Vis enkel innførsel

dc.contributor.authorBohnenkamp, Anna C.
dc.contributor.authorKruis, Aleksander J.
dc.contributor.authorMars, Astrid E.
dc.contributor.authorWijffels, Rene Hubertus
dc.contributor.authorvan der Oost, John
dc.contributor.authorKengen, Servé W. M.
dc.contributor.authorWeusthuis, Ruud A.
dc.date.accessioned2021-02-25T12:53:14Z
dc.date.available2021-02-25T12:53:14Z
dc.date.created2021-02-15T11:30:24Z
dc.date.issued2020
dc.identifier.citationBohnenkamp, A. C., Kruis, A. J., Mars, A. E., Wijffels, R. H., van der Oost, J., Kengen, S. W. M. & Weusthuis, R. A. (2020). Multilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia coli. Biotechnology for Biofuels, 13: 65. doi:en_US
dc.identifier.issn1754-6834
dc.identifier.urihttps://hdl.handle.net/11250/2730433
dc.description.abstractBackground: Ethyl acetate is a widely used industrial solvent that is currently produced by chemical conversions from fossil resources. Several yeast species are able to convert sugars to ethyl acetate under aerobic conditions. However, performing ethyl acetate synthesis anaerobically may result in enhanced production efficiency, making the process economically more viable. Results: We engineered an E. coli strain that is able to convert glucose to ethyl acetate as the main fermentation product under anaerobic conditions. The key enzyme of the pathway is an alcohol acetyltransferase (AAT) that catalyses the formation of ethyl acetate from acetyl-CoA and ethanol. To select a suitable AAT, the ethyl acetate-forming capacities of Atf1 from Saccharomyces cerevisiae, Eat1 from Kluyveromyces marxianus and Eat1 from Wickerhamomyces anomalus were compared. Heterologous expression of the AAT-encoding genes under control of the inducible LacI/T7 and XylS/Pm promoters allowed optimisation of their expression levels. Conclusion: Engineering efforts on protein and fermentation level resulted in an E. coli strain that anaerobically produced 42.8 mM (3.8 g/L) ethyl acetate from glucose with an unprecedented efficiency, i.e. 0.48 C-mol/C-mol or 72% of the maximum pathway yield.en_US
dc.language.isoengen_US
dc.publisherBioMed Centralen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMultilevel optimisation of anaerobic ethyl acetate production in engineered Escherichia colien_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s)en_US
dc.subject.nsiVDP::Teknologi: 500::Bioteknologi: 590en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Biokjemi: 476en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Generell mikrobiologi: 472en_US
dc.source.pagenumber14en_US
dc.source.volume13en_US
dc.source.journalBiotechnology for Biofuelsen_US
dc.identifier.doi10.1186/s13068-020-01703-1
dc.identifier.cristin1889798
dc.source.articlenumber65en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal