Show simple item record

dc.contributor.authorOlsvik, Pål Asgeir
dc.contributor.authorFinn, Roderick Nigel
dc.contributor.authorRemø, Sofie C.
dc.contributor.authorFjelldal, Per Gunnar
dc.contributor.authorChauvigné, Francois
dc.contributor.authorGlover, Kevin
dc.contributor.authorHansen, Tom Johnny
dc.contributor.authorWaagbø, Rune
dc.identifier.citationOlsvik, P. A., Finn, R. N., Remø, S. C., Fjelldal, P. G., Chauvigné, F., Glover, K. A., Hansen, T. & Waagbø, R. (2020). A transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataracts. Experimental Eye Research, 199: 108150. doi:en_US
dc.description.abstractTo avoid negative environmental impacts of escapees and potential inter-breeding with wild populations, the Atlantic salmon farming industry has and continues to extensively test triploid fish that are sterile. However, they often show differences in performance, physiology, behavior and morphology compared to diploid fish, with increased prevalence of vertebral deformities and ocular cataracts as two of the most severe disorders. Here, we investigated the mechanisms behind the higher prevalence of cataracts in triploid salmon, by comparing the transcriptional patterns in lenses of diploid and triploid Atlantic salmon, with and without cataracts. We assembled and characterized the Atlantic salmon lens transcriptome and used RNA-seq to search for the molecular basis for cataract development in triploid fish. Transcriptional screening showed only modest differences in lens mRNA levels in diploid and triploid fish, with few uniquely expressed genes. In total, there were 165 differentially expressed genes (DEGs) between the cataractous diploid and triploid lens. Of these, most were expressed at lower levels in triploid fish. Differential expression was observed for genes encoding proteins with known function in the retina (phototransduction) and proteins associated with repair and compensation mechanisms. The results suggest a higher susceptibility to oxidative stress in triploid lenses, and that mechanisms connected to the ability to handle damaged proteins are differentially affected in cataractous lenses from diploid and triploid salmon.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.titleA transcriptomic analysis of diploid and triploid Atlantic salmon lenses with and without cataractsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.rights.holder© 2020 The Author(s)en_US
dc.subject.nsiVDP::Landbruks- og Fiskerifag: 900::Fiskerifag: 920en_US
dc.subject.nsiVDP::Landbruks- og Fiskerifag: 900::Fiskerifag: 920::Akvakultur: 922en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470en_US
dc.source.journalExperimental Eye Researchen_US
dc.relation.projectNorges forskningsråd: 224816en_US
dc.description.localcodeUnit Licence Agreementen_US

Files in this item


This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal