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Abstract. Interactions between aerosols and liquid clouds are one of the largest sources of uncertainty in the
historical radiative forcing of climate. One widely shared goal to reduce this uncertainty is to decompose ra-
diative anomalies arising from aerosol–cloud interactions into components associated with changes in cloud-
droplet number concentration (Twomey effect), liquid-water-path adjustments, and cloud-fraction adjustments.
However, there has not been a quantitative foundation for simultaneously estimating these components with
global satellite observations. Here we present a method for assessing shortwave radiative flux anomalies from
the Twomey effect and cloud adjustments over ocean between 55◦ S and 55◦ N. We find that larger aerosol
concentrations are associated with widespread cloud brightening from the Twomey effect, a positive radiative
adjustment from decreasing liquid water path in subtropical stratocumulus regions, and a negative radiative ad-
justment from increasing cloud fraction in the subtropics and midlatitudes. The Twomey effect and total cloud
adjustment have contributed−0.77± 0.25 and−1.02± 0.43 Wm−2, respectively, to the effective radiative forc-
ing since 1850 over the domain (95 % confidence). Our findings reduce uncertainty in these components of
aerosol forcing and suggest that cloud adjustments make a larger contribution to the forcing than is commonly
believed.

1 Introduction

Changes in aerosol concentrations over the industrial era
have modified clouds and perturbed the global radiation bal-
ance at the top of the atmosphere (Raghuraman et al., 2021;
Kramer et al., 2021). The radiative flux perturbation result-
ing from these cloud changes, known as the effective radia-
tive forcing from aerosol–cloud interactions (ERFaci), is es-
timated to be −0.84± 0.61 Wm−2 between 1750 and 2019
(90 % confidence interval, CI, from Forster et al., 2021).
ERFaci is much more uncertain than the positive radiative
forcing from carbon dioxide changes (+2.16± 0.26 Wm−2),
meaning that ERFaci offsets a potentially large but highly
uncertain portion of historical greenhouse-gas forcing. Re-
ducing this uncertainty would improve assessments of cli-
mate sensitivity and committed future warming (Matthews

and Zickfeld, 2012; Mauritsen and Pincus, 2017; Sherwood
et al., 2020; Watson-Parris and Smith, 2022).

An extension of these forcing estimates is to character-
ize how changes in different cloud properties contribute to
ERFaci, thereby providing insight into the relative importance
of different processes. For instance, as cloud condensation
nuclei (CCN) become more abundant, liquid clouds typically
form smaller but more numerous droplets. The change in
cloud droplet effective radius (re) and number concentration
(Nd) directly increases cloud optical thickness – a mecha-
nism known as the Twomey effect (Twomey, 1977). The re-
duction of cloud droplet size can also enhance evaporation or
reduce precipitation, causing adjustments in cloud thickness,
lifetime, or morphology (Albrecht, 1989; Pincus and Baker,
1994; Rosenfeld et al., 2006; Bretherton et al., 2007). Sepa-
rating the radiative impacts of the Twomey effect and cloud
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adjustments is thus an important step towards understanding
the causes of ERFaci.

Recent community assessments find that the components
of ERFaci all have considerable uncertainty. The Sixth As-
sessment Report of the Intergovernmental Panel on Cli-
mate Change (IPCC) estimates that the Twomey effect
is −0.7± 0.5 Wm−2, the adjustment of liquid water path
(LWP) is +0.2± 0.2 Wm−2, and the adjustment of liquid-
cloud fraction is −0.5± 0.4 Wm−2 (90 % CIs for forcing
between 1750 and 2014) (Forster et al., 2021). Another as-
sessment by the World Climate Research Programme reports
even larger uncertainties (Bellouin et al., 2020). In particular,
they find that the cloud-fraction adjustment is especially un-
certain: it could be negligibly small or large enough to offset
most of the historical carbon-dioxide forcing.

Constraints from satellite observations offer a path toward
reducing this uncertainty, but in practice it has been diffi-
cult to isolate relationships between aerosols and radiative
anomalies caused by changes in individual cloud properties
(Feingold et al., 2022). Furthermore, previous global obser-
vational studies that attempt to quantify these relationships
used separate methods for estimating the Twomey effect,
LWP adjustment, and cloud-fraction adjustment, so their es-
timates may suffer from limitations that differ from one
ERFaci component to another (Forster et al., 2021). This
complicates efforts to rigorously compare the Twomey effect
and cloud adjustments. Here we address these challenges by
adapting techniques from the cloud-feedback literature. We
develop a cloud radiative kernel that separates the radiative
anomalies caused by changes in re, LWP, and liquid-cloud
amount, and we relate each of these radiative anomalies to
local aerosol concentrations and Nd. This facilitates an as-
sessment of the Twomey effect and liquid-cloud adjustments
over the global ocean.

2 Data and methods

2.1 Satellite data, reanalysis, and climate model output

We analyze monthly gridded satellite observations from 2003
through 2020 obtained from the Moderate Imaging Spec-
troradiometer (MODIS) MCD06COSP dataset version 6.2.0
(Pincus et al., 2023). This dataset combines observations
from MODIS instruments on the Aqua and Terra satellites.
Our primary unit of analysis is a joint histogram of pixel
counts for liquid-topped clouds partitioned by re and LWP.
Histogram counts are normalized by the number of all valid
pixels in the grid box and then multiplied by 100 to convert
the units to cloud fraction (Fig. 1a). These histograms rep-
resent the fractional occurrence of liquid-topped clouds that
are exposed to space; hence they do not include cases where
liquid cloud is obscured by overlying ice. LWP is defined
by the vertical integral of cloud liquid water mass per unit
area, and re is defined by the ratio of the third and second
moments of the cloud-droplet radius distribution. These two

variables are estimated with the MODIS 3.7 µm retrieval al-
gorithm (Platnick et al., 2017).

We also use daily gridded Nd estimates from MODIS
(Gryspeerdt et al., 2022a) and monthly gridded radiative flux
retrievals from the Clouds and the Earth’s Radiant Energy
System (CERES) Energy Balanced and Filled ed. 4.1 and
FluxByCldTyp ed. 4.1 datasets (Loeb et al., 2018; Sun et al.,
2022). The MODIS Nd estimates can be biased when re is
sufficiently small, when the cloud visible optical thickness is
sufficiently small, or when three-dimensional radiative trans-
fer effects contribute to the measured radiances (Grosvenor
et al., 2018). To avoid these problematic cases, Nd is esti-
mated for single-layer liquid clouds that satisfy several con-
ditions: (i) re is larger than 4 µm; (ii) cloud optical thick-
ness is larger than 4; (iii) cloud fraction at 5 km resolution
is larger than 0.9; (iv) the solar zenith angle is less than 65◦;
(v) the satellite viewing zenith angle is less than 55◦; (vi) the
sub-pixel heterogeneity index defined by Zhang and Platnick
(2011) is less than 0.3; (vii) the MODIS estimate of re is
largest from the 3.7 µm retrieval algorithm, followed by the
2.1 µm retrieval algorithm and then the 1.6 µm retrieval algo-
rithm; and (viii) cloud optical thickness is in the top 10 %
of values in 100 km× 100 km regions (“Z18 sampling” in
Gryspeerdt et al., 2022a). The final condition preferentially
selects the convective cores in cloudy scenes (Zhu et al.,
2018). Most cloud droplets in shallow convective clouds
form near the cloud base, so Nd in convective cores de-
pends on the CCN concentration in air that enters the cloud
from below (Rosenfeld et al., 2019). Thus, Nd in convec-
tive cores typically does not represent Nd in the entire cloud,
but it serves as an indicator of CCN concentration near cloud
base. We denote the estimated cloud-droplet number concen-
tration as Ñd to distinguish it from the cloud-droplet num-
ber concentration in the entire cloud. For consistency with
the MODIS cloud histograms, we use Ñd estimates from
the MODIS 3.7 µm retrieval algorithm, and we combine data
from the Terra and Aqua satellites. Daily values of lnÑd are
averaged across the satellite platforms and over 1-month in-
tervals, weighted by the number of pixels with a valid Ñd re-
trieval.

Monthly meteorological fields and the dry-mass concen-
tration of sulfate aerosol at 910 hPa, s, are obtained from
MERRA-2 reanalysis (Gelaro et al., 2017; Randles et al.,
2017). We consider sulfate aerosol because it dominates
the anthropogenic influence on CCN (Charlson et al., 1992;
Stevens, 2015), and we select data from 910 hPa rather than
the surface because the 910 hPa level is a better indicator of
aerosol concentration near cloud base (Painemal et al., 2017).
The sulfate data are determined from bias-corrected observa-
tions of total aerosol optical depth from cloud-free pixels and
simulations from a global model that represents the sources,
sinks, and chemistry of sulfate and its precursor gases. The
data assimilation accounts for aerosol swelling in humid en-
vironments and filters out pixels near clouds that are affected
by retrieval bias (Randles et al., 2017). The main limitation
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Figure 1. MODIS joint histogram and SW cloud radiative kernel averaged over the latitude, longitude, and time dimensions. Averages are
computed over ocean between 55◦ S and 55◦ N. (a) Joint histogram of liquid-cloud fraction (C) partitioned by liquid water path (LWP) and
cloud-droplet effective radius (re). (b) SW cloud radiative kernel. The kernel represents ∂R/∂C, where R is the SW radiative effect of liquid
clouds at the top of the atmosphere.

of the sulfate data is that the total aerosol optical depth is
constrained by observations, but aerosol species distributions
and vertical profiles are not. These data provide an additional
indicator of cloud-base CCN concentration that is indepen-
dent of the MODIS estimates of Ñd.

Finally, we use output from historical simulations of
20 global climate models (GCMs) from the Coupled Model
Intercomparison Project Phase 6 (CMIP6). The simulations
are run from 1850 through 2014 with realistic emissions of
greenhouse gases, aerosols, and aerosol precursor gases. Sul-
fate mass concentration from the model output is converted
to pressure coordinates and linearly interpolated to 910 hPa.
The models are listed in Table S1 in the Supplement.

2.2 Quantifying aerosol indirect effects

We first relate variability of aerosols to the radiative ef-
fects of liquid clouds – relationships we call “aerosol in-
direct effects.” Our analysis begins with the MODIS joint
histograms of liquid-cloud fraction, C, partitioned by re and
LWP (Fig. 1a). For a given latitude, longitude, and time, the
shortwave (SW) radiative flux anomaly at the top of the at-
mosphere that is induced by liquid clouds, R′, is estimated
according to

R′ =

6∑
r=1

7∑
l=1

C′rl
∂R

∂Crl
,

where r and l represent the re and LWP dimensions of the
histogram, and primes denote monthly anomalies relative to
the local climatological seasonal cycle. The cloud radiative
kernel, ∂R/∂Crl , represents the SW flux anomaly that would
occur if the cloud fraction Crl were to increase by 1 % with
all non-cloud factors fixed (Fig. 1b). The kernel is computed
with the RRTMG radiative transfer model (Clough et al.,
2005) following a method similar to that of Zelinka et al.
(2012). We then adapt a method of cloud-feedback analysis

developed by Zelinka et al. (2013) to decomposeR′ into con-
tributions from different cloud properties:

R′ = R′re +R
′
LWP+R

′

CF+R
′
res,

where R′re , R′LWP, and R′CF are the SW flux anomalies caused
by re, LWP, and cloud-amount anomalies, respectively – each
computed with the other properties held fixed. We note that
R′re is the radiative anomaly that is caused by variations in re
with fixed LWP, so it is equivalent to the radiative anomaly
that is caused by variations in Nd with fixed liquid-water
content. R′res is the residual of the decomposition. The radia-
tive kernel and MODIS joint histograms reproduce monthly
observations of R′ across the global ocean with a bias of
about +4.6 % (Appendix A). The methods for computing the
kernel and decomposing R′ are described in Appendix A
and B.

To test robustness of the results, we make one set of R′ es-
timates in which only fully cloud-covered pixels are included
in the histograms and a second set of estimates in which fully
and partly cloud-covered pixels are both included. We refer
to these cases as MODISCLD and MODISCLD+PCL, respec-
tively. The filter of the MODISCLD case avoids retrieval bi-
ases that affect partly cloudy pixels, but it may introduce a
sampling bias by excluding some cloud elements. The oppo-
site is true for MODISCLD+PCL. Both cases are presented to
explore trade-offs between the accuracy and completeness of
the satellite cloud data.

We relate R′ to sulfate and cloud-droplet concentrations
using cloud-controlling factor analysis (Scott et al., 2020;
Myers et al., 2021). Our analysis closely follows the method
of Wall et al. (2022; hereafter W22) except that we general-
ize their results by applying cloud-controlling factor analysis
to R′ and each of its components. The cloud-controlling fac-
tor method approximates R′ as a linear combination of seven
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local cloud-controlling factors xi :

R′ ≈

7∑
i=1

∂R

∂xi
x′i .

The first six xi terms include sea surface temperature, esti-
mated inversion strength at the top of the planetary bound-
ary layer (Wood and Bretherton, 2006), low-level advection
across a surface-temperature gradient, surface wind speed,
relative humidity at 700 hPa, and vertical wind at 700 hPa.
Collectively these terms represent all of the standard large-
scale meteorological controls on liquid clouds in the ma-
rine boundary layer that have been proposed in the litera-
ture (Scott et al., 2020). The final xi term can be either lns
or lnÑd. All meteorological terms and lns are calculated
with MERRA-2 data and linearly interpolated to the native
1◦× 1◦ grid of MODIS. We then select ocean-covered grid
boxes, remove the climatological seasonal cycle and least-
squares linear trend from all variables in each grid box, and
average the anomalies over a 5◦× 5◦ grid that spans 55◦ S
to 55◦ N. For each ocean grid box, R′ is regressed against
anomalies of the seven cloud-controlling factors using or-
dinary least-squares multilinear regression. Separate regres-
sions are performed with lns and lnÑd as the final predictor.
Thus, the regression coefficients ∂R/∂ lns and ∂R/∂ lnÑd
represent the relationship between R′ and local anomalies
of lns or lnÑd with all meteorological predictors held con-
stant. The goodness of fit of the regression model is deter-
mined by computing the fraction of R′ variance that it ex-
plains in each grid box and then spatially averaging the re-
sults over the domain. On average, the regression method ex-
plains 46 % of the R′ variance when lns is the final predictor
and 49 % of the variance when lnÑd is the final predictor. We
also apply the method to R′re , R′LWP, and R′CF to estimate the
Twomey effect, LWP adjustment, and cloud-fraction adjust-
ment.

Our analysis differs from existing global estimates of
aerosol indirect effects in several ways. First, estimates that
control for fewer meteorological factors are susceptible to
bias from correlations between meteorology and aerosols
(Mauger and Norris, 2007; Gryspeerdt et al., 2016; Ander-
sen et al., 2017). Our method minimizes this bias by control-
ling for all of the standard large-scale meteorological drivers
of liquid boundary-layer clouds that have been proposed
in the literature. Second, estimates derived from daily or
monthly grid-box averages of re and LWP suffer from aggre-
gation bias because these properties are nonlinearly related
to cloud albedo (Feingold et al., 2022; Goren et al., 2023).
Our method avoids this bias by inferring cloud radiative ef-
fects from joint histograms of re and LWP rather than grid-
box averages. Third, studies of ship tracks, industrial plumes,
or volcanic eruptions offer some of the most captivating evi-
dence of aerosol indirect effects, but the estimates they pro-
vide may not be representative of the global scale (Poss-
ner et al., 2018; Toll et al., 2019; Glassmeier et al., 2021).

Our method avoids this potential sampling bias by estimating
aerosol indirect effects across the global ocean. Fourth, no
global observational study has simultaneously estimated the
Twomey effect, LWP adjustment, and cloud-fraction adjust-
ment, so comparisons of these components have been com-
plicated by the fact that each one is estimated using different
data, methods, assumptions, and uncertainty quantification
(Forster et al., 2021). Our method avoids this complication
by estimating all components with a single, self-consistent
framework. Our estimates of aerosol indirect effects could
still be affected by satellite retrieval biases, but they improve
upon existing estimates in these four ways (Painemal and
Zuidema, 2011; Ma et al., 2018).

3 Global analysis of aerosol indirect effects

We next present estimates of the Twomey effect and cloud
adjustments across the global ocean. The Twomey effect can
occur whenever the CCN concentration is small enough that
it limits the number of droplets that form in cloud updrafts.
This condition is usually satisfied over ocean, so the Twomey
effect is expected to be ubiquitous in oceanic clouds (Rosen-
feld et al., 2014). Indeed, we find that increasing sulfate con-
centration is associated with significant cloud brightening
from Rre changes across most of the global ocean (Fig. 2a).
Cloud brightening is also observed in response to increas-
ing Ñd (Fig. 2b), but we caution against overinterpreting sta-
tistical significance of this relationship because Rre and Ñd
are both inferred from the MODIS re retrievals (Ñd is in-
ferred using 10 % of the data). Nevertheless, these results
show that most marine liquid clouds exhibit the Twomey ef-
fect.

In contrast, previous work has shown that cloud adjust-
ments can differ from one cloud regime to another (Zhang
et al., 2022). As cloud droplets become smaller, they sed-
iment more slowly out of the cloud-top entrainment zone,
and they evaporate more quickly when exposed to entrained
air. This enhances evaporation and reduces LWP in non-
precipitating clouds (Bretherton et al., 2007; Small et al.,
2009). Clouds with smaller droplets also form precipitation
more slowly through collision and coalescence. This may
cause other changes in cloud properties, including deeper
cumulus clouds, longer cloud lifetimes, larger stratiform ar-
eas detrained from precipitating cloud elements, or changes
in mesoscale cellular structure (Albrecht, 1989; Pincus and
Baker, 1994; Rosenfeld et al., 2006; Seifert et al., 2015; Poss-
ner et al., 2018; Dagan et al., 2017; Goren et al., 2022).
The cloud adjustments can, in turn, affect CCN concentration
by changing precipitation scavenging or sulfate formation in
cloud droplets (Wood et al., 2012; Kang et al., 2022; Andreae
and Rosenfeld, 2008). Some of these mechanisms depend on
the meteorological conditions, so they may vary regionally
(Chen et al., 2014; Possner et al., 2020; Zhou et al., 2021;
Zhang and Feingold, 2023).
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Figure 2. Aerosol indirect effects estimated with two indicators of cloud-base CCN concentration: sulfate aerosol mass concentration at
910 hPa (s) and cloud-droplet number concentration from pixels with the largest 10 % cloud optical thickness (Ñd). Linear regression co-
efficients are shown for (a) ∂Rre/ lns, (b) ∂Rre/ lnÑd, (c) ∂RLWP/ lns, (d) ∂RLWP/ lnÑd, (e) ∂RCF/ lns, and (f) ∂RCF/ lnÑd, where Rre ,
RLWP, and RCF are the top-of-atmosphere SW flux perturbations caused by re anomalies, LWP anomalies, and cloud-fraction anoma-
lies, respectively. Panels (a, b) represent the Twomey effect, panels (c, d) represent the LWP adjustment, and panels (e, f) represent the
cloud-fraction adjustment. Stippling indicates regression coefficients that are significantly different from zero with the false discovery rate
limited to 0.1 (Wilks, 2016). Cloud radiative effects are computed with only fully cloud-covered pixels included in the cloud histograms
(MODISCLD). Note that the contour values in (a), (c), and (e) are proportional to those in (b), (d), and (f).

The estimated cloud adjustments exhibit regional varia-
tions that are consistent with some of these proposed mech-
anisms. The radiative adjustment from LWP changes is pos-
itive in much of the subtropics, and it maximizes in areas
of semi-permanent stratocumulus clouds and directly down-
wind (Fig. 2c and d). This spatial pattern suggests that en-
hanced evaporation in non-precipitating stratocumulus may
contribute to the LWP adjustment (Bender et al., 2019). Weak
or insignificant LWP adjustments are found across much
of the midlatitude oceans, despite the fact that precipitat-
ing clouds occur less frequently in these regions as sulfate
aerosols become more abundant (W22). This weak over-
all LWP adjustment might be partly explained by the fact
that different cloud regimes in extratropical cyclones exhibit
adjustments that may counteract one another (Naud et al.,
2017; McCoy et al., 2018). Furthermore, the radiative ad-
justment from cloud-fraction changes is negative in most
of the subtropics and midlatitudes, suggesting that adjust-

ments in these regions may involve changes in cloud life-
time, size, or morphology as well (Fig. 2e and f). Subtropi-
cal stratocumulus regions exhibit offsetting adjustments from
LWP changes and cloud-fraction changes. In these cases, as
CCN become more abundant, the overall liquid-cloud frac-
tion increases, but the increase is disproportionately large in
cloud elements with below-average LWP. This combination
is consistent with larger stratiform areas detrained from pre-
cipitating clouds or a shift from open to closed mesoscale
cellular convection (Possner et al., 2018; Rosenfeld et al.,
2006). Thus, aerosol-driven changes in evaporation and pre-
cipitation may both contribute to cloud adjustments. The spa-
tial patterns of the adjustments predicted with lns resemble
those predicted with lnÑd, suggesting that the estimated ad-
justments are robust.

We determine the relative importance of the Twomey ef-
fect and cloud adjustments at the global scale by averaging
the regression coefficients over ocean. These averages can
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be interpreted as the cloud radiative anomalies that would
occur if sulfate concentration and Ñd were increased by a
factor of 2.7 at every location. Uncertainty quantification for
these estimates is described in Appendix C. For the regres-
sions against lns and lnÑd, we find that the Twomey effect
and cloud-fraction adjustment both significantly increase SW
reflection to space (Fig. 3). The cloud-fraction adjustment
enhances SW reflection by between 43 % and 250 % com-
pared to the Twomey effect alone (95 % CI), so it makes
a substantial contribution to the overall aerosol indirect ef-
fect. The large relative magnitude of the cloud-fraction ad-
justment is consistent with the observed cloud response dur-
ing a volcanic eruption in Holuhraun, Iceland, and the uncer-
tainty range for this adjustment overlaps with other observa-
tional estimates (Chen et al., 2022; Gryspeerdt et al., 2020).
Furthermore, the LWP adjustment reduces SW reflection
to space, offsetting between 6 % and 87 % of the Twomey
effect. This uncertainty range is comparable to the range
of estimates from Diamond et al. (2020) and Gryspeerdt
et al. (2019). However, it differs from a ship-track analysis by
Manshausen et al. (2022), who find that the LWP adjustment
increases SW reflection rather than reduces it. This appar-
ent discrepancy may be a consequence of the fact that local-
ized, short-term aerosol perturbations such as shipping emis-
sions can give rise to different cloud adjustments than sus-
tained aerosol perturbations over larger spatial and temporal
scales (Glassmeier et al. 2021). Although the LWP adjust-
ment and cloud-fraction adjustment counteract one another,
the total cloud adjustment is still significantly negative, and
it is comparable to the Twomey effect. Furthermore, the es-
timated Twomey effect and total cloud adjustment are simi-
lar for the MODISCLD and MODISCLD+PCL cases, indicat-
ing that they do not change substantially when partly cloudy
pixels are filtered in different ways. The Twomey effect and
total cloud adjustment are also qualitatively consistent when
different Nd datasets are used, and they are an order of mag-
nitude larger than ∂Rres/∂ lns and ∂Rres/∂ lnÑd (Figs. S1
and S2 in the Supplement). These results robustly show that
the Twomey effect and total cloud adjustment cause compa-
rable changes in top-of-atmosphere SW flux.

A limitation of these results is that the MODISCLD and
MODISCLD+PCL cases have offsetting differences in the es-
timated LWP and cloud-fraction adjustments (Fig. 3). This
means that the estimates of the individual LWP and cloud-
fraction adjustments depend on filtering of partly cloudy pix-
els, but the estimate of the total cloud adjustment does not.
One implication is that aerosol variations must be associ-
ated with changes in the relative amounts of partly and fully
cloud-covered pixels. Partly and fully cloudy pixels reside on
cloud edges and interiors, respectively, so a change in the rel-
ative amounts of these pixels implies a change in the cloud
perimeter-to-area ratio (W22). This suggests that the global
cloud adjustment may involve changes in the horizontal size
or morphology of the clouds. A case study demonstrating this
concept is presented in Appendix D. A second implication is

Figure 3. Spatial averages of the regression coefficients that rep-
resent aerosol indirect effects. Averages are computed over ocean
between 55◦ S and 55◦ N. (a) Aerosol indirect effects estimated
with s as the CCN indicator. ∂RLWP+CF/∂ lns represents the to-
tal cloud adjustment (R′LWP+CF ≡ R

′
LWP+R

′
CF). The MODISCLD

case is computed with only fully cloud-covered pixels included in
the cloud histograms, and the MODISCLD+PCL case is computed
with both fully and partly cloud-covered pixels included. (b) Simi-
lar to (a) except that Ñd is the CCN indicator. Squares show mean
values, and vertical lines show 95 % CIs.

that whenever aerosol perturbations change the cloud size or
morphology, the conventional practice of estimating the in-
dividual LWP and cloud-fraction adjustments will inevitably
lead to results that depend on the classification and filtering
of partly cloudy pixels. Thus, instrument sensitivity, horizon-
tal resolution, and subjective pixel-classification thresholds
can all affect the results. In contrast, we find that more robust
results can be obtained by estimating the total cloud adjust-
ment. Our analysis provides the first direct assessment of this
quantity from observations, reanalysis, and radiative transfer
modeling.

4 Implications for historical aerosol forcing

We next combine estimates of aerosol indirect effects and
historical sulfate changes to infer ERFaci. The forcing esti-
mates use sulfate rather than Ñd because sulfate concentra-
tion is a widely available output variable from GCMs but Ñd
is not. Assuming that sulfate dominates the anthropogenic
influence on CCN (Charlson et al., 1992; Stevens, 2015), we
estimate SW ERFaci from liquid-topped clouds according to

ERFaci ≈
∂R

∂ lns
1 lns,
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where 1 lns is the change in sulfate concentration be-
tween preindustrial (1850–1859) and present-day (2005–
2014) conditions simulated by GCMs that participated in
CMIP6. This method of estimating ERFaci has been vali-
dated with volcanic eruptions and other known variations of
regional sulfur-dioxide emissions (W22).

We note that this method differs from that of a similar
study by W22 in three ways. First, we estimate ERFaci from
all liquid-topped clouds, while W22 estimate ERFaci from
low-level clouds, defined as clouds with tops between the
surface and 680 hPa. We applied their method to estimate SW
ERFaci from all liquid-topped clouds, and we found that the
result is about 26 % larger in magnitude than the estimate
of SW ERFaci from low-level clouds. Second, we estimate
SW ERFaci, while W22 estimate net ERFaci. Thus, their esti-
mate includes an additional ERFaci component from changes
in longwave radiation, which offsets about 14 % of the SW
component (Appendix B). Third, we estimate ERFaci with
MODIS observations and radiative kernels, while W22 esti-
mate ERFaci with CERES observations for their main result.
Our kernel-based estimates of R′ are about 4.6 % larger in
magnitude than the corresponding CERES observations (Ap-
pendix A). These three factors cause our ERFaci estimates to
have a larger magnitude than those reported by W22.

Our method for estimating ERFaci can be applied to each
component of the aerosol indirect effect to quantify the as-
sociated historical effective radiative forcing. The Twomey
effect contributes a negative instantaneous radiative forcing
(IRFaci) that peaks in subtropical stratocumulus regions and
the midlatitude oceans of the Northern Hemisphere (Fig. 4a).
Forcing is relatively large in stratocumulus regions because
these clouds exhibit a strong radiative response to CCN per-
turbations (Fig. 2), and forcing is relatively large in the
Northern Hemisphere midlatitudes because these regions are
close to anthropogenic aerosol sources. The geographic pat-
tern and magnitude of the IRFaci generally agree with the
estimates of McCoy et al. (2017), Kinne (2019), and Jia
et al. (2021). Furthermore, the IRFaci is comparable to the
effective radiative forcing from the combined effect of LWP
adjustments (ALWP) and cloud-fraction adjustments (ACF)
(Fig. 4b). Thus, the magnitude of the overall ERFaci peaks
in the subtropical stratocumulus regions and the Northern
Hemisphere midlatitudes as well (Fig. 4c).

