, their economic structure and 

composition are different, hence, similar emission targets may hamper sustained economic 

development. This implies caution in the integration of green energy innovation in high 

carbonized economies––to avoid potential tradeoff between sustained economic growth, and 

environmental sustainability. Nevertheless, our study showed green growth strategies are 

useful in achieving decarbonized and energy-efficient growth while mitigating emissions. 

Because of limitation in acquiring extensive data for the sampled series, our data periodicity 

spans from 1975-2014––thus, this implies our data capture exactly 2 years after the 

inception of the sustainable development goals (SDGs). Future research could adopt dataset 

that captures more years of the SDGs and several income groups––to assess the effect and 

limitations of income status on green energy innovation and green growth. 
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Data Availability 

Data utilized in this study are available on public repositories and can be acquired from IEA, 

OECD, World Bank, and EDGAR databases. 
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Abstract 

The long-run effect of the synergy between natural resource consumption and environmental 

sustainability varies across countries depending on the economic structure. However, the 

transboundary effect of natural resource capital underscores the importance of 

environmental convergence. Here, we map ecological performance, biocapacity, and carbon 

footprint of nations. We assess the socio-economic drivers of environmental performance and 

convergence using novel cross-country time series techniques. We find that the expansion of 

biocapacity of nations has an ameliorating effect on ecological performance. The hotspot 

countries of environmental performance include Australia, Brazil, China, Germany, India, 

Japan, Russia, and the US. We confirm the existence of environmental convergence across 

nations — implying that the disparity in carbon and ecological footprint between higher-

income and lower-income countries will converge in the long-run. This accentuates the need 

for global partnership towards achieving environmental sustainability. 

8.1 Introduction 

The question of environmental convergence between developed and developing countries 

remains inconclusive in the empirical literature. Uncertainties in achieving environmental 

sustainability arise in a globalized world where increasing demand for natural resource capital 

is key to sustaining economic development. Thus, from a policy perspective, can sustainability 

be achieved across nations with increasing population density, livelihood pressures and 

international trade?  

The unprecedented increase in anthropogenic emissions and natural resource 

exploitation in developing countries underlines the necessity of environmental convergence, 

a situation that has implications on sustainability. A rapid increase in economic productivity 

 
7 Published article: Sarkodie, S. A. (2021). Environmental performance, biocapacity, carbon & ecological 
footprint of nations: Drivers, trends and mitigation options. Science of The Total Environment, 141912. 
https://doi.org/10.1016/j.scitotenv.2020.141912 
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triggers large demand for natural resources and contribute to waste generation, with greater 

consequences on the environment, leading to climate change (Panayotou, 1993). Such 

conventional and linear economic structure underpin natural resource exploitation and 

environmental pollution. The continual trajectory of this development model in developing 

countries will grow to eventually catch-up with developed countries and converge in the long 

run—if economic and productivity conditions are met (Abramovitz, 1986; Kuznets, 1955). 

Thus, environmental convergence reflects the economic convergence where economic 

development depends heavily on resource and pollution-intensive economic structure. The 

environmental convergence is in part captured in the environmental Kuznets curve hypothesis 

—where income level in developing economies increases with pollution levels but pollution 

declines after reaching a threshold of income level comparable to developed economies 

(Berkhout et al., 2017; Grossman and Krueger, 1991). Models of this nature are useful is 

assessing development pathways where there is a rapid transition to efficient natural resource 

extraction and low pollution levels. 

Natural resource security and environmental sustainability are at stake amid growing 

material flow through trade and domestic material consumption to meet population demand 

(Wiedmann et al., 2015). The business-as-usual trend in natural resource extraction highlights 

a potential resource scarcity that has policy implications. Initial arguments on environmental 

sustainability in extant literature divulge that the triad relationship of social, economic and 

environmental indicators are essential to understanding the global status of sustainability 

(Sarkodie, 2020). Socio-economic and environmental indicators such as, inter alia, economic 

growth, population, and carbon footprint are always at the centre of several emission 

scenarios (Blanco et al., 2014). However, several theories such as ecological modernization, 

circular economy and environmental Kuznets curve suggest the importance of other factors 

such as trade, ecological footprint and biocapacity (Sauvé et al., 2016; York and Rosa, 2003). 

While tons of studies have utilized carbon dioxide emissions as a proxy for assessing 

environmental stress, very few studies have considered ecological footprint as a 

comprehensive proxy indicator for environmental degradation (Baabou et al., 2017; Lenzen 

and Murray, 2001; Wackernagel et al., 1999). This is true and representative as it stands, given 

the limitation of anthropogenic carbon dioxide emissions to the atmosphere whereas 

ecological footprint covers the biosphere. Using ecological footprint rather than carbon 

dioxide emissions provides a true and inclusive perspective of assessing environmental 
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deterioration. The ecological footprint accounts for built-up land, carbon emission levels, 

cropland, fishing grounds, forest land and grazing land (GFN, 2017), thus, capture all facets of 

environmental dynamics. This missing link in carbon dioxide emissions might have misled the 

assessment of environmental degradation across countries in extant literature. 

Contrary to previous attempts, we for the first-time investigate the ecological 

footprint, carbon footprint, biocapacity and ecological status of nations using cross-sectional 

time series data over five decades in 188 countries and territories. To assess the ecological 

performance of nations, we used empirical methods to calculate ecological status from 

ecological footprint and biocapacity. We estimated the relative change of socio-economic and 

environmental indicators across nations and identified the hotspot countries. To understand 

the drivers of environmental performance, ecological footprint and carbon footprint of 

nations, we used two novel estimation techniques with characteristics of machine learning 

and econometrics. The panel kernel regularized least-squares algorithm and the dynamic 

panel bootstrap-corrected fixed-effects are consistent and robust, with the advantage in 

controlling for convergence, cross-section dependence, omitted variable bias, 

misspecification error, country-specific heterogeneity and non-additive effects. 

8.2 Methods 

8.2.1 Dataset 

We gathered our cross-sectional time series data on ecological indicators from the global 

footprint network (GFN, 2017). The ecological indicators include ecological footprint, 

biocapacity, carbon footprint, and ecological status. Ecological footprint comprises built-up 

land, carbon levels, cropland, fishing grounds, forest land and grazing land, thus, captures all 

the environmental dynamics of the biosphere compared to the traditional carbon dioxide 

used as a proxy for environmental pollution. This infers that the ecological footprint is more 

inclusive and representative for assessing environmental stress. Biocapacity comprehensively 

captures the regenerative capacity of built-up land, cropland, fishing grounds, forest land and 

grazing land to meet livelihood demand. Carbon footprint measures fossil fuel-driven carbon 

dioxide emissions. The ecological status is calculated by deducting ecological footprint from 

biocapacity. In line with the definition of sustainability to meet present natural resource 

demand and still preserve the natural capital as a bequest for future generations, ecological 
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status is for the first time used as an indicator to assess the ecological health or performance 

of nations. The socio-economic indicators namely economic growth, income level, trade and 

population are retrieved from the World Bank development database (World Bank, 2020). The 

data selection process stems from the concept of Sustainable Development and the 

assessment guidelines of the United Nations (DiSano, 2002). The data utilized for the 

choropleth maps have 245 countries and territories, however, for the empirical assessment 

—the unequal distribution and missing inputs led to a data-pruning. This resulted in a 

balanced panel data consisting of 188 countries and territories with a total of 10,528 

observations spanning 1961-2016. Another set of ecological data captures the global and 

continental distribution—explicitly Africa, Asia, Australasia (Australia and New Zealand), 

Europe, North and South America. 

8.2.2 Model Structure 

Cross-country time series models are affected by global common shocks like a pandemic, 

financial crisis, oil prices, among others, and transboundary spillover effects. In that scenario, 

the failure to account for cross-section dependence oftentimes render panel estimations 

spurious. The model estimation was initiated by examining the presence of cross-section 

dependence using a variable-based panel cross-section dependence test (Pesaran, 2004). 

Second, we investigated the stationarity properties of the sampled data series, another panel 

challenge that required attention. The necessity of the test stems from the random walk 

characteristic of certain series that could hinder the robustness and consistency of the 

estimated models, hence, affecting statistical inferences and policy implications. To avoid this 

possibility, we employed panel unit root tests from the second generational techniques. Third, 

to avoid misspecification errors, we proceeded to assess the heterogeneous effects of socio-

economic and ecological indicators across nations. We used the novel panel bootstrap 

jackknife-bias-corrected estimation method to account for heterogeneous dynamics across 

countries. The preconditions of applying the heterogeneous technique require a stationary 

data series with Gaussian autoregressive-moving-average generated error term (Okui and 

Yanagi, 2019). 
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8.2.3 Model Estimation 

The pre-model estimation assessment provided leads to the selection of optimal cross-

country time series techniques that are robust and produce consistent estimates. The linear 

representation of environmental performance and socio-economic nexus can be expressed 

as: 

 

𝑙𝑛𝐶𝐴𝑅𝐵𝑂𝑁	~	𝑓(𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, 𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀, 𝑙𝑛𝐺𝐷𝑃)                   (1) 

𝑙𝑛𝐶𝐴𝑅𝐵𝑂𝑁	~	𝑓(𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, 𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀, 𝑙𝑛𝐺𝐷𝑃𝐶, 𝑙𝑛𝑇𝑅𝐴𝐷𝐸)         (2) 

𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆	~	𝑓(𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛𝐺𝐷𝑃)                                                                            (3) 

𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆	~	𝑓(𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛𝐺𝐷𝑃𝐶, 𝑙𝑛𝑇𝑅𝐴𝐷𝐸)                                                (4) 

𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀	~	𝑓(𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, 𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛𝐺𝐷𝑃)                                        (5) 

𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀	~	𝑓(𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, 𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛𝐺𝐷𝑃𝐶, 𝑙𝑛𝑇𝑅𝐴𝐷𝐸)                            (6) 

𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀	~	𝑓(𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, 𝑙𝑛𝑃𝑂𝑃𝐷𝐸𝑁, 𝑙𝑛𝐸𝑁𝑉𝑆𝑈𝑆, 𝑙𝑛𝐺𝐷𝑃𝐶, 𝑙𝑛𝐺𝐷𝑃𝐶!, 𝑙𝑛𝑇𝑅𝐴𝐷𝐸)            (7) 

 

where, 𝑙𝑛 represents the logarithmic transformation of data series to achieve a constant 

variance; ∆ is the first-dependence operator; 𝑁 represents the normalization of the series to 

control for negative values before the application of logarithmic transformation; CARBON 

means Carbon Footprint measured in gha; ENVSUS is Biocapacity, measured in gha; EFCONS 

denotes Ecological Footprint, measured in gha, ECOPERM is the Ecological Status, measured 

in gha; GDPC indicates Income Level, a proxy for estimating wealth, measured in constant 

2010 US$; GDP means Economic growth, measured in constant 2010 US$; POPDEN represents 

Population density, measured in people per sq. km of land area; and TRADE is Trade, measured 

as a % of GDP. The baseline empirical specification of Equations 1-7 follows the novel panel 

kernel regularized least-squares algorithm. The application of the machine learning technique 

is expressed in pointwise partial derivatives of the target variables (CARBON, EFCONS and 

ECOPERM) and corresponding predictors expounded in Equations 1-7. For brevity, the generic 

panel kernel regularized least-squares pointwise partial derivatives A(B$C

A(BD!
(#) can be expressed as 

(Okui and Yanagi, 2019): 

 

A(B$C

A(BD!
(#) =

E!
F%
	∑ 𝑐'𝑒

&'()&(!'
%

*%' D𝑥'
(=) − 𝑥>

(=)G                              (8) 
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where 𝑦 denotes the partial derivative of the target variables related to variable 𝑑, 𝑥(.) 

represents the predictors with observation	𝑗, 𝜎! is the kernel bandwidth, 𝑐"  is the weight of 

the predictor (choice coefficient), 𝑥"  is the input pattern, 𝑖 = 1,… ,𝑁, and 𝑒(.) is the 

exponential function. Though the panel kernel regularized least-squares algorithm is a 

simplified model that allows consistent and robust estimation of heterogeneous, non-additive 

and non-linear effects while reducing misspecification error, however, cannot be used to 

control country-specific fixed-effects and convergence. We further employed the dynamic 

panel bootstrap-corrected fixed-effects to account for the challenges in the baseline method 

expressed in a generic form as (De Vos et al., 2015): 

 

𝑙𝑛𝑦",$ = 𝛿 ∗ 𝑙𝑛𝑦",$1' + 𝛽 ∗ 𝑙𝑛𝑥",$ + 𝛼" + 𝜀",$ ,			𝑖 = 1,… ,𝑁	𝑎𝑛𝑑	𝑡 = 1,… , 𝑇                        (9) 

 

where 𝑙𝑛𝑦",$ represents the logarithmic transformation of the target variables (𝑙𝑛𝐶𝐴𝑅𝐵𝑂𝑁, 

𝑙𝑛𝐸𝐹𝐶𝑂𝑁𝑆, and 𝑙𝑛∆𝑁𝐸𝐶𝑂𝑃𝐸𝑅𝑀) for the model specification of equation 1-7, 𝑖 is the 

individual sampled countries, 𝑡 is the period of the data spanning 1961-2016, 𝛿 is the AR 

parameter such that |𝛿|< 1 to confirm a dynamic stable association between 𝑙𝑛𝑦",$ and 𝑙𝑛𝑥",$, 

𝛽 represents the estimated coefficient of the regressors, 𝑙𝑛𝑥",$ denotes the regressors (1 × 𝐾 

vector), 𝛼"  is the country-specific unobserved heterogeneity or fixed-effects with zero mean 

and variance (𝜎\! ≥ 0) and 𝜀",$ is the unobserved idiosyncratic white noise with a zero mean 

and variance (𝜎]! > 0). The dynamic panel estimator assumes an equally uncorrelated whiter 

noise over the period and across countries. Second, it assumes that the country-specific 

unobserved heterogeneity or fixed-effects are exogeneous and uncorrelated. Third, it 

assumes that the regressors are strictly exogenous and preliminary conditions are either 

stationary or nonstationary and uncorrelated with the corresponding unobserved 

idiosyncratic white noise (Everaert and Pozzi, 2007). 

8.3 Results 

The choropleth maps (Figures 1-2) identify the geographical distribution of ecological 

footprint, carbon footprint, biocapacity, and ecological status. The constructed geographical 

maps are based on the mean distribution spanning 1961-2016 across 245 countries and 

territories. The ecological footprint measures a country’s land and water resources that are 
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biologically productive for economic consumption and absorption of waste generation using 

resource management technologies and practices (Global Footprint Network, 2017). On this 

note, higher ecological footprint due to consumption of available natural resources is not 

beneficial for environmental sustainability. Top global ecological footprint hotspots include 

the US (2.41 billion gha), China (2.24 billion gha), Russia (1.12 billion gha), India (0.73 billion 

gha), and Japan (0.58 billion gha) [see Figure 1]. Carbon footprint measures carbon dioxide 

emissions attributed to fossil fuel consumption. Here, carbon footprint denotes the 

corresponding biologically productive resources required to absorb carbon dioxide. Thus, 

higher levels of carbon dioxide emissions in the atmosphere signify an expansion of the 

ecological debt. The carbon footprint hotspots across countries include the US (1.75 billion 

gha), China (1.23 billion gha), Japan (0.38 billion gha), Germany (0.32 billion gha), and India 

(~0.27 billion gha) [see Figure 1]. These countries tally with the ranking on carbon dioxide 

emissions from fossil fuel combustion reported in Global Energy Statistical Yearbook 2019 

(Enerdata, 2019). Which appears that ecological and carbon footprint correlate with domestic 

material consumption (fossil fuel, biomass, metal and nonmetal ores). Biocapacity measures 

the regenerative and waste absorptive capacity of the ecosystem following natural resources 

exploitation to meet population demand. Thus, a higher level of biocapacity compared to 

ecological footprint is key to achieving environmental sustainability. Top tier countries with 

the highest biocapacity include Brazil (1.77 billion gha), Russia (1.09 billion gha), the US (1.04 

billion gha), China (1.00 billion gha), and Canada (0.52 billion gha) [see Figure 2]. These 

countries coincidentally correspond to the global ranking of countries by landmass 

(Worldometers, 2020). Ecological status of nations was calculated using the difference 

between the regenerative capacity of the ecosystem and consumption of natural resources. 

Thus, ecological status occurs in two forms namely ecological deficit and ecological reserve. 

Ecological deficit occurs when a country’s natural resource exploitation exceeds its 

regenerative capacity, whereas ecological reserve occurs when the regenerative capacity of a 

country’s natural resources exceeds consumption. This implies that countries with ecological 

deficit import resources from other countries endowed with reserves. Top ecological deficit 

hotspots include the US (-1.37 billion gha), China (-1.25 billion gha), Japan (-0.49 billion gha), 

India (-0.35 billion gha), and Germany (-0.34 billion gha) [see Figure 2]. However, top five 

countries with ecological reserve comprise Brazil (1.36 billion gha), Canada (0.28 billion gha), 

Australia (0.18 billion gha), Congo (Kinshasa) (0.18 billion gha), and Bolivia (0.17 billion gha) 
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[see Figure 2]. Based on the ecological status of nations, we mapped the continental and 

global status of ecological performance presented in Figure 3. While Asia, Europe and North 

America have an ecological deficit, Australia & New Zealand, South America and Africa (except 

Morocco, Nigeria, Niger, Algeria, Libya, Egypt, Ethiopia, South Sudan, Uganda, South Africa, 

Malawi, Kenya, and Togo) have an ecological reserve. The global total shows ecological deficit 

with potential future consequences on environmental sustainability (Figure 3).  

To determine the 56-year comparative growth trajectory of environmental 

performance reported in the choropleth maps, we estimated the mean relative change of 8 

hotspot countries plus the global average (Figure 4). The 56-year mean trend for biocapacity 

reveals that India, Germany, and the US are above the global average of 0.429% whereas 

Canada, Brazil, Russia, China and Japan are below the global mean biocapacity. India ranks on 

top of the 8 hotspot countries to expand its biocapacity by 1.77% within 56 years whereas 

Japan is the worst performer in improving biocapacity with a decline of 0.427%. India, Brazil 

and China have increased their ecological footprint within 56 years by 3.14%, 2.22% and 2.19% 

respectively above the global average of 1.98%. Canada, Japan, Russia and Germany have 

intensified its ecological footprint but below the global average, however, the US has declined 

its ecological footprint within the same period by 0.825%. Similarly, India ranks high in terms 

of the relative change in carbon footprint within 56 years by 5.46% compared to the global 

average (2.56%) — followed by China (4.30%), Brazil (4.24%), Russia (3.14%) and Japan 

(2.72%). Canada and Germany are below the global average of carbon footprint by 2.17% and 

0.772% respectively, however, the US has declined its carbon footprint by 0.691% within 56 

years. We observe from the ecological status of hotspot countries that only China has 

expanded its ecological deficit (20.2%) above the global average of 10.8%. However, countries 

such as India, Japan and Germany have increased their ecological deficit but below the global 

average. In contrast, Russia, the US, Brazil and Canada have improved their ecological reserve 

by 26%, 1.39%, 0.388% and 0.382%, respectively. Concurrently, population density relatively 

increased by 0.21%, 0.32%, 1.03%, 1.35%, 1.53%, 1.87% and 1.94% from 1961-2016 in 

Germany, Russia, the US, China, Australia, Brazil and India, respectively. Trade experienced a 

mean change of 0.84%, 2.42%, 2.93%, 3.73%, 4.13%, 15.72%, and 17.62% in Australia, Brazil, 

India, China, the US, Germany and Russia within the 56 years. Income level has witnessed a 

tremendous change from 1961-2016 in Germany and Russia by 170.33% and 352.78%, 

respectively. Besides, income level saw a gradual growth in Australia, the US, Brazil, India and 
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China by 1.94%, 2.02%, 2.09%, 3.22%, and 7.44%. Similarly, Germany and Russia experienced 

a mean change in economic growth from 1961-2016 by 1190.04% and 3513.11%, respectively. 

Economic growth grew by 3.08%, 3.51%, 4.00%, 5.22% and 8.89% in the US, Australia, Brazil, 

India and China (Supplementary 1). 

 
Figure 1| Geographical mapping of ecological and carbon footprint (gha). 
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Figure 2| Geographical mapping of biocapacity and ecological status (gha). 

 



235 
 

 
Figure 3| Continental and global status of ecological performance (gha). 

 

 
Figure 4| Mean relative change (%) in biocapacity, ecological footprint, ecological status and carbon 
footprint of the US, Russia, Japan, India, Germany, China, Canada and the World. 
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We find from the assessment of environmental indicators that natural resources extraction 

and carbon footprint are critical to environmental consequences. To understand the dynamics 

of the immediate and underlying causes of the ecological performance of nations, we 

developed conceptual tools using socio-economic variables namely economic development 

(GDP/GDPC), population density (POPDEN) and trade (TRADE). The selection of the data series 

is based on the IPCC 5th Assessment report and Sustainable Development Goals (SDGs). The 

IPCC report classifies GDP/GDPC and POPDEN as immediate drivers of GHG emissions whereas 

TRADE is considered as an underlying driver (Blanco et al., 2014). We used socio-economic 

inputs which incorporate the concept of SDGs as explanatory variables defined as: 

• Economic development: Economic growth and GDP per capita denote aggregate 

productivity and individual income levels, a proxy for estimating wealth across 

countries. This input is essential to investigate the nexus between wealth and 

economic performance, thus, a useful indicator to examine SDG-8 of sustained 

economic growth. 

• Population density: Population expansion intensifies natural resource consumption 

either through extraction or importation to meet the growing demand (Sarkodie et al., 

2020). Thus, importation can only materialize in countries where population demand 

for biologically productive resources exceeds the regenerative capacity due to the 

levels of carbon footprint attributable to economic productivity. Population density 

plays enormous roles in achieving many of the SDGs (United Nations, 2015) namely 

reduced inequality (SDG-10), sustainable cities (SDG-11), sustainable production and 

consumption (SDG-12), climate change mitigation (SDG-13), and sustainable life below 

water and land (SDG-14 &15). 

• Trade: International trade is a conduit of globalization that is critical to achieving 

economic productivity (SDG-8), industrialization, innovation and technology (SDG-9), 

climate change mitigation (SDG-13), and global partnership (SDG-17). Thus, trade 

navigates domestic material consumption and environmental sustainability. 

The elasticities of the socio-economic inputs were computed using multiple cross-country 

time series estimation techniques and a machine learning algorithm for panel data modelling. 

Stationarity, omitted-variable bias, heterogeneity, misspecification, and cross-section 

dependence are challenges associated with cross-country time series models. Here, we used 
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a battery of novel estimation techniques that control for the outlined issues. First, cross-

sectional units of panel data models may suffer from global common shocks, which ignoring 

it will lead to another challenge related to the error term known as endogeneity, hence, 

produces inconsistent model estimates. We examined the variable- cross-section dependence 

with corresponding results presented in Table 1. We find that the null hypothesis of cross-

section independence is rejected at 1% significance level, confirming the presence of cross-

section dependence in the data series. This supports the estimation of stationarity using CIPS 

and CADF second generational unit root tests. We find that all series are stationary at level 

except ecological status which is difference stationary. To examine heterogeneity across 

countries, we used the novel kernel-smoothing technique with half-panel jackknife (type of 

split-panel jackknife) bias correction for estimating densities (Okui and Yanagi, 2020). This in 

effect controls for nonlinearity and incidental parameter bias. The non-parametric panel 

kernel density estimation for testing the degree of heterogeneous dynamics across countries 

assumes heterogeneous stationary time series for initial input variables, panel autoregressive 

moving average and Gaussian white noise (Okui and Yanagi, 2019). The estimated kernel 

densities show a persistent long-run heterogeneity (p-value<0.05) of income level, economic 

growth, population density, trade, biocapacity, carbon footprint, ecological footprint, and 

ecological status (Figure 5). We observe that while population density, trade, biocapacity, 

carbon footprint, and ecological footprint exhibit a unimodal distribution — income level, 

economic growth, and ecological status appear to show a bimodal distribution. The structural 

estimation confirms a significant and strong degree of heterogeneous dynamics across 

countries.  

To correct the panel heterogeneous effects exhibited across countries, we employed 

panel kernel regularized least squares and dynamic bootstrap-corrected fixed-effects panel 

approach. The panel kernel regularized least-squares technique is applied by fitting the 

functions with Gaussian kernels and regularizing the less complex functions that reduce 

squared loss to control over-fitting (Hainmueller and Hazlett, 2014). The machine learning-

based cross-country time series technique provides unbiased and consistent estimated 

coefficients due to the automatic selection of optimal kernel bandwidth and regularization 

parameter for the proposed model. The panel dynamic bootstrap-corrected fixed-effects is 

applied to the proposed model to correct the small time-bias (Everaert and Pozzi, 2007). We 

accounted for cross-section dependence and heterogeneous effects by utilizing the Monte 
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Carlo heteroskedastic bootstrap error resampling scheme to generate samples and analytical 

heterogeneous initialization to generate preliminary conditions of the resampling process (De 

Vos et al., 2015). We also used multivariate normal distribution to sample the preliminary 

conditions. To control for omitted variable bias, we incorporated the lagged-dependent 

variable of ecological status, carbon and ecological footprint. We plugged-in country-specific 

fixed-effects to mitigate unobserved effects across sampled countries. We validated the 

estimated parameters using a baseline and actual model for which the actual model captures 

the inertia effects of target variables. In comparison, both models produce similar signs and 

statistical significance of desirable parameters. The panel kernel regularized least-squares 

technique reveals the goodness of fit (R-squared) between 24-91% and partial derivatives that 

are robust and consistent. The panel dynamic bootstrap-corrected fixed-effects model finds a 

positive coefficient for the lagged-dependent variables that is less than 1, fulfilling the 

assumption of consistent model estimates. The inferences procedure further shows a 

bootstrapped histogram distribution with a characteristic of a bell-shape (Figure 6). This is 

validated by the superimposed kernel fit and normal distribution line, confirming the residual 

independence of the estimated models. 
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Figure 5| Panel heterogeneous distribution of socio-economic and environmental performance 
indicators. Legend: The 95% confidence interval (C.I) denotes the rejection of the null hypothesis that 
the distribution is identical (homogeneous) across the 188 countries. 
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Figure 6| Model Validation of the panel bootstrap-corrected fixed-effects estimation models using 
histogram distribution — overlaid by kernel fit and normal distribution. 
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Table 1| Model Estimation Results 

Notes: † represents the rejection of the null hypothesis of homogeneity using Pesaran CD test; I(0) 
means a stationary series at level whereas I(1) represents first-difference stationary series;  *,**,*** 
denotes statistical significance at p-value<0.10, p-value<0.05 and p-value<0.01; [.] is the standard 
error; N signifies normalization [0, 100], ∆ means the first-difference; a, b represent panel estimation 
using kernel regularized least squares and panel bootstrap-corrected fixed-effects. Model 1 - 
lnCARBON ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, ln∆NECOPERM, lnGDP); Model 2 - lnCARBON ~ 
f(lnEFCONS, lnPOPDEN, lnENVSUS, ln∆NECOPERM, lnGDPC, lnTRADE); Model 3 - lnEFCONS ~ 
f(lnPOPDEN, lnENVSUS, lnGDP); Model 4 - lnEFCONS ~ f(lnPOPDEN, lnENVSUS, lnGDPC, lnTRADE); 
Model 5 - ln∆NECOPERM ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDP); Model 6 - ln∆NECOPERM ~ 
f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDPC, lnTRADE); Model 7 - ln∆NECOPERM ~ f(lnEFCONS, 
lnPOPDEN, lnENVSUS, lnGDPC, lnGDPC2, lnTRADE). Legend: GDPC - Income Level, GDP - Economic 
growth, POPDEN - Population density, TRADE - Trade, ENVSUS - Biocapacity, CARBON - Carbon 
Footprint, EFCONS - Ecological Footprint, NECOPERM - Ecological Status. 

 

What are the drivers of carbon footprint? The lagged-carbon footprint estimate is positive and 

significant (p-value<0.01), hence, confirming the inertial effects of carbon footprint. This 

entails that the current and historical levels of carbon footprint are triggered by unobserved 

common factors across nations. The estimated model achieves convergence, hence, validating 

the carbon footprint convergence hypothesis (Table 1). We accounted for national-level 

income in model 1 whereas individual income, an indicator for wealth was used in model 2. 

The empirical results find that a systemic change in both aggregates and per capita income 

exacerbate carbon footprint. We note that the escalation effect of economic development 

drives carbon footprint by 28-36%. Consequently, a dynamic change in international trade 

spur carbon footprint, confirming a potential transboundary carbon-embedded trade. 

Population density is reported to increase the population demand for natural resource-

heteroskedastic bootstrap error resampling scheme to generate samples
and analytical heterogeneous initialization to generate preliminary con-
ditions of the resampling process (De Vos et al., 2015). We also used
multivariate normal distribution to sample the preliminary conditions.
To control for omitted variable bias, we incorporated the lagged-
dependent variable of ecological status, carbon and ecological footprint.
We plugged-in country-specific fixed-effects to mitigate unobserved
effects across sampled countries. We validated the estimated parame-
ters using a baseline and actual model for which the actual model
captures the inertia effects of target variables. In comparison, both
models produce similar signs and statistical significance of desirable pa-
rameters. The panel kernel regularized least-squares technique reveals
the goodness of fit (R-squared) between 24 and 91% and partial deriva-
tives that are robust and consistent. The panel dynamic bootstrap-
corrected fixed-effects model finds a positive coefficient for the
lagged-dependent variables that is less than 1, fulfilling the assumption
of consistent model estimates. The inferences procedure further shows
a bootstrapped histogram distribution with a characteristic of a
bell-shape (Fig. 6). This is validated by the superimposed kernel fit and
normal distribution line, confirming the residual independence of the
estimated models.

3.1. What are the drivers of carbon footprint?

The lagged‑carbon footprint estimate is positive and significant
(p-value < 0.01), hence, confirming the inertial effects of carbon foot-
print. This entails that the current and historical levels of carbon foot-
print are triggered by unobserved common factors across nations. The
estimated model achieves convergence, hence, validating the carbon
footprint convergence hypothesis (Table 1). We accounted for
national-level income in model 1 whereas individual income, an indica-
tor for wealth was used inmodel 2. The empirical results find that a sys-
temic change in both aggregates and per capita income exacerbate
carbon footprint. We note that the escalation effect of economic devel-
opment drives carbon footprint by 28–36%. Consequently, a dynamic
change in international trade spur carbon footprint, confirming a

potential transboundary carbon-embedded trade. Population density is
reported to increase the population demand for natural resource-
attributed goods and services and waste generation which hamper the
environmental quality. Our estimated model confirms that an increase
in population density intensifies carbon footprint.

3.2. What factors account for changes in ecological footprint?

The significant (p-value < 0.01) positive coefficient of lagged-
ecological footprint confirms unobserved factor-attributed high current
and past trends of ecological footprint of nations. Evidence from Table 1
reveals that the ecological footprint of nations achieves convergence at a
faster pace compared to carbon footprint. Though environmental
sustainability requires the expansion of biocapacity to serve as a
bequest for future generations. However, our empirical results show
that an expansion of ecological reserves triggers resource extraction,
hence, affecting ecological footprint. This is confirmed by the strong ef-
fect of population density on ecological footprint. Similarly to carbon
footprint, population density facilitates resources extraction and con-
sumption of the available natural capital to meet livelihood pressures.
The pointwise estimate highlights that an average impact of economic
growth and income level across countries have escalation effect on eco-
logical footprint. Here, we find global economic development and inter-
national trade driven by excessive extraction and consumption of
natural resources.

3.3. What drives the environmental performance of nations?

While the expansion of biocapacity improves economic perfor-
mance, growth in ecological footprint and international trade hamper
the ecological performance of nations. This results further strengthen
our position on carbon and natural resource-embedded trade effects
across countries. In contrast, population density deviates from the initial
position on carbon and ecological footprint.We find that growth in pop-
ulation density increases ecological performance. We further capture
the environmental Kuznets curve (EKC) hypothesis to examine the

Table 1
Model estimation results.

Variable Drivers of carbon footprint Drivers of the ecological footprint Drivers of ecological performance

Model 1a Model 1b Model 2a Model 2b Model 3a Model 3b Model 4a Model 4b Model 5a Model 6a Model 7a

CARBON† – 0.108***
[0.032]

– 0.110***
[0.033]

– – – – – – –

EFCONS† 0.533***
[0.034]

0.582***
[0.107]

0.648***
[0.029]

0.572***
[0.108]

– 0.619***
[0.064]

– 0.615***
[0.065]

−0.003***
[0.000]

−0.003***
[0.000]

−0.003***
[0.000]

ENVSUS† −0.044
[0.028]

−0.108
[0.176]

0.032
[0.029]

−0.093
[0.173]

0.656***
[0.006]

0.430***
[0.118]

0.778***
[0.006]

0.429***
[0.117]

0.002***
[0.000]

0.003***
[0.000]

0.003***
[0.000]

∆NECOPERM† 18.725
[11.756]

−3.018
[3.492]

11.511
[10.013]

−2.987
[3.519]

– – – – – – –

GDPC† – – 0.362***
[0.018]

0.030
[0.024]

– – 0.134***
[0.008]

0.006
[0.010]

– 0.001***
[0.000]

0.001**
[0.000]

GDPC2† – – – – – – – – – – 0.000***
[0.000]

GDP† 0.280***
[0.015]

0.077***
[0.025]

– – 0.171***
[0.005]

−0.004
[0.006]

– – 0.001***
[0.002]

– –

POPDEN† 0.169***
[0 0.024]

0.307**
[0.127]

0.256***
[0.024]

0.327**
[0.135]

0.463***
[0.008]

0.235***
[0.068]

0.525***
[0.008]

0.231***
[0.068]

0.001**
[0.003]

0.001***
[0.000]

0.001***
[0.000]

TRADE† – – 0.231***
[0.038]

0.088*
[0.048]

– – −0.067***
[0.016]

0.016
[0.013]

– −0.001*
[0.000]

−0.001*
[0.000]

Eff. df 105.5 – 161.5 – 73.43 – 133.7 – 97.25 158.7 154.6
R2 0.594 – 0.612 – 0.907 – 0.905 – 0.243 0.261 0.253
Looloss 7679 – 7467 – 1476 – 1534 – 144.9 144 145.7
Convergence – YES – YES – YES – YES – – –

Notes: † represents the rejection of the null hypothesis of homogeneity using Pesaran CD test; I(0) means a stationary series at level whereas I(1) represents first-difference stationary
series; *,**,*** denotes statistical significance at p-value < 0.10, p-value < 0.05 and p-value < 0.01; [.] is the standard error; N signifies normalization [0,100], ∆means the first-difference;
a ,b represent panel estimation using kernel regularized least squares and panel bootstrap-corrected fixed-effects. Model 1 - lnCARBON ~ f(lnEFCONS, lnPOPDEN, lnENVSUS,
ln∆NECOPERM, lnGDP); Model 2 - lnCARBON ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, ln∆NECOPERM, lnGDPC, lnTRADE); Model 3 - lnEFCONS ~ f(lnPOPDEN, lnENVSUS, lnGDP); Model 4
- lnEFCONS ~ f(lnPOPDEN, lnENVSUS, lnGDPC, lnTRADE); Model 5 - ln∆NECOPERM ~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDP); Model 6 - ln∆NECOPERM ~ f(lnEFCONS, lnPOPDEN,
lnENVSUS, lnGDPC, lnTRADE);Model 7 - ln∆NECOPERM~ f(lnEFCONS, lnPOPDEN, lnENVSUS, lnGDPC, lnGDPC2, lnTRADE). Legend: GDPC - Income Level, GDP - Economic growth, POPDEN
- Population density, TRADE - Trade, ENVSUS - Biocapacity, CARBON - Carbon Footprint, EFCONS - Ecological Footprint, NECOPERM - Ecological Status.
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attributed goods and services and waste generation which hamper the environmental quality. 

Our estimated model confirms that an increase in population density intensifies carbon 

footprint. 

What factors account for changes in ecological footprint? The significant (p-

value<0.01) positive coefficient of lagged-ecological footprint confirms unobserved factor-

attributed high current and past trends of ecological footprint of nations. Evidence from Table 

1 reveals that the ecological footprint of nations achieves convergence at a faster pace 

compared to carbon footprint. Though environmental sustainability requires the expansion of 

biocapacity to serve as a bequest for future generations. However, our empirical results show 

that an expansion of ecological reserves triggers resource extraction, hence, affecting 

ecological footprint. This is confirmed by the strong effect of population density on ecological 

footprint. Analogous to carbon footprint, population density facilitates resources extraction 

and consumption of the available natural capital to meet livelihood pressures. The pointwise 

estimate highlights that an average impact of economic growth and income level across 

countries have escalation effect on ecological footprint. Here, we find global economic 

development and international trade driven by excessive extraction and consumption of 

natural resources. 

What drives the environmental performance of Nations? While the expansion of 

biocapacity improves economic performance, growth in ecological footprint and international 

trade hamper the ecological performance of nations. This results further strengthen our 

position on carbon and natural resource-embedded trade effects across countries. In contrast, 

population density deviates from the initial position on carbon and ecological footprint. We 

find that growth in population density increases ecological performance. We further capture 

the environmental Kuznets curve (EKC) hypothesis to examine the nexus between 

environmental performance and wealth. We find that the EKC hypothesis is not valid but 

rather the scale effect hypothesis. This is because both the first- and second- degree 

polynomial of income level is positive and statistically significant (p-value<0.05). 
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8.4 Discussion 

The long-run relationship between socio-economic drivers and environmental indicators 

reveals that carbon footprint, ecological footprint and ecological performance may deviate 

from its equilibrium at any time period. But the deviation is a temporary transition with the 

tendency of returning to equilibrium through sustainable policies and measures. This implies 

that the factors of production across 188 countries can be altered through structural change 

in economic development. For example, energy and carbon-intensive economic structure can 

be altered at the production level by shifting from fossil fuels to cleaner and sustainable 

alternative energy technologies (Owusu and Asumadu, 2016). Energy transformation in the 

form of replacing fossil fuels with clean energy technologies is reported to have multiple 

implications on investment, import, export and trade of natural resources, and other co-

benefits (Jakob and Steckel, 2016; Mayrhofer and Gupta, 2016). 

Expansion in environmental performance is beneficial to environmental sustainability 

whereas a decline in environmental performance signifies environmental damage, which 

spurs climate change and its impact. Our study confirms that increasing levels of ecological 

footprint and trade across nations obstruct environmental quality. Expansion of ecological 

constraints due to the exploitation of available natural resources is reported to increase 

climatic debt (Bertrand et al., 2016). Rather than the excessive exploitation of natural 

resources, advancing on artificial alternatives that can replace the natural capital as inputs at 

the production level will improve environmental sustainability through the expansion of 

biocapacity. 

Livelihood pressures underpin excessive natural resources extraction and waste 

generation, especially in developing countries (Biggs et al., 2015). It is reported that 2.5 million 

of the world’s population depends on traditional biomass such as charcoal, and fuelwood for 

cooking and heating purposes (IEA, 2017). The notion of the scale and EKC hypotheses provide 

support for our empirical interpretations. While the scale effect posits environmental 

degradation based economic development at pre-industrial level (agrarian economy), the EKC 

hypothesis has similar connotation but with the hope that pollution declines at a threshold of 

income level when environmental awareness becomes a priority. The failure to validate the 

existence of the EKC hypothesis solely relies on the choice of expansive and detailed 
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environmental indicator compared to the usual emission indicators in extant literature (Dinda, 

2004; Sarkodie and Strezov, 2019). 

Validation of the scale effect hypothesis between ecological status and income level 

underscores the deteriorating state of ecological performance across nations due to the 

tendency of potential competitive advantage. The issue of competitive advantage may arise 

when Nation “A” institutes environmental stringency policy that hampers production size and 

efficiency, but Nation “B” employs lax policies that expand the size and efficiency of 

production. The production level of Nation “B” will translate into lower cost and higher profit 

than Nation “A”, hence, offer Nation “B” a competitive advantage. This may be one of the 

several factors hampering the achievement of the multiple global targets on climate change 

mitigation. 

Though growth in both national and individual income is reported to facilitate 

environmental sustainability, however, our study emphasizes on escalation effect. 

Expectations are that higher-income trigger environmental awareness, however, there 

appears to be a missing link between the production level where there is heavy-dependence 

on natural resource utilization and green economic growth. This means that a mere 

advancement in economic development cannot mitigate the escalation effect but a structural 

change through diversification of production will facilitate the agenda towards achieving 

sustainable production and consumption. 

International trade facilitates the transboundary effect of localized natural capital and 

carbon-embedded goods and services. Major economic sectors such as manufacturing, 

agriculture and transportation depend majorly on conventional energy sources to power 

productivity, hence, countries with limited or lack fossil fuel resources import fossil fuels from 

producing countries. This means that environmental degradation can directly or indirectly be 

transferred between income groups of nations. Hence, validating the presence of 

convergence — where environmental deterioration will reach the same level across nations 

under similar conditions regardless of income group. 

The validity of environmental convergence hypothesis through carbon and ecological 

footprint has policy implications for achieving the global emission targets. The presence of 

environmental convergence might have been possible due to global common shocks and 

transboundary effects of carbon and natural resource-depletion embedded in trade and 

globalization. Affluence and population growth are reported to drive the displacement of 
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emissions from high levels of income to lower-income, hence, affecting environmental stress 

(Dietz et al., 2015). This means that country-specific resource-attributable emissions are no 

longer localized but transferrable through international trade. Thus, the existence of 

environmental convergence implies that though the level of economic development across 

nations is not equal in terms of production function and growth characteristics, however, the 

disparities in carbon and ecological footprint are bound to exhibit similar features in the long 

run. 

8.5 Conclusion 

We estimated the overarching effect of economic development, population density and 

international trade on ecological performance from a global perspective. Using a battery of 

novel estimation methods, we accounted for omitted variable bias, heterogeneous effects 

across countries and misspecification errors. The empirical results validated the scale effects 

hypothesis rather than the popular environmental Kuznets curve hypothesis of nations. The 

scale effect confirms that economic development is characterized by natural resource 

exploitation leading to environmental degradation, a situation that has global policy 

implications. We identified the US, China, India, Russia, Germany, Brazil, Japan and Australia 

as the hotspot countries for environmental performance. Our study highlights that the 

diversification of the economic structure by replacing fossil fuels will decline the international 

trade capacities of carbon-embedded resources transferred from countries with higher 

carbon concentrations to countries with lower carbon concentrations. This then explains the 

possibility of environmental convergence in the long run. Meaning that developing and 

harvesting the flow of renewable energy sources across nations decline the multiple emission-

driven processes of fossil fuel extraction and consumption from cradle-to-grave. While fossil 

fuels are transportable and internationally tradable across nations, renewable energy sources 

are localized, hence, eliminates the transboundary flow of emissions. Thus, has policy 

implications in understanding the drivers of environmental degradation through natural 

resource depletion. This calls for global adoption of renewable energy technologies, increased 

efficiency of renewables to compete with fossil fuels, reduction in the price of renewables and 

strong political will for clean and modern energy. 
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Failure to control economic sectoral inefficiencies through 
policy stringency disrupts environmental performance 8 

Abstract 

The developmental agenda of emerging countries often depend heavily on natural resource 

exploitation — a situation that hampers environmental performance. Hence, maximizing 

economic sectoral yield while reducing overdependence on fossil fuels and resources is 

essential to reducing wastage. Here, we assess the economic sectoral impact on emissions 

while controlling for foreign direct investment and energy utilization from 1990-2018. Besides, 

we investigate the role of environmental policy stringency in ameliorating environmental 

performance in a carbonized and energy-intensive economy where fossil fuels outweigh 

renewables. Agrarian, industrial, and energy sector dynamics are found to offshoot CO2 

emissions by 0.12%, 0.14%, and 0.20% whereas service sector productivity decline CO2 

emissions by 0.34%. We observe fossil fuel dominated energy portfolio with limited clean and 

renewable energy diversification that hinders long-term environmental performance. The 

validation of the pollution halo hypothesis implies that FDI inflows are possibly embedded 

with green and abatement technologies that reduce emissions while improving 

environmental performance. Thus, a comprehensive masterplan on climate change mitigation 

will comprise sectoral-specific resource investment that maximizes productivity while 

reducing natural resource exploitation, energy, and carbon-intensity. 

9.1 Introduction 

The traditional linear economy poses great danger to achieving environmental sustainability 

through climate change mitigation. While efforts have been made to shift from linear 

economy (Sauvé et al., 2016) to sustainable production and consumption—accentuated in the 

twelfth Sustainable Development Goal (United Nations, 2015), several existing factors limit 

the global emission reduction efforts. The immediate and underlying determinants of global 

emissions are reported to include population growth, energy intensity, economic growth, 

 
8 Published article: Sarkodie, S. A. (2021). Failure to control economic sectoral inefficiencies through policy 
stringency disrupts environmental performance. Science of The Total Environment, 145603. 
https://doi.org/10.1016/j.scitotenv.2021.145603 
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trade, urbanization, industrialization, governance, technology, infrastructure, development, 

behavior, and resource availability (Blanco et al., 2014; Rosa et al., 2012). Besides, economic 

sectors such as energy, industry, agriculture, forestry, and land use account for ~79.6% of the 

49 Gt CO2 equivalent direct greenhouse gas emissions driven by economic activities (IPCC, 

2016). The trilemma between environmental sustainability, economic development, and 

resource-energy utilization highlights the importance of resource allocation and economic 

structural adjustment. 

While the environmental Kuznets curve (EKC) hypothesis assumes carbonized-economic 

productivity driven by intense energy and resource utilization in developing economies, 

decarbonized-economy with energy efficiency through technological innovation (Jordaan et 

al., 2017) is reported to decline emissions in developed economies (Panayotou, 1993). 

However, failure to account for economic sectoral and disaggregate energy contribution to 

global emissions render environmental policies weak. It is acknowledged that no single 

country operates in one specific economic sector but multiple (agriculture, industry, and 

services). Hence, using aggregate growth in assessing the popular EKC hypothesis may limit 

country-specific policy formulation. This implies that the assessment of the various sectoral 

effects on emissions helps in resource allocation with limited carbon and energy intensity 

(UNEP, 2011). However, previous studies (Arce et al., 2016; López et al., 2018; Steinberger et 

al., 2012) fail to address these structural adjustments in both economic and energy sector 

portfolios. 

Though several studies assess the effects of domestically generated emissions, very few 

have examined the impact of transboundary attributed emissions generated through trade 

(Arce et al., 2016; López et al., 2018; Steinberger et al., 2012). Yet, the role of external funding 

such as foreign direct investment (FDI) — which underpins both pollution haven and halo 

hypotheses has not been extensively assessed. Pollution haven hypothesis is characterized by 

natural resource seeking—access and exploitation-based FDI inducing emissions whereas 

pollution halo is characterized by efficiency-seeking based FDI—boosting technology transfer, 

innovation, research, and development—hence, declining long-term emission concentrations 

(Dunning, 1980). Aside immediate and underlying drivers of GHG emissions, several policies, 

and measures through institutional quality underpin long-term emission standards (Le Quéré 

et al., 2019). In this regard, proper institutional quality can be assessed by the level of 
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stringency on environmental policies. This also implies that the nature of foreign investment 

is determined by environmental policy stringency. 

Contrary to existing literature, our study presents novel concepts in both spirit and letters. 

Extant literature appears to focus on aggregate economic productivity and energy demand in 

assessing emission risks, however, such pathway provides very little knowledge for country-

specific policies on environmental sustainability. In considering disaggregate energy namely 

fossil fuels, clean and renewables––disaggregate economic growth namely agriculture, 

industry, and services––rather than the usual aggregates — several trends, policies, and 

measures become evident. In using disaggregates, the magnitude of sectoral-based impact 

can be quantified and assist in optimal resource investment that maximizes yield while 

reducing emissions. Second, the rebound effect is reported to affect both direct and indirect 

emission consequences. However, several studies fail to capture the importance of rebound 

effects that is evident with socio-economic and environmental factors. The rebound effects 

are reported to mediate the effectiveness of long-term energy and environmental-related 

policies and measures. Thus, rebound effects are relatively high in emerging economies 

(Chakravarty et al., 2013) and require attention — especially with emission reduction 

modeling in developing countries. We account for possible rebound effects of sectoral 

economic growth, energy utilization, and foreign direct investment. The impact of 

transboundary effect through global partnership is examined through foreign direct 

investment inflows. We assess whether pollution trends that hamper environmental 

performance are domestically generated or induced by external funding. Here, we model the 

nonlinear effects of sectoral economic growth, foreign direct investment, and energy 

utilization. We use innovative accounting technique that graphically projects minimum 

resource allocation while maximizing yield in one breath and maximum resource investment 

with limited gains. The different kinds of nonlinear projections demonstrate the importance 

of considering sectoral economic accounting in environmental policies. We further use 

stochastic simulation models to project the counterfactual change in environmental 

performance using the business-as-usual scenario with changes in FDI and environmental 

policy stringency. 
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9.2 Materials & Method 

The assessment of the proposed hypotheses begins with data identification, selection, and 

preprocessing. The choice of data series presented in Table 1 for further processing stems 

from the Sustainable Development indicators and IPCC 5th assessment report on climate 

change (Blanco et al., 2014; DiSano, 2002). To account for Sustainable Development Goal 

(SDG) 7 of sustained economic development, we employ both aggregate GDP and sectoral 

economic contribution namely agrarian, industry, and services. Similarly, to account for clean 

energy, sustainable industrial productivity, innovation, and responsible production and 

consumption expounded in SDGs 7, 9, and 12, we employ aggregate energy and disaggregate 

energy that encompasses both fossil fuels and renewables. To develop conceptual tools for 

climate change mitigation entailed in SDG 12, we use both carbon dioxide emissions and 

environmental performance index as target variables (Alhassan et al., 2020). We incorporate 

environmental policy stringency to account for institutional quality explained in SDG 16. To 

assess the role of global partnership (SDG 17), we utilize foreign direct investment net inflows 

as indicator for achieving Sustainable development in developing countries. To control for 

unevenly spaced data, we utilize the imputation technique presented in Owusu et al. (2020). 

Our comprehensive model uses South Africa as a case study with data spanning 1990-2018. 

South Africa ranks fifth (192 Mt) in terms of global coal consumption (Enerdata, 2019) and the 

only African country with different economic structure compared to the others in the sub-

region. The country has a characteristic of an emerging economy with overdependence on 

fossil fuels and very little attention to clean environment. While foreign direct investment 

flows to Africa increased by 11% (~US$46 Billion) with slow growth in African countries, South 

Africa over-doubled its inflows from US$2 Billion to US$5.3 Billion due to resource-seeking 

investments (UNCTAD, 2019). The over 165.8% growth in FDI flows to South Africa is alarming 

and requires attention, owing to the interest of foreign investors in exploiting available natural 

resources. Hence, South Africa is the only African country among the top 10 FDI (ranks 7th) 

stock economies after France, Netherlands, the US, UK, China, and Italy. 
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Table 1. Data Description 

Abbreviation Variable Unit 
AGRARIAN Agriculture % of GDP 
CO2 CO2 emissions kg per 2010 US$ of GDP 
ENERGY Energy use kg of oil equivalent per capita 
ENVPER Environmental Performance Index index 
ENVPS Environmental Policy Stringency index 
FDI Foreign direct investment net inflows BoP, current US$ 
FOSSIL Fossil fuel energy consumption % of total final energy consumption 
GDP Economic growth current US$ 
INDUSTRY Industry % of GDP 
RENCONS Renewable energy consumption % of total final energy consumption 
SERVICES Services % of GDP 

 

9.2.1 Hypothesization 

We utilize the FreeViz explorative analysis technique to construct optimal research 

hypotheses through the nexus pattern of variables depicted in Figure 1. The FreeViz technique 

employed herein is used to develop hypotheses based on evidential relationships revealed 

between classes and characteristics, interactions, and intra-class information of similarities 

between important variables. Contrary to the principal component analysis that creates 

projections, the FreeViz algorithm improves linear projections via gradient optimization 

technique that classifies variables based on relationships and patterns using visualizations 

(Demšar et al., 2007). Hence, the FreeViz algorithm is a useful explorative analysis tool for 

hypothesization of highly dimensional data series. It can be observed from the initial position 

of multivariate visualization that higher levels of CO2 emissions (indicated by yellow colored-

square legend) have strong association with energy, industry, services, and agrarian [Figure 1 

(a)]. In contrast, FDI, environmental policy stringency and environmental performance index 

have relatively weak correlation with CO2 emissions (indicated by blue colored-square 

legend). While we find almost all the hypotheses of the FreeViz explorative analysis 

corroborating existing theories, the linkage between average levels of CO2 emissions and the 

neutrality between GDP, renewable energy consumption, fossil fuels call for more vigorous 

analysis. Hence, we apply the random optimization procedure to improve the initial position 

of the sampled variables. Subsequently, we find a strong correlation between high levels of 

CO2 emissions, fossil fuels, industry, and agrarian whereas lower levels of CO2 emissions are 
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attributed to energy, GDP, and environmental policy stringency [Figure 1 (b)]. Besides, a 

negative or neutral effect is observed running from FDI, renewable energy, services, and 

environmental performance index to CO2 emissions. The questions emanating from the 

explorative analysis include:  

(1) What is the sectoral contribution to CO2 emissions while accounting for inflows, 

economic development, and energy consumption? (Hypothesized from Appendix B) 

(2) What accounts for the strong affinity between renewables and CO2 emissions while 

controlling for the dominance of fossil fuel and sustained economic growth? 

(Hypothesized from Appendix C) 

(3) How does the interplay of disaggregate energy mix and economic development affect 

environmental performance? (Hypothesized from Appendix D) 

(4) Does environmental policy stringency ameliorate environmental performance in a 

carbonized and energy-intensive economy where fossil fuels outweigh renewables? 

(Hypothesized from Appendix E) 

Thus, the questions distilled from FreeViz multivariate visualization of CO2 emissions and 

environmental performance require answers that form our a priori expectations for further 

empirical assessment. 
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Figure 1. Multivariate visualization of CO2 emissions (indicated by legend) versus socio-economic and 
environmental indicators: (a) Before FreeViz (b) After the application of FreeViz algorithm. Legend: 
Yellow colored-square indicates high levels of CO2 emissions whereas blue colored-square represents 
low levels of CO2 emissions. 
 

9.2.2 Model Construction 

Following the FreeViz explorative analysis technique, we use the novel Kernel Regularized 

Least Squares (KRLS) estimation method to investigate the hypothesis of the study. KRLS is a 

machine learning algorithm drawn from an independent identically distributed data with 

Gaussian kernel — i.e. partly positive definite and symmetric function of inputs mapped onto 
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actual-valued output, hence, measures the resemblance between two input patterns 

(Ferwerda et al., 2017). The target (CO2 emissions and environmental performance) functions 

are fitted with Gaussian kernels, where each input pattern is centered, corresponding weight 

scaled and summed up. Next, regularization is applied to optimize the tradeoff between fit 

approximation and complexities of the model by the imposition of a penalty (Tihonov, 1963). 

To avoid over-parametrization, an optimal regularization boundary is automatically selected 

by the minimization of leave-one-out errors of the sum of squares (Hastie et al., 2009). The 

pointwise partial derivatives of CO2 emissions and environmental performance are derived 

from the input variables namely agriculture, energy use, environmental policy stringency, FDI 

inflows, fossil fuels, economic growth, industry, renewables, and services—to examine the 

pointwise marginal effects of the input variables. 

The KRLS estimator is used to derive hypothesis testing, pointwise average marginal 

effect, and average marginal effects, formation of confidence interval, choose an optimal 

bandwidth automatically for the Gaussian kernel––leading to unbiased, consistent, and 

normally distributed fitted values with asymptotic characteristics (Hainmueller et al., 2014). 

To improve the complexity of the estimated model — i.e., nonlinearity and interactive effects, 

we paired the estimated pointwise marginal effects with the independent variables to assess 

potential statistical significance for inclusion in subsequent analysis. For instance, a 

statistically significant nexus between pointwise marginal effect of a regressor and target 

variable signifies nonlinearity whereas a strong relationship between pointwise marginal 

effect of a regressor and another regressor denotes interaction. In such a situation, re-

estimation of the machine-based learning algorithm is executed to include the newly 

identified additional variables to improve the model’s complexity. 

To examine the counterfactual change in environmental performance over the next 30 

years while accounting for FDI and environmental policy stringency. We predict 

environmental performance using the average change in growth of FDI (2.12%) and 

environmental policy stringency (0.07%) based on ceteris paribus analysis using dynamic ARDL 

simulations algorithm. To apply the dynamic ARDL simulations, several pre-conditions were 

examined and requirements met. First, data series were first-difference stationary — tested 

using Phillips-Perron (Phillips et al., 1988) and Augmented-Dickey fuller (Dickey et al., 1979) 

unit root. Second, we adopted an optimal lag structure based on first difference via useful 

information criteria. Third, the nexus between environmental performance, FDI, and 
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environmental policy stringency was cointegrated with long-run effect — validated using the 

Pesaran-Shin-Smith bounds test based on surface regression with critical and approximate 

probability values. A confirmation of the long-run nexus between the sampled series led to 

the adoption of error correction-based ARDL estimation technique. Thereafter, we applied the 

dynamic ARDL (Jordan et al., 2018) stochastic simulations approach with the selected optimal 

lag in first-difference. Besides, we utilized a single shock regressor for counterfactual impulse 

analysis using the specified ± change (%) along the 20-length scenario at 10-year scenario time 

for impulse to occur along the horizon based on error correction technique with 5,000 

stochastic simulations. The parameters stimulated based on the business-as-usual scenario 

are used in predicting future changes in environmental performance over the time period via 

stochastic improbability drawn from a zero-mean and variance attributed multivariate-normal 

distribution. The simulated values are automatically averaged to produce predicted 

parameters, confidence intervals, and stochastic uncertainties presented in spiked plots. 

Model Validation. Contrary to traditional linear regression that is extremely vulnerable 

to misspecification bias, the KRLS estimator is less vulnerable due to an initial flexibility 

modeling of conditional expectation function and subsequent reporting of parameters as 

mean derivative of the enhanced fitted model. Second, the optimization of the fitted model 

with a penalty-attributed to optimal regularization function helps prevent over-fitting. Third, 

the KRLS estimator controls for complex models with non-additivity, non-linearities, and 

interaction effects (Hainmueller et al., 2014). The marginal effects of the estimated models 

were examined for heterogeneous effects using the pointwise derivatives expressed in 

percentiles. We observe that all the covariates in the estimated models from 1-99 percentiles 

lack uniform distribution of the marginal effects. Hence, failure to examine heterogeneous 

effects and account for conditional distribution across percentiles leads to biased-statistical 

inferences and policy formulation. This called for the adoption of average marginal effects 

rather than the traditional estimation procedure. To confirm the parameter stability of the 

estimated coefficients of covariates over the period, we adopted the recursive cumulative 

sum test presented in Figure 2. We observe that the estimated parameters of covariates are 

within the 95% confidence band, hence, confirming the time-specific constancy and stability 

of the models. 
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Figure 2. Recursive CUSUM for stability test: (A) Agrarian Sector (B) CO2 Emissions (C) Energy 
Utilization (D) Environmental Performance Index (E) ENVPS (F) FDI (G) Fossil Energy Utilization (H) 
GDP (I) Industrial Sector 

 

9.3 Results & Discussion 

We discern from Table 2 that FDI inflows observed the highest growth by 2.12% within the 28-

year data sample, followed by environmental policy stringency (0.07%), economic growth 

(0.05%), services (0.01%), energy (0.01%), and disaggregate energy (fossil fuels and 

renewables) at par with 0.001% change. In contrast, agrarian sector experienced the highest 

decline in 28 years by 0.02% and trailed closely by industrial sector (0.01%), CO2 emissions 

(0.003%), and environmental performance (0.001%). In terms of sectoral contribution to 

economic growth, we find that services dominate on average by 58.74%, followed by industry 

(28.93%) and agrarian (2.97%). 
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Table 2. Descriptive statistics of sampled indicators 

Statistic AGRARIAN CO2 ENERGY ENVPER ENVPS FDI FOSSIL GDP INDUSTRY RENCONS SERVICES 

%Δ -0.0198 -0.0031 0.0066 -0.0005 0.0724 2.1155 0.0005 0.0502 -0.0119 0.0005 0.0069 

Mean 2.9664 1.3605 2570.9870 51.5607 0.6401 3.06E+09 86.3254 2.35E+11 28.9259 17.2006 58.7428 

Median 2.8595 1.3811 2518.3330 50.4600 0.4792 1.52E+09 86.5753 2.29E+11 28.0077 17.1072 60.0857 

Maximum 4.2150 1.5569 2950.1540 70.5200 1.7500 9.89E+09 88.1487 4.16E+11 36.4069 19.1214 61.3893 

Minimum 2.0888 1.1484 2290.6670 44.7300 0.3958 -75722412 84.2434 1.15E+11 25.8535 15.5703 50.4671 

Std. Dev. 0.7041 0.1196 168.1998 4.4623 0.3684 2.94E+09 1.1119 1.03E+11 2.8775 0.9405 2.7957 

Skewness 0.3580 -0.0808 0.4327 2.4048 2.2950 0.7550 -0.3462 0.2807 1.0606 0.2918 -1.3743 

Kurtosis 1.8164 1.8735 2.4845 12.6793 6.9182 2.2827 1.9415 1.5117 3.2113 2.1397 4.2948 

Jarque-Bera 2.3123 1.5651 1.2261 141.1568 44.0076 3.3767 1.9333 3.0576 5.4905 1.3058 11.1539 

Probability 0.3147 0.4572 0.5417 0.0000 0.0000 0.1848 0.3804 0.2168 0.0642 0.5205 0.0038 

AGRARIAN 1            

CO2 0.7834* 1           

ENERGY -0.4854* -0.4124* 1         

ENVPER -0.1564 -0.1791 -0.0992 1        

ENVPS -0.4199* -0.3871* 0.4496* 0.1916 1       

FDI -0.5213* -0.5351* 0.7037* -0.059 0.3012 1      

FOSSIL -0.4917* -0.5016* 0.7616* -0.0529 0.3731* 0.5199* 1     

GDP -0.8803* -0.7707* 0.6331* 0.0806 0.6076* 0.5528* 0.6873* 1     

INDUSTRY 0.9162* 0.6208* -0.4955* -0.0598 -0.3344 -0.5026* -0.3926* -0.7678* 1    

RENCONS 0.5581* 0.4456* -0.7454* -0.0394 -0.3087 -0.5386* -0.6659* -0.6837* 0.4961* 1  

SERVICES -0.9059* -0.6041* 0.4490* 0.0544 0.3864* 0.4940* 0.33 0.7454* -0.9838* -0.4184* 1 

Notes: %Δ denotes the mean relative change from 1990-2018 (elaborated in Appendix A). Pearson 
correlation of sampled indicators based on a 2-tailed test of significance is used; * Pearson 
correlation is significant at 5% level. 

 

How does sectoral-based economy affect CO2 emissions? To answer this question, we adapted 

the theoretical support of the traditional EKC hypothesis and substituted it with sectoral 

economic growth namely agrarian, industry, and services (Figure 3). The EKC hypothesis posits 

that initial agrarian-based economic development of low-income countries emboldens 

environmental consequences due to excessive resource extraction and waste generation — a 

process termed as the scale effect (Panayotou, 1997; Sarkodie et al., 2019). However, it is 

assumed that as low-income countries migrate to middle-income status catalyzed by a shift 

from agrarian to industrial economy, increasing level of income to a specific threshold 

engenders environmental awareness. This leads to environmentally friendly policies that 

change the composition of the economic structure, resulting in a gradual decline of emissions 

— a process termed as the composition effect. In contrast, high-income countries are 

characterized by services, modern technologies, innovation, and environmental policy 
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stringency, ensuing in transfer of polluting industries to developing economies. This in effect 

declines environmental consequences compared to industry sector — a process termed as the 

technique effect. 

While the EKC hypothesis assumes a specific sector across income groups, all three 

sectoral-based economies practically exist in a country’s economic structure but with varying 

contributions to economic development. Thus, assessment of all sectoral-based economic 

growth with environmental consequences appears more policy-oriented compared to the 

traditional framework of the EKC hypothesis. In Figure 3(A-C), we show that disaggregate 

economic growth versus CO2 emissions achieves similar trend as the so-called inverted-U-

shaped curve aka EKC hypothesis. On this note, we empirically test the hypothesis with CO2 

emissions as target variable whereas agrarian, industry, and services are regressors while 

controlling for energy, FDI, and squared of FDI. 

We used the general-to-specific reasoning to improve the complexity of the estimated 

model via KRLS pointwise partial derivatives. Using partial derivatives of covariates generated 

from economic sectoral accounting, we substituted the derivatives of each covariate in place 

of CO2 emissions for subsequent analysis. Regressors that proved significant against specified 

derivatives qualified for either interaction or nonlinearity. Though the goodness fit test in 

Table 4 is 79% compared to 81% in Table 3, however, the resulting complex model in Table 4 

produces same sign and significance but shows more robust and consistent results. The 

estimated average marginal effects in Table 3 show that expansion in agrarian, industrial, and 

energy sector dynamics offshoot CO2 emissions by 0.12%, 0.14%, and 0.20% ––whereas 

service sector productivity and growth in FDI reduce CO2 emissions by 0.34% and 0.01%, 

respectively. Besides, both linear and second-degree polynomials of FDI are negative and 

statistically significant at p-value<0.01, thus, confirming the validity of the pollution halo 

hypothesis (see Table 3). This infers that contrary to arguments of pollution-embedded FDI 

inflows transferred to developing economies, our empirical analysis shows that the type of 

FDI inflows to South Africa supports green growth. Meaning that the external funding is 

possibly embedded with green and abatement technologies such as renewables and clean 

energy, and green knowledge spillover that underpins circular and green economic growth. 
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Figure 3. Schematic representation (A) Trend of CO2 emissions versus Agrarian sectoral-based 
economic development (B) Trend of CO2 emissions versus Industrial sectoral-based economic 
development (C) Trend of CO2 emissions versus Service sectoral-based economic development (D) 
EKC hypothesis showing Income level in CO2 emissions function. 
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Table 3. Estimated Parameters & Pointwise Derivatives — Economic Sectoral Accounting 

Percentiles AGRARIAN INDUSTRY SERVICES ENERGY FDI FDI2 
Avg. 0.1207*** 

[0.0200]  

0.1367*** 
[0.0477] 

-0.3407*** 
[0.0837] 

0.1982** 
[0.0837] 

-0.0062*** 
[0.0020] 

-0.0002*** 
[0.0001] 

1% -0.0448*** -0.1854*** -0.7002*** -0.4920** -0.0159*** -0.0004*** 
5% -0.0246*** -0.0476*** -0.6173*** -0.3245** -0.0154*** -0.0004*** 
10% 0.0017*** -0.0448*** -0.6092*** -0.2331** -0.0150*** -0.0004*** 
25% 0.0652*** 0.0604*** -0.5146*** 0.0199** -0.0095*** -0.0003*** 
50% 0.1372*** 0.1649*** -0.3915*** 0.2604** -0.0066*** -0.0002*** 
75% 0.1730*** 0.2264*** -0.2437*** 0.4154** -0.0034*** -0.0001*** 
90% 0.2369*** 0.2807*** 0.0171*** 0.5191** 0.0015*** 0.0000*** 
95% 0.2375*** 0.2853*** 0.0296*** 0.5236** 0.0061*** 0.0001*** 
99% 0.2597*** 0.3112*** 0.5541*** 0.6306** 0.0074*** 0.0002*** 
Diagnostics — — — — — — 
Mean 0.1207 0.1367 -0.3407 0.1982 -0.0062 -0.0002 
Std. Dev. 0.0848 0.1205 0.2706 0.2735 0.0056 0.0002 
Variance 0.0072 0.0145 0.0732 0.0748 0.0000 0.0000 
Skewness -0.2887 -0.7662 1.4137 -0.7174 0.5617 0.3572 
Kurtosis 2.1445 3.0862 5.3290 2.9535 3.2905 2.9220 
Lambda 0.8000 — — — — — 
R-square 0.8141 — — — — — 
Looloss 0.8198 — — — — — 
Sigma 6.0000 — — — — — 
Eff. Df 7.3250 — — — — — 
Cointegration YESa — — — — — 
Notes: aThe null hypothesis of no cointegration is rejected at 5% significance level by Johansen 
maximum eigenvalue and Boswijk test for cointegration; [.] represents the standard errors while **, 
*** denote statistical significance at 5% and 1% level. 

 

The pointwise derivatives of nonlinear and interactive effects in Table 4 show a negative and 

significant effect of maximum service productivity (SERVICES2) on CO2 emissions. This reveals 

that long-term maximization of the service sector yield has a mitigation effect on CO2 

emissions by 0.012%. We observe that the interaction between energy and agrarian sector 

(ENERGY×AGRARIAN) — energy and industrial sector (ENERGY×INDUSTRY) escalates CO2 

emissions by ~0.01%, however, the statistical insignificant interaction effect of energy and 

services (ENERGY×SERVICES) decline CO2 emissions. This suggests that energy-intensive 

agricultural and industrial production exacerbates CO2 emissions whereas service sector 

driven energy utilization has no effect on emissions. Similarly, the interaction between 

agrarian and services — agrarian and industrial sector spurs CO2 emissions by ~0.01%, 
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however, the interaction effect of FDI and services — FDI and industrial sector declines 

emissions. This corroborates the existence of pollution halo hypothesis — implying that FDI 

inflows are possibly embedded with green growth, hence, has CO2 emissions reduction effect. 

 

Table 4. Pointwise Derivatives of Nonlinear and Interactive effects — Economic Sectoral Accounting 

CO2 Avg. S.E. t P>t P 5      P 50 P 95 
ENERGY2 0.0048 0.0036 1.3220 0.2050 -0.0172 0.0032 0.0198 
SERVICES2 -

0.0115 
0.0045 -2.5730 0.0200** -0.0216 -0.0138 0.0004 

ENERGY×AGRARIAN 0.0064 0.0010 6.1550 0.0000*** -0.0011 0.0069 0.0122 
ENERGY×SERVICES -

0.0016 
0.0035 -0.4440 0.6630 -0.0200 -0.0004 0.0142 

AGRARIAN×SERVICES 0.0125 0.0021 5.9910 0.0000*** -0.0017 0.0137 0.0245 
AGRARIAN×INDUSTRY 0.0111 0.0017 6.6550 0.0000*** -0.0026 0.0117 0.0218 
ENERGY×INDUSTRY 0.0066 0.0035 1.8830 0.0780* -0.0134 0.0086 0.0195 
SERVICES×INDUSTRY 0.0031 0.0130 0.2370 0.8160 -0.0262 0.0072 0.0287 
FDI×INDUSTRY -

0.0004 
0.0002 -2.4000 0.0290** -0.0008 -0.0006 0.0005 

FDI×SERVICES -
0.0004 

0.0001 -2.7990 0.0130** -0.0007 -0.0005 0.0004 

Diagnostics 
Lambda 0.8000 Eff. df  6.5390 R2  0.7859 Looloss 0.8465 
Notes: For brevity, individual variables in Table 3 are not reported in this Table to avoid repetition. SE 
denotes standard error, P 5 is the 5th percentile, P 50 is the 50th percentile, and P 95 is the 95th 
percentile; S.E. represents the standard errors while *, **, *** denote statistical significance at 10%, 
5%, and 1% level. 

 

Next, we graphically estimated the pointwise marginal effect of derivatives from the optimal 

and significant candidates (interaction and nonlinearity in Table 4) presented in Figure 4 with 

long term policy implications. We observe an inverted-U shape relationship between the 

marginal effect of industry and agrarian sector—an initial positive sectoral change in industry 

from low to medium level agrarian productivity and decreases thereafter, reaching the point 

of maximum agrarian sector yield. This implies that the industrial sector has long-term 

decreasing marginal returns for high investment in agricultural sector but short-term 

increasing industrial marginal returns until medium-level agrarian investment. Similarly, the 

marginal effect of FDI increases with increasing service sector investment but declines to 

negative after medium to high levels of service sector investment. This indicates that high 
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levels of service sector investment improve internal financing and domestic development but 

declines external financing, foreign innovation, development assistance, and spillover effects 

of knowledge, technology, and labor. 

The marginal effect of energy rises from negative to positive with corresponding low 

to high levels of agrarian investment. This implies that long-term agrarian investment 

increases energy consumption. We observe a U-shaped relationship between the marginal 

effect of services and agrarian sector. Decreasing marginal return of the service sector is 

evident between low to medium agrarian investments, however, experiences upturn after 

reaching the point of minimum agrarian sector yield. This infers that the service sector has 

long-term positive returns for high investment in the agricultural sector. Next, we examine 

the long-term association between the marginal effect of services and service sector 

dynamics. There is evidence of N-shaped relationship, which confirms two different turning 

points of both maximum and minimum service sector yield — revealing both productive and 

negative marginal returns. This in effect implies that allocation of resources or investments in 

only service sector is unhealthy for long-term economic development. 

The relationship between the marginal effect of energy and energy consumption 

reveals a bimodal shape aka M-shape, however, the fit reveals N-shape. We observe two 

maxima energy sector yields showing increasing marginal returns at two individual points and 

zero-depression point with decreasing marginal returns. The M-shaped relationship probably 

reveals the dynamics of disaggregated energy (i.e., fossil fuel and renewable energy) — 

accentuating the importance of diversification in the energy portfolio. The nexus between the 

marginal effect of services and industrial sector validates an inversed-N-shaped relationship 

— revealing an initial negative marginal return (minimum industrial sector yield) before long-

term increasing service productivity. Thus, investment in industrial sector has initial recession 

effects on service sector efficiency but provides long-term opportunities leading to expansion 

of the service sector. 

We confirm an inversed-U-shaped relationship between the marginal effect of energy 

consumption and the industrial sector. This implies that energy utilization increases at the 

initial stages of industrial sector production until maximum industrial sector yield is achieved 

before energy utilization declines with increasing industrial productivity. The relationship 

between the marginal effect of FDI and industrial sector confirms an elongated uphill-shaped 

relationship — showing an increasing level of FDI inflows with industrial sector expansion until 
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maximum industrial sector yield is reached before reduction sets in. This further implies that 

countries with high industrial sector production attract more foreign direct investment 

inflows. This in effect explains why countries like China, India, among others have high levels 

of FDI inflows (World Bank, 2020). Concurrently, the nature of FDI namely pollution-halo or 

pollution-haven is determined by the composition of the industrial sector. 

 

 
Figure 4. Pointwise marginal effect of (A) Industry ~ Agrarian sector (B) FDI ~ Service sector (C) 
Energy ~ Agrarian sector (D) Services ~ Agrarian sector (E) Services ~ Service sector (F) Energy ~ 
Energy Consumption (G) Services ~ Industrial sector (H) Energy ~ Industrial sector (I) FDI ~ Industrial 
sector. 
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Does growth in GDP, renewables, and fossil fuels affect CO2 emissions and environmental 

performance? From a policy viewpoint, accounting for disaggregated energy utilization and 

economic development is reported to provide useful insights for energy-driven economic 

policy formulation. We estimated the effect of disaggregate energy utilization and aggregate 

economic growth on CO2 emissions and environmental performance. The goodness of fit test 

for both models is 0.996 and 0.908 — implying that the regressors explain 99.6% of CO2 

emissions and 90.8% of environmental performance. The average marginal effect parameters 

presented in Table 5 reveal an increase in fossil fuel consumption and economic growth 

increases CO2 emissions by 4.13% and 0.13% whereas renewable-based energy consumption 

declines CO2 emissions by 0.28%. In contrast, an increase in the average marginal effect of 

fossil fuels and economic growth declines environmental performance by 6.54% and 0.13% 

whereas increasing the share of renewables improves environmental performance by 1.51%. 

This equally reflects the composition and share of fossil fuels and renewables in South Africa’s 

energy portfolio. As of 2019, domestic utilization of coal, oil, natural gas, nuclear energy, and 

renewables stood at 85.98 Mtoe, 25.26 Mtoe, 0.42 Mtoe, 2.51Mtoe, and 2.80 Mtoe, 

respectively (BP, 2019). This infers that the share of clean energy technologies (i.e., 

renewables and nuclear energy) accounts for a mere 4.54% of domestic consumption, hence, 

corroborating the empirical results. Besides, it amplifies carbon and energy-intensive 

economic development driven by fossil fuel utilization. Thus, fossil fuel-dominated energy mix 

with limited diversification from clean and renewable energy technologies is a threat to 

environmental performance (Sarkodie, Adams, et al., 2020). 
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Table 5. Estimated Parameters of Emissions & Environmental Performance 

Percentiles FOSSIL RENCONS GDP 
Avg. CO2

a 
 
 
Avg. ENVPERb 

4.1261***a 
[0.3140]a 
 
-6.5374***b 

[1.3019]b 

-0.2760***a 
[0.0669]a 

 

1.5055***b 

[0.2773]b 

0.1262***a 
[0.0144]a 

 

-0.1295**b 

[0.0597]b 
    
1% -27.2626a 

-26.1362b 
-4.8144a 

-3.7482b 
-0.6518a 
-1.1681b 

    
5% -11.8789a 

-23.7009b 
-2.5872a 

-3.6690b 
-0.4615a 

-0.9142b 
    
10% -11.3494a 

-21.5267b 
-2.5002a 

-3.6073b 
-0.4374a 

-0.8176b 
    
25% -0.9686a 

-15.1635b 
-0.7759a 

-1.4949b 
-0.1601a 

-0.5021b 
    
50% 6.7879a 

-3.9549b 
-0.0395a 

1.2234b 
0.0092a 

-0.0908b 
    
75% 9.9579a 

1.9348b 
0.7130a 

3.8137b 
0.4991a 

0.2281b 
    
90% 15.9668a 

5.1049b 
1.5730a 

5.7474b 
0.7254a 

0.5389b 
    
95% 17.1760a 

10.7233b 
2.0191a 

7.4852b 
0.7336a 

0.5768b 
    
99% 19.1097a 

21.6801b 
2.6240a 

12.0052b 
0.8075a 

0.7226b 
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Diagnostics 
   

Mean 4.1260a 

-6.5374b 
-0.2760a 

1.5055b 
0.1262a 

-0.1295b 
Std. Dev. 9.7136a 

11.5228b 
1.6063a 

3.6869b 
0.4271a 

0.4893b 
Variance 94.3539a 

132.7753b 
2.5801a 

13.5929b 
0.1824a 

0.2394b 
Skewness -1.2110a 

0.2465b 
-0.7749a 

0.6848b 
0.0771a 

-0.2700b 
Kurtosis 5.0804a 

2.5145b 
3.6476a 

3.5128b 
1.8230a 

2.1674b 
Lambda 0.0010a/b — — 
R-square 0.9956a 

0.9079b 
— — 

Looloss 1.5330a 

4.7440b 
— — 

Sigma 3.0000a/b — — 
Eff. df 25.3900a/b — — 
Cointegration YESa/b — — 

Notes: a The null hypothesis of no cointegration is rejected at 5% significance level by Johansen 
maximum eigenvalue, Banerjee, and Boswijk test for cointegration. b Engle-Granger, Johansen, 
Banerjee and Boswijk test for cointegration reject the null hypothesis of no cointegration at p<0.05; 
[.] represents the standard errors while **, *** denote statistical significance at 5% and 1% level. 

 

Does environmental policy stringency ameliorate environmental performance? Environmental 

policy stringency plays an essential role in FDI inflows from high-income countries to 

developing countries, albeit key to environmental sustainability. The composition of the 

economic sector, energy portfolio, production and consumption, and environmental 

performance depends on environmental policies and measures. Here, we examined the 

impact of environmental policy stringency — as a policy measure in enhancing environmental 

performance in a carbon-embedded and energy-intensive economy where fossil fuel 

utilization outweighs renewables and clean energy. The estimated model with parameters 

presented in Table 6 reveals that the regressors explain 99.7% variations in the target variable. 

Hence, confirming the predictability of disaggregate energy, GDP, environmental policy 

stringency, and CO2 emissions in explaining the dynamics of environmental performance. We 

observe from the average marginal effect that CO2 emissions, fossil fuel utilization, and 

economic growth contribute significantly to reducing environmental performance by 1.16%, 

0.71%, and 0.25%, respectively. According to the IPCC 5th Assessment report (Blanco et al., 
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2014), carbon intensity, economic growth, and energy utilization are the immediate drivers of 

greenhouse gas emissions — implying that these limiting factors disrupt environmental 

performance, hence, thwarts efforts toward attaining environmental sustainability. Besides, 

carbon dioxide is the main contributory factor of anthropogenic GHG emissions that hampers 

environmental sustainability through its long-term degradation effect. In contrast, the 

expansion of renewable energy and environmental policy stringency improves environmental 

performance significantly by 1.27% and 0.17%, respectively. Though the adoption of 

renewable energy technologies is reportedly affected by policy instruments, technological 

innovation attributable cost, and market failure, however, its climate mitigation, 

environmental, and health impact reduction effects cannot be underrated (Owusu et al., 

2016). Likewise, diversification of the energy mix with renewable energy technologies is 

reported to provide opportunities for achieving energy access, energy security, human 

development, and socio-economic development (Edenhofer et al., 2011; Owusu et al., 2016; 

Sarkodie & Adams, 2020). Increasing levels of environmental policy stringency serve two 

purposes in developed economies — first, it may stimulate emission-reduction technologies, 

innovation, and research and development, or second, shift polluting industries to developing 

countries with lax environmental regulations. Environmental policy stringency navigates 

industrial production efficiency, hence, an important determinant of fossil fuel utilization and 

pollutant emissions (Johnstone et al., 2017). This explains why the introduction of stringent 

environmental policies, viz. environmental regulations are reported to escalate industrial and 

technological innovations, hence, lower pollution abatement costs due to a reduction in 

emission intensities (Milani, 2017). In contrast, pollution-embedded external financial support 

— in the form of FDI inflows underscores knowledge spillover, technology, and human capital 

attributed emissions from foreign countries — which underpins the pollution haven 

hypothesis. However, our empirical analysis contradicts pollution haven in support of 

pollution halo hypothesis.  

To further validate the hypothesis on environmental performance, we plugged in the 

individualistic and interactive effects of FDI inflows, and environmental policy stringency using 

the dynamic ARDL simulations and further predicted future shocks in regressors using the 

average change over the 28-year period. We observe a potential long-run association 

evidenced in the bounds test cointegration results in Appendix F. To examine the response of 

environmental performance to counterfactual shocks in FDI inflows and environmental policy 
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stringency, we utilized the mean change of historical trends — 2.12% and 0.07%, respectively, 

and assumed a constancy over the predicted 20-year (2018-2038) horizon. Our predicted 

parameters are within the 95, 90 and 75% confidence interval represented by cranberry, sand, 

teal colored-spikes. Using the ceteris paribus analysis, we observe in Figure 5 (a) that 2.12% 

shock in FDI inflows will increase environmental performance after the 2nd year by ~0.39% 

and stabilize thereafter. In contrast, -2.12% shock in FDI inflows declines environmental 

performance by ~0.39% after the 2nd horizon [Figure 5 (b)]. Thus, confirming our initial results 

in Table 4 that validate the pollution-halo hypothesis. We further observe very little change in 

the response of environmental performance to ±0.07% shock in environmental policy 

stringency [Figure 5 (c-d)]. The lagged (2)-interaction between FDI inflows and stringency 

(Appendix F) corroborates the position of pollution-halo hypothesis. This implies that the 

current state of agrarian and industrial-based emissions and poor environmental performance 

are not imported but domestically generated, hence, environmental policy stringency and FDI 

inflows are not linked to polluting industries. 
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Table 6. Determinants of Environmental Performance – Stringency Nexus 

Percentiles FOSSIL RENCONS GDP ENVPS CO2 
Avg. -0.7055** 

[0.2861]  

1.2734*** 
[0.0503] 

-0.2482*** 
[0.0072] 

0.1706** 
[0.0120] 

-1.1590*** 
[0.0382] 

1% -15.6870** -3.3078*** -0.6940*** -0.4986** -7.0334*** 
5% -15.3372** -3.1941*** -0.6402*** -0.4628** -6.1806*** 
10% -7.7055** -2.3021*** -0.6074*** -0.4547** -6.0261*** 
25% -3.4926** -1.7096*** -0.4223*** -0.0634** -1.5521*** 
50% 0.7298** 0.0726*** -0.2418*** 0.2725** -0.4399*** 
75% 2.6944** 2.8625*** -0.0464*** 0.4111** 0.4333*** 
90% 4.2148** 9.1763*** 0.0743*** 0.5679** 1.1827*** 
95% 4.3682** 9.1873*** 0.1798*** 0.6544** 1.2164*** 
99% 4.3850** 9.7176*** 0.2686*** 0.7349** 2.1911*** 
Diagnostics — — — — — 
Mean -0.7055 1.2734 -0.2482 0.1706 -1.1590 
Std. Dev. 5.1857 3.9436 0.2517 0.3600 2.4823 
Variance 26.8915 15.5521 0.0633 0.1296 6.1620 
Skewness -1.6271 0.9757 0.0676 -0.5721 -1.1651 
Kurtosis 5.2798 2.7248 2.2480 2.1903 3.2518 
Lambda 0.0010 — — — — 
R-square 0.9970 — — — — 
Looloss 5.5240 — — — — 
Sigma 5.0000 — — — — 
Eff. Df 28.16 — — — — 

Notes: [.] represents the standard errors while **, *** denote statistical significance at 5% and 1% 
level. 
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Figure 5. Predicted Environmental Performance with (A) 2.12% change in FDI inflows (B) -2.12% 
change in FDI inflows (C) 0.07% change in Environmental Policy Stringency (D) -0.07% change in 
Environmental Policy Stringency. Legend: cranberry, sand, teal colored-spikes represent 95, 90, and 
75% confidence interval. 

 

9.4 Conclusion 

We investigated the determinants of environmental performance – environmental policy 

stringency nexus while controlling for economic sectoral dynamics. In summary, we observed 

that the failure to account for economic sectoral inefficiencies by the institutionalization of 

environmental policy stringency will disrupt environmental performance. Our case scenario 

of the assessment of economic-driven emissions revealed that using aggregate economic 

growth rather than individual economic sectoral input provides little and vague overview for 

environmental policy formulation, especially in resource allocation. Hence, the assessment of 

country-specific economic sectoral accounting highlights how linear economy can be shifted 

towards circular economy by maximizing yield while reducing wastage, environmental 

pollution, and resource consumption. Our study demonstrated that the allocation of scarce 

resources should be based on long-term prospects rather than short-term gains. Contrary to 
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the traditional EKC hypothesis, we showed that sectoral-based economic productivity is useful 

in understanding pollution-reduction policies. Besides, our empirical analysis reveals when 

and where to allocate limited natural resources for sustainable economic development while 

reducing production shortfalls. Thus, at the point of diminishing returns in the service sector, 

it is advisable to invest, combine, or substitute resources from both agrarian and industrial 

sectors. Implying that a combination of other sectors like agrarian and industry has long-term 

productivity. We showed that diversification of the energy portfolio is essential to sustain 

long-term economic development. Our study revealed that the overdependence on fossil 

fuels has long-term environmental costs that hinder progress towards the mitigation of 

climate change and its impacts. The introduction of energy efficiency and decarbonization of 

economic policies could begin with disaggregation of economic growth rather than the 

traditional aggregated GDP. This provides opportunity to examine both efficiency and 

deficiency of the economic structure and incorporate the appropriate policy. Long-term 

industrial sector production is observed to increase energy efficiency while short-term 

industrial sector productivity increases energy intensity. This implies that industrial sector 

production has both escalation and mitigation effects, hence, the introduction of energy 

conservation and management policies will hamper short-term industrial sector productivity. 

Our empirical estimation confirmed that foreign direct investment inflows are driven by 

industrial sector production. Thus, the industrial structure determines the level of external 

funding, environmental performance, knowledge, and technological spillover. From a policy 

perspective, increasing the share of renewables while reducing fossil fuels in the energy 

portfolio declines CO2 emissions while increasing environmental performance. Political will 

through the enactment of stringent environmental policies is critical to improving long-term 

environmental performance. 
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Supplementary Information 

Appendices for Chapter 4 

 

Winners and losers of energy sustainability—global 
assessment 

 

Table 1. List of countries, territories, and income groups 

No. Country Name ISO3 
1 Afghanistan AFG 
2 Albania ALB 
3 Algeria DZA 
4 American Samoa ASM 
5 Andorra AND 
6 Angola AGO 
7 Antigua and Barbuda ATG 
8 Argentina ARG 
9 Armenia ARM 

10 Aruba ABW 
11 Australia AUS 
12 Austria AUT 
13 Azerbaijan AZE 
14 Bahamas, The BHS 
15 Bahrain BHR 
16 Bangladesh BGD 
17 Barbados BRB 
18 Belarus BLR 
19 Belgium BEL 
20 Belize BLZ 
21 Benin BEN 
22 Bermuda BMU 
23 Bhutan BTN 
24 Bolivia BOL 
25 Bosnia and Herzegovina BIH 
26 Botswana BWA 
27 Brazil BRA 
28 British Virgin Islands VGB 
29 Brunei Darussalam BRN 
30 Bulgaria BGR 
31 Burkina Faso BFA 
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32 Burundi BDI 
33 Cabo Verde CPV 
34 Cambodia KHM 
35 Cameroon CMR 
36 Canada CAN 
37 Cayman Islands CYM 
38 Central African Republic CAF 
39 Chad TCD 
40 Channel Islands CHI 
41 Chile CHL 
42 China CHN 
43 Colombia COL 
44 Comoros COM 
45 Congo, Dem. Rep. COD 
46 Congo, Rep. COG 
47 Costa Rica CRI 
48 Cote d'Ivoire CIV 
49 Croatia HRV 
50 Cuba CUB 
51 Curacao CUW 
52 Cyprus CYP 
53 Czech Republic CZE 
54 Denmark DNK 
55 Djibouti DJI 
56 Dominica DMA 
57 Dominican Republic DOM 
58 Ecuador ECU 
59 Egypt, Arab Rep. EGY 
60 El Salvador SLV 
61 Equatorial Guinea GNQ 
62 Eritrea ERI 
63 Estonia EST 
64 Ethiopia ETH 
65 Faroe Islands FRO 
66 Fiji FJI 
67 Finland FIN 
68 France FRA 
69 French Polynesia PYF 
70 Gabon GAB 
71 Gambia, The GMB 
72 Georgia GEO 
73 Germany DEU 
74 Ghana GHA 
75 Gibraltar GIB 
76 Greece GRC 
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77 Greenland GRL 
78 Grenada GRD 
79 Guam GUM 
80 Guatemala GTM 
81 Guinea GIN 
82 Guinea-Bissau GNB 
83 Guyana GUY 
84 Haiti HTI 
85 Honduras HND 
86 Hong Kong SAR, China HKG 
87 Hungary HUN 
88 Iceland ISL 
89 India IND 
90 Indonesia IDN 
91 Iran, Islamic Rep. IRN 
92 Iraq IRQ 
93 Ireland IRL 
94 Isle of Man IMN 
95 Israel ISR 
96 Italy ITA 
97 Jamaica JAM 
98 Japan JPN 
99 Jordan JOR 

100 Kazakhstan KAZ 
101 Kenya KEN 
102 Kiribati KIR 
103 Korea, Dem. People’s Rep. PRK 
104 Korea, Rep. KOR 
105 Kosovo XKX 
106 Kuwait KWT 
107 Kyrgyz Republic KGZ 
108 Lao PDR LAO 
109 Latvia LVA 
110 Lebanon LBN 
111 Lesotho LSO 
112 Liberia LBR 
113 Libya LBY 
114 Liechtenstein LIE 
115 Lithuania LTU 
116 Luxembourg LUX 
117 Macao SAR, China MAC 
118 North Macedonia MKD 
119 Madagascar MDG 
120 Malawi MWI 
121 Malaysia MYS 
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122 Maldives MDV 
123 Mali MLI 
124 Malta MLT 
125 Marshall Islands MHL 
126 Mauritania MRT 
127 Mauritius MUS 
128 Mexico MEX 
129 Micronesia, Fed. Sts. FSM 
130 Moldova MDA 
131 Monaco MCO 
132 Mongolia MNG 
133 Montenegro MNE 
134 Morocco MAR 
135 Mozambique MOZ 
136 Myanmar MMR 
137 Namibia NAM 
138 Nauru NRU 
139 Nepal NPL 
140 Netherlands NLD 
141 New Caledonia NCL 
142 New Zealand NZL 
143 Nicaragua NIC 
144 Niger NER 
145 Nigeria NGA 
146 Northern Mariana Islands MNP 
147 Norway NOR 
148 Oman OMN 
149 Pakistan PAK 
150 Palau PLW 
151 Panama PAN 
152 Papua New Guinea PNG 
153 Paraguay PRY 
154 Peru PER 
155 Philippines PHL 
156 Poland POL 
157 Portugal PRT 
158 Puerto Rico PRI 
159 Qatar QAT 
160 Romania ROU 
161 Russian Federation RUS 
162 Rwanda RWA 
163 Samoa WSM 
164 San Marino SMR 
165 Sao Tome and Principe STP 
166 Saudi Arabia SAU 
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167 Senegal SEN 
168 Serbia SRB 
169 Seychelles SYC 
170 Sierra Leone SLE 
171 Singapore SGP 
172 Sint Maarten (Dutch part) SXM 
173 Slovak Republic SVK 
174 Slovenia SVN 
175 Solomon Islands SLB 
176 Somalia SOM 
177 South Africa ZAF 
178 South Sudan SSD 
179 Spain ESP 
180 Sri Lanka LKA 
181 St. Kitts and Nevis KNA 
182 St. Lucia LCA 
183 St. Martin (French part) MAF 
184 St. Vincent and the Grenadines VCT 
185 Sudan SDN 
186 Suriname SUR 
187 Eswatini SWZ 
188 Sweden SWE 
189 Switzerland CHE 
190 Syrian Arab Republic SYR 
191 Tajikistan TJK 
192 Tanzania TZA 
193 Thailand THA 
194 Timor-Leste TLS 
195 Togo TGO 
196 Tonga TON 
197 Trinidad and Tobago TTO 
198 Tunisia TUN 
199 Turkey TUR 
200 Turkmenistan TKM 
201 Turks and Caicos Islands TCA 
202 Tuvalu TUV 
203 Uganda UGA 
204 Ukraine UKR 
205 United Arab Emirates ARE 
206 United Kingdom GBR 
207 United States USA 
208 Uruguay URY 
209 Uzbekistan UZB 
210 Vanuatu VUT 
211 Venezuela, RB VEN 
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212 Vietnam VNM 
213 Virgin Islands (U.S.) VIR 
214 West Bank and Gaza PSE 
215 Yemen, Rep. YEM 
216 Zambia ZMB 
217 Zimbabwe ZWE 
218 World WLD 
219 High income HIC 
220 Low & middle income LMY 
221 Lower middle income LMC 
222 Middle income MIC 
223 Upper middle income UMC 
224 Low income LIC 
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Table 2. Variable description 

 

 

  

 

 

 

 

 
 
 
 
 
 

Data Series Abbrev 

Access to clean fuels and technologies for cooking (% of population) CLEAN 

Access to electricity (% of population)  ACCESS 

Access to electricity, rural (% of rural population)  ACCESSR 

Access to electricity, urban (% of urban population) ACCESSU 

Adjusted savings: energy depletion (% of GNI) ADJUST 

Alternative and nuclear energy (% of total energy use)  ALTNUC 

CO2 emissions from electricity and heat production, total (% of total fuel combustion) CO2ELECTHEAT 

CO2 emissions from gaseous fuel consumption (% of total) CO2GASF 

CO2 emissions from liquid fuel consumption (% of total) CO2LFUEL 

CO2 emissions from solid fuel consumption (% of total) CO2SFUEL 

Combustible renewables and waste (% of total energy) CRENWAS 

Energy imports, net (% of energy use) ENIMPORT 

Energy related methane emissions (% of total) ENECH4 

Energy use (kg of oil equivalent per capita) EUSE 

Fossil fuel energy consumption (% of total) FOSSIL 

Nitrous oxide emissions in energy sector (% of total) ENNOX 

Renewable energy consumption (% of total final energy consumption) RENCON 

Renewable internal freshwater resources, total (billion m3) RENH2O 

Total GHG emissions (kt of CO2 equivalent) GHG 

Water productivity, total (constant 2010 US$ GDP/m3 of total freshwater withdrawal) H2OPROD 
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Fig. 1. Energy sustainability indicator assessment for low-income vs. world (A) Pre-MDGs [1961-1999] 
(B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are estimated using 
the meta-analysis procedure presented in the methods (see Supplementary Table 2 for variable 
description). Data used in the estimated are divided into three categories namely 1961-1999, 2000-
2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line denotes 95% 
confidence interval (i.e., wider horizonal line denotes smaller variable observations and vice versa) 
whereas the dark-blue filled box represents the point estimate (i.e., the size of the box explains the 
number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, a rejection 
of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution of varied 
energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero vertical 
line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 2. Energy sustainability indicator assessment for lower middle-income vs. world (A) Pre-MDGs 
[1961-1999] (B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are 
estimated using the meta-analysis procedure presented in the methods (see Supplementary Table 2 
for variable description). Data used in the estimated are divided into three categories namely 1961-
1999, 2000-2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line 
denotes 95% confidence interval (i.e., wider horizonal line denotes smaller variable observations and 
vice versa) whereas the dark-blue filled box represents the point estimate (i.e., the size of the box 
explains the number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, 
a rejection of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution 
of varied energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero 
vertical line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 3. Energy sustainability indicator assessment for low & middle-income vs. world (A) Pre-MDGs 
[1961-1999] (B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are 
estimated using the meta-analysis procedure presented in the methods (see Supplementary Table 2 
for variable description). Data used in the estimated are divided into three categories namely 1961-
1999, 2000-2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line 
denotes 95% confidence interval (i.e., wider horizonal line denotes smaller variable observations and 
vice versa) whereas the dark-blue filled box represents the point estimate (i.e., the size of the box 
explains the number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, 
a rejection of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution 
of varied energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero 
vertical line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 4. Energy sustainability indicator assessment for middle-income vs. world (A) Pre-MDGs [1961-
1999] (B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are estimated 
using the meta-analysis procedure presented in the methods (see Supplementary Table 2 for variable 
description). Data used in the estimated are divided into three categories namely 1961-1999, 2000-
2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line denotes 95% 
confidence interval (i.e., wider horizonal line denotes smaller variable observations and vice versa) 
whereas the dark-blue filled box represents the point estimate (i.e., the size of the box explains the 
number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, a rejection 
of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution of varied 
energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero vertical 
line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 5. Energy sustainability indicator assessment for upper middle-income vs. world (A) Pre-MDGs 
[1961-1999] (B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are 
estimated using the meta-analysis procedure presented in the methods (see Supplementary Table 2 
for variable description). Data used in the estimated are divided into three categories namely 1961-
1999, 2000-2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line 
denotes 95% confidence interval (i.e., wider horizonal line denotes smaller variable observations and 
vice versa) whereas the dark-blue filled box represents the point estimate (i.e., the size of the box 
explains the number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, 
a rejection of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution 
of varied energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero 
vertical line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 6. Energy sustainability indicator assessment for high-income vs. world (A) Pre-MDGs [1961-
1999] (B) MDGs [2000-2015] (C) SDGs [2016-2019]. Legend: The indicators presented are estimated 
using the meta-analysis procedure presented in the methods (see Supplementary Table 2 for variable 
description). Data used in the estimated are divided into three categories namely 1961-1999, 2000-
2015, and 2016-2019––that capture Pre-MDGs, MDGs, and SDGs. The horizontal line denotes 95% 
confidence interval (i.e., wider horizonal line denotes smaller variable observations and vice versa) 
whereas the dark-blue filled box represents the point estimate (i.e., the size of the box explains the 
number of observations). In this study, we expect a high heterogeneity (I2 = >90%), thus, a rejection 
of the slope equality at p-value<0.01––denotes the expected heterogeneous distribution of varied 
energy indicators across diverse countries. The left-side of the line of null effect (i.e., zero vertical 
line––denoting no difference between experimental and control groups) favors the global 
measurements whereas the right-side favors the income groups. 
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Fig. 7. Sustainability assessment of energy and its services across income groups (A) Energy related 
emissions (B) Energy intensity (C) Energy dependence (D) Pros of energy sustainability target (E) Cons 
of energy sustainability target (F) Benefit-cost of energy sustainability target. Legend: The indicators 
are estimated using the empirical procedure presented in the methods. Colors ranging from dark-
green, lime-green, yellow, orange, and red represent the magnitude of estimated indicators in 
descending order. Missing filled-rectangular shape with white background (B) denotes missing data. 
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Fig. 8. Global sustainability indicators of energy and its services (A) Fossil energy stress (B) Energy-
Water stress. Legend: The indicators are estimated using the empirical procedure presented in the 
methods. Colors ranging from red, orange, yellow, lime-green and dark-green represent the 
estimated indicators in ratio from 0-15.9 (worse), 16-43.9 (bad), 44-72.9 (good), 73-91.9 (better), and 
92-100 (best), respectively. 

Fossil Energy stress (score)
0 16 44 73 92 100
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Fig. 9. Global nexus of sustainability indicators of energy and its services in income function while 
controlling for income inequality (A) Access to clean fuels and technologies (B) Clean energy 
technologies (C) Access to electricity (D) Energy related emissions. Legend: The trend indicates the 
relationship between sustainability indicators of energy and its services and average income level 
whereas the white filled-circles with black outline denotes the magnitude of income inequality. 
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Appendices for Chapter 7 

 

Escalation effect of Fossil-based CO2 emissions improves 
Green Energy Innovation 
 

 

 

 

Supplementary Figure 1. Validation of Buildings model 
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Supplementary Figure 2. Validation of Industry model 

 
 

 
Supplementary Figure 3. Validation of Other Sector model 
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Supplementary Figure 4. Validation of Transport model 

 
 

 
Supplementary Figure 5. Validation of Power model 
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Supplementary Figure 6. Validation of GHG emissions model 
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Supplementary Figure 7. Green energy innovation model. Diagnostics of parameter estimates in 
Table 2 (a) Model 1 (b) Model 2 (c) Model 3 (d) Model 4 (e) Model 5 (f) Model 6 
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Supplementary Table 1. Convergence and club clustering across IEA member countries 

Models Log(t)* Countries 
GHG -53.496 All 
Club 1 3.775 | AUS | CAN | DEU | ITA | ESP | GBR | 
Club 2 18.440 | AUT | BEL | FIN | GRC | IRL | NZL | NOR | PRT | 
Club 3 9.462 | DNK | SWE | CHE | 
Group 4 -442.576 | FRA | JPN | NLD | USA | 
Club 1+2 -29.928 

 

Club 2+3 -37.766 
 

Club 3 + Group 4 -129.221 
 

   

Energy Intensity -46.063 All 
Club 1 8.901 | AUS | AUT | BEL | FRA | GRC | ITA | JPN | NLD | NZL | NOR 

| PRT | ESP | SWE | USA | DNK | CHE | GBR | 
Group 2 -183.523 | CAN | FIN | DEU | IRL |    

Energy Research -7.105 All 
Club 1 0.687 | AUS | AUT | BEL | CAN | DNK | FIN | FRA | DEU | IRL | ITA | 

JPN | NLD | NZL | NOR | SWE | GBR | USA | 
Club 2 0.448 | PRT | CHE | 
Group 3 -27.132 | GRC | ESP |    

Industrial Structure -16.803 All 
Club 1 6.359 | BEL | DNK | FRA | GRC | IRL | ITA | JPN | NLD | PRT | ESP | 

CHE | GBR | USA | 
Club 2 1.781 | AUS | AUT | FIN | DEU | NZL | SWE | 
Group 3 -41.997 | CAN | NOR | 
Club 1+2 -28.685 

 

Club 2 + Group 3 -15.479 
 

   

Fossil-CO2 -39.925 All 
Club 1 5.462 | AUS | CAN | FRA | DEU | ITA | ESP | GBR | 
Club 2 21.687 | AUT | BEL | GRC | NZL | PRT | 
Club 3 13.729 | DNK | FIN | IRL | NOR | SWE | CHE | 
Group 4 -198.789 | JPN | NLD | USA | 
Club 1+2 -16.925 

 

Club 2+3 -3.866 
 

Club 3 + Group 4 -56.073 
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Buildings -30.337 All 
Club 1 4.297 | AUS | CAN | FRA | DEU | ITA | JPN | ESP | GBR | 
Club 2 7.563 | AUT | GRC | IRL | NZL | PRT | CHE | 
Club 3 7.298 | DNK | FIN | NOR | 
Group 4 -46.055 | BEL | NLD | SWE | USA | 
Club 1+2 -13.190 

 

Club 2+3 -17.618 
 

Club 3 + Group 4 -54.565 
 

   

Industry -39.684 All 
Club 1 -1.340 | AUS | CAN | JPN | USA | 
Club 2 3.799 | AUT | FRA | DEU | ITA | NOR | ESP | GBR | 
Club 3 2.388 | DNK | FIN | GRC | NZL | PRT | SWE | 
Group 4 -46.495 | BEL | IRL | NLD | CHE | 
Club 1+2 -22.382 

 

Club 2+3 -33.123 
 

Club 3 + Group 4 -18.451 
 

   

Other Sectors -34.589 All 
Club 1 -1.224 | AUS | BEL | CAN | FRA | DEU | JPN | NZL | ESP | 
Club 2 0.265 | ITA | NLD | NOR | SWE | GBR | 
Club 3 11.720 | AUT | GRC | PRT | 
Club 4 -0.468 | IRL | CHE | 
Group 5 -53.324 | DNK | FIN | USA | 
Club 1+2 -12.793 

 

Club 2+3 -23.651 
 

Club 3+4 -45.900 
 

Club 4 + Group 5 -45.646 
 

   

Power -20.828 All 
Club 1 -0.822 | AUS | CAN | DEU | ITA | JPN | NOR | ESP | GBR | 
Club 2 9.008 | FIN | FRA | GRC | NZL | PRT | CHE | 
Club 3 13.732 | AUT | BEL | DNK | IRL | 
Group 4 -110.529 | NLD | SWE | USA | 
Club 1+2 -3.938 

 

Club 2+3 7.304 
 

Club 3 + Group 4 -46.012 
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Transport -40.132 All 
Club 1 7.099 | AUS | CAN | IRL | JPN | ESP | 
Club 2 6.406 | AUT | FRA | DEU | ITA | PRT | GBR | 
Club 3 4.323 | DNK | FIN | GRC | NZL | NOR | SWE | CHE | 
Group 4 -69.721 | BEL | NLD | USA | 
Club 1+2 6.202 

 

Club 2+3 -24.221 
 

Club 3 + Group 4 -57.807 
 

   
Green Innovation 24.002 All 
Club 1  | AUS | AUT | BEL | CAN | DNK | FIN | FRA | DEU | GRC | IRL 

| ITA | JPN | NLD | NZL | NOR | PRT | ESP | SWE | CHE | GBR 
| USA | 

 
Notes: *T-statistics <-1.65 denotes a rejection of the null hypothesis of convergence at 5% 
significance level. 
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Supplementary Table 2. Country-specific panel heterogeneous causality in GHG function 

 

Transport– 

GHG 

Green 

Innovation–

GHG 

Energy 

Intensity–GHG 

Energy R&D–

GHG 

Industrial 

Structure–GHG Industry–GHG 

Other Sector–

GHG 

Power 

Industry–GHG 

Country W Prob W Prob W Prob W Prob W Prob W Prob W Prob W Prob 

AUS 6.767 0.013 0.103 0.750 6.564 0.015 0.022 0.883 6.859 0.013 1.897 0.177 5.933 0.020 7.741 0.009 

AUT 4.821 0.035 0.196 0.660 2.595 0.116 2.126 0.153 1.029 0.317 0.264 0.611 1.600 0.214 0.684 0.414 

BEL 0.779 0.383 9.027 0.005 5.277 0.028 0.330 0.569 3.670 0.063 2.730 0.107 1.815 0.186 0.100 0.754 

CAN 0.008 0.927 0.363 0.550 3.295 0.078 0.001 0.976 6.642 0.014 0.001 0.971 0.000 0.988 0.045 0.834 

DNK 3.097 0.087 2.428 0.128 3.231 0.081 5.350 0.027 6.369 0.016 2.033 0.162 3.457 0.071 2.047 0.161 

FIN 2.413 0.129 0.204 0.654 1.412 0.243 1.800 0.188 1.363 0.251 1.545 0.222 3.673 0.063 1.999 0.166 

FRA 0.021 0.887 1.686 0.202 1.539 0.223 2.414 0.129 2.358 0.133 8.775 0.005 0.157 0.694 3.394 0.074 

DEU 5.444 0.025 2.146 0.152 18.936 0.000 1.966 0.169 8.009 0.008 8.678 0.006 0.414 0.524 4.195 0.048 

GRC 12.060 0.001 0.254 0.617 2.302 0.138 0.036 0.850 22.863 0.000 11.545 0.002 15.080 0.000 17.189 0.000 

IRL 4.704 0.037 1.014 0.321 0.435 0.514 14.616 0.001 3.621 0.065 0.514 0.478 2.007 0.165 13.090 0.001 

ITA 2.159 0.150 12.419 0.001 3.752 0.061 0.223 0.639 4.803 0.035 8.576 0.006 2.970 0.093 13.326 0.001 

JPN 1.346 0.254 1.702 0.200 2.556 0.119 0.036 0.850 2.760 0.105 0.650 0.425 6.594 0.015 0.037 0.848 

NLD 0.290 0.594 7.811 0.008 1.476 0.232 0.250 0.620 0.800 0.377 0.267 0.609 0.022 0.884 0.663 0.421 

NZL 3.592 0.066 0.325 0.572 0.766 0.387 1.680 0.203 0.461 0.501 2.327 0.136 13.966 0.001 6.322 0.017 

NOR 3.030 0.090 1.686 0.202 3.950 0.055 0.766 0.387 1.031 0.317 0.696 0.410 1.387 0.247 0.052 0.821 

PRT 2.918 0.096 1.208 0.279 0.536 0.469 0.049 0.826 0.595 0.446 6.547 0.015 2.187 0.148 2.216 0.145 

ESP 3.851 0.057 3.136 0.085 5.250 0.028 12.726 0.001 1.009 0.322 0.496 0.486 5.753 0.022 3.920 0.055 

SWE 0.362 0.551 0.561 0.459 2.373 0.132 1.705 0.200 1.099 0.301 5.097 0.030 1.654 0.207 0.216 0.645 

CHE 7.174 0.011 0.076 0.785 1.169 0.287 0.069 0.794 4.664 0.038 7.146 0.011 1.662 0.206 4.016 0.053 

GBR 0.293 0.591 0.149 0.702 2.236 0.144 0.004 0.952 0.798 0.378 0.774 0.385 1.524 0.225 1.301 0.262 

USA 7.903 0.008 3.558 0.067 0.924 0.343 4.551 0.040 5.604 0.023 7.052 0.012 0.215 0.645 1.940 0.172 
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Supplementary Table 3. Country-specific panel heterogeneous causality in Energy Intensity function 

 

Transport–

Energy 

Intensity 

GHG–Energy 

Intensity 

Other Sectors–

Energy 

Intensity 

Energy R&D–

Energy 

Intensity 

Industrial 

Structure–

Energy 

Intensity 

Industry–

Energy 

Intensity 

Power 

Industry–

Energy 

Intensity 

Buildings–

Energy 

Intensity 

Country W Prob W Prob W Prob W Prob W Prob W Prob W Prob W Prob 

AUS 12.887 0.001 5.181 0.029 2.061 0.160 6.933 0.012 1.731 0.197 0.026 0.874 3.784 0.060 5.016 0.031 

AUT 3.037 0.090 4.091 0.051 0.000 0.997 0.590 0.447 10.046 0.003 0.508 0.481 0.030 0.864 5.360 0.026 

BEL 1.500 0.229 9.355 0.004 7.851 0.008 0.200 0.657 4.604 0.039 0.366 0.549 7.520 0.009 1.876 0.179 

CAN 7.473 0.010 6.685 0.014 1.061 0.310 0.274 0.604 1.542 0.222 1.504 0.228 2.362 0.133 0.917 0.345 

DNK 1.096 0.302 3.200 0.082 0.010 0.919 1.345 0.254 3.483 0.070 0.045 0.834 0.425 0.518 2.926 0.096 

FIN 6.412 0.016 10.819 0.002 2.380 0.132 5.868 0.021 1.943 0.172 0.079 0.780 5.287 0.027 8.738 0.005 

FRA 1.016 0.320 0.009 0.923 0.366 0.549 0.304 0.585 6.024 0.019 0.494 0.486 1.068 0.308 0.028 0.868 

DEU 1.706 0.200 6.960 0.012 1.461 0.235 0.098 0.757 0.006 0.938 0.020 0.890 3.086 0.087 7.573 0.009 

GRC 0.169 0.684 0.323 0.574 0.065 0.801 0.404 0.529 0.504 0.482 0.984 0.328 1.469 0.233 0.634 0.431 

IRL 0.000 0.982 4.622 0.038 0.816 0.372 0.362 0.551 2.526 0.121 0.186 0.669 6.323 0.017 3.537 0.068 

ITA 0.591 0.447 0.971 0.331 1.428 0.240 0.706 0.406 0.091 0.764 6.174 0.018 5.226 0.028 0.047 0.829 

JPN 1.263 0.269 0.029 0.866 0.508 0.481 0.570 0.455 0.980 0.329 0.066 0.799 0.843 0.365 0.807 0.375 

NLD 3.229 0.081 8.950 0.005 2.982 0.093 2.172 0.149 4.395 0.043 4.305 0.045 5.211 0.028 6.875 0.013 

NZL 4.443 0.042 5.569 0.024 4.428 0.042 4.218 0.047 1.584 0.216 2.226 0.144 11.658 0.002 8.156 0.007 

NOR 9.677 0.004 3.456 0.071 1.133 0.294 4.580 0.039 0.011 0.918 4.005 0.053 1.316 0.259 3.848 0.058 

PRT 0.073 0.789 1.068 0.308 2.331 0.136 0.105 0.748 0.150 0.701 7.182 0.011 0.030 0.864 0.011 0.919 

ESP 4.515 0.041 6.858 0.013 3.553 0.068 0.822 0.371 4.771 0.036 1.659 0.206 6.467 0.015 12.104 0.001 

SWE 5.963 0.020 0.011 0.918 0.179 0.675 0.780 0.383 5.969 0.020 0.359 0.553 0.928 0.342 6.929 0.012 

CHE 4.307 0.045 9.487 0.004 2.966 0.094 2.604 0.115 4.898 0.033 0.907 0.347 1.714 0.199 2.489 0.123 

GBR 0.039 0.845 0.080 0.779 1.941 0.172 0.001 0.974 0.230 0.634 0.644 0.427 10.191 0.003 0.339 0.564 

USA 0.216 0.645 1.440 0.238 0.973 0.331 2.872 0.099 1.431 0.239 2.993 0.092 0.041 0.840 1.032 0.316 
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Supplementary Table 4. Country-specific panel heterogeneous causality in Green Energy Innovation 
function 

 

GHG–Green 

Innovation 

Transport–

Green 

Innovation 

Energy 

Intensity–

Green 

Innovation 

Energy R&D–

Green 

Innovation 

Industrial 

Structure–

Green 

Innovation 

Industry–Green 

Innovation 

Buildings–

Green 

Innovation 

Power 

Industry–Green 

Innovation 

Country W Prob W Prob W Prob W Prob W Prob W Prob W Prob W Prob 

AUS 0.934 0.340 1.737 0.196 0.317 0.577 0.411 0.526 0.474 0.496 2.161 0.150 3.206 0.082 1.709 0.199 

AUT 1.080 0.306 0.781 0.383 0.266 0.609 0.927 0.342 0.052 0.821 6.441 0.016 2.543 0.120 0.450 0.507 

BEL 0.000 0.995 2.259 0.142 0.000 0.988 1.827 0.185 0.002 0.965 0.187 0.668 0.122 0.729 2.219 0.145 

CAN 1.233 0.274 1.249 0.271 0.788 0.381 0.019 0.890 0.068 0.795 3.306 0.077 3.162 0.084 0.772 0.386 

DNK 3.353 0.075 5.461 0.025 2.900 0.097 5.426 0.026 2.629 0.114 1.214 0.278 1.138 0.293 3.680 0.063 

FIN 4.099 0.050 2.788 0.104 5.016 0.031 15.623 0.000 7.717 0.009 6.405 0.016 6.189 0.018 2.996 0.092 

FRA 0.004 0.949 0.529 0.472 0.569 0.456 1.645 0.208 0.383 0.540 0.083 0.775 2.789 0.104 2.912 0.097 

DEU 0.369 0.547 3.059 0.089 1.717 0.198 3.336 0.076 2.074 0.158 1.548 0.221 2.267 0.141 3.756 0.060 

GRC 0.780 0.383 1.114 0.298 2.211 0.146 2.286 0.139 0.735 0.397 0.268 0.608 1.081 0.305 1.522 0.225 

IRL 1.965 0.170 6.711 0.014 4.454 0.042 0.100 0.753 4.535 0.040 0.517 0.477 1.986 0.167 11.010 0.002 

ITA 0.180 0.674 2.158 0.151 2.968 0.093 3.878 0.057 0.003 0.959 0.686 0.413 14.242 0.001 0.820 0.371 

JPN 0.291 0.593 0.022 0.883 0.103 0.750 0.019 0.891 0.910 0.346 0.810 0.374 1.284 0.265 0.150 0.701 

NLD 3.330 0.076 0.816 0.372 0.462 0.501 0.893 0.351 1.517 0.226 0.403 0.530 0.029 0.866 1.820 0.186 

NZL 1.875 0.179 3.506 0.069 0.673 0.417 0.378 0.542 2.584 0.117 6.959 0.012 0.048 0.827 1.000 0.324 

NOR 14.239 0.001 19.060 0.000 6.791 0.013 1.464 0.234 2.929 0.096 9.420 0.004 1.591 0.215 3.557 0.067 

PRT 38.602 0.000 41.770 0.000 27.043 0.000 17.149 0.000 22.921 0.000 11.665 0.002 20.624 0.000 44.883 0.000 

ESP 1.065 0.309 0.830 0.368 1.956 0.171 0.014 0.905 0.001 0.972 4.890 0.033 1.340 0.255 0.770 0.386 

SWE 0.727 0.400 6.220 0.017 0.628 0.433 0.002 0.967 1.523 0.225 3.287 0.078 3.128 0.085 0.244 0.624 

CHE 0.394 0.534 0.253 0.618 2.765 0.105 3.468 0.071 0.471 0.497 0.625 0.434 0.273 0.605 2.892 0.098 

GBR 2.501 0.123 1.791 0.189 3.330 0.076 1.697 0.201 3.604 0.066 1.493 0.230 2.438 0.127 0.001 0.982 

USA 0.698 0.409 1.676 0.204 0.026 0.874 0.003 0.956 0.000 0.987 0.198 0.659 0.624 0.435 0.879 0.355 
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Supplementary Table 5. Country-specific panel heterogeneous causality in Energy R&D function 
 

Transport– 

Energy R&D 

GHG–Energy 

R&D 

Energy 

Intensity–

Energy R&D 

Industry–

Energy R&D 

Other Sectors–

Energy R&D 

Green 

Innovation–

Energy R&D 

Buildings–

Energy R&D 

Power 

Industry–

Energy R&D 

Country W Prob W Prob W Prob W Prob W Prob W Prob W Prob W Prob 

AUS 5.085 0.030 3.875 0.057 1.929 0.173 2.867 0.099 6.668 0.014 1.713 0.199 3.963 0.054 5.054 0.031 

AUT 3.924 0.055 2.745 0.106 2.685 0.110 5.803 0.021 1.124 0.296 3.248 0.080 5.439 0.025 3.020 0.091 

BEL 0.147 0.704 0.691 0.411 0.105 0.748 0.131 0.719 6.026 0.019 4.336 0.044 0.459 0.502 0.213 0.647 

CAN 0.578 0.452 0.094 0.762 0.141 0.709 1.358 0.251 0.641 0.429 8.092 0.007 6.064 0.019 0.049 0.827 

DNK 4.844 0.034 1.096 0.302 1.426 0.240 1.436 0.239 0.707 0.406 8.076 0.007 1.390 0.246 0.001 0.976 

FIN 4.034 0.052 4.491 0.041 6.083 0.019 7.768 0.008 0.687 0.413 2.726 0.107 3.040 0.090 4.284 0.046 

FRA 0.280 0.600 0.001 0.976 2.237 0.143 0.152 0.699 0.036 0.850 0.186 0.668 0.335 0.566 0.289 0.594 

DEU 6.858 0.013 1.269 0.267 0.278 0.601 0.044 0.836 0.198 0.659 7.493 0.010 1.569 0.218 0.866 0.358 

GRC 1.250 0.271 0.387 0.538 0.477 0.494 3.325 0.077 5.487 0.025 0.688 0.412 0.078 0.782 1.184 0.284 

IRL 5.525 0.024 2.098 0.156 2.390 0.131 0.017 0.898 0.420 0.521 0.040 0.842 1.036 0.316 1.477 0.232 

ITA 4.070 0.051 2.357 0.133 2.675 0.111 0.287 0.595 0.087 0.769 7.273 0.011 1.025 0.318 2.198 0.147 

JPN 1.815 0.186 0.955 0.335 0.288 0.595 0.160 0.691 0.140 0.711 1.220 0.277 3.707 0.062 0.098 0.756 

NLD 9.267 0.004 3.939 0.055 8.896 0.005 1.077 0.306 8.427 0.006 0.196 0.661 3.111 0.086 15.149 0.000 

NZL 0.806 0.375 0.548 0.464 0.733 0.398 0.812 0.374 0.933 0.340 1.112 0.299 15.304 0.000 1.567 0.219 

NOR 2.295 0.139 2.103 0.156 0.013 0.908 0.441 0.511 1.840 0.183 18.505 0.000 0.003 0.953 3.425 0.072 

PRT 4.967 0.032 7.333 0.010 10.499 0.003 5.584 0.024 12.722 0.001 2.677 0.111 14.625 0.001 5.941 0.020 

ESP 0.445 0.509 0.796 0.378 2.233 0.144 0.008 0.928 0.137 0.714 1.909 0.176 0.319 0.576 1.118 0.297 

SWE 0.469 0.498 1.082 0.305 0.431 0.516 0.489 0.489 3.766 0.060 3.431 0.072 1.130 0.295 1.789 0.189 

CHE 0.006 0.940 1.348 0.253 0.487 0.490 0.376 0.544 0.265 0.610 1.932 0.173 0.582 0.451 0.027 0.870 

GBR 0.038 0.847 1.237 0.273 1.010 0.322 0.137 0.713 1.304 0.261 8.474 0.006 1.635 0.209 0.836 0.367 

USA 0.127 0.724 0.957 0.334 0.452 0.505 2.238 0.143 0.012 0.912 9.009 0.005 5.012 0.031 0.021 0.885 

 

 

Supplementary Table 6. Test for threshold effects 

Threshold RSS MSE Fstat Prob Crit10 Crit5 Crit1 
Single 10.477 0.013 13.430 0.023** 9.381 11.336 15.833 
Double 10.362 0.013 8.640 0.080* 8.202 10.237 14.243 
Triple 10.259 0.013 7.830 0.327 14.869 20.150 25.160 

 
Note: Rejection of the null hypothesis of no threshold at 5 and 10% significance level. This model 
suggests subsequent double threshold analysis. 
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Supplementary Table 7. Dynamic stochastic simulated ARDL 

Parameter Estimate Stderr t P-value Min 95 Max 95 

GHG emissionst-1 -0.019 0.005 -3.890 0.000 -0.028 -0.009 

∆Buildings 0.120 0.011 10.940 0.000 0.099 0.142 

∆Industry 0.151 0.013 11.432 0.000 0.125 0.177 

∆Other 0.092 0.013 7.231 0.000 0.067 0.117 

∆Transport 0.182 0.023 7.950 0.000 0.137 0.227 

∆Power 0.118 0.006 19.259 0.000 0.106 0.130 

∆Green innovation -0.008 0.008 -0.965 0.335 -0.024 0.008 

∆Energy Intensity 1.221 0.190 6.425 0.000 0.848 1.594 

∆Energy R&D 0.001 0.003 0.241 0.810 -0.004 0.006 

∆Industrial Structure -0.248 0.050 -4.979 0.000 -0.345 -0.150 

Buildingst-1 0.000 0.001 0.132 0.895 -0.003 0.003 

Industryt-1 0.005 0.005 0.988 0.323 -0.005 0.015 

Othert-1 -0.001 0.004 -0.177 0.860 -0.008 0.006 

Transportt-1 0.010 0.004 2.894 0.004 0.003 0.017 

Powert-2 0.004 0.001 4.196 0.000 0.002 0.006 

Green innovation t-1 0.003 0.006 0.526 0.599 -0.009 0.015 

Energy Intensityt-1 0.024 0.024 0.993 0.321 -0.024 0.072 

Energy R&Dt-1 -0.001 0.001 -1.364 0.173 -0.002 0.000 

Industrial Structuret-1 -0.029 0.012 -2.301 0.022 -0.053 -0.004 

Constant 0.157 0.055 2.863 0.004 0.049 0.264 
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Appendices for Chapter 8 

Environmental performance, biocapacity, carbon & ecological 
footprint of nations: drivers, trends, and mitigation options 
 

 

Supplementary 1. Relative change (%) of socio-economic and environmental indicators from 1961-
2016 

Country POPDEN  
(% ∆) 

TRADE 
(%∆) 

GDPC 
(%∆) 

GDP (%∆) ENVSUS 
(%∆) 

EFCONS 
(%∆) 

ECOPERM 
(%∆) 

CARBON 
(%∆) 

Afghanistan 2.52 37.34 176.86 1559.36 0.65 1.68 -67.67 6.74 
Albania 1.02 7.65 170.12 1011.27 0.27 1.35 6.19 2.73 
Algeria 2.35 0.12 1.76 4.15 1.02 5.05 9.14 

 

Angola 3.05 21.16 212.92 11986.51 0.11 3.94 1.66 11.26 
Argentina 1.35 2.84 1.16 2.53 0.63 1.41 0.42 2.47 
Australia 1.53 0.84 1.94 3.51 -0.01 1.62 -0.74 2.45 
Austria 0.38 5.33 2.34 2.73 0.19 1.44 5.61 2.12 
Barbados 0.38 17.99 188.38 301.43 -0.72 2.38 2.82 4.09 
Belgium 228.56 10.55 2.25 2.65 0.29 -1.13 -1.33 -0.90 
Benin 2.74 3.38 0.88 3.64 0.39 2.96 0.24 7.41 
Bermuda 0.64 50.69 7.27 28401.43 0.03 2.00 2.06 

 

Bolivia 1.99 1.08 1.65 3.67 -0.23 2.78 -0.56 8.40 
Botswana 2.65 0.76 5.57 8.39 0.44 17.28 -62.85 2718.52 
Brazil 1.87 2.42 2.09 4.00 0.11 2.22 -0.39 4.24 
Bulgaria -0.16 21.80 55.71 617.24 0.98 0.70 95.32 

 

Burkina Faso 2.46 2.80 1.87 4.38 1.46 1.96 -556.49 5.44 
Burundi 2.40 1.27 0.48 2.90 1.23 1.69 3.32 4.75 
Cambodia 1.75 19.14 220.31 1334.59 1.13 1.69 2.76 

 

Cameroon 1.82 21.46 391.78 2286.57 0.42 2.84 -2.10 5.73 
Canada 2.78 5.33 0.94 3.75 0.26 1.50 -0.38 2.17 
Cape Verde 1.25 1.21 2.05 3.33 0.30 4.61 0.21 

 

Central African 
Republic 

2.00 0.16 -0.75 1.25 -0.02 2.23 -0.24 9.06 

Chad 2.88 3.27 0.73 3.65 0.27 2.32 -2.04 8.38 
Chile 1.44 1.78 2.64 4.12 0.40 2.97 -14.25 4.51 
China 1.35 3.73 7.44 8.89 -0.42 2.19 20.25 4.30 
Colombia 1.96 0.79 2.16 4.16 -0.03 1.86 -1.10 3.63 
Comoros 2.60 3.87 315.34 401.31 1.59 4.62 15.59 

 

Congo 2.98 20.90 -1.27 1.67 -0.06 3.40 -0.24 7.48 
Congo (Kinshasa) 2.88 1.74 1.27 4.19 -0.21 0.75 -0.04 2.36 
Costa Rica 2.33 0.95 2.25 4.63 -0.18 2.90 -4.01 6.28 
Cote d'Ivoire 3.48 0.31 0.44 3.94 1.00 3.21 -0.25 6.40 
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Cuba 0.87 2.28 113.48 111.09 0.66 1.30 2.37 1.48 
Cyprus 1.30 6.51 92.97 459.46 2.00 3.02 4.15 

 

Czech Republic 0.18 34.00 514.40 1320.29 -0.06 -1.75 -2.77 -4.02 
Denmark 0.41 3.67 1.95 2.35 0.34 0.84 2.63 0.69 
Djibouti 4.41 81.80 949.34 4353.30 0.90 5.18 -202.87 

 

Dominica 0.29 11.18 63.80 1734.95 0.37 3.02 70.58 
 

Dominican Republic 2.05 1.71 3.30 5.42 1.03 3.32 -3.16 5.46 
Ecuador 2.53 1.84 1.54 3.90 -0.14 3.18 10.58 

 

Egypt 2.28 0.62 2.87 5.22 2.47 3.93 5.08 
 

El Salvador 1.49 6.67 154.46 30.51 0.27 2.73 8.10 5.28 
Ethiopia 2.80 25.30 158.56 3264.69 0.71 -0.26 -41.02 4.85 
Fiji 1.40 65.59 1.78 3.20 0.17 3.79 -5.31 5.23 
Finland 0.38 4.32 2.40 2.79 0.12 0.61 0.28 

 

France 0.63 1.68 2.15 2.80 0.78 0.80 1.01 1.15 
French Polynesia 2.26 36.00 727.47 1282.21 925.74 6190.09 -44.54 741.49 
Gabon 2.54 0.98 1.59 4.16 -0.01 6.58 -0.18 

 

Gambia 3.24 4.19 0.79 358.38 0.21 3.70 -11.58 7.71 
Germany 0.21 15.72 170.33 1190.04 0.57 0.54 0.63 0.77 
Ghana 2.63 2.59 0.90 3.55 1.19 3.76 -0.74 5.36 
Greece 0.46 2.04 2.25 2.72 0.87 2.26 4.61 3.69 
Guatemala 2.47 1.66 1.38 3.88 0.89 3.20 6.52 

 

Guinea 2.20 20.36 275.39 3544.25 0.17 2.23 -1.92 5.35 
Guinea-Bissau 1.93 4.65 39.23 18.73 128.07 28.49 -87.79 30.67 
Guyana 0.49 0.75 1.56 2.07 -0.22 1.88 -0.27 6.30 
Haiti 1.86 15.86 -0.40 1.45 1.25 2.02 3.52 4.80 
Honduras 2.74 1.89 1.26 4.03 -0.27 1.68 975.98 

 

Hungary -0.05 27.04 243.69 686.76 1.41 0.74 0.60 
 

India 1.94 2.93 3.22 5.22 1.77 3.14 5.22 5.46 
Indonesia 1.96 5.05 3.23 5.25 0.55 2.26 -10.76 7.10 
Iran  2.33 1.75 1.77 4.12 1.07 4.96 161.10 

 

Ireland 0.95 7.78 32.13 160.67 8.19 218.83 305.18 30.93 
Israel 2.51 3.38 2.39 4.96 2.13 4.08 4.45 4.76 
Italy 0.33 2.88 2.02 2.36 0.20 1.59 2.33 2.23 
Jamaica 1.03 1.10 19.76 36.72 0.34 1.80 2.83 

 

Japan 0.54 2.42 3.04 3.60 -0.43 1.42 1.99 2.72 
Jordan 4.24 10.19 91.48 6874.35 5.31 5.54 7.43 7.36 
Kenya 3.27 -0.44 1.65 4.97 0.85 2.31 12.32 4.95 
North Korea  1.42 32.48 508.88 8598.03 -0.02 1.28 30.42 1.67 
South Korea  1.24 3.21 6.17 7.52 0.00 5.29 4.63 7.09 
Lao  2.11 13.25 499.05 31852.27 0.88 2.54 -0.43 6.28 
Lebanon 2.37 13.17 265.49 1199.96 1.51 3.61 4.15 4.66 
Lesotho 1.64 35.69 3.32 5.00 276.50 85.66 9.08 -2.85 
Liberia 2.58 246.77 639.87 7999.85 -0.14 2.75 -1.04 

 

Luxembourg 279.59 32.71 2.59 3.73 -0.55 6.24 7.16 4.69 
Madagascar 2.88 2.10 -0.90 1.96 0.13 1.50 -0.39 5.56 
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Malawi 2.82 2.03 1.41 4.25 120.50 -0.46 39.91 2.53 
Malaysia 2.38 0.83 3.90 6.37 0.57 4.68 6.97 53.35 
Mali 2.24 10.88 2.26 398.04 0.90 2.71 -6.48 6.33 
Malta 0.62 19.69 22.37 162.90 0.13 3.06 4.03 

 

Mauritania 2.88 2.66 0.86 3.77 -0.05 2.32 -1.19 
 

Mauritius 1.13 6.47 59.99 1824.71 0.00 3.85 -15.89 
 

Mexico 2.12 3.03 1.78 3.94 0.19 3.19 -10.18 5.44 
Morocco 1.87 1.40 7.48 173.75 3.02 3.84 -54.04 

 

Mozambique 2.46 51.50 137.33 2294.02 0.07 2.52 -0.76 5.46 
Myanmar 1.60 604.10 4.30 5.95 0.89 3.66 -2.26 4.76 
Namibia 2.37 13.10 218.69 923.77 -0.07 6.42 -0.74 515.29 
Nepal 1.79 1.29 1.88 3.71 0.00 26.10 5.18 10.19 
Netherlands 0.70 5.12 2.19 2.90 -0.04 -0.31 -0.15 -0.38 
New Zealand 1.22 7.40 95.98 1199.57 -0.06 0.29 0.98 

 

Nicaragua 2.28 3.79 0.54 2.82 -0.61 1.12 1.25 3.74 
Niger 3.30 2.61 -0.68 2.60 2.51 4.14 62.41 6.71 
Nigeria 2.57 3.50 1.35 3.96 1.78 1.35 -0.13 5.82 
Norway 0.68 3.14 2.42 3.11 0.15 0.45 -1.98 2.15 
Pakistan 2.74 0.18 2.36 5.16 2.17 1.68 5.58 3.32 
Panama 2.28 0.15 2.99 5.34 -0.49 12.26 -99.10 28.15 
Papua New Guinea 2.36 1.67 1.65 4.04 0.22 2.76 0.12 -87.57 
Paraguay 2.29 1.88 2.41 4.75 -0.45 2.80 -1.17 4.35 
Peru 2.00 0.74 1.61 3.63 0.07 0.62 0.78 3.94 
Philippines 2.47 2.08 1.75 4.26 1.44 3.04 17865.60 5.64 
Poland 0.43 23.65 1319.93 806.83 0.40 -0.88 -1.42 -1.02 
Portugal 0.27 8.05 2.96 3.22 0.43 -0.33 0.01 2.23 
Romania 0.11 15.06 387.00 8451.55 0.88 -1.02 12.47 -0.82 
Russia  0.32 17.62 352.78 3513.11 -0.17 0.65 -25.99 3.14 
Rwanda 2.54 4.09 2.20 4.82 2.04 205.10 507.49 1373.19 
Saint Lucia 1.01 24.32 433.84 550.50 -0.57 2.23 4.01 3.31 
Samoa 2.11 16.39 649.86 969.11 0.61 130.11 337.48 

 

Sao Tome & 
Principe 

2.79 1.29 0.15 2.95 -0.17 164.06 310.60 
 

Senegal 2.09 5.78 0.60 2.73 0.21 1.52 -118.94 -94.92 
Sierra Leone 3.02 13.97 896.89 4711.49 0.75 1.24 -26.22 9.72 
Somalia 2.14 0.60 0.88 3.04 -0.08 5.67 33.32 2.62 
South Africa 0.76 1.93 2.52 3.29 0.17 1.39 11.69 -81.94 
Spain 1.36 0.12 3.47 4.86 1.42 0.15 0.42 1.00 
Sri Lanka 1.25 9.07 63.49 1029.40 1.27 2.67 4.62 4.38 
Sudan 843.05 1.49 1.57 4.03 -0.12 64.11 -11.73 22.57 
Swaziland 2.17 0.78 76.03 2.16 573.93 109.42 266.33 451.30 
Sweden 0.52 1.51 2.03 2.55 -0.05 -0.32 4.08 0.05 
Switzerland 0.79 7.02 316.09 2989.27 0.30 -0.74 -0.97 -0.33 
Syria 2.43 1.90 701.10 1802.36 3.49 3.30 -5.27 3.78 
Tanzania 3.02 14.75 190.94 900.25 15.16 104.70 -28.37 2.87 
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Thailand 1.64 2.59 4.35 6.07 0.98 1.97 -84.96 5.98 
Timor-Leste 1.70 20.93 319.36 22507.68 -0.04 7.56 -3.13 42.18 
Togo 2.86 1.69 1.06 3.94 1.05 0.55 9.90 9.40 
Tonga 0.85 15.53 116.11 1758.40 0.68 5.04 13.52 

 

Trinidad & Tobago 0.85 27.80 2.43 3.29 -0.18 6.37 7.97 -86.52 
Tunisia 1.80 2.49 2.40 58.50 2.40 5.29 28.67 6.48 
Turkey 1.91 3.69 2.84 4.81 0.82 1.75 -29.89 4.12 
Uganda 3.20 1.34 489.49 523.55 1.00 40.08 76.47 5.75 
United Kingdom 0.40 3.05 2.04 2.44 0.61 -0.43 -0.65 -1.94 
USA 1.03 4.13 2.02 3.08 0.45 -0.83 -1.39 -0.69 
Uruguay 0.52 1.77 1.81 2.34 0.18 12.99 -1.49 

 

Venezuela 2.33 1.76 -0.06 2.27 0.14 1.86 101.04 2.91 
Viet Nam 1.97 13.76 125.25 1768.40 1.58 2.74 -48.16 5.26 
Yemen 2.99 441.78 404.87 3703.63 -0.03 2.39 -6.16 7.34 
Zambia 3.03 20.43 0.32 3.36 2.33 3.73 -1510.06 22.54 
Zimbabwe 2.36 5.80 0.59 2.98 0.47 0.17 -71.97 1.46 
Global Average 11.73 18.80 109.18 1369.99 15.62 56.58 134.14 51.38 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

“Never expect different results maintaining the status quo.” 
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Climate change is topical yet, complex with several dynamics spanning different 

disciplines. The 21st-century development pathway is characterized by a roller 

coaster of climate change events––because of natural resource exploitation, 

fossil fuel utilization, energy intensity, population growth, and environmental 

pollution. Under this global environmental threat, development cooperation 

made several efforts to rally economies into sustainable policies that mitigate 

current and future threats. The Brundtland Report, “Our Common Future”, 

outlines the importance of “protecting the environment while meeting current 

demand without compromising available resources, but leaving the environment 

as a bequest for future generations”. This infers the importance of achieving 

environmental sustainability through sustainable development, addressing 

institutional gaps, and developing policy measures that control urban challenges, 

resource-dependent, energy-intensive industrial processes, fossil-driven energy 

portfolio, biodiversity loss, ecosystem challenges, food security, population 

growth, and human resources. Climate change econometrics provides 

opportunities for assessing potential policy implications of historical alterations 

of climate events. Thus, understanding the various philosophical underpinnings 

of climate change and its impacts is useful in future policy development with 

mitigation effects. Here, we bring to the fore cyclical climate chain—a term 

coined to understand how climate change processes mimic typical “food chain”. 

Philosophical perspectives of existing pollution theories including energy-

growth, pollution halo/haven, environmental convergence, displacement effects, 

and environmental Kuznets curve hypotheses are examined using econometric 

techniques. This compendium contributes to the extant literature in both spirit 

and letters while criticizing, contrasting, and/or validating the status quo in 

climate change econometrics.  We incorporate the concept of sustainability in 

the hypotheses and research design useful in developing conceptual tools for 

policy formulation while highlighting the policy implications of empirical results. 

Our empirical studies presented herein demonstrate the complexity of climate 

change, however, climate change mitigation and adaptation to climate impacts 

are possible through climate-resilience pathways––coping mechanisms of 

new and existing systems to modulate the harmful effects of climate change on 

sustainable development.
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