Xylanase enhances gut microbiota-derived butyrate to exert immune-protective effects in a histone deacetylase-dependent manner
Wang, Tong; Zhou, Nannan; Ding, Feifei; Hao, Zhenzhen; Galindo-Villegas, Jorge; Du, Zhenyu; Su, Xiaoyun; Zhang, Meiling
Peer reviewed, Journal article
Published version

View/ Open
Date
2024Metadata
Show full item recordCollections
Original version
10.1186/s40168-024-01934-6Abstract
Background Commensal bacteria in the intestine release enzymes to degrade and ferment dietary components, producing beneficial metabolites. However, the regulatory effects of microbial-derived enzymes on the intestinal microbiota composition and the influence on host health remain elusive. Xylanase can degrade xylan into oligosaccharides, showing wide application in the feed industry. Results To validate the immune-protective effects of xylanase, Nile tilapia was used as the model and fed with xylanase. The results showed that dietary xylanase improved the survival rate of Nile tilapia when they were challenged with Aeromonas hydrophila. The transcriptome analysis showed significant enrichment of genes related to interleukin- 17d (il-17d) signaling pathway in the xylanase treatment group. High-throughput sequencing revealed that dietary xylanase altered the composition of the intestinal microbiota and directly promoted the proliferation of Allobaculum stercoricanis which could produce butyrate in vitro. Consequently, dietary xylanase supplementation increased the butyrate level in fish gut. Further experiments verified that butyrate supplementation enhanced the expression of il-17d and regenerating islet-derived 3 gamma (reg3g) in the gut. The knockdown experiment of il-17d confirmed that il-17d is necessary for butyrate to protect Nile tilapia from pathogen resistance. Flow cytometry analysis indicated that butyrate increased the abundance of IL-17D+ intestinal epithelial cells in fish. Mechanistically, butyrate functions as an HDAC3 inhibitor, enhancing il-17d expression and playing a crucial role in pathogen resistance. Conclusion Dietary xylanase significantly altered intestinal microbiota composition and increased butyrate content in the intestine. Butyrate activated the transcription of il-17d in intestinal epithelial cells by inhibiting histone deacetylase 3, thereby protecting the Nile tilapia from pathogen infection. This study elucidated how microbial-derived xylanase regulates host immune function, providing a theoretical basis for the development and application of functional enzymes.