We average the forcing components over ocean be-
tween 55◦ S and 55◦ N to quantify their large-scale cli-
mate impacts. Confidence intervals are computed account-
ing for regression-slope uncertainty and inter-model spread
in the estimates of 1 lns (Appendix C). To frame our re-
sults in the context of the existing literature, we compare
our estimates with forcing calculations from an assessment
of the World Climate Research Programme (WCRP) (Bel-
louin et al., 2020) and forcing estimates from 14 GCMs that
participated in the Coupled Model Intercomparison Project
Phase 5 (CMIP5) and AeroCom experiments computed by
Gryspeerdt et al. (2020) (Table S1). We repeat the original

Figure 4. Components of historical ERFaci from liquid clouds, in-
cluding (a) the Twomey effect (IRFaci), (b) the total cloud adjust-
ment (ALWP+ACF), and (c) the overall ERFaci. The estimates rep-
resent SW forcing, and they are computed with only fully cloud-
covered pixels included in the cloud histograms (MODISCLD).

WCRP analysis except that we restrict the calculation to SW
forcing over ocean between 55◦ S and 55◦ N, as described
in the Supplement. The GCM forcing estimates are averaged
over ocean between 55◦ S and 55◦ N as well. Although all
forcing estimates are computed over the same spatial do-
main, their time periods differ slightly from one another:
The present-day reference years are 2005–2014 for our es-
timates, 2005–2015 for the WCRP estimates, and 2000 for
the CMIP5 and AeroCom estimates, and the preindustrial
reference years are 1850–1859 for our estimates, 1850 for
the WCRP and CMIP5 estimates, and 1860 for the Aero-
Com estimates (Bellouin et al., 2020; Zelinka et al., 2014;
Ghan et al., 2016). These differences in the reference peri-
ods could cause differences in ERFaci of 0.1 Wm−2 or less
(IPCC, 2021).

Averages of IRFaci, cloud adjustments, and the overall
ERFaci are compared in Fig. 5. We find that ACF is signif-
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Figure 5. Components of SW ERFaci for liquid clouds averaged over ocean between 55◦ S and 55◦ N. The “MODISCLD” and
“MODISCLD+PCL” cases show estimates from this study. The “WCRP” case is computed with the method of Bellouin et al. (2020). The
“GCMs” case shows values from 14 CMIP5 and AeroCom models computed by Gryspeerdt et al. (2020). The WCRP and GCM estimates
are modified from their original published values so that they represent averages over ocean between 55◦ S and 55◦ N. Squares show median
values, vertical lines show 95 % CIs, and dots in the GCMs case show individual models.

icantly negative, and ALWP is more likely than not to be
positive, but the magnitudes of these estimates depend on
filtering choices for partly cloudy pixels. The three remain-
ing components are insensitive to partly cloudy pixel filter-
ing: the IRFaci is −0.77± 0.25 Wm−2, the total cloud ad-
justment is −1.02± 0.43 Wm−2, and the overall ERFaci is
−1.86± 0.62 Wm−2 (95 % CIs from MODISCLD). These re-
sults lie inside the ranges of the corresponding WCRP and
GCM estimates, and the median IRFaci agrees very well with
the WCRP and GCM values. However, our results reduce
uncertainty of each component by at least 62 % relative to
the confidence intervals of the WCRP and at least 23 % rel-
ative to the range of GCMs. Furthermore, the WCRP and
GCM estimates do not rule out the possibility that the total
cloud adjustment is positive or an order of magnitude smaller
than the IRFaci. According to our analysis, however, such a
small or positive adjustment is implausible. Thus, our analy-
sis reduces uncertainty in the historical IRFaci and total cloud
adjustment, and it clarifies the relative importance of these
components.

The ocean-average SW ERFaci can be scaled to estab-
lish an upper bound for the global-average net ERFaci.
Let ERFaci,net,g be the global-average net ERFaci, and let
ERFaci,net,d be the domain-average net ERFaci, where the do-
main includes ocean areas between 55◦ S and 55◦ N. Assum-
ing that the average net ERFaci is negative outside the domain
(Diamond et al., 2020), it follows that

ERFaci,net,g < fERFaci,net,d, (1)

where f = 0.56 is the fraction of global surface area covered
by the domain. ERFaci,net,d can be expressed as

ERFaci,net,d = ERFaci,sw,d(1−β), (2)

where ERFaci,sw,d is the domain-average SW ERFaci, and
β is the fraction of SW ERFaci that is offset by longwave
ERFaci. Our radiative kernel cannot accurately assess long-
wave cloud radiative effects, so β is estimated by apply-
ing cloud-controlling factor analysis to CERES satellite data

instead (Appendix B). The resulting uncertainty range is
β = 0.14± 0.06 (90 % CI). We evaluate Eq. (2) with the
bounds of the 90 % CIs of β and ERFaci,sw,d from the
MODISCLD and MODISCLD+PCL cases and then select the
least-negative value of ERFaci,net,d to evaluate Eq. (1). The
result constitutes an upper bound for ERFaci,net,g.

The above reasoning implies a 95 % probability that the
global net ERFaci from liquid clouds is more negative than
−0.56 Wm−2 (relative to 1850–1859). Equivalent upper
bounds from the published literature include −0.07 Wm−2

from the WCRP assessment and −0.3 Wm−2 from the
observation-based estimate of the IPCC Sixth Assessment
Report (relative to 1850 and 1750, respectively) (Bellouin
et al., 2020; Forster et al., 2021). Our analysis thus supports a
more stringent upper bound on global ERFaci. This constraint
is similar to another estimate from cloud-controlling factor
analysis presented by W22, but our estimate invokes weaker
assumptions because it does not extrapolate forcing to ar-
eas outside the domain. Our upper-bound estimate also com-
plements evidence from global energy-balance arguments,
which constrains the lower bound of ERFaci (Stevens, 2015;
Smith et al., 2021).

5 Conclusion

We analyze MODIS satellite data and adapt techniques from
the cloud-feedback literature to quantify aerosol indirect ef-
fects from liquid-topped clouds. Our method avoids aggre-
gation and sampling biases that may affect some previous
studies, and it controls for all of the standard large-scale
meteorological drivers of liquid boundary-layer clouds that
have been proposed in the literature, thereby minimizing bi-
ases from confounding meteorological factors (Possner et al.,
2018; Glassmeier et al., 2021; Feingold et al., 2022). Fur-
thermore, the Twomey effect, LWP adjustment, and cloud-
fraction adjustment are simultaneously quantified with a sin-
gle, self-consistent framework. This guarantees that all of the
components, and their uncertainties, are quantified in a con-
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sistent way. Although it is important to continue character-
izing satellite retrieval biases, to include new meteorological
cloud-controlling factors as they are discovered, to investi-
gate nonlinear and nonlocal relationships between clouds and
their controlling factors (Lewis et al., 2023), and to quantify
additional ERFaci components from ice-containing clouds,
our method overcomes several limitations that affect previ-
ous observational estimates of aerosol indirect effects.

We apply our method to constrain aerosol indirect ef-
fects across the global ocean. We find that increasing CCN
concentration is associated with widespread cloud bright-
ening from the Twomey effect, a positive radiative adjust-
ment from decreasing LWP in subtropical stratocumulus re-
gions, and a negative radiative adjustment from increasing
cloud fraction in the subtropics and midlatitudes. The es-
timated aerosol indirect effects are combined with histori-
cal sulfate changes simulated by CMIP6 models to quan-
tify the associated SW ERFaci. The Twomey effect and total
cloud adjustment are estimated to contribute −0.77± 0.25
and−1.02± 0.43 Wm−2, respectively, to the SW ERFaci av-
eraged over ocean between 55◦ S and 55◦ N (95 % CIs). Our
findings reduce uncertainty in these components of aerosol
forcing and suggest that liquid-cloud adjustments make a
larger contribution to the forcing than is commonly believed.

