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Abstract  

The complex microbial assembly of bacteria, fungi and viruses that inhabit the 

gastrointestinal tract of vertebrates has a remarkable influence on the host homeostasis 

and diseases. Most of the previous studies have focused only on the bacterial 

community but there is increasing interest in its fungal component (mycobiota), since 

intestinal mycobiota can also influence host physiology, metabolism and immunity. 

Fungal communities associated with fish and their importance are poorly understood. 

The aim of this thesis was to characterize the fungal communities found in the intestine 

of zebrafish and to understand the impact of commensal yeast on the bacterial 

communities and transcriptomic responses of host. Three connected studies were 

performed: 1. Molecular profiling of fungal communities in the intestine of wild-caught 

and laboratory-reared zebrafish; 2. Determining the influence of fish-derived yeast 

(either Pseudozyma or Debaryomyces) on the intestinal bacterial composition and 

diversity in zebrafish larvae; 3. Evaluation of the impact of host-associated yeast on the 

zebrafish larvae transcriptome.  

Molecular profiling showed that zebrafish mycobiota consists of many fungal 

phylotypes, belonging mainly to phyla Ascomycota and Basidiomycota. Our results also 

indicated that wild-caught zebrafish have a distinct and more diverse fungal community 

than their laboratory–reared counterparts. Yeast exposure leads to marked alterations 

in the abundance of bacterial communities and these changes could be related to shifts 

in the relative abundance of core taxa and elevation of certain beneficial bacteria. 

Transcriptomic analysis indicated that exposure to yeast at early developmental stages 

influences the host transcriptome by modulating the expression of genes involved in 

metabolic and immune-related processes. Taken together, these studies shed light into 

the diverse fungal consortium in gastrointestinal tract of zebrafish and revealed the 

potential ability of fish-derived yeast to modulate the bacterial community and 

transcriptomic responses of host after transient exposure during early larval stages. 



 

2 
 

1. Introduction  

Microbiota is an assemblage of commensal microorganisms that include pathogens and 

mutualists present in and on multicellular organisms (Marchesi and Ravel. 2015). The 

host and their microbiota can be considered as holobiont, since they form an ecological 

unit (van de Guchte et al. 2018). Microbiota are found in different areas of the body—

including the skin, gastrointestinal (GI), urogenital, and respiratory tracts. However, the 

composition of the microbiota in different body sites varies significantly (Ursell et al. 

2012). The GI tract of vertebrates, including fish, represents the largest interface 

between the host, their microbiota and the environment (Thursby and Juge. 2017, Wang 

et al. 2017). Over the past decades, studies related to GI microbiota have been at the 

forefront of biological research because of the involvement of microbes in a range of 

physiological processes, including metabolic, and immunological functions (Brestoff and 

Artis. 2013). Intestinal microbiota offers many benefits to the host, such as the synthesis 

of essential vitamins and enzymes, energy harvest by hydrolyzing complex molecules, 

stimulation of the immune defense and protection of host from infections (Brestoff and 

Artis. 2013). The microbiota composition is unique to each individual, and its 

establishment and composition are influenced by various factors, e.g., diet, geographical 

location, and genome and health status of the host (Rodríguez et al. 2015a). For 

instance, the microbiota composition is determined by the host genotype, since 

monozygotic twins have more similar microbiota than dizygotic twins, and family 

members share similar microbial communities with their relatives than unrelated 

individuals (Goodrich et al. 2014, Turnbaugh et al. 2009).  

The GI tract is a complex environment hosting a variety of microbes, mainly bacteria, 

archaea, viruses and eukaryotes, collectively referred to as ‘gut microbiota’ (Marchesi 

et al. 2016). Most studies to date focused solely on bacterial communities and their 

involvement in host physiological functions. Recently, there is increasing evidence 

pointing to the importance of other microbial members, including fungi, and their 

influence on a variety of host biological processes and association with diseases (Huseyin 

et al. 2017a, Huseyin et al. 2017b). The alteration of diversity and composition of fungal 
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community is associated with obesity, diabetes, hepatitis and inflammatory bowel 

diseases. Sokol et al (2017) observed an increased ratio of certain fungal phylum in 

inflammatory bowel disease patients compared to healthy subjects. An elevated level of 

fungal diversity in mucosa is also associated with an increase in prevalence of intestinal 

inflammation in patients with Crohn’s disease (Li et al. 2014). GI fungi may also be 

involved in the gut-brain axis, a bidirectional communication between the GI tract and 

the brain, through immune and non-immune mediated crosstalk systems (Enaud et al. 

2018). For example, chronic fungal infection increases the risk of Alzheimer's disease by 

secretion of amyloidogenic fungal proteins (amyloid) that alters the aggregation of the 

Aβ protein in the brain (Alonso et al. 2014).  

1.1. Mycobiota 

Compared to bacteria, the fungal community (mycobiota), are considerably less 

represented in the GI tract. The term “mycobiota” is derived from the Greek words myco 

(fungus) and bios (life) and is used to refer to a fungal community in a defined 

environment (Underhill and Iliev. 2014). Fungi is a kingdom comprised of diverse 

eukaryotic organisms—yeasts, molds, and mushrooms, which appear in various forms 

and shapes. It is currently classified into 5 different phyla (Figure 1) based on their mode 

of sexual reproduction and molecular data (Blackwell et al. 2012). Fungi are ubiquitous 

but only some of them, particularly yeasts, are most commonly associated with human 

and animals, including fish. Yeasts are microscopic fungi that reproduce by budding and/ 

or fission, and belong to the phyla Ascomycota and Basidiomycota (Kurtzman and Fell. 

1998). Yeasts that inhabit the GI tract as commensal mutualists or opportunistic 

pathogens are estimated to make up approximately 0.03 to 2% of the microbes in the 

intestinal tract (Rodríguez et al. 2015b). Nevertheless, they are involved in various host 

physiological processes, including metabolic functions, regulation of the immune 

responses and shaping the microbial community structure (Seed 2015). Most of our 

knowledge about fungal community structure and functions is derived mainly from 

studies on mammals, since this is a relatively new research area (Iliev et al. 2012, Qiu et 

al. 2015, Foster et al. 2013, Hamad et al. 2012, Hoffmann et al. 2013).  
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Figure 1. Schematic representation of the Fungi phylogeny. The Kingdom Fungi is subdivided 

into 5 different phyla (only traditional phyla are represented) based on their mode of sexual 

reproduction and molecular data. Branch lengths are not proportional to evolutionary distance. 

The figure is modified from Blackwell et al. (2012), Moore (2013) and Hibbett et al. (2007). 
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1.2. Intestinal mycobiota in mammals  

The GI tract of animals has variable proportions of different members of mycobiota. 

Initial culture-dependent surveys suggested that it is comprised of a restricted number 

of species. Recent advances in molecular approaches have allowed for the detailed 

investigation of the diversity of mycobiota and their association with health and disease 

status of several mammalian hosts, including humans, mice, pigs, dogs and ruminant 

and non-ruminant herbivores (Foster et al. 2013, Huffnagle and Noverr. 2013, Iliev et al. 

2012, Qiu et al. 2015, Liggenstoffer et al. 2010, Huseyin et al. 2017a). 

1.2.1. Human  

The GI tract of a healthy adult human comprises a diverse population of fungal 

community of approximately 13 % of the total gut microbial volume; with around 247 

species belonging to 126 different fungal genera (Gouba and Drancourt. 2015). It is 

dominated by Candida, Saccharomyces, Trichosporon, Rhodotorula and Cladosporium 

spp. (Hoffmann et al. 2013). The genus Candida includes approximately 160 species, 

most of which are adapted to live in varying conditions of different hosts (Blaschke-

Hellmessen 1999). Candida albicans consistently ranks as the most successful fungal 

colonizer in the GI tract (MacCallum 2010).  

1.2.2. Mice  

A diverse mycobiota was observed in the intestinal contents of mice using 

oligonucleotide fingerprinting of rRNA genes (Scupham et al. 2006). Early metagenomics 

studies showed that mouse contains a diverse fungal community and it is home to over 

50 genera; C. tropicalis, Saccharomyces cerevisiae, Trichosporon spp. are the most 

abundant yeasts (Iliev et al. 2012). These initial studies characterized yeast communities 

in faecal samples, but we now know that there are remarkable differences in the fungal 

community composition between mucosa and faeces collected from different gut 

segments in mice (Qiu et al. 2015).  
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1.2.3. Pig  

Knowledge about yeast colonization in the porcine GI tract is mainly obtained from 

culture-based studies; Kazachstania slooffiae, Galactomyces geotrichum, Candida 

catenulata and Candida glabrata were the most commonly isolated yeasts 

(Urubschurov et al. 2008). There are compositional differences between the yeast 

communities of piglets that were reared in commercial and experimental farms. Piglets 

maintained at commercial farms have more abundant G. geotrichum, K. slooffiae and C. 

catenulate in their GI tract, whereas K. slooffiae and C. glabrata were the predominant 

yeasts in piglets that were reared in an experimental farm (Urubschurov et al. 2008). 

1.2.4. Dogs  

A cultivation- and PCR-based study investigated the yeast community in the intestine of 

healthy dogs. It revealed the predominance of Saccharomycetes in most samples and 

identified around 51 yeast phylotypes (Suchodolski et al. 2008). Another report 

described the mycobiota present in faecal samples collected from healthy dogs and dogs 

with acute, non-hemorrhagic diarrhea. Among the 5 phyla identified, Ascomycota and 

Basidiomycota were dominant in both groups of diseased and healthy dogs (Foster et 

al. 2013). An 18S rDNA gene-based pyrosequencing study revealed that Ascomycota was 

the predominant fungal phylum, accounting for 99.6 % of the total sequences (Handl et 

al. 2011). Candida. castelli is the more abundant fungal species of the class 

Saccharomycetes. Similar to mice and humans, dogs also have a smaller proportion of 

mycobiota (Swanson et al. 2011).  

1.2.5. Cats  

Fungi constitute approximately 0.02 to 0.3% of the total faecal microbiota in cats 

(Minamoto et al. 2012). In addition, pyrosequencing of the fungal 18S rRNA gene 

identified 16 fungal genera in faecal samples. Ascomycota represents the dominant 

phylum and Aspergillus and Saccharomyces are the most abundant fungal genera found 

in faeces (Handl et al. 2011).  
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1.3. Fish-associated microbiota  

Fishes represent the most diverse group of all vertebrates and interact intimately with 

their surrounding aquatic environment; hence, they are in close association with 

microorganisms that exist there (Clements et al. 2014). Similar to other vertebrates, the 

GI tract of fish comprises bacteria, archaea, viruses, protozoans and fungi (especially 

yeasts) (de Bruijn et al. 2018). It harbors around 15 to 17 bacterial phyla (Egerton et al. 

2018). Proteobacteria, Bacteroidetes, Tenericutes and Firmicutes are the dominant 

phyla and constitute 90% of fish intestinal microbiota, indicating their functional 

significance for the host (Ghanbari et al. 2015). Other common phyla are present in 

lower proportions, mainly Actinobacteria, Fusobacteria, Deinococcus-Thermus, 

Verrucomicrobia (Romero et al. 2014). Aeromonas, Pseudomonas, Vibrio, Acinetobacter, 

Corynebacterium, Alteromonas, Flavobacterium, Micrococcus and Bacillus are 

frequently reported as dominant colonizers of the GI tract of both fresh and marine 

fishes (Wang et al. 2017). 

Archaea are obligatory anaerobic microorganisms that are phylogenetically distinct from 

both bacteria and eukaryotic organisms (Figure 2). They are metabolically important and 

involved in fermentation and production of methane. Members of marine group II 

archaea were identified in European flounder (Platichthys flesus) and grey mullet (Mugil 

cephalus) (van der Maarel et al. 1998). A next-generation sequencing (NGS)-based study 

reported the occurrence of methanogenic archaea in the gut of grass carp 

(Ctenopharyngodon idella), and their existence was related to the processing of 

indigestible polysaccharides in diet (Wu et al. 2015).  

Most research that explored the interaction between aquatic viruses and their hosts 

focused mainly on disease-causing viruses (Suttle 2007). Our knowledge of the 

biodiversity and functional role of viruses in holobiont ecosystem is still scarce. 

Nevertheless, we are beginning to understand the importance of viral communities 

associated with marine invertebrates (Laffy et al. 2016). For instance, a recent viral 

metagenomics study linked differences in viral community composition to cellular, 

immunological, geographical, and ecological niche of the host (Gudenkauf and Hewson 
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2016). Bacteriophages were also identified from the digestive tract of fish and shellfish 

collected from coastal waters of Pacific Ocean near Chile and Mexico (Roberto et al. 

2010). Viruses influence the host health by exchanging genes with their host bacteria 

through infection, which modulates microbial diversity as well as functional potential 

(Chibani-Chennoufi et al. 2004).  

 

 

Figure 2. Schematic representation of the phylogenetic tree of life. Organisms are classified into 

three domains of life based on differences in ribosomal RNA (rRNA) gene sequence. The figure 

is modified from Woese (2000). 

Protozoans are frequently associated with fish gills; members of the orders 

Clevelandellida and Vestibuliferida (Ciliates) have been identified in the GI tract of 

surgeonfish species belonging to the family Acanthuridae (Grim et al. 2002). Protozoans 

also account for a very small proportion of microbiota, and further studies are required 

to understand their role in health and diseases.  
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1.4. Mycobiota of fish  

Yeasts are recognized as an integral component of the normal microbiota in fish, since 

they naturally occur in various tissues and organs, including the gut, gills, skin, mouth 

and faeces (Gatesoupe 2007). The proportion of yeast in fish ranges from non-

detectable levels to 107 colony-forming units (CFU)/g of intestinal content (Gatesoupe 

2007). The most common yeasts found in the GI tract of fish include Saccharomyces, 

Debaryomyces, Leucosporidium, Candida, Rhodotorula, Pichia, Cryptococcus and 

Trichosporon (Gatesoupe 2007, Romero et al. 2014, Raggi et al. 2014). Compared to our 

knowledge about mammalian fungi, little is known about fish-associated mycobiota and 

their influence on host physiology. 

1.4.1. History of mycobiota studies in fish  

To date, only few studies have focused on fish mycobiota. Yeasts were first identified 

from topsmelt (Atherinops affinis littoralis) and Pacific jack mackerel (Trachurus 

symmetricus) during 1960s (Uden and Castelo. 1963) (Figure 3). Yeasts have since been 

considered as normal members of the fish gut microbiota. In the following decade, there 

was little progress in this field, apart from the description of Rhodotorula sp. from the 

gut of European flounder (Platichthys flesus) (Newman Jr et al. 1972). During the early 

1990s several yeast species were isolated from the intestine of rainbow trout 

(Oncorhynchus mykiss) and the properties of Debaryomyces hansenii isolated from the 

GI tract of rainbow trout and turbot (Scophtalmus maximus) were documented (Andlid 

et al. 1995, Andlid et al. 1998, Vazquez-Juarez et al. 1997). From this point onwards, 

studies on fish yeast became more popular due to their recognised beneficial and 

immunostimulatory properties; in particular, S. cerevisiae and D. hansenii were found to 

enhance growth, feed efficiency and immune response in different fish species 

(Gatesoupe 2007, Reyes-Becerril et al. 2008a, Ortuño et al. 2002). Subsequently, several 

reports described the probiotic and extracellular enzyme-producing potential of 

different yeast species that were isolated from the gut of estuarine water mullet (Mugil 

spp.) and other freshwater fish species, such as Indian carps (Labeo rohita, Catla catla, 

Cirrhinus mrigala), Chinese carps (Hypophthalmichthys molitrix, Ctenopharyngodon 
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idella), common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) (Banerjee 

and Ghosh. 2014, Laconi and Pompei 2007). Identification and characterization of yeast 

from the fish GI tract were performed mainly using culture-dependent methods but 

later on molecular approaches (e.g., PCR) were also adopted (Andlid et al. 1998, 

Gatesoupe 2007, Laconi and Pompei 2007, Raggi et al. 2014). The first and only 

comprehensive profiling of fish-associated mycobiota using next generation sequencing 

was published last year. This report revealed the spatial difference in the mycobiota 

composition associated with the GI tract of royal panaque (Panaque nigrolineatus), and 

was affected by the wood content in their diet (Marden et al. 2017).  

 

 

 

Figure 3. Historical timeline of fish mycobiota studies. Black font indicates yeast characterization 
studies and yeast colonization through feeding and/or exposure studies are in green font. 
Multiple publications on the same fish species are mentioned only once. 
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1.5. Fungal interactions  

Polymicrobial communities that inhabit the GI tract engage in dynamic interactions, 

which are recognized as important determinants of community function (Arvanitis and 

Mylonakis 2015). Cross-kingdom mutual or antagonistic interactions, especially 

between mycobiota and bacteria, significantly influence the host health and disease 

(Fourie et al. 2016). Residents of gastrointestinal microbiota are constantly undergoing 

physical and chemical interactions among themselves or with the host cells for nutrients 

and space (Arvanitis and Mylonakis 2015). These complex interactions influence 

survival, colonization, and virulence of other microorganisms. Interestingly, the 

discovery of penicillin by Alexander Fleming, is a consequence of the interaction 

between bacteria (Staphylococcus aureus) and fungi (Penicillium notatum).  

1.5.1. Fungal – bacterial interactions  

Quorum sensing and morphology are the main basis for the interaction between fungi 

and bacteria. For example, the bacteria Staphylococcus aureus can successfully invade 

the host tissues by selectively attaching to the hyphal filaments of C. albicans than to 

the yeast form (Schlecht et al. 2015). Similarly, Pseudomonas aeruginosa forms a biofilm 

on the surface of C. albicans hyphae to kill the fungi. In contrast, it neither binds to nor 

kills the yeast form of C. albicans (Hogan and Kolter 2002). Yeasts can also produce 

various inhibitory molecules such as toxins, ethanol and proteases, which affect the 

morphology and prevents the growth and colonization of bacteria on the host mucosal 

surfaces (Hatoum et al. 2012). Exogenous addition of C. albicans during antibiotic 

treatment in mice results in overgrowth of yeast and a substantially altered reassembly 

of the bacterial community (Downward et al. 2013). It also modulates the expression of 

virulence genes by producing quorum sensing inhibitory compounds (Rasmussen et al. 

2005). Yeast and bacteria naturally occur in close association and are widely used in the 

production of fermented foods, such as cheese, kefir, kimchi and many others (Hatoum 

et al. 2012). Some yeasts species are known to produce vitamins, amino acids or purines 

that favour the growth of lactic acid bacteria (Ponomarova et al. 2017). Subsequently, 

lactic acid bacteria reduce the pH by producing organic acids, which creates favourable 

conditions for the growth and proliferation of yeast (Viljoen 2006). Co-existence of 
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Candida albicans and Helicobacter pylori in the GI tract can enhance the pathogenesis 

of peptic ulcers (Karczewska et al. 2009).  

1.5.2. Fungal – fungal interactions  

In addition to interacting with bacteria, fungi also interact with other fungi in their 

niches. For examples, the quorum-sensing molecule farnesol produced by C. albicans is 

able to control the morphology of the pathogenic fungi Aspergillus niger and Fusarium 

graminearum by inhibiting their hyphal growth, conidiation and germination (Lorek et 

al. 2008, Semighini et al. 2008). Farnesol also exhibits antifungal properties and induces 

cell death of different fungal species (e.g., Penicillium expansum) by generating reactive 

oxygen species (Liu et al. 2010). In addition, yeasts also produce killer toxins or mycocins 

that are lethal and disrupt the cell membrane function of a wide variety of susceptible 

yeast varieties (Hatoum et al. 2012). Nevertheless, interactions between yeasts are not 

as well understood as fungal-bacterial interactions.  

1.5.3. Fungal – host interactions  

Interaction between host-associated commensal fungi and its mucosal immune system 

is essential for regulating homeostasis and promoting a mutually beneficial relationship 

(Iliev and Underhill 2013). The host immune system has different defence mechanisms 

against fungal invaders, but intestinal mucosal epithelial layers are the first line of 

defence against fungi that can potentially colonize the GI tract (Pitman and Blumberg 

2000). Several components of the host immune system are involved in recognition of 

fungi and mediation of the anti-fungal responses. These consist of pattern recognition 

receptors (PRRs), including Toll-like receptors, the C-type lectin receptors, galectin 

receptors and NOD-like receptors. PRRs are involved in recognizing fungal microbe-

associated molecular patterns (MAMPs), such as cell wall carbohydrates (β-1,3-glucans, 

chitin, zymosan) surface proteins (mannoproteins) and fungal nucleic acids (Romani. 

2011). The host immune system can respond differently to the yeast and filamentous 

form of fungi and this discriminating ability of the host is critical for differentiating other 

resident microorganisms from potential pathogens (Naglik et al. 2011). Recognition of 

fungal MAMPs by host PRRs initiate a cascade of intracellular signalling pathways, 
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eventually leading to the production of a broad range of molecules (e.g., cytokines, 

chemokines and cell adhesion molecules) to modulate the innate and adaptive immune 

responses against fungal pathogens (Tang et al. 2018, Brown 2011). Deficiency in the 

host signalling molecules involved in the antifungal response or fungal recognition 

increase the likelihood of fungal infection. For example, caspase recruitment domain 

family member 9 is an essential element in tailoring the antifungal response by receiving 

signals from Dectin-1 and Dectin-2 receptors. Its deficiency in mice leads to an increased 

susceptibility to systemic candidiasis (Jia et al. 2014, Tang et al. 2018). Alternatively, 

fungal species exhibit different strategies to avoid recognition from immune 

components and thus interfering with the host protective mechanisms. These include 

shielding of stimulatory PAMPs, modulation of inflammatory signals, shedding of decoy 

components, complement evasion and escape from phagocytic response (Marcos et al. 

2016, Chai et al. 2009). For instance, polymorphic (C. albicans) and dimorphic 

(Histoplasma capsulatum, Paracoccidioides spp., and Blastomyces dermatitidis) fungi 

have the ability to alter the cell wall architecture during phenotypic switching, which 

results in differential recognition by PRRs and subsequently different host response 

(Chai et al. 2009, Marcos et al. 2016). Colonization by mycobiota could training the host 

immune system, thus promoting a stronger protective response following exposure to 

an infectious agent. It has been demonstrated that pre-exposure of macrophages to 

beta-glucan, a fungal cell wall component, leads to a stronger immune response against 

infection with C. albicans (Quintin et al. 2012). Occurrence of C. albicans and S. cerevisiae 

among the gut microbiota can educate the host immune system to better cope with 

secondary infection (Ifrim et al. 2013, Rizzetto et al. 2014).  

The zebrafish model has been used extensively to understand the interaction dynamics 

between host and pathogenic fungi including C. albicans, Cryptococcus neoformans and 

Aspergillus fumigatus by real-time visuals (Brothers et al. 2011, Chao et al. 2010, Chen 

et al. 2015, Knox et al. 2014, Tenor et al. 2015). A complete understanding of the 

interaction between commensal fungi and the host immune system is necessary to 

clarify the associated physiological outcomes. The recent development of NGS 

techniques (host transcriptomics and metatranscriptomics (microbiota)) are expanding 
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our understanding of the complex relationship that hosts have with their microbial 

communities.  

1.6. Influence of GI mycobiota on their host  

GI microbiota can have a major impact on the host physiology, including intestinal 

homeostasis as well as general metabolic and immunological functions. For example, S. 

cerevisiae in the intestinal tract of mice increases the intestinal permeability and 

exacerbates colitis in experimental animal models (Chiaro et al. 2017). Disruption of 

commensal fungi using antifungal drugs increased disease severity in chemically induced 

and T cell transfer-mediated models of experimental colitis (Wheeler et al. 2016). 

Administration of S. cerevisiae in obese and type 2 diabetic mice modifies host 

metabolism to reduce fat mass, hepatic steatosis, and inflammatory response by 

altering their gut microbial composition (Everard et al. 2014). A recent study in mice has 

displayed the important role of commensal fungi during early life in the maturation and 

development of gut-associated lymphoid tissues and peripheral lymph nodes (Zhang et 

al. 2016). Jiang et al (2017) demonstrated that commensal fungi can functionally replace 

the intestinal bacteria to protect the host against injury of mucosal tissues and 

inflammatory disorders. In addition, they positively calibrate the activation of circulating 

immune cells. These observations suggested that fungi are vital components of GI 

microbiota despite their smaller proportion in the community. 

Several studies have shown the beneficial effect of dietary administration of commercial 

or commensal yeast in fish. In particular, D. hansenii is the most frequently isolated 

commensal yeast from the GI tract of fish. Fish offered a diet supplemented with D. 

hansenii have an enhanced immune response that improves resistance against infection 

from the dinoflagellate Amyloodinium ocellatum and pathogenic Aeromonas hydrophila 

(Reyes-Becerril et al. 2008b, Reyes-Becerril et al. 2011). Feeding tilapia larvae with 

probiotic S. cerevisiae enhances their feed efficiency and improves growth compared to 

fish fed with probiotic bacteria (Lara-Flores et al. 2003). Also, Debaryomyces hansenii 

dietary supplementation enhances gut maturation and digestive enzyme activities in 

Dicentrarchus labrax larvae (Tovar et al. 2002). The combined use of S. cerevisiae and 
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Bacillus amyloliquefaciens at low doses improves gut mucosal morphology and protects 

juvenile C. carpio (Huang et al. 2015). A recent study has also showed that dietary 

inclusion of yeasts could modulate the intestinal microbiota of rainbow trout (Huyben 

et al. 2017). Administration of yeast cell wall components can also enhance growth and 

immune response in different fish species, including sea bream (Sparus aurata), channel 

catfish (Ictalurus punctatus), O. niloticus, yellow croaker (Pseudosciaena crocea) and 

Atlantic salmon (Salmo salar) (Gatesoupe 2007, Navarrete and Tovar-Ramírez 2014).  

1.7. Factors influencing the mycobiota  

Several factors are known to influence the structure and diversity of microorganisms 

that live in the GI tract of humans and animals. In particular, diet, host genotype, host 

physiology and environmental factors contribute to determining the composition of GI 

mycobiota (Cui et al. 2013). Diet is considered as a main driving factor that shapes the 

GI fungal communities. In human studies, consumption of high amount of carbohydrates 

can positively influence the colonization by Candida sp. whereas diets with high protein, 

fatty acids and amino acids had the opposite effect (Hoffmann et al. 2013). Consumption 

of more short chain fatty acids also reduces the abundance of Aspergillus (Hoffmann et 

al. 2013). Eating a diet consisting of meat facilitates the enrichment of Penicillium spp, 

and consumption of nuts (almond and pistachio) lowers the proportion of Candida and 

Penicillium species (Ukhanova et al. 2014, David et al. 2014).  

Mice offered a high fat diet harbour significantly different gut fungal communities than 

the control mice that were fed with standard chow (Heisel et al. 2017). Fungal 

populations in the GI tract are more variable compared to commensal bacteria. For 

instance, the fungal community in the GI tract of mouse has shown episodic variation 

over several months but their bacterial community was constant (Dollive et al. 2013). 

Similarly, Hallen-Adams et al (2015) also observed lack of fungal community persistence 

that is typically observed for the GI tract bacterial communities.  

The gastrointestinal tract of infants was predominantly colonized by Candida species 

presumably acquired by both horizontal and vertical transmission from the mother 

either during time of birth or breast feeding (Bliss et al. 2008, Waggoner-Fountain et al. 
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1996, Ward et al. 2017). It is reported that, Candida spp. are detectable in about 96% of 

neonates by the end of the first month of life (Kumamoto and Vinces 2005). The 

relatively low fungal diversity in infant gut compared to adults is likely due to lack of 

exposure to a variety of fungal species (Heisel et al. 2015). As the child grows, the 

composition and diversity of fungal species resemble the maternal mycobiota (Schei et 

al. 2017). It has been recently reported that in human, gender can also affect the 

abundance of some fungal taxa. Females had a higher number of fungal isolates 

compared to males (Strati et al. 2016).  

1.7.1. Mycobiota of wild individuals  

Our understanding of GI mycobiota is mostly derived from findings in humans, 

laboratory and farmed animals, but few studies have characterized the fungal 

composition in wild animals. For example, studies that used insects from their natural 

habitat revealed a symbiotic interaction between fungi and their host (Blackwell. 2011). 

The digestive tract of insects has a considerable yeast diversity and it alters depending 

on the diet changes during their ontogeny (Boekhout 2005, Suh et al. 2005, Suh and 

Blackwell 2004). In addition, previous studies characterized the fungal communities in 

the cloaca of marine turtles (Natator depressus, Chelonia mydas, Caretta caretta and 

Eretmochelys imbricate) (Phillott et al. 2002), and wild crocodile (Caiman latirostris) 

(Betiana Núñez-Otaño et al. 2013). Cloaca of wild crocodile contains a total of 14 fungal 

species, among which Aspergillus brasiliensis, Alternaria alternate, Fusarium redolens 

were the most abundant. Ascomycota (68%) was the dominant phylum followed by 

Basidiomycota (13%) and Zygomycota (6%) in the gut of tropical butterflies from Costa 

Rica (Ravenscraft et al. 2017). 

Laboratory and farmed animals are offered diets and maintained in controlled 

environmental conditions that often differ from their wild counterparts. The controlled 

conditions limit their ability to exhibit natural or social behaviours, which may have 

profound impact on gut microbiota. However, a comparative study of the gut fungal 

communities between domesticated silkworm (Bombyx mori) and wild Acronicta major 

and Diaphania pyloalis did not reveal any major changes in the gut fungal composition 
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at phylum level (Chen et al. 2018). A molecular and culture-based study has also not 

shown differences in fungal composition between wild and farmed carnivorous fishes, 

namely Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), coho 

salmon (Oncorhynchus kisutch), corvina drum (Cilus gilberti) and Cape yellowtail (Seriola 

lalandi) (Raggi et al. 2014). These observations contrast with the differences in the gut 

bacterial composition noted between wild and captive animals, including fish (Uren 

Webster et al. 2018, Ramírez and Romero 2017).  

1.8. Methods for mycobiota analysis  

The methods used to identify and analyse fungal communities have greatly evolved over 

the last decade. Over the years, advances in methods have improved our understanding 

of the fungal ecosystem and a wide range of techniques are now available to identify 

fungi, all differing in specificity, reproducibility, time and cost. Traditionally researchers 

have relied on microbiological techniques such as growth on selective media, 

biochemical assay and microscopy. These methods are less expensive and simple to 

perform (Halwachs et al. 2017, Kong and Morris 2017, Huseyin et al. 2017b) but they 

have several disadvantages, such as being laborious and time consuming. Also, culture-

based methods tend to favour fast growing and abundant fungi and mask the detection 

of low abundant organisms. The majority of symbiotic fungi are non-culturable using 

traditional methods (Gouba et al. 2013). Despite this limitation, the importance of 

culture methods cannot be ignored. Researchers have started combining them with 

other methods such as mass spectrometry and DNA-based analysis for accurate 

identification and improved resolution. Introduction of culture-independent methods 

has revolutionized our view of microbial ecology. Polymerase chain reaction (PCR) and 

sequencing-based methods have revealed some previously unidentified fungi in the 

environment. In particular, NGS methods have enabled in-depth analysis by providing 

massive amounts of data on microbial community composition (Barriuso et al. 2011). A 

range of NGS platforms are available; each has its own sequencing approach but they 

share a similar workflow involving either DNA fragmentation or amplicon sequencing 

(Reuter et al. 2015). The internal transcribed spacer (ITS) regions of the ribosomal DNA 

are considered as a suitable molecular target for compositional analysis of the 
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mycobiota by high-throughput amplicon sequencing (Schoch et al. 2012). The ITS region 

lies between the 18S (small sub unit) and 28S (large subunit) genes in the nuclear rDNA 

cistron and it includes the ITS1 and ITS2 regions separated by the 5.8 S gene (Figure 4). 

The entire ITS region has commonly been targeted with traditional Sanger sequencing 

approaches and typically ranges between 450 and 700 bp, whereas the length of each 

region varies from 300 to 400 bp (Bellemain et al. 2010, Halwachs et al. 2017). The 

precise target for amplicon sequencing to characterize fungal communities can be  the 

entire ITS region including 5.8S, or either ITS1 or ITS2 (Halwachs et al. 2017, Abdelfattah 

et al. 2015, Ghannoum et al. 2010, Hamad et al. 2012, Luan et al. 2015, Meason-Smith 

et al. 2017, Schmidt et al. 2013). The first primers to target ITS region were developed 

during 1990s (White et al. 1990, Gardes and Bruns. 1993).They are not ideal, as they 

show amplification bias towards several fungal groups (Diakarya vs non-Diakarya, 

Ascomycota vs Basidiomycota) (Bellemain et al. 2010) and many researchers have 

developed several other ITS primers to address this issue (Ihrmark et al. 2012, Toju et al. 

2012, Leho and Björn. 2016). The choice of primers and target regions have a significant 

impact on the fungal community analysis.  

 

 

 

Figure 4. Schematic representation of the conserved (18S, 5.8S and 28S) and variable (internal 

transcribed spacer; ITS1 and ITS2) regions of fungal ribosomal RNA gene. The figure is modified 

from Halwachs et al (2017).  
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2. Objectives  

The overall aim of this dissertation was to characterize the intestinal mycobiota in order 

to understand their relevance for zebrafish. 

In spite of their known importance for host physiology in mammals, our knowledge 

about the fish mycobiota is very limited. In fact, at the start of this dissertation no gut-

associated fungal communities had been characterized in fish using state-of-the-art 

methods. The hypothesis underlying this dissertation is that zebrafish intestine may 

harbour a fungal community that affects the physiology of the fish, similar to the 

intestinal bacteria. 

 

Specific objectives are as follows: 

1. To characterize the intestinal fungal community in zebrafish  mycobiota profiles 

of laboratory-reared, wild and wild-caught-laboratory-reared individuals (Paper I).  

 

2. To determine the influence of yeast exposure on the intestinal bacterial community 

of zebrafish larvae (Paper II). 

 

3. To understand the transcriptome responses in zebrafish larvae exposed to selected 

host-derived yeasts (Paper III). 
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3. General discussion  

The GI fungal communities of vertebrates and the physiological responses elicited by 

them can influence the health status of the hosts. Furthermore, the fungal communities 

affect other microbial assemblies, including those of bacteria. Therefore, we profiled the 

GI mycobiota of zebrafish (Paper I) and examined the role of fish-associated yeasts in 

modulating the intestinal bacterial community (Paper II) and the host transcriptome 

responses (Paper III) by employing the germ-free (GF) and conventionally-raised (CR) 

zebrafish models and high-throughput 16S amplicon (Paper II) and RNA-sequencing 

(Paper III). 

3.1. Intestinal mycobiota of zebrafish  

Our comprehensive characterization of GI mycobiota of wild-caught, laboratory-reared 

and wild-caught-laboratory-kept zebrafish is perhaps one of the first descriptions in this 

field (Paper I). Regardless of the fish origin, Ascomycota was the predominant fungal 

phylum (87.5%) followed by Basidiomycota (6.8%), unidentified fungi (5.7%), and an 

even smaller proportion of Zygomycota. Higher abundance of Ascomycota and 

Basidiomycota corroborates with results of previous studies related to yeast 

communities in vertebrates (Foster et al. 2013, Huffnagle and Noverr 2013, Qiu et al. 

2015) and fishes (Gatesoupe 2007, Navarrete and Tovar-Ramírez 2014, Romero et al. 

2014). In the current study, we have observed more than 15 fungal classes; among these 

Dothideomycetes and Saccharomycetes were the most abundant ones. The GI tract 

harbours diverse fungal species, but exact number of species has not yet been clarified. 

Around 247 species are present in the human GI tract and we have observed more than 

200 species in zebrafish. However, dominant members accounted for higher proportion 

of reads from all the samples. We have found many rare genera by assessing the proxies 

for fungal abundance. Dominant members have a significant importance to the host, but 

rare microbial members are vital for maintaining the stability of the microbial 

community during environmental fluctuations (Jousset et al. 2017).  

A previous fish study has identified 43 yeast species from 5 different fishes using both 

culture-dependent and/or -independent methods (Raggi et al. 2014). Interestingly, 35 
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of these were identified by culture methods and 17 had to be discovered through 

culture-independent techniques. This indicates the needs to employ different methods 

to characterize mycobiota. Nevertheless, the diversity of microbiota (including fungi) 

inhabiting in the GI tract varies considerably from individual to individual and from 

species to species; moreover, it is thought to be dependent on various nutritional and 

environmental factors.  

3.2. Compositional difference in the intestinal mycobiota  

Several surveys, including those in fish, have shown that the bacterial composition varies 

with geography and/or habitat (Ramírez and Romero 2017, Salas-Leiva et al. 2017, 

Eichmiller et al. 2016, Kormas et al. 2014). However, a previous study has reported that 

there was no difference in the yeast community profiles of wild and farmed fish (Raggi 

et al. 2014). Although debatable, the authors concluded that yeast community is shaped 

by the carnivorous diet rather than the fish habitat. This study is limited by its PCR-TTGE 

molecular approach, which detected only a small fraction of fungi. In the present study, 

we found dissimilarities in the yeast communities of wild-caught and laboratory-reared 

zebrafish. Dothideomycetes were the abundant fungal class in the wild fish compared 

to Saccharomycetes in the laboratory specimens. Moreover, fungal diversity in wild 

samples was significantly higher than that in the laboratory-reared fish (Paper I). Diverse 

mycobiota of the wild samples could be pointing to the inherent microbial pool of the 

natural habitat and diverse diet, which might have a different influence on GI 

colonization and growth of certain species.  For instance, Uenishi et al (2007) have 

described the influence of microbe-rich food sources on the composition of intestinal 

microbiota of captive and wild-chimpanzees.  

Zebrafish is an omnivorous fish, and their diet consists mainly of zooplankton, insects 

phytoplankton and filamentous algae (Spence et al. 2008). In a recent study, it was 

demonstrated that the xylivorous fish P. nigrolineatus had a higher proportion of 

Dothideomycetes in their GI tract when fed a wood-based diet compared to a mixed diet 

(Marden et al. 2017). Therefore, we could speculate that a larger proportion of plant-

derived food components may have led to the increase of Dothideomycetes in zebrafish. 
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However, we do not have any information about the mycobiota associated with the diet 

or surrounding habitat (water) of the wild-caught zebrafish (Paper I).  

Laboratory-reared fish had a higher abundance of Saccharomycetes, which mainly 

comprised the genus Debaryomyces. This genus has been frequently found in the GI 

tract of fishes (Raggi et al. 2014) and is considered as a natural inhabitant of their GI 

(Navarrete and Tovar-Ramírez 2014). Its potential as a probiotic candidate in different 

fish species has been widely investigated due to their positive effect on host growth 

performance and feed digestion (by synthesising digestive enzymes such as amylase and 

trypsin) (Tovar et al. 2002). In addition, these yeasts can improve the disease resistance 

of leopard grouper (Mycteroperca rosacea) and S. aurata (Reyes-Becerril et al. 2011, 

Reyes-Becerril et al. 2008a, Reyes-Becerril et al. 2008b). We have reported a higher 

abundance of Saccharomycetes (Paper I) in laboratory-reared and wild-caught-

laboratory-kept zebrafish. Debaryomyces helped to increase the proportion of beneficial 

bacteria (Pediococcus and Lactococcus) in the intestine of zebrafish larvae (Paper II), 

which could have an effect on their well-being. 

Wild-caught fish reared in captivity (aquarium) and laboratory-reared fish had similar 

fungal composition, which was distinct from the wild-caught individuals. This indicates 

the impact of captivity on the alteration of fungal composition (Paper I). Previous studies 

have also illustrated the changes in microbial composition after rearing animals in 

captivity (Xie et al. 2016, Dhanasiri et al. 2011, Kohl et al. 2014). The co-evolutionary 

relationship maintained between vertebrates and their microbes in the natural habitat 

can be disrupted by domestication and captivity; this is likely to have major 

consequences to host health. In a recent study, the intestinal bacteria of laboratory mice 

were reconstituted with those of wild mice; the implantation led to protection against 

infection from influenza virus and resistance to mutagen/inflammation-induced 

colorectal tumorigenesis (Rosshart et al. 2017). Laboratory-reared animals lack a 

complete pool of symbiotic microbes, which leads to a dearth of immune activity and 

reduction in inflammation-reducing abilities (Feng and Elson 2011). Moreover, 

laboratory animals are poor models to understand the aspects of biology and intestinal 

microbes of wild animals. Ideally, we should gather information of mycobiota of wild 
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populations before attempting to explain the changes in animals under captive 

conditions. The distinct GI mycobiota composition of the wild fish is likely to have a 

functional significance for the host. The occurrence of certain bacteria (e.g., Firmicutes) 

in the GI tract is associated with nutrient absorption and energy regulation (Krajmalnik-

Brown et al. 2012). Similarly, the co-occurrence of saprotrophic and pathotrophic yeast 

indicates their ecological relevance for the fish (Paper I).  

Even though, amplicon sequencing is a powerful approach to characterize yeast 

communities, it has inherent limitations, including PCR bias, unequal copy number of 

the ribosomal repeats (target region) and restricted ability to distinguish taxa to the 

genus level (Bokulich and Mills 2013, Pinto and Raskin 2012). Shotgun yeast 

metagenomics is still in its infancy but it represents an exciting alternative to amplicon 

sequencing in the future, since it allows simultaneous description of high-resolution 

identification and functional classification (Quince et al. 2017). Hence, it would provide 

an overview of the potential role of GI microbial communities and their complex 

interaction on host physiology. 

3.3. Yeast exposure alters the intestinal bacterial communities  

Microbial colonization of GI tract during early life can profoundly influence the 

development and maturation of host metabolism and immune system (Gensollen et al. 

2016, Lu et al. 2018, Rawls et al. 2006, Rawls et al. 2004). There are various factors that 

determine the structure of early life microbiota. In fish, microbiota colonization is 

initiated upon hatching, when the larvae emerges from their protective chorions. 

Microbes associated with eggs and surrounding water could dictate the initial 

colonization patterns. Subsequently, when the larvae commence drinking and feeding 

their microbial pool diversifies. In addition, host deterministic factors also affect the 

structure of early microbial community (Llewellyn et al. 2014, Vadstein et al. 2013). 

Therefore, early-life is a critical period for host metabolic and immunologic 

development, and microbial community alteration during this early life window could 

have persistent and irreversible influence on the development of certain elements of 

immune system (Gensollen and Blumberg 2017, Gensollen et al. 2016). Most examples 
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in the literature focused on bacterial colonization events during early life, but recent 

investigations have revealed the importance of early exposure to fungi and its 

consequences on host health. For example, exposure to environmental fungi during 

infancy reduces the incidence of developing wheezing and asthma at later ages (Behbod 

et al. 2015).  

Beneficial effects of yeast and its derivatives in different animals, including fish, are well 

documented (Navarrete and Tovar-Ramírez 2014, Vohra et al. 2016). Yeasts are capable 

of modulating host bacterial composition, which concurrently elicit host immune 

responses that ensure protection against infection. However, some studies have not 

found any significant effect on the growth and performance of weanling pigs after 

feeding with yeast-supplemented diet (van Heugten et al. 2003). We investigated the 

effect of fish-derived yeasts on intestinal microbial community structure and host 

physiology of zebrafish larvae. We employed Debaryomyces sp. that is frequently found 

in GI tract fish including zebrafish (Paper I) and Pseudozyma sp. isolated from zebrafish 

to understand their effects on host responses and their microbiota. They can be 

considered as natural inhabitants of the GI tract of zebrafish. GF animals are excellent 

models for understanding the interaction between host and its microbiota. In our study, 

we used a GF zebrafish model to determine the role of fish- derived yeasts by exposing 

the fish with no intestinal microbes (germ-free fish) to one of the yeast strains. In Paper 

II we revealed the effect of the yeast species Debaryomyces sp. or Pseudozyma sp. on 

intestinal microbial community structure of GF and conventionally-raised (CR) zebrafish 

larvae. Furthermore, we investigated the effect of Pseudozyma sp. exposure on the host 

transcriptome by RNA-sequencing analysis (Paper III). Two separate experiments (Paper 

II and Paper III) were performed, and intestinal samples and whole larvae RNA were 

collected for microbial (Paper II) and transcriptomic analyses (Paper III), respectively. 

Consistent with previous studies (Dahan et al. 2018, Stephens et al. 2016), 

Proteobacteria was the dominant bacterial phylum in the GI tract of zebrafish larvae 

(Paper II). Bacteroidetes, Actinobacteria, Firmicutes, Fusobacteria and other rare phyla 

were also present. At the class level, Gammaproteobacteria was the dominant class and 

Aeromonas, Acidovorax, Pseudomonas, Rheinheimera, Shewanella, Sphaerotilus, 



 

25 
 

Gemmobacter and Zoogloea were the abundant and core microbiota in the intestinal 

tract of zebrafish. In particular, Aeromonas and Pseudomonas are commonly associated 

with freshwater habitat and many fish species (Wang et al. 2017). The consistent 

detection of these genera suggests that they are part of the indigenous population of 

the GI tract of fish (Egerton et al. 2018). However, they often cause infections in fishes 

(Austin and Austin 2007).  

Intestinal bacterial communities were distinct from those in rearing water, which mainly 

comprised the phyla Proteobacteria, Bacteroidetes and Actinobacteria. The phylum 

Proteobacteria was dominant in all the samples including water and intestinal tract of 

zebrafish larvae; we observed predominance of Gammaproteobacteria and 

Betaproteobacteria in the intestine and water, respectively. These results are consistent 

with the work of Stephens et al (2016), who have shown that zebrafish harbours a 

distinct bacterial community compared to the rearing water, and the community 

differences become more distinct at the later stages of development.  

Our data demonstrated that early exposure to yeasts alters the intestinal bacterial 

community (Paper II). The bacterial composition of the yeast-exposed and control larvae 

was significantly different, as we observed a shift in the abundance of certain genera. 

Pseudomonas abundance positively correlated with yeast exposure, whereas 

Aeromonas were less abundant in yeast-exposed larvae. In a previous study, the 

proportions of certain genera including Pseudomonas were higher in yeast treated fish 

compared to control (Liu et al. 2018). In addition, distinct changes in the microbial 

community at the genus level were found (Liu et al. 2018); reductions in the proportion 

of Cetobacterium and increase in the proportion of Stenotrophomonas, Pseudomonas, 

Phyllobacterium and Rhodococcus were observed in grass carp fed 12% of yeast culture 

compared to control diet. This result is consistent with our findings that yeast exposure-

drove relative changes of certain genera and an enrichment of Pseudomonas. It is 

difficult to fathom the effect of the increase and decrease of Pseudomonas and 

Aeromonas (i.e., whether they are favourable to the host), since both bacteria are 

opportunistic pathogens and are widely present in the fish (Austin and Austin 2007). 
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Nevertheless, the dominance of Pseudomonas might point to their important role in the 

intestinal ecosystem.  

We observed the impact of yeast on the diversity of bacterial communities in CR larvae 

(Paper II). In contrast, effect of yeast exposure was not much evident in GF zebrafish 

larvae. Similarly, introducing C. albicans into antibiotic-treated mice (disturbed 

microbial community or reduction of bacteria) further reduced the bacterial diversity of 

animals that received the antibiotics (Erb Downward et al. 2013). The intestinal 

ecosystem of CR animals is quite different to GF individuals, and the existing bacterial 

consortia in the intestine of CR animals could be the reason for the difference in diversity 

results. In a previous study, yeast supplementation did not significantly influence the 

species richness and diversity of bacterial communities of grass carp (Liu et al. 2018). In 

another study, supplementation of yeast significantly altered the diversity of bacterial 

communities in the GI tract of Nile tilapia (Ran et al. 2015). Differences in the effect of 

yeast exposure on alpha diversity suggest that both abundant and rare microbial 

communities have specific requirements and are unable to persist in the host GI tract. 

In other words, yeast exposure only favours the presence or growth of certain bacteria.  

3.4. Debaryomyces but not Pseudozyma enriches the intestinal beneficial 
bacteria  

We observed significantly more diverse bacteria in the Debaryomyces-exposed than in 

control and Pseudozyma-exposed larvae. A stable and diverse microbiota is important 

for the colonization resistance against invading pathogens and to improve the host 

health (Lawley and Walker. 2013). Diversity alone cannot determine the microbial 

stability and the well-being of host. Furthermore, ecological stability is based on 

functional dependence and may sometimes lead to negative feedbacks and ecosystem 

imbalance (Coyte et al. 2015). Therefore, microbial stability and the presence of certain 

species, particularly beneficial ones are important for maintaining microbial 

homeostasis. We have observed significant enrichment of lactic acid bacteria, such as 

Pediococcus and Lactococcus in Debaryomyces-exposed larvae. Similarly, higher relative 

proportion of beneficial bacteria was observed in grass carp after feeding diet 

supplemented with yeast (Liu et al. 2018), suggesting the ability of yeast to favour the 
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growth of beneficial bacteria. Previous studies have also shown that lactic acid bacteria 

are crucial for the host because of their inherent properties to inhibit the growth of 

putative pathogens and to stimulate the host immune system (Merrifield et al. 2014). 

Exposure to the fish-derived D. hansenii significantly increased the survival of zebrafish 

larvae challenged with V. anguillarum (Caruffo et al. 2016). In addition, growth and 

antioxidant enzyme activities were enhanced in D. labrax larvae fed diets supplemented 

with D. hansenii (Tovar-Ramírez et al. 2010). Furthermore, it could also be considered 

as an alternative diet (replacing microalgae) for rotifers that are used as live food for 

rearing zebrafish larvae (Rafael et al. 2017).  

Our results reinforce the emerging concept of manipulating intestinal microbiota in fish 

by modifying specific bacterial groups via live yeast supplementation during early stages 

of life. To date, a number of bacterial and yeast species have been tested as probiotic 

candidates in aquaculture; to manipulate intestinal microbiota and improve both 

growth and the function of the immune system of fish (Hai 2015, Navarrete and Tovar-

Ramírez 2014). Exploring yeast and its derivatives will be considered as an ideal 

approach because of their low risk and safety assurance in usage, since most yeasts 

show limited horizontal gene transfer and resistance to antimicrobial agents (Czerucka 

et al. 2007). Thus, they can be safely and effectively used in parallel with antibacterial 

agents to combat fish bacterial infections.  

3.5. Modulation of bacterial community assembly and host response in GF larvae 
exposed to Pseudozyma  

We have not observed a significant enrichment of the beneficial bacterial community in 

zebrafish after exposure to Pseudozyma, in contrast to Debaryomyces-exposed larvae. 

However, it modulated the bacterial communities in both GF and CR zebrafish larvae 

(Paper II). Although Pseudozyma sp. exposure did not significantly influence the host 

transcriptome response of CR larvae, it did affect the host response in GF zebrafish 

larvae (Paper III).  
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A total of 59 genes were differentially expressed in yeast-exposed GF larvae compared 

to the control group. Of these 59 genes, 57 were up-regulated and 2 were down-

regulated. Peroxisome proliferator-activated receptors (PPARs), steroid hormone 

biosynthesis, phototransduction pathways and metabolism-related pathways including 

drug (xenobiotic) metabolism and primary bile acid synthesis pathways were the 

enriched KEGG pathways. None of the immune-related pathways were enriched. 

However, we found that some immune-related genes, such as complement component 

(c3a), galectin (lgals2b), ubiquitin specific peptidase 21 (usp21) and aquaporins (aqp8a 

and aqp9b) were differentially expressed (Paper III).  

Cytochromes P450 large family of enzymes are expressed in many tissues mainly 

intestinal and hepatic tissue of vertebrates (Uno et al. 2012, Stavropoulou et al. 2018). 

These enzymes are involved in many functions and are modulated by several factors. In 

the current study, we observed the up-regulation of genes such as cyp7a1, cyp8b1, 

cyp2r1 and cyp2p8 that belongs to cytochromes P450 family. Therefore, we observed a 

significant enrichment of pathways involved in drug (xenobiotic) metabolism and 

primary bile acid synthesis. A previous report on zebrafish by Rawls et al (2004) has 

demonstrated ‘conventionalisation-driven’ enrichment of nutrient metabolism, 

xenobiotic metabolism and immune response.  

Recently, another study demonstrated the contribution of commensal yeast in the 

regulation of purine metabolism in GF mice after monoassociation with either S. 

cerevisiae or R. aurantiaca (Chiaro et al. 2017). Both yeasts induced similar 

transcriptomic profiles and yeast exposure significantly affected metabolic pathways 

and regulated the genes involved in intestinal barrier maintenance. They also observed 

a significant difference in immune-mediated pathways. The GF mice colonized with R. 

aurantiaca exhibited higher expression levels of antimicrobial peptides and genes 

involved in cellular tight junction formation compared to S. cerevisiae-exposed GF mice. 

These studies suggest that the immune system of a GF animal can be partially restored 

by colonization of commensal microorganisms (Wagner 2008). We have observed the 

upregulation of few immune-related genes, suggesting a moderate immune response 

through yeast priming. The up-regulated immune genes such as complement 
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component (c3a) and galectin (lgals2b) indicate their involvement in recognition and 

mediation of immune response.  

The effect of yeast on the transcriptome of CR zebrafish was not obvious although it 

altered the GI bacterial composition of the larvae. Probably, Pseudozyma sp. lacks the 

ability to modulate host signaling pathways (Paper II). Alternatively, the host might have 

developed the tolerance to Pseudozyma sp., thus diminishing the host response during 

exposure. Pseudozyma sp. and many other yeast species are commonly associated with 

and are considered as normal members of the zebrafish GI tract. The host immune 

system has developed discriminating mechanisms to prevent infection by pathogenic 

yeast and to remain tolerant to natural (commensal) yeast that inhabit in the host. For 

instance, Candida sp. has a dual lifestyle as a commensal or pathogenic yeast; only 

commensal forms are tolerated by the host (Romani 2011, Cauchie et al. 2017).  

Many previous studies have shown the role of beneficial microbes in the development 

of host physiological processes. It is important to know the contribution of other 

microbes including yeast and their metabolites, to host physiology. Paper III is the first 

study to demonstrate the ability of host-derived yeast to modulate the transcriptomic 

response in GF zebrafish larvae by RNA-sequencing. This response can be specific to a 

particular tissue or ubiquitous to regulate the homeostasis required for maintaining the 

mutualistic relationship. It seems also important to expand future research to non-

immune interactions between host and mycobiota in order to understand the overall 

role of fungi in this complex relationship with the host.  
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 Figure 5. Graphical representation of the yeast studies presented in this thesis 
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4. Conclusions  

This study provides the first insight into the GI tract mycobiota of zebrafish, 

characterized using a state-of-the-art next-generation sequencing approach. We have 

succeeded in demonstrating that early exposure to fish-associated yeast can influence 

the bacterial communities and potentially host physiology, based on transcriptomic 

responses of zebrafish larvae. 

1. The GI tract mycobiota of wild-caught and laboratory-reared zebrafish were 

significantly different.  

2. Rearing wild-caught zebrafish in captivity induced a shift in the mycobiota compared 

to wild individuals. Fungal diversity and compositional differences could possibly be 

due to nutritional and environmental factors.  

3. Zebrafish larvae possess a typical fish core gut microbial community. Transient 

exposure to yeast during early ontogeny dramatically altered different bacterial 

genera and increased the abundance of beneficial bacteria. 

4. Shift in the relative abundance of core bacterial genera by yeast exposure could be 

exploited as a novel strategy to selectively manipulate certain genera of fish 

intestinal bacteria.  

5. Metabolic and immune responses of zebrafish larvae (GF) were modulated upon 

exposure to host-derived yeast, highlighting the importance of the mycobiota in 

early-life development and modulation of biological processes in the host 
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5. Future perspectives  
 

The present thesis lays the foundation to understand the functional significance of the 

intestinal mycobiota of fish. GI mycobiota has been attracting attention as they can 

contribute to the wellbeing of hosts. Greater efforts are needed to gather more 

information about taxonomic and functional aspects of mycobiota that inhabit the GI 

tract. Complex interactions between yeasts and bacterial communities is likely a crucial 

factor for maintaining intestinal homeostasis. Therefore, future studies should be 

directed to understanding the fundamental factors underlying host–microbial (bacteria 

as well as fungi) interactions in the GI tract. Bacterial members are known for their ability 

to prime the immune system of hosts. More efforts are required to understand the 

equivalent role of mycobiota due to the inherent immune stimulating properties of their 

cell wall components. The present findings are mainly based on early developmental 

stages before the host adaptive immune system becomes fully functional. New 

investigations on similar lines should address the immunological response to yeast in 

adult fish. Further research is essential to develop a standard methodological strategy 

for circumventing pitfalls in the current techniques (e.g., low DNA recovery, sequencing 

depth) and minimizing confounding effects related to methodological differences (e.g., 

bioinformatic tools and database quality). Overall, adopting a hologenomics approach 

that integrate molecular data generated from the analysis of fish and their mycobiota 

will broaden our knowledge on the relevance of mycobiota to host.  
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