Appendix A: Cloud radiative kernel

We compute a SW cloud radiative kernel for the MODIS re–
LWP joint histogram to quantify the effect of liquid-cloud
anomalies on the top-of-atmosphere SW flux. The radiative
kernel is similar to that of Zelinka et al. (2012) with two ex-
ceptions. First, our kernel represents liquid-topped clouds,
while their kernel represents clouds of all phases. Second,
our kernel is partitioned by re and LWP, while their kernel
is partitioned by cloud-top pressure and cloud optical thick-
ness. Besides these exceptions, we calculate the kernel by
closely following the method of Zelinka et al. (2012).

The first step of the kernel calculation is to quantify the
clear-sky upward SW flux at the top of the atmosphere for
various combinations of surface albedo, latitude, and cal-
endar month. Calculations are performed with the RRTMG
radiative transfer model (Clough et al., 2005) using inputs
that include the climatological seasonal cycle of humid-
ity from MERRA-2, a standard ozone profile, and a solar
constant of 1361 Wm−2. For a given latitude and month,
we chose a day in the middle of the month and calculate
the average of the cosine of the solar zenith angle µi for
each 1 h interval throughout the day. We then scale µi by
SW↓,CERES/SW↓,day, where SW↓,day is the daily-mean inso-
lation for the day in the middle of the month, and SW↓,CERES
is the monthly-mean insolation from CERES satellite data
(Loeb et al., 2018). This step ensures that the monthly-
mean insolation for the radiative kernel is equal to that of
CERES. We compute the clear-sky SW flux for each of the

24 µi terms and then average the results. The calculations
are performed using surface albedo of 0, 0.5, and 1. The final
result is a matrix of clear-sky upward SW flux at the top of
the atmosphere as a function of surface albedo, latitude, and
calendar month.

The next step is similar to the clear-sky calculations ex-
cept that an overcast and horizontally uniform liquid cloud
is introduced in the radiation code. The re and LWP of the
cloud are varied, and cloud-top pressure is set to 850 hPa
to match the modal value retrieved by MODIS. For re, we
use the standard MODIS retrieval algorithm, re,std, and the
3.7 µm retrieval algorithm, re,3.7. Monthly gridded values
of re,std and re,3.7 have a correlation coefficient of 0.92 over
ocean, but they are generally different because re,3.7 repre-
sents conditions closer to the cloud top (Platnick, 2000). We
therefore prescribe re inside the cloud as

re =

{
re,3.7, τc < 3

r̃e,std, τc ≥ 3,

where τc is the visible optical depth below cloud top, and
r̃e,std ≡mre,3.7+b, where m= 1.14 and b =−0.35 µm. The
coefficients m and b are determined by regressing re,std
against re,3.7 using all monthly 1◦× 1◦ ocean grid boxes,
and the τc = 3 threshold is chosen from weighting functions
estimated by Platnick (2000). Using these relationships, we
calculate the top-of-atmosphere SW flux with different com-
binations of re,3.7 and LWP that correspond to the bins of
the MODIS re–LWP joint histogram. Separate calculations
are performed for synthetic clouds at the four edges of each
bin, and the results are averaged to get one value of upward
SW flux at the top of the atmosphere for each bin. We then
subtract the resulting value from the clear-sky upward SW
flux to determine the SW cloud radiative effect (CRE). These
calculations produce a matrix of SW CRE above an overcast
liquid cloud as a function of latitude, surface albedo, calendar
month, re, and LWP.

The final step of the calculation is to convert the overcast-
sky SW CRE to a cloud radiative kernel, K. Let Crl be the
liquid-cloud fraction in effective radius bin r and LWP bin l.
The K matrix represents how anomalies of Crl affect R with
all non-cloud factors fixed:

Krl ≡
∂R

∂Crl
.

Krl is computed by dividing the overcast-sky SW CRE by
100 %. We apply linear interpolation to transform Krl from
latitude–surface-albedo space to latitude–longitude space us-
ing the climatological seasonal cycle of clear-sky surface
albedo from CERES. The final radiative kernel has units
of Wm−2 %−1 (watts per square meter per percentage of
cloud fraction), and it is a function of latitude, longitude, cal-
endar month, re, and LWP (Fig. 1b).

We validate the radiative kernel by comparing R′ ob-
servations from the CERES FluxByCldTyp dataset (Sun

https://doi.org/10.5194/acp-23-13125-2023 Atmos. Chem. Phys., 23, 13125–13141, 2023



13134 C. J. Wall et al.: Global observations of aerosol indirect effects from marine liquid clouds

Figure A1. Validation of the SW cloud radiative kernel. The ver-
tical axis shows monthly SW flux anomalies induced by liquid-
topped clouds estimated with the radiative kernel and MODIS re–
LWP joint histograms (R′kernel). The horizontal axis shows monthly
SW flux anomalies induced by liquid-topped clouds observed by
CERES (R′CERES). Data are plotted as a joint histogram compiled
from all monthly 1◦× 1◦ grid boxes over ocean between 55◦ S
and 55◦ N from 2003 through 2020. The color scale is logarithmic,
and bins with fewer than 100 counts are shaded white for clarity.
The black line is the ordinary least-squares regression fit. The re-
gression slope and its 95 % CI are printed in the bottom-right cor-
ner.

et al., 2022) with R′ estimates computed from the kernel
and MODIS re–LWP joint histograms. The kernel estimates
are regressed against the CERES observations using data
from all monthly 1◦× 1◦ ocean grid boxes between 55◦ S
and 55◦ N from 2003 through 2020. The regression slope is
1.046± 0.005 (95 % CI) (Fig. A1). Thus, biases of our radia-
tive kernel and differences between the MODIS and CERES
cloud-phase retrieval algorithms cause the kernel-based val-
ues of R′ to overestimate the magnitude of their CERES
counterpart by +4.6± 0.5 %.

Appendix B: Decomposing cloud radiative effects

For a given latitude, longitude, and time, the total liquid-
cloud-induced SW flux anomaly at the top of the atmo-
sphere, R′, is

R′ =

6∑
r=1

7∑
l=1

KrlC
′

rl . (B1)

We decompose the term on the right side of Eq. (B1) to esti-
mate how much cloud-amount anomalies, re anomalies, and
LWP anomalies contribute to R′. The decomposition closely
follows the method described in Appendix B of Zelinka et al.
(2013) except that our radiative kernel and histogram have
different dimensions.

First, let Ctot be the total liquid-cloud fraction summed
over all histogram bins. We express C′rl as

C′rl =
Crl

Ctot
C′tot+C

∗

rl, (B2)

where overbars denote values from the local climatological
seasonal cycle. The first term on the right side of Eq. (B2)
represents the anomalies of Crl that would occur if C′tot were
distributed among the re–LWP bins such that the normalized
distribution in the histogram remains the same as the clima-
tology. In other words, this term accounts for a change in to-
tal liquid-cloud fraction, holding the proportion of clouds in
each histogram bin fixed. The second term on the right side
of Eq. (B2) accounts for anomalies of Crl that remain after
removing (Crl/Ctot)C′tot. This term represents shifts in the
distribution of re and LWP with the total liquid-cloud frac-
tion fixed. By construction, C∗rl vanishes when it is summed
over all histogram bins.

Next, we decompose the radiative kernel into two terms:

Krl =K0+ K̂rl . (B3)

Here, K0 is the average of Krl weighted by the climato-
logical cloud fraction,

K0 ≡

6∑
r=1

7∑
l=1

Crl

Ctot
Krl, (B4)

and K̂rl ≡Krl −K0. With the relationships in Eqs. (B1)–
(B4), R′ can be expressed as

R′ =K0C
′
tot+

6∑
r=1

7∑
l=1

K̂rlC
∗

rl .

We next decompose K̂rl into three components:

K̂rl = K̂r + K̂l + K̂res,

where

K̂r ≡

7∑
l=1

(
K̂rl

6∑
r=1

Crl

Ctot

)

K̂l ≡

6∑
r=1

(
K̂rl

7∑
l=1

Crl

Ctot

)
and

K̂res ≡ K̂rl − K̂r − K̂l .

R′ can then be expressed as

R′ = K0C
′
tot+

6∑
r=1

(
K̂r

7∑
l=1

C∗rl

)

+

7∑
l=1

(
K̂l

6∑
r=1

C∗rl

)
+

6∑
r=1

7∑
l=1

K̂resC
∗

rl . (B5)
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The first term on the right side of Eq. (B5) is the SW flux
anomaly that would occur if the anomaly of total liquid-cloud
fraction were distributed among the re–LWP bins such that
the proportion of cloud fraction in each bin is the same as the
climatology. This term represents the contribution of cloud-
amount anomalies to R′. The second term on the right side
results from multiplying an effective kernel that accounts for
systematic variations in re by the change in cloud fraction
at each re bin. This term represents the contribution of re
anomalies to R′ with LWP and total liquid-cloud fraction
held fixed. The third term on the right side is similar to the
second term except that it represents the contribution of LWP
anomalies to R′ with re and total liquid-cloud fraction held
fixed. The final term on the right is the residual of the decom-
position. The cloud amount, re, LWP, and residual compo-
nents of R′ are denoted by R′CF, R′re , R′LWP, and R′res, respec-
tively. In the Supplement, we validate the R′ decomposition
using synthetic-data test cases in which R′re and R′LWP can be
estimated theoretically with the two-stream radiative transfer
approximation (Fig. S3). We also verify that R′re and R′LWP
are similar when different common assumptions are made
about cloud vertical structure, including a vertically uniform
cloud model, an adiabatic cloud model, and the two-layer
cloud model from the kernel calculation.

The final step of the decomposition is to adjust R′CF to
account for obscuration effects from non-liquid clouds. Be-
cause MODIS is a passive instrument, changes in non-liquid
clouds can artificially change the retrieved liquid-cloud frac-
tion if they obscure liquid clouds from the satellite view.
We control for these obscuration effects by replacing C′tot in
Eq. (B5) by [Ctot/(100%− Itot)]′(100%− I tot), where Itot
is the retrieved fraction of non-liquid clouds. This change
of variables is adapted from the procedure recommended by
Scott et al. (2020).

We also wish to compare the SW and longwave (LW)
components of cloud radiative effects. However, our radia-
tive kernel assumes a constant cloud-top pressure, so it can-
not accurately assess the LW component (Appendix A). In-
stead, we analyze observations of the SW and LW radiative
effects of liquid-topped clouds from the CERES FluxBy-
CldTyp dataset. We perform cloud-controlling factor anal-
ysis with the CERES data to attain estimates of ERFaci in
addition to those presented in the main paper. The CERES-
based estimate of ERFaci averaged over ocean between 55◦ S
and 55◦ N is −1.52± 0.51 Wm−2 for SW radiation and
+0.21± 0.13 Wm−2 for LW radiation. The LW component
offsets 14± 7 % of the SW component (95 % CIs). These
values determine β in the upper-bound estimate of global net
ERFaci (Eq. 2).

Appendix C: Uncertainty

Uncertainty in our ocean-average ERFaci estimates arises
from uncertainty in the regression coefficients represent-

ing ∂R/∂ lns and uncertainty in the model estimates of
1 lns. We first quantify the component that is attributable to
regression-coefficient uncertainty. For a particular latitude–
longitude grid box i, let εi represent the half-width of the
95 % confidence interval of the grid-box mean ERFaci. We
estimate εi as

εi = tiσi

√
Nnom,i

Neff,i
[1 lns]i,

where σi is the standard error of the regression coefficient,
Nnom,i is the nominal number of temporal degrees of free-
dom (the number of months in the record), Neff,i is the effec-
tive number of temporal degrees of freedom, square brackets
indicate the central estimate of a parameter, and ti is the criti-
cal value of Student’s t distribution at the (1−α/2)100% sig-
nificance level using Neff,i − 8 degrees of freedom and α =
0.05. The ratio Nnom,i/Neff,i is estimated as (1+ a)/(1− a),
where a is the temporal lag-1 autocorrelation of R′i . The
εi terms are then combined to account for spatial averaging
over the domain. Uncertainty of the domain-average forcing,
δobs, is

δobs =

√
N∗nom∑
i=1

w2
i ε

2
i

N∗nom∑
i=1

wi

√
N∗nom
N∗eff

,

where N∗nom is the nominal number of spatial degrees of
freedom (the number of latitude–longitude grid boxes in the
domain), N∗eff is the effective number of spatial degrees of
freedom, and wi is the ocean area in grid box i. The ra-
tio N∗nom/N

∗

eff is estimated by applying Eq. (5) of Brether-
ton et al. (1999) to the gridded R′ data. The resulting value
of δobs represents the half-width of the 95 % confidence in-
terval of ERFaci that is attributable to regression-coefficient
uncertainty. Confidence intervals for the spatial averages of
∂R/∂ lns and ∂R/∂ lnÑd are calculated similarly.

The second source of uncertainty of ERFaci arises from
inter-model spread in the estimates of 1 lns. Because we
have estimates from 20 climate models, we construct a
95 % confidence interval for ERFaci that excludes 1 model
and encompasses the range of the other 19. We first cal-
culate 20 estimates of ERFaci by multiplying 1 lns from
each model by [∂R/∂ lns]. The half-width of the confidence
interval, δlns , is estimated as the minimum of |c1− c19|/2
and |c2− c20|/2, where c1, c2, c19, and c20 are the small-
est, second smallest, second largest, and largest values of
the 20 ERFaci estimates, respectively. This uncertainty anal-
ysis accounts for inter-model differences in aerosol process-
ing, but it does not account for uncertainty in anthropogenic
sulfur-dioxide emissions because the climate model simu-
lations apply the same emission values. However, sulfur-
dioxide emissions depend primarily on the sulfur content
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of fuel rather than the conditions of combustion, so global
emission inventories have a relatively small uncertainty of
about ± 11 % (90 % CI from Smith et al., 2011). This is ex-
pected to cause an equivalent fractional uncertainty in the
global burden of anthropogenic sulfate aerosol (Charlson
et al., 1992; Stevens, 2015). In contrast, inter-model differ-
ences in aerosol processing lead to an uncertainty of ± 43 %
in the change in s since 1850 averaged over ocean (90 % CI
estimated by computing the interval that includes 18 of the
20 CMIP6 models). The quadrature sum of these two com-
ponents determines their combined uncertainty, so uncer-
tainty in aerosol processing dominates the overall uncertainty
in global-mean 1 lns. Approximating δlns from inter-model
differences is therefore justified. Finally, we note that ERFaci
strongly depends on the preindustrial aerosol state, so our es-
timates are approximately valid as long as the inter-model
spread in preindustrial aerosol concentrations encompasses
the true values (Carslaw et al., 2013; Kinne, 2019). The pos-
sibility that CMIP6 models have systematic biases that vio-
late this condition cannot be ruled out at this time.

The estimated δobs and δlns represent independent
sources of uncertainty, so they are combined in quadra-
ture. The overall 95 % confidence interval is given by

ERFaci±

√
δ2

obs+ δ
2
lns . Confidence intervals for IRFaci,

ALWP, ACF, and the total cloud adjustment are calculated
similarly.

Appendix D: Filtering of partly cloudy pixels

Different filtering methods for partly cloudy pixels in the
MODISCLD and MODISCLD+PCL cases lead to offsetting
differences in the estimated LWP and cloud-fraction adjust-
ments (Fig. 3). One possible explanation for this discrepancy
is that CCN anomalies cause changes in the morphology or
horizontal size of liquid clouds, thereby changing the rela-
tive amounts of partly and fully cloudy pixels (Possner et al.,
2018; Rosenfeld et al., 2006). Here we examine a case study
to demonstrate this concept.

We analyze instantaneous pixel data from the MODIS
MOD06_L2 dataset collection 6.1 (Platnick et al., 2015)
obtained during a single overpass of the Terra satellite on
27 September 2019. On this day, MODIS measured stra-
tocumulus clouds in the southeast Pacific Ocean with dif-
ferent forms of mesoscale cellular convection. The clouds
in Box C in Fig. D1a mostly exhibit closed cells, and the
clouds in Box O mostly exhibit open cells. We select data
from these boxes and bin the liquid-cloud pixels into his-
tograms of cloud fraction partitioned by LWP. Let Cl rep-
resent cloud fraction in LWP bin l. In one case, Cl and
Ctot are computed by counting only the fully cloudy pixels
(CLD), and in a second case, Cl and Ctot are computed by
counting both fully and partly cloudy pixels (CLD +PCL).
Box C contains mostly fully cloudy pixels, so the two cases
have similar values of Cl and Ctot (Fig. D1b). In contrast,

Box O contains broken clouds that have a smaller horizontal
scale, a larger perimeter-to-area ratio, and a larger propor-
tion of partly cloudy pixels. The partly cloudy pixels cover
about 13 % of the area of Box O, and their retrieved LWP is
usually smaller than that of the fully cloudy pixels in the box.
This causes a difference in Ctot and the Cl distribution be-
tween the CLD and CLD+PCL cases (Fig. D1c). Filtering
of partly cloudy pixels therefore affects the grid-box-level
statistics of cloud fraction and LWP in this example.

We next examine differences between the cloud-fraction
histograms of the two boxes to demonstrate the implications
for estimating R′. For the purpose of this demonstration, let
the baseline cloud population be defined by the clouds in
Box O, and let the cloud-fraction anomalies be defined by the
cloud fraction in Box C minus the cloud fraction in Box O.
The baseline and anomalies are indicated by overbars and
primes, respectively. C′l can be decomposed according to

C′l =
Cl

Ctot
C′tot+C

∗

l ,

where C∗l ≡ C
′

l −
Cl
Ctot
C′tot. This decomposition is equivalent

to Eq. (B2) except that it is performed on a one-dimensional
LWP histogram rather than a two-dimensional LWP–re joint
histogram. The first term on the right side of the equa-
tion determines R′CF, and the second term determines R′LWP.
Compared with the CLD case, the CLD+PCL case has a
smaller value of C′tot (Fig. D1d), which reduces the magni-
tude ofR′CF. Furthermore, because the partly cloudy pixels in
Box O occupy the smallest LWP bins, including these pixels
in the histogram causes a less extreme shift in theC′l distribu-
tion towards small LWP values between Box O and Box C.
This reduces the magnitude of R′LWP in the CLD+PCL
case relative to that of the CLD case. Thus, including partly
cloudy pixels in the histograms leads to offsetting changes in
R′CF and R′LWP that reduce the magnitude of both terms. Our
estimates of global cloud adjustments depend on filtering of
partly cloudy pixels in a similar way, suggesting that the ad-
justments may involve changes in cloud size or morphology
as well.
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Figure D1. Case study demonstrating how different filtering methods for partly cloud-covered pixels lead to different estimates of LWP and
cloud-fraction anomalies when the cloud morphology changes. (a) Visible image of stratocumulus clouds over the southeast Pacific Ocean
taken on 27 September 2019 from MODIS on the Terra satellite. Most clouds in Box C exhibit closed mesoscale cellular convection, and
most clouds in Box O exhibit open mesoscale cellular convection. Both boxes span 6◦ latitude and 6◦ longitude. (b) Liquid-cloud fraction
partitioned by LWP (Cl) in Box C. In case CLD, the Cl histogram includes only fully cloud-covered pixels, and in case CLD+PCL, the
histogram includes both fully and partly cloud-covered pixels. The CLD and CLD+PCL cases are shown with blue and dashed black lines,
respectively. The total liquid-cloud fraction (Ctot) is printed on the figure. (c, d) Similar to (b) except that (c) shows Box O and (d) shows the
difference between Box C and Box O. Primes in (d) represent the Box-C average minus the Box-O average.

Code availability. MATLAB code used to analyze data can be
obtained by contacting the corresponding author. The RRTMG
radiative transfer model is publicly available at https://github.
com/AER-RC/RRTMG_SW (Atmospheric and Environmental Re-
search, 2020).

Data availability. All satellite data, reanalysis, and
GCM output used in this study are publicly available.
MODIS cloud histograms are available from the Na-
tional Aeronautics and Space Administration (NASA)
Level-1 and Atmosphere Archive and Distribution System
(https://doi.org/10.5067/MODIS/MCD06COSP_M3_MODIS.062,
NASA, 2023b), MODIS Nd data are available
from the Centre for Environmental Data Analysis
(https://doi.org/10.5285/864a46cc65054008857ee5bb772a2a2b,
Gryspeerdt et al., 2022b), CERES data are available from the
CERES online ordering tool

(https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAF42Selection.jsp,
CERES, 2023a; https://ceres-tool.larc.nasa.gov/ord-tool/jsp/
FluxByCldTypSelection.jsp, CERES, 2023b), MERRA-
2 data are available from the NASA Goddard Earth
Sciences Data and Information Services Center
(https://doi.org/10.5067/LTVB4GPCOTK2, NASA, 2023a),
and CMIP6 output is available from the CMIP6 online archive
(https://esgf-node.llnl.gov/projects/cmip6/, WCRP, 2022). The
SW cloud radiative kernel is available from GitHub (2023,
https://github.com/caseywall7926/MODIS_Re-LWP_kernel, Wall,
2023a; https://doi.org/10.5281/zenodo.8427293, Wall, 2023b).
Estimates of the components of aerosol indirect effects and ERFaci
averaged over ocean are listed in Table S3.

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-13125-2023-supplement.
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